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A Model That Accounts for Activity in Primate Frontal Cortex
during a Delayed Matching-to-Sample Task
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A fully recurrent neural network model was optimized to per-
form a spatial delayed matching-to-sample task (DMS). In
DMS, a stimulus is presented at a sample location, and a match
is reported when a subsequent stimulus appears at that loca-
tion. Stimuli elsewhere are ignored. Computationally, a DMS
system could consist of memory and comparison components.
The model, although not constrained to do so, worked by using
two corresponding classes of neurons in the hidden layer:
storage and comparator units. Storage units form a dynamical
system with one fixed point attractor for each sample location.
Comparator units constitute a system receiving input from
these storage units as well as from current input stimuli. Both
unit types were tuned directionally. These two sources of infor-
mation combine to create unique patterns of activity that de-
termine whether a match has occurred. In networks with abun-

dant hidden units, the storage and comparator functions were
distributed so that individual units took part in both. We com-
pared the model with single-neuron recordings from premotor
(PM) and prefrontal (PF) cortex. As shown previously, many PM
and PF neurons behaved like storage units. In addition, both
regions contain neurons that behave like the comparator units
of the model and appear to have dual functionality similar to
that observed in the model units. No neuron in either area had
properties identical to those of the match output neuron of the
model. However, four PF neurons and one PM neuron resem-
bled the output signal more closely than any of the hidden units
of the model.
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work; matching-to-sample; comparator

Delayed matching-to-sample tasks (DMS) have been important in
studying the neural basis of short-term memory. In spatial ver-
sions of these tasks, a stimulus is presented at one location as a
sample. Later, stimuli (termed current stimuli) are presented at
either the location of the sample (matches) or at different loca-
tions (distractors). Matches are to be reported. DMS requires two
major functional components: (1) memory, buffered against dis-
tractors, to hold the sample; and (2) comparison of current and
stored stimuli to detect matches. From a computational view-
point, these two functions can be implemented using an attractor
neural network, which has stable points to store the sample value,
and a filter to detect matches.

The first of the two functional components of a DMS network
have been studied in both theoretical work and neural modeling.
Short-term information storage can be accounted for by fixed
point attractor dynamics of neural activity in recurrently con-
nected networks (Cowan, 1972; Zipser, 1991; Amit and Brunel,
1995; Zhang, 1996). Furthermore, neuronal activity consistent
with this mode of information storage has been reported widely,
e.g., in prefrontal (Fuster and Alexander, 1971), supplementary
motor (Tanji et al., 1980), premotor (Weinrich and Wise, 1982),
primary motor (Evarts and Tanji, 1976), somatosensory (Zhou
and Fuster, 1996), posterior parietal (Crammond and Kalaska,
1989), auditory (Vaadia et al., 1982), and visual (Mikami and
Kubota, 1980) cortex. Buffering of stored information against
distractor events has also been reported. It appears to occur in
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frontal cortex (di Pellegrino and Wise, 1993a,b; Miller et al.,
1996) but not in temporal (Miller et al., 1996) or posterior parietal
areas (Steinmetz et al., 1994; Steinmetz and Constantinidis,
1995). Recent neuroimaging studies have yielded corresponding
results in human subjects regarding storage and buffering (Cohen
et al., 1997; Courtney et al., 1997). However, the second compo-
nent of a DMS network, involving comparison and matching, has
not been addressed.

To investigate how the brain may implement both major com-
ponents of a DMS network, we trained a recurrent neural net-
work to perform spatial DMS. This approach, called neural sys-
tems identification, has been shown to generate realistic models
(Zipser and Anderson, 1988). Analysis of the trained network
revealed that the underlying computational solution indeed uses
an attractor network to store sample information, as well as a set
of comparator neurons, the combined action of which approxi-
mates a match filter. The implementation of the model involved
specific features that are not obvious consequences of the basic
computational mechanism, such as directional tuning of both the
attractor network and the comparator neurons, together with a
considerable degree of distributed function. When frontal cortex
activity was compared with the model, directionally tuned units
resembling comparator and attractor network neurons were
found, along with evidence for distributed function. These results
suggest that a computational solution similar to that in our model
may be implemented in a network that includes frontal cortex
neurons.

