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The overwhelming majority of neurons in primate visual cor- 
tex are nonlinear. For those ceils, the techniques of linear 
system analysis, used with some success to model retinal 
ganglion cells and striate simple cells, are of limited appli- 
cability. As a start toward understanding the properties of 
nonlinear visual neurons, we have recorded responses of 
striate complex cells to hundreds of images, including both 
simple stimuli (bars and sinusoids) as well as complex stim- 
uli (random textures and 3-D shaded surfaces). The latter 
set tended to give the strongest response. We created a 
neural network model for each neuron using an iterative 
optimization algorithm. The recorded responses to some 
stimulus patterns (the training set) were used to create the 
model, while responses to other patterns were reserved for 
testing the networks. The networks predicted recorded re- 
sponses to training set patterns with a median correlation 
of 0.95. They were able to predict responses to test stimuli 
not in the training set with a correlation of 0.78 overall, and 
a correlation of 0.85 for complex stimuli considered alone. 
Thus, they were able to capture much of the input/output 
transfer function of the neurons, even for complex patterns. 
Examining connection strengths within each network, dif- 
ferent parts of the network appeared to handle information 
at different spatial scales. To gain further insights, the net- 
work models were inverted to construct “optimal” stimuli 
for each cell, and their receptive fields were mapped with 
high-resolution spots. The receptive field properties of com- 
plex cells could not be reduced to any simpler mathematical 
formulation than the network models themselves. 

As one ascends the visual pathways, from retina, through striate 
cortex, and on to parietal cortex or inferior temporal cortex, 
neuronal properties become increasingly complex. Cells at early 
stages of the pathways respond well to simple patterns such as 
spots, bars, or sinusoidal gratings. Responses of these early cells, 
which include retinal ganglion cells, lateral geniculate principal 
cells, and simple cells in V 1 cortex, can be predicted reasonably 
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well using the principle of linear superposition. That is, their 
response to a complex pattern is the sum of their response to 
simpler components. Already in Vl, however, complex cells 
have nonlinear properties that cannot be predicted from their 
responses to small spots (Hubel and Wiesel, 1968). By the time 
one gets to inferior temporal cortex, cells often require compli- 
cated and highly specific spatial patterns (e.g., Gross et al., 1972; 
Schwartz et al., 1983; Desimone et al., 1984). Because these 
cells are so nonlinear, one cannot simply sum the responses to 
simple patterns such as spots and gratings to predict the response 
to complex images such as textures or faces. Therefore, finding 
an effective stimulus for such cells is a matter of extensive trial 
and error. 

It would be desirable to have a method that can systematically 
capture the spatial properties of nonlinear visual cells. We have 
attempted to do this by using an optimization technique (Ru- 
melhart et al., 1986) to create neural-like models of single units 
that can predict responses of those units to a wide range of 
complex stimuli. Such neural network models are useful for 
representing complicated, nonlinear input/output relationships. 
The general method was to measure responses of cells to a large 
and diverse stimulus set (400 patterns) and then create a network 
model for each cell that attempted to reproduce the spatial 
response properties of the cell. Once the response properties 
have been captured in an empirical model, it becomes possible 
to study the cell’s input/output properties in a manner not pos- 
sible when one is forced to work in “real time” during a re- 
cording session. Furthermore, the “hidden layer” in a network 
model might be helpful in characterizing the types of inputs a 
cell receives. 

Although the ultimate area of interest is extrastriate cortex, 
at this time we shall focus on complex cells in Vl. Complex 
cells are the first cells in the visual pathways that have strongly 
nonlinear spatial properties, and have been better studied than 
any cells in extrastriate cortex. Therefore, they provide an op- 
portunity for evaluating the performance of the network mod- 
eling before applying it to neurons in areas of cortex that are 
less well explored. 

Materials and Methods 

Experimental methods 
Animal preparation and recording procedure. Cells were recorded over 
a period of months from a single female cynomolgus monkey (Macaca 
fascicularis) weighing 3.3 kg. Most of the recording details have been 
described previously (Desimone and Gross, 1979). Briefly, 1 week prior 
to the first recording session, a post for holding the head and a recording 
chamber, both of stainless steel, were affixed to the skull with bone 
cement. This surgery was done using aseptic methods while the animal 
was under deep anesthesia induced by intravenous sodium pentobar- 
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bital. To gain access to the cortex, a 2 mm hole was drilled through the 
occipital skull within the boundaries of the recording well, leaving the 
dura intact. The hole was judged to be placed over dorsolateral striate 
cortex on the basis of skull landmarks, and the size and location of 
receptive fields. Between recording sessions, the recording chamber was 
filled with tetracycline ointment and covered by a stainless steel cap. 
Over the course of the experiment, several such holes were drilled as 
old holes filled with new bone growth. Typically, four electrode pene- 
trations were made through each hole. The animal remained healthy 
and was not killed at the end of the series of recording sessions. 

At the start of a session, the animal, initially sedated with ketamine, 
was anesthetized with 2.5% halothane in a 5050 mixture of nitrous 
oxide and oxygen. It was then intubated with a endotrachial tube coated 
with Xylocaine jelly, and placed on a cushion and heating pad. The 
head was held in place by the post previously mentioned, so it was not 
necessary to use ear bars. At this point, the halothane anesthetic was 
discontinued and the animal was given a single bolus of 1 &kg sufen- 
tanil anesthetic (a synthetic opiate). The animal was afterward main- 
tained on sufentanil at a rate of 1 &kg/hr. This dosage of sufentanil, 
together with the N,O, produced a light grade of surgical anesthesia. 
The animal was paralyzed with pancuronium bromide included with 
the sufentanil infusion, and maintained by artificial respiration. No 
surgery or any potentially painful procedure was conducted following 
onset of paralysis. Temperature, end-tidal CO,, and EKG were all mon- 
itored and maintained within normal limits. The pupils were dilated 
and accommodation blocked using a 1% solution of cyclopentolate. 

The corneas were covered by gas-permeable contact lenses whose 
curvatures were selected, using a retinoscope, to focus the eyes on a 

Luminance 

Shaded objects 

Gabors 

Figure 1. The 400 spatial patterns in 
our stimulus set were drawn from these 
seven classes. These are reproductions 
of the 64 x 64 pixel images actually 
shown to the monkey, and edges appear 
ragged due to aliasing. We classified the 
shaded objects and textures as complex 
stimuli and the others as simple stimuli, 
according to criteria discussed in the 
Results section. 

computer display screen located 98 cm away. When inserting the lenses, 
care was taken that they were not free to slide about on excess mounting 
fluid. Only the eye contralateral to the recording electrode was used, 
the other eye being occluded. The fixation point for each eye was de- 
termined by projecting the image of an ophthalmoscope reticle centered 
on the fovea back through the ophthalmoscope onto the computer screen, 
using a comer cube prism. 

