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The width of the orientation tuning curves of the spike response
of neurons in V1 is invariant to contrast. This property con-
strains the possible mechanisms underlying orientation selec-
tivity. It has been suggested that noise circumvents the iceberg
effect that would prevent contrast invariance in the purely feed-
forward mechanism. Here we investigate systematically how
noise contributes to the contrast invariance of orientation tun-
ing curves in V1. We study three models of increasing complex-
ity: a simple threshold-linear firing rate model, a leaky integrate-
and-fire model, and a conductance-based model. We show
that the noise transmutes the threshold nonlinearity of the
input-output relationships into an approximate power law with-
out a threshold within some firing rate range. This implies that,
under certain conditions which are derived here, the tuning of
the neuron output is approximately contrast invariant. In par-

ticular we show that this mechanism for contrast invariance
requires that the neuron firing rate must not be too large and
that increasing or lowering the contrast too much destroys this
invariance. We also show that if this mechanism operates in V1,
the spike response, R, and average voltage response V of the
neurons in V1 should vary with the contrast, C, according to
R(C) « V(C)”. The exponent y can be estimated from the amount
by which the spike tuning curve is sharpened with respect to
the voltage tuning curves of the neurons. This prediction does
not depend on the specifics of the model and can be tested
experimentally.
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The spike response of neurons in V1 is tuned to stimulus orien-
tation (Hubel and Wiesel, 1962). Although the amplitude of the
responses increases with the contrast, the width of the tuning
curves remains remarkably constant (Sclar and Freeman, 1982; Li
and Creutzfeld, 1984; Skottun et al., 1987). This “contrast invari-
ance” is puzzling because of the so-called iceberg effect (Sompo-
linsky and Shapley, 1997), which predicts that the tuning will be
broader at higher contrast as the responses to nonpreferred
orientation rise above the spiking threshold. In the past 15 years,
several mechanisms have been proposed to avoid this effect (Ben-
Yshai et al., 1995, 1997; Somers et al., 1995; Hansel and Sompo-
linsky, 1998; Troyer et al., 1998; Ferster and Miller, 2000).

Recently it has been shown that the tuning curves of the
membrane potential of neurons in V1 are also contrast invariant
with a mean response subthreshold and substantial fluctuations
(Anderson et al., 2000a). Other experimental groups (Arieli et
al., 1996; Tsodyks et al., 1999) have pointed out the crucial effect
of noise on voltage in the firing of neurons in V1.

Using numerical simulations, Anderson et al. (2000a) showed
for a rate model that this noise can effectively “smooth” the
threshold nonlinearity. This, combined with the contrast invari-
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ance of the average membrane potential tuning, leads to contrast-
invariant spike-response tuning curves.

These observations raise several questions. (1) The noise
smoothes the iceberg effect in precisely such a way that the output
of the neuron is contrast invariant. How can this seemingly
miraculous effect be explained? (2) Anderson et al. (2000a) used
a rate model with a threshold linear transfer function. How
important is it for the transfer function to have this form? (3)
This paper reports results from cells that have a low firing rate
with a maximum of 8 Hz for simple cells, whereas complex cells
have rates below 40 Hz. These firing rates are much lower than
those reported elsewhere (Sclar and Freeman, 1982; Skottun et
al., 1987; Anderson et al., 2000b). Can the proposed mechanism
still hold for cells that fire more vigorously? (4) Intracellular
recordings show that voltage fluctuations are on a time scale that
is similar to many of the processes that make up the internal
dynamics of the neuron (Borg-Graham et al., 1998; Anderson et
al., 2000a). With such rapid fluctuations in the voltage, to what
extent do the results from a rate description of the neuronal
dynamics correspond to the actual behavior of the neurons in V1
(Ermentrout, 1994; Shriki et al., 1998; Gerstner, 2000; Brunel et
al., 2001)? How does the proposed mechanism apply when the
kinetics of active channels are taken into account? Here we
investigate all these questions theoretically, using three models of
neurons of increasing complexity and biophysical realism.

MATERIALS AND METHODS

In this paper we consider neurons in V1 stimulated with drifting gratings.
We focus on the role of noise in contrast invariance of the tuning for
complex cells. Our analysis is simplified in that case because according to
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the classical view we can assume that the inputs to the cells are not
temporally modulated.