MATERIALS AND METHODS

Modeling methods. The model described in this paper was generated
using a technique called neural systems identification (NSI) (Zipser,
1992). As this technique was applied here, an initially randomly
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Figure 1. Diagram of the recurrent network model. Each large, sigmoid-
containing triangle represents a soma or a model unit, which receives
external input and feedback from other network units. The activation of
a model unit is determined by performing a nonlinear operation on the
weighted sum of its inputs (see Eq. 1). Inputs are shown in the bottom left
corner and labeled x, y, and gate, respectively. For clarity, only five model
units are shown here; actual network models contained between 9 and 50
of these units. The black diamonds represent the wy; white diamonds
represent output unit weights. The three small, sigmoid-containing trian-
gles labeled match, x, and y represent the output units. The activation of an
output unit is determined by a nonlinear operation on the weighted sum
of the hidden unit activity.

weighted, fully recurrent network of simple model neurons was trained
to emulate the input-output behavior conjectured to occur in frontal
cortex during the DMS task. Neural systems identification differs from
most conventional modeling techniques in that the model is generated
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from a general conjecture about the function of a brain area, rather
than being constructed from detailed knowledge or hypotheses about
the internal structure of that area. This approach has the advantage
that identification models often generate mechanisms that otherwise
would not be considered. Moreover, NSI spawns model neurons with
response properties closely resembling those of cortical neurons. Iden-
tification models, in their current form, have the disadvantage that they
are limited in the amount of realistic detail they provide. They gener-
ally give information only about the average activity of component
neurons.

Neural systems identification generates models by adjusting the syn-
aptic weights recurrently connecting the internal, or hidden, units in the
network so that they function to perform the desired input—output
behavior. The process of evolving a set of synaptic weights that mini-
mizes the error produced by the network is called optimization or
“training.” The results are typically independent of the exact optimiza-
tion procedure used, because the set of possible final configurations of
the model depends on the task rather than on how the optimization was
done. For the model described here we used a gradient descent, error
correction optimization algorithm for recurrent networks, called back-
propagation through time (Williams and Zipser, 1995). Because the
functions of the hidden units develop during the model generation
process and are not specified at the beginning of training, post hoc
analysis of the mechanisms of the model for solving the input output
transform may yield insight into how biological networks may solve
similar problems.

The model network is shown in Figure 1. It consists of a set of fully
interconnected model neurons, simulated with logistic functions. The
model is implemented by the system of nonlinear difference equations
shown below:

ye+ 1) :f< Zwijyj<z>+2vikpk<r)> (1

where y;(¢) are the output values of all other model neurons at time ¢;
wy; are the weight values connecting model neuron i to model neuron
J; pi(t) are the external inputs at time ¢; v;, are the weights connecting
model neuron i to input line k; and f(x) is the logistic function f(x) =
/(1 + e—").
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Figure 2. Schematic of training algorithm used for delayed match-to-sample network. The row of circles represents the input coordinate stimuli, and the
bottom line represents the output match response. The top line represents the gate signal. There are eight possible input coordinates, represented by the
small lines on the circles. A solid circle indicates an input stimulus pattern; an outlined circle indicates a gated stimulus pattern. The output match unit
indicates when the current input matches the last gated input. The output also carries a copy of the last gated location, which is not shown. Each gated
sample input is followed by a pseudorandom number of distractors. The number of distractors, n, decreases exponentially as n increases and is
determined as the probability, p(n), that the number of test patternsisn = k= P(1 - — k), where k was set to 0.35. In addition, there was an interstimulus
interval of either two or three (0,0) inputs separating each new input stimuli.
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Figure 3. Typical temporal behavior of a the storage unit of a model,
shown as unit activity plotted as a function of time. At t = 5, a sample
stimulus pattern is gated in, and at r = 17, the same stimulus is presented
again. Both events are marked with arrows, and dotted vertical lines
demarcate the delay period. The top plot shows the sustained response for
a subset of input patterns (sample stimuli at locations 8 and 1-3); the
bottom plot shows the sustained response for the remaining inputs (sample
stimuli at locations 4—7). In this and most subsequent figures, model unit
activity levels are normalized to the range [0.0-1.0].

In our model, there are three input lines: two for the (x,y) coordinate
of the stimulus and one called the “gate.” The gate takes a value of 1
when new information is to be stored and is 0 otherwise, including when
distractor and matching stimuli are applied to the stimulus position
inputs. These three inputs, then, provide the information that must be
available solve the DMS problem. Other input formats, e.g., retinotopic
coordinates, could have been chosen, but the exact format used here was
chosen for simplicity. Whereas the information content and dimension-
ality of NSI model inputs are critical, the precise format of inputs
generally has only a second-order quantitative effect and does not change
the major functional properties of the model (Moody and Zipser, 1998;
Sanger, 1994). The input lines connect to all model neurons except the
output units. The output of the network consists of a set of three units
that receive input from all of the hidden units but do not feed back to
them. In addition to the match output unit there are two additional
output units that indicate the coordinates of the stored stimulus position.
These output units acted as an external copy of the location to be
remembered, thereby facilitating the match process. The units were
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Figure 4. Temporal behavior of a storage unit across multiple gated
sample input patterns. Each arrow along the x-axis indicates gating in of
a new sample pattern. At = 6 and 25 a “preferred” sample location was
gated in; at = 17 a nonpreferred sample location was presented.

found to be required for efficient training but were not necessary for the
basic properties of the hidden units or the overall performance of the
model.