Although the eyes were paralyzed, there were nevertheless small re- 
sidual movements, which were monitored optically. Light from a 0.5 
mW HeNe laser was attenuated by a neutral filter with an optical density 
of 4.0, reflected off a beam-steering mirror, passed through a 1 mm 
pinhole, and then reflected off an aluminum mirror (1.5 x 1.5 x 0.1 
mm) glued to the edge of the contact lens and finally projected onto a 
sheet of graph paper mounted about 2 m from the monkey. Angular 
movement of the eye was calculated from the displacement of the light 
spot on the graph paper. Using this apparatus, three components of 
motion were apparent in the paralyzed eye: (1) a fast oscillation with 
an amplitude (peak-to-peak) of about 2 arcmin that appeared to be tied 
to heartbeat; (2) a larger, slower oscillation with an amplitude of about 
5 arcmin that appeared to be tied to respiration; and (3) long-term drift 
of typically 15 arcmin/hr. All three motions were generally in the same 
direction. The long-term drift may have been caused by the accumu- 
lation of a slight hysteresis in the oscillations (so that the eye did not 
return to exactly the original position after each cycle). During the re- 
cording session, data collection was stopped every 15 min and the 
position ofthe stimulus on the screen was shifted by the amount required 
to compensate for the eye drift determined for that period. 

Recording was performed using stainless steel microelectrodes pur- 
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Figure 2. A, The networks had a three-layer, feedforward organization, 
without any lateral connections within a layer or feedback connections. 
Every unit in a layer connected to all units in the next layer. There were 
542 units in the input layer, divided into on-center and off-center units, 
both with circular, antagonistic center/surround receptive fields. There 
was one output unit. The number of hidden units ranged from 1 to 32. 
B, The input units were organized into two hexagonal spatial arrays. In 
reality the two arrays were superimposed, and not separated as shown 
here. They subtended a visual angle of about 1” in diameter. 

chased from Micro Probe Inc. (Clarksburg, MD), with the standard 
paralene and polyimide insulation supplemented with an additional 
varnish coat to increase stiffness near the tip. Impedance was typically 
2.5 MB. Upon termination of recording, the animal was kept under 
observation until the paralytic wore off and it was breathing freely, at 
which time it was returned to its cage. The duration of a session was 
about 14 hr. 

Stimuli. Stimuli were presented on a Zenith 1490 flat-screen color 
monitor. The gray-scale gamma function of the monitor, as well as red, 
blue, and green gamma functions, were measured with a Minolta CS- 
100 light meter. These data were used to calculate a library of linearized 
color lookup tables available to the display program, including both 
luminance and chromatic isoluminant scales. Mean luminance was set 
to 17.5 cd/m*. The monitor displayed 640 x 480 pixels, which at 98 
cm subtended a visual angle of 15.0” x 11.2”. The frame rate was 60 
Hz. 

An identical set of 400 spatial patterns were presented to each cell. 
They were all bounded within a circular region 1.5” in diameter, the 
rest of the screen being kept at mean luminance. The patterns could be 
divided into seven classes, as illustrated in Figure 1. These classes are 
described below. 

1. Luminance. This class had three patterns, in which luminance was 
set to 0.1, 17.5, and 35.0 cd/m* within the circular boundary. 

2. Sinusoidal gratings. Three spatial frequencies were used, 2.0, 4.0, 
and 8.0 c/degree. For each spatial frequency, there were six orientations, 
which were O”, 30”, 60”, 90”, 120”, and 150”. Finally, for each spatial 
frequency and orientation, gratings were presented in two phases, which 
were 0” and 180”. Grating contrast was always 1.0. The pattern was 
linearly faded out over a 0.1” thick ring around the periphery of the 
stimulus in order to reduce the luminance discontinuity at the edge of 
the stimulus. Altogether, there were 36 patterns in this class. 

3. Gabor functions. These had the same spatial frequencies and ori- 
entations as the sinusoidal gratings. However, in addition to the two 
phases used for the gratings, two additional ones were used here, 90” 
and 27Oq for a total of four phases. The Gabor functions were localized 
within a Gaussian envelope with a space constant of 0.125”. There were 
72 patterns in this class. 

4. Sinusoidalannuli. These had the same parameters as the sinusoidal 
gratings, except that a 0.5” diameter “hole” was cut from the center. 
Both the inner and outer rims of the annuli were linearly faded over a 
range of 0.1” to reduce discontinuities. There were 36 patterns in this 
class. 

5. Bars. The bars had dimensions 0.1” x 0.3”. They were presented 
at six orientations, ranging from 0” to 150” at 30” intervals. For each 
orientation, bars were presented at seven positions located at 0.15” 
intervals, displaced laterally in the direction orthogonal to the long axis 
of the bar. In addition, longer bars with dimensions 0.1” x 0.6” were 
presented in the six orientations, but only at a single, central position. 
All of these bars were presented in both black and white versions, having 
luminances of 0.1 and 35.0 cd/m*, respectively, against a mean lumi- 
nance background. This category had a total of 96 patterns. 

6. Shaded ellipticparaboloids. These were 3-D synthetic surfaces hav- 
ing elliptical cross sections in the x-y plane and parabolic cross sections 
in the z-x and z-y planes. They were rotated in 3-D space and shaded 
according to the reflectance model described by Lehky and Sejnowski 
( 1990). Each paraboloid was described by eight parameters. These were 
center coordinates (two parameters), center principal curvatures (two 
parameters), rotation (two parameters), and illumination direction (two 
parameters). All parameters were chosen with a uniform random dis- 
tribution, except principal curvatures, which had a lognormal distri- 
bution with a mode of 6.0/degree. The stimulus disk was linearly faded 
to mean luminance along a 0.1” thick ring along the periphery of the 
stimulus, and the luminance distribution within the stimulus was bal- 
anced so that it averaged to mean luminance. There were 79 patterns 
in this class. 

7. Textures. These were made by superimposing a large number of 
small, randomly located ellipses. The elliptical micropattern forming 
each texture came in three sizes, in which the minor axes of the ellipses 
had lengths of 0.12”, 0.24”, and 0.48”. The lengths of the major axes 
were twice those of the minor axes. Only one size of ellipse appeared 
in each texture. A texture made out of small ellipses contained 200 of 
them, each ellipse with random position, orientation, and luminance 
level. Textures containing medium or large ellipses were made the same 
way except that only 100 or 50 ellipses were superimposed. There were 
26 textures at each spatial scale, for a total of 78 patterns in this class. 

The stimuli were flashed with a rectangular temporal waveform hav- 
ing a duration of 200 msec. The interval between stimuli was 250 msec. 
Each of the 400 patterns was presented to the cell 30 times, for a total 
of 12,000 stimulus presentations. The 400 patterns were broken into 
40 blocks of 10, and the blocks were presented in random order. 