To train the model, randomized sequences of stimulus positions and
gate signals were provided at appropriate times. The output was trained
to indicate when a match occurs, as well as the location of the previously
stored stimulus. Figure 2 provides details of the training paradigm. Gate
signals were separated by intertrial intervals in which the stimulus posi-
tion was set to zero, i.e., at the center of the circle of stimuli positions.
Models were generated by training networks for about 10 million net-
work time steps. On average, three distractors were shown before pre-
sentation of an input that matched the stored information. The average
total duration from sample to match was 15 time steps. Starting from
random weights, networks of nine or more units always learned to do the
task correctly.

Neurophysiological methods. We compared the response properties of
hidden units in our model with those of frontal cortex neurons recorded
in previously reported experiments (di Pellegrino and Wise, 1993a,b).
The experimental details can be found in the previous reports but are
briefly summarized here. A rhesus monkey was trained in a manner
roughly analogous to that of the model described above. In the experi-
mental condition used for the present analysis (termed the “compatible
condition” by di Pellegrino and Wise, 1993a,b), each trial began with the
monkey centering a two-joint manipulandum beneath a light-emitting
diode (LED) that was in the center of a circular array of eight LEDs. The
monkey fixated a central LED, and later, one of the eight peripheral
LEDs was illuminated for 500 msec as the sample stimulus. After a delay
of either 550 or 750 msec, a current stimulus was presented for 100 msec.
If it was one of the seven LEDs other than the sample, no response was
required, and any motor response terminated the trial. If the current
stimulus matched the location of the sample, then the monkey had to
move the manipulandum to that location within 650 msec to report that
a match had occurred. (This positional motor response is analogous to
the analog information contained in the x and y output units of the
network.) If performed accurately, juice reinforcement was delivered;
otherwise the trial terminated. The present analysis focuses on 68 neu-
rons recorded from the dorsal premotor cortex (PM), a part of the frontal
cortex thought to be involved in visually guided movement. In addition,
37 neurons from part of the prefrontal cortex (PF) were also analyzed.

Analytical methods. To quantify the degree and depth of direction
tuning, we developed four indices, computed for a given unit across all
eight directions. Similar types of indices have been used in the past, often
based on fitting the data to a cosine function (Georgopoulos et al., 1982,
1988). However, inspection of the neurophysiological data indicated that
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Figure 5. Model comparator unit for three different stored values. The
response to current stimuli, matches, and distractors at locations 1-8
when the sample has previously appeared at location 3 is shown in the top
plot. The middle and bottom plots show the response to current stimuli at
the same locations for sample stimulus locations 7 and 4, respectively.

regression to a cosine function would not yield many good fits. Accord-
ingly, we developed indices that did not depend on sinusoidal directional
tuning. A selectivity index (s;), depth-of-tuning index (d;), activity level
index (a;), and modulation index (m;) are defined as follows:
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where k is the number of directions; 7.,., denotes the activity level
during a given event period (such as sample, delay, or match) for a
given cell across eight directions; and i,,,;,, and i,,,, are, respectively, the
minimum and maximum responses of the i™ neuron across the eight
different directions.

RESULTS
Mechanism of the model

To determine the mechanism of the model, several analytical
approaches were used, based on the following properties of the
model neurons: (1) the activity pattern within a simulated trial;
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Figure 6. Steady-state values of the network, for a minimal network,
shown as activation profiles of the nine model neurons across eight input
patterns. The activation shown is after the network has settled to a steady
state. C, Comparator cell; S, storage unit. Note how one unit (bottom left
corner) does not distinguish among the different input patterns.

(2) the steady-state activity pattern during delay period; (3) the
consequences of single-unit lesions; and (4) the synaptic weight
connections.

An important parameter in NSI models is the number of
hidden units used. We found significant differences between the
behavior of hidden units in minimal versus larger models. The
hidden units in minimal size networks were of relatively “pure”
functional types, with each unit devoted to one of the main
information-processing components of the task. In larger models,
only a fraction of the units were of pure functional types. Most
units seemed to be participating in several of the necessary
information-processing components, with varying degrees of par-
ticipation in each. This distinction between minimal and larger
networks allowed us to use the operational mechanisms of min-
imal networks, which were fairly transparent, to gain insight into
the potential mechanism of more complex networks, which were
more difficult to analyze. It also allowed us to gain further insight
into the neurophysiological data, because the biological units
more closely resembled the hidden units in large networks than in
minimal ones.

At the start of a typical simulated behavioral trial, the center
coordinate (0,0) was gated into the model network, correspond-
ing to the starting position in a reaching task. After an intertrial
interval, a stimulus location was gated in. This was followed by
zero to three distractor stimuli and finally by the match stimulus.
Analysis of the data from these simulations revealed two distinct
kinds of hidden units: storage and comparator units.

Storage units maintain a sustained level of activation that is
determined by the last input loaded simultaneously with a gate
pulse. A new gate pulse is needed to cause a change in the activity
of a storage unit (see Fig. 4). Storage units are directionally tuned
and quite insensitive to postgate events, such as distractors and
matches (Figs. 3, 4).

Comparator units receive input from both the current stimulus
and the stored sample. They can respond to distractors as well as
to match stimuli, and their responses are directionally tuned to
the location of the current input stimulus. In the majority of
comparator units, amplitudes of response to current stimuli are
modulated by the value held by the storage units. This modulation
includes both potentiation and suppression. An example of how a
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comparator unit responds to all current stimuli for various stored
samples is shown in Figure 5. Note that the response is direction-
ally tuned, and that the shape and peak of the tuning curve
remain fixed for different stored samples. It is the magnitude of
the tuning curve that is dependent on the current stored sample.
This relatively fixed shape of the tuning curve for current stimuli
allows us to incorporate both the current stimulus and the stored
sample by describing the output of a comparator unit as approx-
imately their product. Thus, the output of the network can be
represented, to a first approximation, as:

mjk:EWiaijaik (6)

where my is the output of the match unit, w; is the weight
connecting the ith comparator unit to the output, and a;a;, is the
product of the response to the jth current stimulus and the kth
stored sample of the ith comparator unit. This equation has the
general form of a match filter that signals a match when the sum
my, exceeds a preset threshold (Oppenheim et al., 1996). In the
network model, this threshold is implemented by the sigmoidal
activation function of the output unit, thereby enabling the net-
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Figure 7. Spatial extent of the basins of attraction
for model networks and the effects of lesions on
attractor basins. A, Minimal, nine-unit network. B,
Fifty-unit network. C, Nine-unit network with a
lesioned comparator unit. D, Nine-unit network
with a lesioned storage unit. Steady network state
activation is plotted as a function of the location of
the gated-in (x,y) coordinate sample stimulus across
a matrix of 57 X 57 (x and y ranged from [—0.2:1.2],
with a step of 0.025). The network settled for 25
activation sweeps after each gated coordinate posi-
tion. The various colors serve to distinguish one
attractor basin from another; there is no correlation
between hue and relative distances among attractor
basins. The small white circles indicate the eight
training target locations. Note that, because of stor-
age unit activity, the basins of attraction remain
stable with a comparator lesion (compare A, C).
Note the serious disruption of several basins of
attraction with a storage unit lesion (compare A, D),
including one large basin that now subsumes three
of the eight locations in the sample stimulus train-
ing set.

work output to detect the eight match conditions of the 64
possible combinations of current stimulus and stored sample. A
strong indication that the output match unit uses the responses of
comparator units to make its decision can be seen in the large
magnitude of the weights that connect them to the match output
unit. The analog of Figure 5, using experimental data, is shown in
Figure 12. It is quite noisy but suggests that a similar computa-
tional mechanism may be used by the brain. It is interesting that
no units were found in the recurrent layer that carry the match
decision signal. No true match units were found in the cortical
arcas studied either, as will be discussed later.

When the number of hidden units is increased from the mini-
mum needed, a significant difference appears in the properties of
many of the hidden units. There are still some relatively pure
functional types, but most hidden units in larger networks are of
complex, mixed types. These mixed types have activity profiles
that seem to combine storage and comparison functions to vari-
ous degrees. Analysis of the operations of the model, by examin-
ing the effects of removing single units from the network, dem-
onstrate that these composite functional units play an essential
role in the DMS task.
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Figure 8. Higher-resolution map of a boundary between two basins of
attraction. These plots show an x range of [0.670-0.794], a y range of
[0.540-0.664], and a step size of 0.002 (vs 0.025 in Fig. 7). Left, Each
hidden unit was initialized with a different random value. Right, Each
hidden unit was initialized with the same value.