We acquired cells by manually moving a small, flashing bar about 
the screen with the computer mouse as the electrode was slowly ad- 
vanced through the cortex. When promising, well-isolated single-unit 
activity was observed, the bar position giving the best response was 
determined from the loudness of the firing rate on the audio monitor. 
Those coordinates were passed to the display program, which centered 
the 1.5” stimulus field at that position and proceeded with the automatic 
display sequence. As described above, the stimulus position was man- 
ually adjusted every 15 min to compensate for eye drift. It took about 
2.5 hr to collect data from a single cell. During a single session, one or 
two cells were studied. 

Modeling methods 
A separate network model was developed for each neuron studied. These 
network models were not intended to mimic the anatomical microcir- 
cuitry that underlies the neural responses, nor were they intended to 
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provide a realistic depiction of many physiological and biochemical 
processes known to occur in the nervous system. The goal of each 
network was to reproduce the functionality of the neuron (i.e., its input/ 
output transfer function) without reproducing how this transfer function 
is actually implemented in the brain. Yet while these networks are ab- 
stract and simplified representations of the actual neural substrate, we 
believe that they may retain sufficient isomorphism with that substrate 
to be suggestive of how properties of individual visual neurons might 
arise in the brain. To create a network that reproduces the behavior of 
a neuron, we used an iterative optimization algorithm that takes as 
input a large set of input/output pairs collected as data, and then au- 
tomatically adjusts the parameters (weights) of the network to create 
the proper nonlinear input/output function. The validity of the model 
was checked by testing it with inputs that were not part of the set used 
to create it, which is an essential test. While a number of such opti- 
mization algorithms are available, we chose to use back-propagation 
(Rumelhart et al., 1986). The mathematical details ofthe specific variant 
of the algorithm we used are given in Lehky and Sejnowski (1990). 

The initial steps in creating the model involve choosing a network 
architecture (i.e., the number of units and how they connect to each 
other) and choosing the properties of each unit. These will be described 
below. However, some method is still needed to select the connection 
weights that allow the network to do the task at hand. Weights typically 
number in the thousands, and a combinatorial explosion prevents one 
from trying out all possible combinations of weights to find the optimal 
configuration for the required input/output function. Neither would it 
be feasible to set the weights by hand using intuition. The back-prop- 
agation algorithm solves this problem by searching only a subset of the 
weight space, in a manner that continuously and systematically brings 
the network closer to the optimal configuration. The algorithm therefore 
is a purely formal technique for creating networks with specific input/ 
output characteristics, and is not meant to mimic actual developmental 
or learning processes in the brain. 

Network architecture. The network had a conventional three-layer 
organization, consisting of an input layer, a middle “hidden” layer, and 
an output layer (Fig. 2A). Each unit in a layer connected to every unit 
in the subsequent layer (i.e., this was a globally connected feedforward 
network). There were no feedback connections, nor were there any lat- 
eral connections between units in the same layer. All units had activities 
that could continuouslv range from 0.0 to 1 .O. Excitatorv and inhibitorv 
inputs to a unit were added-linearly and then passed through a sigmoid 
nonlinearity to produce the output for that unit. 

The input layer had 542 units, divided into two 2-D hexagonal arrays, 
one with on-center units and the other with off-center units, which were 
spatially superimposed (Fig. 2B). The input arrays subtended a visual 
angle of close to 1”. Each unit had an antagonistic center-surround 
receptive field with circular symmetry. On-center units had excitatory 
centers and inhibitory surrounds, while off-center units had opposite 
polarity. The receptive fields were described by a difference of Gaus- 
sians: 

The target of the model was to reproduce the mean firing rate of the 
neuron in response to each stimulus pattern. No attempt was made to 
capture temporal aspects of recorded responses. Mean firing rate was 
calculated over the period starting 40 msec after stimulus onset (which 
was the typical latency of the neural response) and ending at stimulus 
offset, for a duration of 160 msec. Responses were averaged over the 
30 repeats of each pattern. All firing rates were normalized so that the 
pattern (out of all 400) producing the largest response was set to 1 .O. 

In the initial state of the network, all synaptic weights were randomly 
set over the range of 0.0-1.0. From this starting point, the iterative 
optimization procedure went as follows. For each trial, responses of the 
input units to the stimulus image were computed by convolving their 
receptive fields with the image, which had been randomly chosen from 
the training set. (In reality, convolutions for all 400 stimuli were pre- 
computed and stored for later repeated use.) These input responses were 
then propagated up through the hidden units to the output unit. At this 
point, the actual response of the model output unit was compared with 
the correct response (i.e., the response of the recorded neuron) for that 
pattern. The difference between the two was used in the back-propa- 
gation algorithm to adjust all synaptic weights slightly throughout the 
network in a manner so as to reduce this error. Over the course of many 
trials in which each of the 400 stimuli was repeatedly presented in 
random order, the synaptic weights were gradually optimized so that 
the output of the network approximated the recorded response for each 
image. We generally terminated the run after 100,000 training trials 
(250 repetitions for each stimulus). 

As an additional detail in determining the error during each trial, the 
correct response consisted of the mean firing rate, plus a normally dis- 
tributed random component whose standard deviation was equal to the 
standard error of the recorded neuron’s responses. This means that for 
different trials involving the same input pattern, the target response was 
slightly different. The rationale for adding this random component was 
that the network ought not to be trained to a precision beyond that 
justified by the precision of the data. 

Results 
General results 
Properties of the cells 

R@, y) = e-cx’ + Y%* - 0.1 (je-“’ + vzYZ.5.‘, 
(1) 

where c = 0.05”. (The equation for an off unit was the same except 
multiplied by - 1.) These parameters were chosen so that the Fourier 
transform of the receptive field resembled typical spatial contrast sen- 
sitivity curves of neurons in the macaque monkey lateral geniculate 
nucleus, as measured by Derrington and Lennie (1984). The sensitivity 
of the receptive field was normalized such that an optimal spot of light 
coinciding with the field center and having unit intensity produced a 
response of 1 .O in the model neuron. 

We recorded from 25 cells. The locations of these cells were not 
histologically verified at the end of the experiment because, 
given the long period of time over which the experiment was 
conducted. it would not have been possible to recover electrode 
tracks. As’indicated above, the recording sites were judged to 
be in dorsolateral striate cortex on the basis of skull landmarks 
as well as the topography, size, and properties of the receptive 
fields. We kept well away from the vertical meridian represen- 
tation at the VlN2 border. Based on the distance the electrode 
traveled after the onset of neural activity, we believe that the 
majority of cells were in the supragranular layers of the cortex. 
The receptive fields of all cells were located in the parafoveal 
representation of the visual field, with eccentricities of less than 
5”. The median receptive field width was 0.4”, as indicated by 
bar responses measured full width at half height. All except two 
cells showed orientation tuning. 

Spacing between receptive field centers in the input layer was, on 
average, 0.05”. The array spacing was not perfectly regular, but was 
randomly shifted by a random distance uniformly distributed over the 
range of +0.0075”. This was done to reduce spatial aliasing of the input 
pattern by the sampling array (Yellott, 1982). 

There was only one output unit. The activity of this unit in response 
to an input pattern was meant to replicate the response of the actual 
biological neuron to the same pattern. The number of units in the hidden 
layer was variable. We tried networks with anywhere from 1 to 32 hidden 
units. 

Creating the network. The training set consisted of 360 spatial pat- 
terns, which were a random subset of the 400 patterns that had been 
presented to the monkey. The other 40 patterns were reserved to test 
the ability of the network model to generalize (i.e., respond correctly to 
stimuli not used in the creation of the model). 

Color preferences were only informally examined during the 
initial cell acquisition phase of the recording protocol. About 
80% of the cells appeared to respond strongly to both red and 
green bars, suggesting they were not narrowly color tuned. The 
rest responded preferentially to either red or green. In almost 
all cases, responses to white bars appeared about as good as 
responses to colored bars. For our purposes, therefore, there was 
in general no advantage to using colored stimuli. For the most 
part, we collected data using patterns characterized by gray scale 
luminance gradients, except in two cases in which we used a 
red luminance scale and a red-green isoluminant scale. 

We classified 24 of the 25 cells as complex. This judgement 
was based on the fact that the spatial locations of responses to 



3572 Lehky et al. - Predicting Responses to Nonlinear Striate Neurons 

1 .O A. High selectivity 
0 Data 
0 Model 

0.8 

0.6 
t 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

El. Low selectivity 

100 200 300 

Pattern 
Figure S. Responses of two neurons (solid cudes) to all 360 stimulus 
patterns in the training set used to create network models for those 
neurons. Responses have been normalized to I .O and sorted by accord- 
ing to the actual response ofthe neuron. There is no order to the patterns 
along the abscissa other than this. Model predictions are given by open 
circles. The fluctuation of the open circles from the sequence of solid 
circles is an indication of how well the network was able to capture the 
responses of the neuron across the entire range of stimuli. Top, This 
neuron showed a high selectivity, responding well only to a few patterns. 
Maximum firing rate was normalized relative to 39 spikes/set Bottom, 
This neuron showed a low selectivity, responding well to many patterns. 
Maximum firing rate was normalized relative to 83 spikes/set. 

black bars and white bars within the receptive fields were nearly 
the same, and that the response magnitudes to the two kinds of 
stimuli were also similar, being within a factor of two of each 
other (see, e.g., Fig. 5). The one remaining cell remained un- 
classified by this criterion because it did not respond strongly 
to any of the bar stimuli. A high incidence of complex cells and 
low incidence of simple cells in VI of the macaque has been 
reported by Hubel and Wiesel(l968) who indicated that overall 
only 8% of neurons they recorded from were simple. Dow (1974) 
and Poggio (1972) have reported similar numbers. 

Response to the best stimulus pattern had a median value of 
59 spikes/set and a range of 13-224 spikes/set over the 25 cells 
we recorded from. The ratio of the best response to the worst 
for a given cell was usually in the range from 5: 1 to 10: 1. When 
the same pattern was presented at different times, the standard 
error of mean firing rates was typically 0.30 of the firing rate 
for patterns producing the smallest responses, and 0.05 for the 
best patterns, with a smooth gradation between. Stimuli that 
produced the best responses tended to be large and complex 
patterns, namely, the random textures and shaded 3-D elliptic 

paraboloids (see, e.g., Fig. 9). This preference for complex stim- 
uli was a statistical bias, and not absolute. 

Different cells showed different degrees of selectivity; that is, 
some cells gave large responses to only very few patterns among 
all those presented to them, whereas others responded to a 
broader range of stimuli. This is shown in Figure 3. The top 
panel shows responses of a neuron with relatively high selectiv- 
ity tested with 360 patterns (solid circles). These 360 patterns 
have been sorted according to their relative response magnitude 
and plotted in that order. One can see that responses are small 
for almost all stimuli but shoot up for a few patterns. The bottom 
panel shows responses of another neuron with low selectivity. 

Figure 3 also shows network model predictions for neural 
responses to the 360 patterns (open circles). These 360 patterns 
formed the training set used to create the model for each neuron, 
so it is not surprising or particularly significant that the model 
predicted these data well (correlation of 0.95). More interesting 
would be the ability to predict novel stimuli not part of the 
training set, which will be discussed below in the section on 
modeling. 

We were almost always able to hold cells for several hours. 
Over that period, it was not unusual to observe waxing or waning 
in response to all stimulus patterns. This sort of nonspecific shift 
in sensitivity was not significant for our modeling purposes, 
since we were interested only in relative responses to different 
stimuli. However, there was occasionally some drift in relative 
responses to different patterns during a session, which may have 
been caused by incomplete compensation for drift in eye po- 
sition. Nevertheless, the small standard errors of the responses, 
given above, indicate that fluctuations in neuronal responses 
were not excessive. 

Properties of the network models 

A network model was created for each neuron we recorded. As 
there is not room to describe all networks, in this section we 
shall make a few general observations, and in the following 
sections describe the network model for two cells in greater 
detail. 

For each cell, we created several networks that differed in the 
number of hidden units, ranging from 1 to 32. Note that since 
we always had just one output unit, our three-layer networks 
with one hidden unit were functionally equivalent to a two-layer 
network (i.e., a network with no hidden units). The properties 
of two-layer networks are qualitatively different from those of 
three-layer networks, since the input/output relationship in a 
two-layer net is linear (aside from the sigmoid transfer function 
of the output unit), whereas a three-layer network can represent 
strongly nonlinear input/output relationships. 

Not surprisingly, the networks did very well in capturing the 
input/output relationship for the stimulus images in the training 
set (see, e.g., Fig. 3). We measured network performance by the 
correlation coefficient between the responses produced by the 
network to the input patterns and the responses measured from 
the recorded neuron. The median correlation (over the 25 cells) 
for networks with one hidden unit was 0.82, with 16 hidden 
units it was 0.95, and with 32 hidden units it was 0.98. 

Neural network models with a sufficient number of hidden 
units can sometimes “memorize” each stimulus/response pair 
rather than extract regularities from the training set. The prob- 
lem is analogous to fitting data with too many parameters. As 
a test of whether our networks had this problem, we created a 
new training set using synthetic data in which each stimulus 
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pattern was randomly paired with one of the responses recorded 
from the neuron. A network with 16 hidden units trained on 
this set of random data was able to reproduce it with a corre- 
lation of only 0.64, compared to a correlation of 0.95 for the 
actual data. This is an indication that the size of our data set 
was larger than the capacity of the networks to memorize in- 
dividual items. The networks therefore had to deal with the data 
in a more general fashion. 