Additional information about the model was obtained by study-
ing its steady states. All instances of the model settled to steady
states; that is, the set of model neurons evolved to a state that was
changeless over time. The steady states were found by gating in a
stimulus and then returning the input lines to zero until the
activity of all units became fixed over time. The effect of stored
information on the steady-state values of all the units in a minimal
size network is shown in Figure 6. This instance of the model has
two storage units (labeled ), six comparator units (labeled C),
and one unit that is directionally tuned to gate events but is not
modulated by stored value. The two storage units are direction-
ally tuned to the stored information, but one has eight distinct
values over direction, and the other has just two values, high and
low. Within the set of six storage-modulated comparator units, all
but one of the steady-state tuning curves are approximately uni-
modal. Note that the steady-state tuning curves for the six tuned
comparator units are all different. These differences play a central
role in enabling the comparator units to provide unique informa-
tion about all combinations of input and stored information. This
information is then used by the match output unit for recognizing
matching stimuli.

The stable states of our model are fixed point attractors. Fixed
point attractors have the property that if the system is given a
small perturbation from its steady state it will return to that state.
The region of state space from which the system will evolve to a
specified attractor is called a basin of attraction. In our model, the
remembered stimuli are stored in basins of attraction. There are
eight attractors, one for each of the eight possible stimuli in the
training set. It is often hard to visualize basins of attraction,
because they are in a space with the same number of dimensions
as the number of units in the network. However, the attractor
structure of our model networks is relatively simple and could be
visualized in the two-dimensional space that contains the eight
input stimuli. To plot the basins of attraction, we systematically
gated in a square grid of 57 X 57 (3249) points covering the
two-dimensional input space and including the eight training
stimuli locations. To maximize the number of attractors found, all
model neurons were set to randomly chosen values before pre-
sentation of a new grid location. After gating in a new location,
the input lines were held at zero until the network settled to a
stable state. Two stable states were considered the same if each
model neuron in one stable state had the same activity level as the
corresponding neuron in the second stable state. This procedure
produced only eight stable states for all 3249 points (Fig. 7).
Figure 7, A and B, shows these eight stable states for a nine unit
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and a 50 unit network model. Each of the eight stimuli locations
on which the network was trained was surrounded by a large basin
of attraction. These eight basins of attraction accounted for all of
the input space, and there were no other attractors in the
network.

The robustness of the attractors was examined by studying the
effect of initial network starting position on the resulting attrac-
tors. The initial state of the network refers to the collective set of
initial activity level of each model neuron. The overall structure
of these attractor basins was not affected by the initial state of the
network; only the basin boundaries were affected. If the network
always started from the same initial state, a smooth border
evolved between basins (Fig. 8 right), whereas if the network
started from a randomly selected initial state each time, then a
noisy boundary resulted (Fig. 8, left). Thus, the general structure
of the attractor basins are robust, which implies that the stored
information will be buffered against noise and irrelevant neural
activity.

The differential roles of the storage and comparator units can
be analyzed further by examining the effect of removing them
selectively. Removing a comparator unit from a minimal network
has very little effect on the spatial pattern of the basins of
attraction (Fig. 7C). Nonetheless, the matching process is dis-
turbed, and there are several matching errors (data not shown).
Removing a storage unit (Fig. 7D), on the other hand, substan-
tially disrupts the spatial structure of the attractor basins. The
values of the attractors are changed, their numbers are reduced,
and several targets end up in the same basins of attraction.

The spatial patterns of attractor basins are similar in small and
large networks (Fig. 74,B). However, there are some differences.
First, larger networks degrade more gracefully with lesioned
storage units. Second, the boundaries between basins of attraction
are more sensitive to starting state in the larger networks.

Comparison of model and empirical data

In the analysis of networks of relatively large size, two tests were
required to show the function of the different types of hidden
units: first, examination of the activation properties during the
time course of a trial as a function of the stored and current input
stimulus; and, second, the effect on the basins of attraction when
the unit was deleted from the network. Because we are unable to
perform the second of these tests on the experimental data, we
are limited to the statement that a neuron is consistent with some
particular functional type.

For the PM population, 68 neurons were included in the final
data set. Only cells with unimodal directional tuning and in-
creases in activity were included. Twenty-four of those 68 neu-
rons had activity patterns that resembled, by qualitative assess-
ment, the pure functional types found in the minimal model. Of
these, there were seven storage units and 17 comparator units.
The remainder showed either complex activity patterns that ap-
peared to include elements of both functions or, in a few cases,
were of types that did not appear in the model. For the PF
population, 37 neurons were included using the same criteria. Of
those, two resembled storage units, and five resembled compara-
tor units. The remainder were of mixed or different types.