A more direct measure of how well the networks extracted 
the input/output relationships of the recorded neurons is their 
ability to predict responses to stimuli that were not part of the 
training set used to create the model. A network that has mem- 
orized input/output pairs should not generalize. We tested pre- 
diction by measuring the network response to 40 new stimulus 
patterns that had not been part of the training set, but for which 
we had data. For networks with one hidden unit (again, essen- 
tially a two-layer network), the median correlation was 0.55 
(range, 0.19-0.83). The ability of the model to generalize im- 
proved as more hidden units were added until there were 16 
hidden units, at which point the median correlation was 0.78 
(range, 0.40-0.94). Going to 32 units did not increase the ability 
of the models to generalize any further. For the reason stated 
above regarding memorization, we expect that prediction ability 
would eventually decline as the number of hidden units was 
increased even further. We also tested generalization for net- 
works trained on the scrambled training set described in the 
preceding paragraph. As expected, there was zero correlation 
between the predicted and actual responses. Because networks 
with 16 hidden units appeared to work best, in discussions below 
we shall focus on networks of that size. 

To provide a tougher test of the ability of the networks to 
generalize, we tried them on a difficult subset of the 40 patterns 
in the test set. All of the stimulus images we used could be 
divided into two groups, which we shall call “simple” and “com- 
plex.” In the simple group fall the sinusoidal, Gabor pattern, 
annuli, bar, and mean luminance stimuli. These patterns were 
described by a small number of parameters, and on the basis 
of these parameters could be placed in an orderly sequence 
(according to orientation, spatial frequency, etc.) within each 
class. The complex group included the random textures and 
shaded surfaces. These patterns were defined by a large number 
of parameters, also selected randomly, and it was not possible 
to order them in any useful sequence. To predict responses to 
the simple patterns in the test set, it was only necessary for the 
networks to learn to interpolate across a smooth tuning function 
for a parameter. However, this cannot be said for the complex 
patterns. The ability of networks to generalize across complex, 
random patterns provides a particularly stringent measure of 
the degree to which they captured the response properties of 
neurons. Of the 40 test set patterns, 15 fell in the complex 
category. When the networks were tested for generalization to 
these 15 complex patterns, the median correlation between the 
predicted and the actual neuronal response was 0.65 (range, 
0.08-0.84) with 16 hidden units in the network and 0.38 (range, 
-0.2 I-0.84) with one hidden unit, over the 25 cells we recorded 
from. Networks trained only on simple patterns were not able 
to predict responses to complex patterns. 

The ability of the model to generalize depends on collecting 
massive amounts of data. This involves presenting a large num- 
ber of patterns, and presenting each pattern many times to re- 
duce the standard error of the responses. In the early phases of 
this study, we used only 100 patterns, presented 10 times each 
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Figure 4. Ability of the networks to generalize, as a function of the 
number of patterns in the training set used to create them. By gener- 
alization, we mean the ability to predict responses to stimuli that were 
not part of the training set. Performance is measured as the median 
correlation between data and model for the 25 network models (one for 
each neuron we recorded from). The curved line is a fit of a third-order 
polynomial to the data. 

to the neurons. Generalization to new patterns following training 
with this smaller data base was close to zero. As we reduced the 
standard error of the responses by increasing the number of 
repetitions of each stimulus to 30, and increased the diversity 
of the stimulus set by going from 100 to 400 patterns, gener- 
alization improved. Figure 4 shows the increase in the corre- 
lation coefficient between data and model for complex stimulus 
patterns as a function of training set size. It appears that per- 
formance ofthe models would have improved only slightly with 
an additional increase in the stimulus set. This suggests that a 
limiting factor in the model’s ability to make predictions may 
be noise and fluctuations in the responses to each pattern used 
to create the model, rather than the number of patterns. Also, 
it is possible that the simple feedforward network architecture 
we used could be a limiting factor, and that model performance 
could be further improved by including lateral and feedback 
connections. 

We tried to increase the amount of data in the training set 
for the networks artificially by including interpolated “data” in 
the set. For example, if responses were recorded to gratings with 
orientations of 0” and 30”, the response to a 15” grating could 
be interpolated and added to the training set, even though a 15” 
grating was never shown to the monkey. To test the usefulness 
of such a strategy, we trained networks with interpolated data 
added to the training set and measured generalization. lnter- 
polation was only done for simple patterns and not the complex 
ones. By inserting synthetic data, we expanded the training set 
from 360 to 2145 patterns. Overall, this improved the ability 
of the network to generalize to new patterns slightly, raising the 
median correlation between the predicted and actual responses 
from 0.78 without interpolation to 0.85 with it. However, add- 
ing the interpolated data did not improve the ability of the 
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Figure 5. Spatial tuning curves of two example neurons to bar stimuli. 
The curves are shown for the bar orientation producing the strongest 
responses. Responses are normalized on a scale of 0.0-1.0 relative to 
the largest response produced by the 400 patterns in the stimulus set. 
The abscissa shows the distance of the bar from the center ofthe stimulus 
field along the direction orthogonal to the bar’s orientation. Positive 
numbers indicate positions in the lower right quadrant, and negative 
numbers indicate positions in the upper left quadrant. Although for Cell 
A bar responses for 30” orientation are shown, responses at 0” were 
virtually identical, suggesting that the optimal orientation actually fell 
between 0” and 30”. 

networks to predict responses to complex patterns in the test 
set. For our purposes, therefore, this did not turn out to be a 
useful technique. 

Network examples 
Since the network models for all 25 cells were qualitatively 
similar, we show two representative cells as examples. The net- 
works described below had 16 hidden units, the number that 
gave the best generalization. In order to give some idea of the 
properties of these two cells as characterized by conventional 

A. 

means, Figure 5 shows spatial tuning curves to black bars and 
white bars having the optimal orientation. The graphs indicate 
that both cells respond well to white bars and black bars at the 
same location, which is a characteristic of complex cells. Both 
cells responded best to bars located in the lower right quadrant 
of the stimulus field, as shown in Figure 6. 

It should be kept in mind that the models were constructed 
on the basis of recorded responses to flashed stimuli. It seems 
likely that if the temporal conditions of stimuli presentation had 
been different (e.g., if the stimuli were drifted across the screen 
rather than flashed), various aspects of the models could have 
been quantitatively different, 

Connection weights 

Figures 7 and 8 show the connection weights for the network 
models of the two cells. Each of the 16 hourglass-shaped objects 
in the figures shows the connection weights from the input units 
to one hidden unit. 

Examining the weights for the different hidden units, two 
types of organization are apparent. In some, the excitatory and 
inhibitory weights are organized as large, elongated blobs (e.g., 
the hidden unit shown top row, fourth column in Fig. 7). In 
others, the pattern of excitatory and inhibitory weights appears 
to be at a finer spatial scale (e.g., second row, fourth column in 
Fig. 7). Such a division of hidden units into high spatial fre- 
quency/low spatial frequency classes was an almost universal 
occurrence for the network models of various cells. 