Storage units

The storage units in our model network have several character-
istics: they are set to stimulus-specific levels of activity by the first
stimulus in a trial, sustain this activity with little disruption
despite the presentation of distractors, and are directionally
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Figure 9. A storage unit from PM. Average neuronal activity for stimuli at each of the eight locations in the training set (rows 1-8). Left column, Activity
aligned on the onset of the sample stimulus. Middle column, Activity aligned on the onset of a distractor stimulus. Right column, activity aligned on the onset
of a match stimulus. Each frace is an average across a variable number of trials, plotted to the same scale (activity scale is in impulses per second). Top row,

Average for each column.

tuned to the location of the initial, gated stimulus. Figure 9 shows
the activity of a typical neuron with sustained activity. Illustrated
are the periods before and after samples, distractors, and
matches. The PM neuron shown in Figure 9 has the three char-
acteristic response features of the storage units of the model. It is
set to stimulus-specific levels of activity by the first stimulus in a
trial (Fig. 9, left column); it sustains this activity with little
disruption through the presentation of distractors (Fig. 9, middle
column); and it is directionally tuned to the location of the initial,
gated stimulus (Fig. 10). Unlike the storage units in the model, the
activity of the cell diminishes soon after the match stimulus
presentation (Fig. 9, right column). This characteristic is typical of
neurons with delay period activity in a wide range of experiments
(Zipser, 1991), and it can be reproduced in the model by gating in
a stimulus representing the center location at the end of a trial
(Fig. 4). The shutoff indicates that, in addition to some general
source of input gating that loads new information into the system,
there is also an information source, not addressed by our model,
that indicates when the task is complete and information need no
longer be maintained. The storage-like units in PF had similar
characteristics.

Comparator units

Comparator units in the model have two critical properties that
can be compared with PM and PF neurons. They have a direc-
tionally tuned response to stimuli presented during any stage of a
trial, and their responses are modulated by the value currently
stored in memory. In the model, the first of these properties
results from comparator units receiving afferent information
about the current input. The second property stems from storage
unit input to comparator units. In the cortex, both PM and PF
contain neurons that exhibit these two properties. The responses
of a PM neuron to each of the eight input stimuli, whether that
stimulus is a sample (Fig. 11, left column), a distractor (Fig. 11,
middle column), or a match (Fig. 11, right column), gives a rough
idea of the directional tuning of the cell. As with the comparator
units of the model (Fig. 5), this neuron shows directional tuning
to current stimuli, as well as responses that are modulated by
stored values (Fig. 12). In PF cells, the directionally tuned re-
sponse to the sample stimulus presentation tends to be similar to
that of a current stimulus presentation. In contrast, the directional
preferences of PM cells are more complex (see di Pellegrino and
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Figure 10. Tuning curve for PM cell illustrated in Figure 9. Activity and
SE/SD for activity during the delay period (for the 750 msec period
immediately preceding match stimulus onset) across stimulus location.

Wise, 1993b). In model neurons, the sample tuning curve is often
quite similar to the current input tuning curve; however, there are
many instances in larger networks in which the two curves are
dissimilar.

Match output units

There were no match units in the recurrent layer of the model.
The two principal characteristics of the match output unit, as
expressed in the present terminology, are that it is “untuned” for
direction; i.e., it reports a match regardless of the spatial location
of the match stimulus, and it does not show activity at any other
period during a “trial.” By those criteria, there were no match
units found in either PM or PF. Taken literally, this finding
suggests that the actual decision that a match has occurred takes
place in a different brain area, although all the relevant informa-
tion is present in PM. However, closer examination of the data
revealed a small number of units, four in PF and one in PM, with
properties that resembled the match output neuron in the model
more closely than did any of the hidden units of the model.

This characteristic of frontal cortex activity was explored fur-
ther by examining the correlation between the depth and selec-
tivity of directional tuning. We calculated s;, d;, a;, and m; for
each model neuron (Egs. 2-5) in both larger and minimal net-
works, as well as for PM and PF neurons, selected as described
above. Figure 13 illustrates large and small values for the direc-
tional selectivity index and the depth-of-tuning index, s; and 4,
respectively. s; measures the extent to which activity in all non-
preferred directions deviates the maximal activity, and d; mea-
sures the greatest proportional reduction from maximal activity.
We found that PM, PF, and model data all show a significant,
positive correlation between the depth (d;) and selectivity (s;) of
directional tuning that is similar in certain details (Fig. 14). For
activity after match presentation in larger networks, r* = 0.877
(n = 50); in PM neurons, r? = 0.744 (n = 68); and in PF neurons,
r? = 0.753 (n = 37). Neither the independent correlations of PM
and the model nor those of PF and the model significantly differ
(two-tailed test, @ = 0.01) (Myers and Well, 1991).

There is an apparent difference between the model and neu-
ronal distributions as the origin is approached (Fig. 14). More
model units have very low depth-of-tuning as well as very low
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directional selectivity indices. For all of those model units, it was
found that the level of modulation, m;, was also very low, as was
their activity during the delay period and after the match event.
The very low activity levels (<6% of maximal activity) of these
hidden units and the small weights linking these units to the
network output suggest that these units contribute little, if any, to
the operation of the model. Frontal cortex neurons with such low
levels of activity and modulation are unlikely to be sampled with
current neurophysiological sampling methods. Four PF cells and
1 PM cell with low d; and s; values were sampled (Fig. 14).
However, unlike the hidden units of the model, these frontal
cortex neurons have high modulation (m;) levels (>44% of max-
imal modulation), with a moderate, rather than low, activity
during the delay period. One of the PF neurons showed the
maximal activity, which was a postmatch modulation of >200
impulses/sec, one of the highest levels of activity ever reported for
frontal cortex. Thus, these four PF and one PM neurons resemble
the match output cell of the model more closely than any of the
hidden units of the model in having low directional tuning but
high activity modulation after the match event. Some of these
neurons also differ from the match output neuron in having
significant activity after the sample stimulus, as well as the match
stimulus.

DISCUSSION
Contribution of model

The model described here augments previous DMS models in
several important ways. First, it incorporates the matching func-
tion in the same network as short-term information storage.
Although active storage has been modeled (Lukashin, 1990;
Zipser, 1991; Zhang, 1996), it has not previously been combined
with matching in a single model. Second, the present model also
allows for distractors and can distinguish repeats from true
matches. Third, the model can be generalized readily to other
short-term memory tasks, such as nonspatial DMS, nonmatching,
and paired associate tasks. For example, the dimension and
format of the input can be altered to represent the desired
stimulus as Xcighes Xwidehs @1d X for object x in a nonspatial
DMS task.

We found that in models with a small number of hidden units,
these units, to a first approximation, could be characterized as
storage or comparator units. Recall, however, that the minimal
network described above contains two storage units and six com-
parator units (Fig. 6). This suggests that comparator units are
involved in storage, because two storage units cannot collectively
represent eight different sample locations, and moreover, because
some storage attractor basins are still intact after a storage unit
lesion. Thus, although minimal-sized models produce predomi-
nantly storage or comparator units, these two unit types interact
to support each other functionally. By contrast, networks with
relatively large numbers of units tended to have what appear to be
multifunction units. In this regard, the behavior of hidden units in
large networks more closely resembles that of frontal cortex
neurons. The role played by these multifunction units in the
model is difficult to determine, as has proven to be the case for
frontal cortex neurons. In the present analysis, we have examined
the properties of frontal cortex neurons mainly in comparison
with the properties of large networks. We focused on the prop-
erties of storage units, comparator units, and the match output
unit, which signals the decision of the network.

color
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Storage units

Short-term active memory of the kind used in DMS must be
buffered against distractor inputs. In the lateral intraparietal area
and in areas 7a, IT, and V4, delay activity appears to carry
information only about the immediately preceding stimulus
(Mountcastle et al., 1987; Miller et al., 1993; Steinmetz and
Constantinidis, 1995). In those sensory cortical areas activity is
usually “reset” by distractor stimuli (Miller et al., 1996), presum-
ably reflecting the displacement of sample information. In con-
trast, PF and PM neurons exhibit much less, if any, resetting by
intervening distractors (di Pellegrino and Wise, 1993a; Miller et
al., 1996). The buffering of stored information across distractors
reinforces the conjecture that the loading of new information into
active short-term memory requires some kind of specific gate or
load signal. This signal appears to be necessary for shifting the
units to a new attractor. For units in which memory is reset to a
new value for each new stimulus, such a load signal would not be
required. For those units, the afferent stimulus could shift the
network to a new attractor. The source of the load signals for
short-term memory is not known. One possibility is what has been
termed anticipatory or precue activity: a directionally nonselec-
tive signal that precedes a temporally predictable event (Mauritz

~ distractor

7z

match

Comparator unit from PM. Format is as in Figure 9.

and Wise, 1986; Vaadia et al., 1988). In most tasks, the sample in
a DMS task is predictable in this sense. In principle, this signal
can provide information about the control of the sequence of
computations that generate continuous cognition. The same rea-
soning also applies to the signals that turn off sustained activity at
the end of a trial.