The “high spatial frequency” hidden units have a very com- 
plicated organization ofweights, which look rather unbiological. 
It is possible that what we are seeing there is a patchwork of 
many small regions, each with a simple organization, all jumbled 
together. If that is the case, then the apparent complexity of the 
high-frequency units may be an artifact of the connectivity we 
chose for the network. In our globally connected network, each 
hidden unit receives input from all input units across the entire 
model “retina,” 1” across. However, one would expect that hid- 
den units responding well to high spatial frequencies would 
receive inputs from a more localized area of the visual field than 

Best bar stimuli 

Figure 6. Bars producing the best re- 
sponses for the two example cells, based 
on data of the type shown in Figure 5. 
Since responses of Cell A were almost 
identical for 0” and 30”, we show the 
optimal orientation for that cell as he- 
ing halfway between, at 15”. 

B. 
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Figure 7. Diagram of the weights underlying a network model with 16 hidden units for one neuron (Cell A in Fig. 5). Solid squares indicate 
inhibitory weights, and open squares show excitatory ones. Each of the hourglass icons shows the weights for one hidden unit. The lower hexagon 
shows weights from the 247 on-center input units to that hidden unit, and the upper hexagon shows weights from the 247 off-center units. The 
single square at top center of each icon shows the weight from that hidden unit to the single output unit. The single square at the top left of each 
icon shows the bias on the hidden unit, essentially equivalent to setting a threshold for that unit. 
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Figure 8. Diagram of the weights underlying the network model for a second neuron (Cell B in Fig. 5). See Figure 7 for display conventions. 
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would low-frequency units. Since there is nothing in the network 
to enforce such a local connectivity for hidden units, perhaps 
what forms in some cases is a mosaic of local domains. 

We examined this possibility by creating networks that were 
partially connected. In addition to hidden units that were con- 
nected to the entire input layer, we created hidden units con- 
nected to 0.5” and 0.25” patches of the inputs in a manner that 
tiled the entire field with a high degree of overlap. Although the 
locally connected hidden units did form a simple organization 
of weights, this did not prevent some of the globally connected 
hidden units from continuing to form a complicated mosaic 
pattern. Furthermore, there was no improvement in the ability 
of the network to predict the data, so this approach was aban- 
doned. However, even though this approach did not seem very 
effective, it may be that a cleaner separation of the mosaic 
patterns could have been obtained by a more extensive search 
through different network architectures. 

The on- and off-center inputs to many low spatial frequency 
hidden units were complementary. This can be seen in Figures 
7 and 8, where the top and bottom hexagons of some of the 
hourglass figures look like inverted copies of each other. This 
has the effect that if a light spot excites such a hidden unit at a 
given location, a dark spot will inhibit it. In effect these hidden 
units acted as linear subunits of the nonlinear neuron we mod- 
eled. Such complementarity of weights is not forced by the 
optimization algorithm, and indeed, it was not a characteristic 
of all hidden units, but it is interesting that they were so com- 
mon. Neither is such an organization of weights an idiosyncratic 
product of this data set, for the same complementarity was seen 
in a previous model (Lehky and Sejnowski, 1988), which was 
entirely synthetic in that it involved no recorded data at all. It 
is not known why the “high spatial frequency” hidden units 
never showed this complementary organization. 

It is notable that the size of the weights in the networks re- 
mains substantial across the entire stimulus field of the network, 
about lo across. Such was the case in all the networks we created. 
This would indicate that, according to our modeling, there was 
a fairly broad region influencing these cells’ responses. White 
noise analysis of complex cells in cat striate cortex (Szulborski 
and Palmer, 1990) has also found a large response region, ex- 
tending 5” or 6”, although measured at slightly greater eccen- 
tricities than we did. 

Generalization 
Generalization for these two networks is shown in Figure 9. 
This compares neural responses with model predictions for the 
40 patterns in the test set, which were not part of the corpus 
used to create the model. The actual response of the neuron for 
each of the 40 patterns is indicated on the horizontal axis of 
Figure 9, and the model prediction is indicated on the vertical 
axis. If the data and model predictions were identical, all points 
would fall on the 45” line. The ability ofthe network to generalize 
to new stimuli is an important test of the model. 

Lesions 
We looked at the effects of “lesioning” away hidden units upon 
the networks’ ability to generalize. Lesions were accomplished 
by setting all weights associated with a given hidden unit to 
zero. Each of the 16 hidden units within each network was 
removed one at a time, so that the network always had 15 
functioning hidden units. Removing any single hidden unit usu- 
ally had negligible effect on network performance. Of the 400 

Data Response 

Figure 9. Ability of the network model to generalize, for the two ex- 
ample neurons. The abscissas show the neurons’ normalized firing rate 
for 40 patterns that were not part of the training set, and the ordinate 
shows the model predictions for those patterns. Ideally, all dots would 
fall on the 45” line. Aside from the modeling, this figure also shows that 
neural responses were systematically higher for complex stimuli (shaded 
objects and textures) than for simple stimuli. A, Model predictions based 
on network shown in Figure 7. B, Model predictions based on network 
shown in Figure 8. 

units lesioned in the 25 networks, in slightly more than half the 
cases there was a change in correlation coefficient of 0.01 or 
less. 

Removal ofa few “critical” hidden units did have a significant 
effect, however. Defining “large” as any change whose absolute 
value 2 0.10, 30 out of 400 (7.5%) of lesioned hidden units 
caused large changes in networks’ ability to generalize. Of these, 
removal of only three led to improvements in network perfor- 
mance, and those units were within networks that had among 
the worst performances to begin with. The change in correlation 
upon removal of a single unit ranged between -0.28 and 0.15. 

The critical hidden units tended to be associated more with 
the “low spatial frequency” class of receptive field organization, 
described previously. Only 1 out of the 30 critical hidden units 
was clearly a “high spatial frequency” unit. Although we don’t 
have a quantitative criterion for classifying high or low spatial 
frequency units, at least a quarter of the hidden units are clearly 
“high spatial frequency.” This means that this class is under- 
represented among the critical hidden units. 

Obviously there are many more opportunities for exploring 
the effects of “lesioning.” For example, methods exist for sys- 
tematically identifying individual connections within the net- 
work that contribute little to performance (Le Cun et al., 1990). 
Upon removing those connections and retraining the resulting 
smaller network (having fewer degrees of freedom), generaliza- 
tion commonly improves over the original model. 