In the model, the function of the storage units in maintaining
information about the location of the sample is unambiguous.
However, in animal behavior, the situation is not always as clear.
During periods when animals must remember a stimulus location,
they may also reorient selective spatial attention to the same
location and/or, under certain circumstances, maintain an inten-
tion to make a movement, either oculomotor or skeletomotor, to
that location. It is also possible that animals could use overt
movements for self-cueing, for example, if an animal looks in the
direction of the sample stimulus or adopts a posture that could
encode the same information. Eye position and electromyograpic
measurements seem to exclude overt motor strategies for the
matching task (di Pellegrino and Wise, 1993a), but covert actions
cannot be ruled out. For the present purpose, these distinctions
are not particularly pertinent. Whatever the strategy of the animal
for retaining information about the sample stimulus, the require-
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Figure 12. Tuning curves for PM cell illustrated in Figure 11. As in
Figure 5 from the model, each plot shows the response to stimuli at one
of the eight locations in the training set after a sample at one location.
Top, middle, bottom, Sample stimulus at locations 1, 5, and 4, respectively.

ments of the DMS network remain much the same: location-
specific sustained neural activity and comparison between this
stored information and current stimuli.

We did not examine the dynamics of cortical discharge rates in
detail. It has been noted that neuronal activity in a delay period
has many patterns, including, in frontal cortex, a buildup of delay
period activity over time (Quintana and Fuster, 1993; Miller et
al., 1996). Although the model, in its current form, cannot ac-
count for such augmentation in discharge rate, a minor modifi-
cation that enhances the effect of the previous network activation
is likely to produce such an effect.

Comparator units

The model network functions by virtue of the combinations of
inputs from current stimuli and storage units onto comparator
units. This conclusion is supported by three lines of evidence: the
properties of comparator unit activity, the synaptic weights that
these neurons have on the match output neuron, and the effects of
selective removal of comparator neurons from a trained model.
Comparator unit activity reflects both the location of the sample
stimulus (as provided by the storage units) and the location of the
current stimulus. It appears that a unique combination of storage
and current stimulus inputs to each comparator unit is used by the
network to identify match events. This conclusion is supported
further by the fact that the largest synaptic weights on the match
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Figure 13.  Schematic of tuning properties described by the directional
selectivity (s;) and depth-of-tuning (d;) indices (see Eqgs. 2, 3).

output neuron of the model arise from the comparator cells as
well as from the observation that removal of comparators from
the network causes many “reporting” errors without changing the
basins of attraction.

Of course, it is impossible to perform the latter two analyses on
the frontal cortex neurons. No one knows the weight of its neurons
on output elements, and there is no method for ablating compar-
ator units selectively in the frontal cortex. However, we can exam-
ine the activity patterns and levels of PF and PM neurons in the
context of the behavior of hidden units in both minimal and
relatively large networks. A large class of PF and PM neurons has
the properties predicted by the model for comparator units. Com-
parator cells are characterized by receiving input regarding the
stored stimulus, as well as the current stimulus. In terms of our
neuronal activity indices (Egs. 4, 5), this corresponds to moderate
but nonzero delay period activity (i,e1.y) and moderate postmatch
stimulus modulation (m;). PM, PF, and the model all contain
populations of comparator cells by these criteria.
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Figure 14. Directional selectivity index versus depth-of-tuning index for
PM neurons, PF neurons, and model neurons. The diameter of each data
point is proportional to the normalized activity modulation (;) after the
match stimulus event. Because of the unusually large modulation of
activity for one PF neuron (>200 impulses/sec), the rest of the PF
population appears to have minimal modulation. However, this is merely
a result of normalization to the maximum value.

Match output units

There were no true match units, i.e., units that became active only
when a match occurred and did so equally for all match-stimulus
locations, in PM, PF, or the hidden layer of the model. This
negative finding is of importance, because it indicates that hidden
units of the model probably do not make the match decision. In
this context, we examined the behavior of the PF and PM neurons
in our sample closely. The finding of four PF neurons and one PM
neuron that had virtually untuned, but substantial, activity mod-
ulation after the match event suggests a larger role of frontal
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cortex neurons in the match decision than envisioned for the
hidden units in the model.

Neural systems identification and

top-down engineering

Top-down engineering concepts are useful in combined modeling
and neurophysiological studies, especially as a source of conjec-
tures concerning how a network may be solving a complex input—
output mapping. As outlined in the introductory remarks, an
optimal top-down solution to the DMS task could consist of an
attractor network to store the stimuli and a match filter to detect
matches. In the NSI model, the storage units implement the
attractor network, and the comparator units implement the match
filter. Thus, the NSI model did implement both of the proposed
mechanisms, although it was not constrained to do so. Further-
more, the model network acquired the property of buffering of
the relevant information, without individual elements exclusively
devoted to this function, and lacked “pure” match units. These
properties accord with the experimental results, although in an
explicitly engineered system, components might have been de-
signed with those properties. It is of interest that, among the
many potential designs for a DMS network, the NSI model and
perhaps the cortical network adopt the optimized architecture
proposed in the top-down engineering solution described above.
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