Spot responses 
Once a network model has been created that captures the re- 
sponse properties of a cell, it becomes possible to do simulated 
experiments on it. One such simulated experiment we per- 
formed was to map the response of the network to a small 
stimulus “spot” applied to its input field. The spot could either 
be white or black, against a gray background. The size of the 
spot was 1.4 arcmin across; thus, we were stimulating the model 
of the neuron at a higher resolution than would have been prac- 
tical for the actual neuron. A motivation for this spot mapping 
was to gain some sense of how the network behaved as a whole, 
for examination of all the weights in Figures 7 and 8 provide 
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Spot mapping 

Figure 10. Results of simulated ex- 
periments in which we mapped re- 
sponses of network models for the two 
example neurons to small spots of light 
1.4 arcmin wide presented at locations 
across the model stimulus field. Thegray 
level at the edges of the squares (where 
the spot was off the model “retina”) 
indicates the level of spontaneous ac- 
tivity in the network model, and lighter 
or darker regions indicate excitation or 
inhibition caused by the spot stimulus. 
Responses have been normalized to a 
scale ofO.O-1 .O. The substantial spatial 
overlap of responses to white and black 
spots shows that the models have cap- 
tured a defining feature of complex cells 
in striate cortex. A, Spot responses for 
the network shown in Figure 7. B, Spot 
responses for the network shown in Fig- 
ure 8. 

B. 
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little intuition about how the network would respond to a spe- 
cific stimulus at a specific location. 

The results of the spot mapping are shown in Figure 10 for 
the two exemplar cells. In all cases, responses to the spots have 
been normalized to 1 .O, because the absolute responses to such 
tiny stimuli were very small. The regions of high spot sensitivity 
can be seen to form rather amorphous blobs without a large 
amount of structure, which is typical of the spot mappings for 
network models of other cells. For some cells, spot responses 
were more localized than seen here, and for other cells less. At 
the coarse level, it can be seen that regions responding to black 
spots and white spots are in the same general area, and often 
overlap substantially, showing that the model has captured one 
of the defining features of complex cells. On the other hand, 
there are finer modulations in the responses that appear to be 

16 hidden units 

complementary between the two (i.e., the peak in one corre- 
sponds to a trough in the other). However, this fine structure is 
model dependent, being influenced by receptive field diameters 
of units in the model “retina.” 

The peaks in the spot mapping of the model matched the 
positions of the best bar stimuli in the data only roughly- they 
all fall in the lower right quadrant of the stimulus field (see Fig. 
6A,B, which corresponds to Fig. lOA,B, respectively). The dif- 
ference in position between the two is about 0.15”. This may 
be overstating the difference a bit, because the best bar position 
is only approximately known (i.e., we have data only for the 
limited number of bar positions and orientations that were in 
our stimulus set). Also, it is possible that the center of the 
optimal bar did not correspond to the center of the spot response 
because it may have been a comer, end, or edge of the bar that 
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Optimal stimuli 
B . 
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Figure II. Optimal stimuli found by 
inverting network models for the two 
example neurons. Black borders indi- 
cate the edge of the model “retina.” The 
configuration of the optimal stimuli ap- 
pears unrelated the spot responses in 
Figure 8, an indication of strong non- 
linearities in the responses of the neu- 
rons. A, Optimal stimulus for the net- 
work shown in Figure 7. This image 
produced a response 1.85 times that of 
the best stimulus pattern in the data set. 
B, Optimal stimulus for the network 
shown in Figure 8, producing a re- 
sponse 1.46 times the best stimulus pat- 
tern in the data set. 

was actually the effective stimulus. In any case, the rough cor- 
respondence between bar response data and calculated spot re- 
sponses provides additional reassurance that the model is be- 
having in a sensible manner. 

Optimal stimulus 

The optimal stimulus for the network model of a neuron can 
be found by inverting the network (see Linden and Kinderman, 
1990, for the inversion technique). In essence, this was done by 
using the same optimization algorithm used to create the net- 
work, except that instead of changing the weights of the trained 
network, we held those constant and changed the values of the 
pixels in the input image so as to maximize the output of the 
network. Starting with the pixels set either randomly or at a 
uniform gray level, a pattern gradually emerged as the algorithm 
adjusted the pixel values to produce the greatest output. Re- 
sponses to these optimal stimuli were typically about 50% larger 
than the best pattern in our stimulus set. 

Optimal stimuli for network models of the two example neu- 
rons shown in Figure 11 are typical of the patterns we calculated. 
They form highly irregular striped patterns that fill the entire 1” 
visual field subtended by the model. The substantial difference 
between the optimal stimulus and the relatively unstructured 
spot responses in Figure 10 is indicative of the high degree of 
nonlinearity in the cell (in a linear system both should look 
similar). These images were highly reproducible when created 
multiple times for the same network model (starting with dif- 
ferent random pixel configurations). They were also reproduc- 
ible for different network models of the same neuron having 8, 
16, or 32 hidden units, correlations between patterns being greater 
than 0.90. 

An aspect of the optimal images that did appear to be model 
dependent was the width of the irregular stripes. The width of 
these stripes was approximately the same as the center diameter 
of the circular center/surround units in the input layer of the 
model (which were set at 0.10”). We created a network in which 

the input units had twice this diameter, and the resulting optimal 
image for this network had thicker stripes. The dependence of 
the optimal image on the spatial scale of the input units is not 
surprising. The upper network layers never “see” the raw image, 
but only the image after it undergoes a bandpass spatial filtering 
in the input layer. This initial filtering will affect the spatial 
frequency content of the network’s optimal stimulus, but nev- 
ertheless the actual spatial organization of the stimulus will be 
largely determined by the weights in the network (which in turn 
are determined by the data). 

Whether the optimal stimulus calculated for the network model 
of a neuron is in reality an extremely good stimulus for the 
actual neuron is unverifiable until we have computers fast enough 
to do the calculations while the recording session is still in 
progress. In the meantime, it is best to look at the properties of 
these optimal stimuli in more general and qualitative terms. 
The most robust aspects of the calculated optimal patterns are 
as follows. First, they always extended over the entire 1” visual 
field of the network, much broader than the spot responses 
calculated for the model (Fig. lo), or the bar spatial tuning curves 
in the data (Fig. 5). We were never able to localize a small region 
(by masking in various ways) that seemed to be doing most of 
the work. Second, the predominant structure within the images 
always appeared to be irregular stripes, as opposed to discon- 
nected blobs, for example. Finally, there was no indication the 
calculated optimal stimuli could be described mathematically 
by some simple function (e.g., a Gabor function) corrupted by 
noise in various ways. The patterns seemed intrinsically irreg- 
ular. 

Discussion 
We have created neural network models of individual complex 
cells in monkey primary visual cortex. These models were able 
to predict, with moderately high correlation coefficients, the 
recorded responses to complicated spatial patterns not part of 
the data set used to create the models. This indicates that the 
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models have captured a significant portion of the response prop- 
erties of the cells. While these network representations of the 
neurons we recorded from are obviously very simplified relative 
to the actual state of affairs in the brain, we believe they still 
show a predictive power that surpasses more conventional mod- 
els of complex cells (Glezer et al., 1980; Spitzer and Hochstein, 
1985b). In fact, these latter models have not been demonstrated 
to predict responses to novel stimuli at all. 

The networks were created by training them on our recorded 
data, and by presenting them with the same input stimuli pre- 
sented to the monkey. Others have also reported neural net- 
works being trained on actual data, specifically Krauzlis and 
Lisberger (1990) for cerebellar cells, and Hertz et al. (199 1) for 
cells in inferior temporal cortex. Although in those two models 
the network did well on the training set, there was no report of 
the ability of the network to generalize, which we feel is an 
essential test of how well the model captures the properties of 
the cell. 

By developing networks using the actual experimental inputs 
and outputs, the approach here differs from that of Zipser and 
Andersen (1988) and of Anastasio and Robinson (1989). In both 
of those studies, networks were created to simulate a particular 
task using synthetic inputs and outputs. Following training, the 
hidden layers were examined for units that qualitatively resem- 
bled those recorded in cortical areas likely to be involved in the 
task. This alternative approach is useful when one has in ad- 
vance a good idea of the key parameters underlying the task. 
Those models involved the use of eye position information, or 
the control of eye position, in tasks for which simple linear 
models give reasonable first-order approximations. This makes 
it easier to incorporate into the model input and output rep- 
resentations that reflect prior knowledge about the problem. We 
do not have these advantages in constructing models of the 
processing of spatial patterns or, ultimately, object recognition, 
topics that at present have very weak conceptual foundations. 

In this first attempt, we modeled only mean firing rate without 
trying to include any temporal structure of the responses. It 
would be possible to take time into account by splitting the data 
into a number of time bins and assigning a separate output unit 
in the network for each bin, rather than just having a single 
output unit. Some reports (Richmond et al., 1987, 1989) would 
suggest that including temporal aspects of the neural response 
would improve network performance. On the other hand, break- 
ing up the response into smaller time bins would reduce the 
signal-to-noise ratio within each bin, since less data are being 
pooled. This raises the possibility that training the networks to 
reproduce the fine temporal structure would actually reduce 
their ability to generalize. How temporal information affects 
network performance must ultimately be decided by further 
modeling. A likely possibility, supported by the data of Kruger 
and Becker (199 l), is that there is an optimal temporal integra- 
tion time, perhaps reflecting some integrative time constant in 
visual cortex. Networks trained at the temporal resolution given 
by that bin size would have the maximum ability to predict 
responses. 

The receptive fields of complex cells are often believed to be 
created by the nonlinear addition of linear subunits (e.g., see 
models of Glezer et al., 1980; Spitzer and Hochstein, 1985b). 
Interestingly, the fact that the connection weights for on- and 
off-center inputs were largely complementary for some of the 
hidden units in our models suggests that these model units had 
near-linear properties. However, some hidden units were ob- 

viously not linear and even the largely linear ones sometimes 
had complicated patterns of connection weights. Thus, this 
modeling suggests that the cells providing inputs to complex 
cells may often have a greater complexity and variety than pre- 
viously believed. Ultimately it may be possible for network 
models to make specific predictions about the cells providing 
input to complex cells, which could then be tested experimen- 
tally. 

As was outlined in the introductory remarks, we decided to 
develop neural network models of single cells in order to con- 
struct a more comprehensive description of their responses than 
has been available in the past. Previous studies have, in the 
main, attempted to examine complex cells using a restricted set 
of simple patterns, such as bars or sinusoidal patterns, which 
are useful stimuli for linear systems analysis (e.g., Schiller et al., 
1976; Movshon et al., 1978; Dean and Tolhurst, 1983; Spitzer 
and Hochstein, 1985a; Pollen et al., 1988). While these studies 
have been helpful in revealing the general features of these cells, 
they do not appear to have characterized them to the extent that 
they could predict their responses to arbitrary stimuli. Optican 
and Richmond (1986) and Richmond et al. (1989) report that 
they have used the responses of complex cells to 1-D Walsh 
patterns to predict responses to stimuli that are the sum of two 
patterns. However, it is not clear if the model can predict re- 
sponses to 2-D patterns or other complex patterns. 

On the other hand, if one tries to probe nonlinear properties 
more fully by presenting cells with a richer set of stimuli, such 
as textures and 3-D surfaces, the problem remains how to in- 
tegrate all this information into a useful characterization. In 
extrastriate cortex, where cells have been studied with very com- 
plex patterns (e.g., Desimone et al., 1984) one is sometimes left 
with descriptions that a cell responded well to this pattern, or 
that pattern, without any ability to predict responses to any 
other patterns. 

The network models described here appear to offer promise 
as a solution to the limitations described above. The power of 
this technique comes from its ability to integrate large volumes 
of data acquired using a wide diversity of arbitrary, complex, 
stimuli into a single description of a cell. Obviously, the more 
information collected, the better the characterization will be, 
and a limiting factor for developing this type of network model 
appears to be the technical difficulties of recording sufficient 
data. 

Besides this network approach, another technique that has 
been reported to produce a very general characterization of neu- 
ronal properties, including nonlinear properties, is white noise 
analysis (Marmarelis and Marmarelis, 1978). White noise anal- 
ysis has been applied by Szulborski and Palmer (1990) to com- 
plex cells in striate cortex. They derived a series of second-order 
kernels having elongated center-surround organizations. How- 
ever, these models have not yet been tested by using them to 
generate responses to any novel stimuli, and thus it is still not 
clear whether second-order kernels are sufficient to model com- 
plex cell properties fully. Given the paucity of simple cells in 
primate striate cortex, we chose to use circularly symmetric units 
as the primitives in our input layer, but in principle the prim- 
itives could have been other types of units, such as oriented 
ones. However, even if we had constructed a model in which 
the input layer consisted of oriented units in a variety of posi- 
tions, orientations, phases, and so on, it still would have been 
necessary to use an adaptive algorithm to set the weights by 
which they all converged to form a complex cell. We believe it 
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would be virtually impossible to hand-tune the weights from 
all these subunits to create a practical model that quantitatively 
predicts an extensive data set. The point here is that these neural 
network techniques can be a flexible tool for fleshing out the 
details of various assumptions one may wish to incorporate in 
a model. It might be possible, for example, to use these algo- 
rithms to create network models of individual cells that incor- 
porated details about cortical microcircuitry (Lund, 1988), which 
again would be extremely difficult if all connections had to be 
set by hand. 

The question naturally arises after all this modeling: do we 
now understand the function of these cells? The answer is no. 
It seems unreasonably optimistic to expect that by taking data 
from a small number of cortical units, and subjecting those data 
to any sort of mathematical transform, no matter how compli- 
cated and nonlinear, the role of those units within the neural 
economy will somehow pop out. In particular, there is no reason 
to believe that characterization ofa cell’s receptive field, in itself, 
reveals the cells’s function, a point made in a previous study 
(Lehky and Sejnowski, 1988). The neural network models pre- 
sented here can be thought of as very elaborate characterizations 
of receptive fields. 

Rather than trying to infer function solely from low-level 
single-cell data, broader psychological and computational con- 
siderations must be included as well. It is our hope that the 
synthesis of such top-down constraints with bottom-up mod- 
eling of individual neurons will lead to new hypotheses for per- 
ceptual mechanisms that can be experimentally tested. 
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