Rate models. In a rate model the firing rate, R, is a nonlinear function
of the voltage, V, R = g(V). The voltage, V, consists of an average part ¥/,
which is a deterministic function of the input and a noise that varies from
trial to trial. Following the experimental results of Anderson et al.
(2000a), we assume that the tuning of the mean voltage response to the
input is contrast invariant. We also include a contribution, V}, to the
mean contrast, V, that does not depend on the input:

V(C, 0) = Vy+ Vin(O)ry(0), 1)

where V/,, is the voltage response at the preferred orientation, 6 = 6,,, and
Ky is the normalized tuning curve for the mean voltage, with ky(6,) = 1.
Without loss of generality we can assume that 6, = 0. Consistent with
experimental results we will also assume that ky, is symmetric around 6 =
0 and that the voltage tuning curve is unimodal.

The Anderson et al. (2000a) experiments show that in V1 the ampli-
tude of the noise is not or only weakly dependent on the contrast and
orientation of the input. We will therefore assume input-independent
noise. The noise can be written as om, where o is the SD, and 7 is a
random variable drawn from some distribution with mean 0 and SD 1.
Given this distribution, we can write for the average spike rate, R, for an
input with contrast C and orientation 6:

R(C, 0) = (g((C, 0) + am)), = G,(V(C, ). ()

Here we have used (-), to denote averaging over the noise. Note that even
if the neuronal dynamics is complex and not given by a simple rate
equation, the average firing rate is still given by the equation R(C, 0) =
G,(V(C, 0)), after averaging over the input-independent noise, provided
that the input to the neuron varies sufficiently slowly. The function G,
however, may not be easy to evaluate in this case.

We first derive conditions that G, must satisfy to ensure that the rate
tuning is contrast invariant. Then we assume that the transfer function g
is a threshold linear function, g(V) = B[V — V1], where V- is a threshold
and B the gain. The half-rectifying function is denoted by [x]., [x], =0
forx < 0and [x], =x forx = 0. For a Gaussian noise, the noise-averaged
transfer function, G, can be determined analytically. This function does
not satisfy the requirements for contrast invariance of the spike rate
exactly, but the region of approximated compliance to the requirement is
determined using standard mathematical techniques.

The integrate-and-fire model. We model a complex cell as a leaky
integrate-and-fire neuron (Lapicque, 1907). The neuron receives a
stimulus-dependent input current, I(C, 0) = I (C)k(6), as well as a
stimulus-independent input /,, and stimulus-independent Gaussian noise,
om. The input tuning «; is a Gaussian with a half-width at half-maximal
of 30°. Subthreshold, the voltage, V, of the cell satisfies:

dv
CME = gL(I/resl - V) + IO + I(C’ 6) + O'”f](l) (3)

Here, Cy, is the membrane capacitance, g, the leak conductance, and
Vst the resting potential. As the voltage reaches the threshold, Vi, a
spike occurs and V'is immediately reset to a potential V... The average
firing rate R, the mean membrane potential V, and the SDs of the voltage
fluctuations, o, are calculated analytically as functions of the input
current /. The conditions under which contrast-invariant input tuning
leads to approximate contrast-invariant mean firing rate and average
voltage tuning are determined numerically.

Conductance-based neurons. The mono-compartmental conductance-
based model we consider describes a regular spiking (excitatory) cell in
V1. It has the form:

av
Curgy =1(C, 0) + I+ Iy + Inap + I + Ia + s, )

where V' is the membrane potential of the neuron and Cy, its membrane
capacitance. We take Cy; = 1 nF/cm?. The first term in the right-hand
side of this equation is the external input. The second term is the leak
current I; = g; (V. — V), withg; = 0.2 mS/cm? and V; = —70 mV. Note
that with this value of leak conductance, the passive time constant of the
cell is 5 msec, which is larger than what is usually considered as typical
for regular spiking cells. However, when embedded into cortical net-
works, the input conductance of neurons increases substantially (Ber-
nander et al., 1991; Rapp et al., 1992) because of synaptic interactions
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Table 1. Gating variables of the conductance-based model: x_, = [a,/
(a, + b1, 7, = [1/(ay + b,)] for x = m, h, n; 7, is in milliseconds

X ay by
0.1(V + 35)
1 —exp(=0.1(V + 35))

4 exp(—(V + 60)/18)

5
h 0.35 exp(—(V + 58)/20) T
0.05(V + 34) o s

! 1 —exp(=0.1(V + 34)) .625 exp(—(V + 44)/80)
X x., -

: 1
¢ T+ exp(—(V + 50)/20) nstantaneous
b . 20

1+ exp((V + 80)/6)

1 I
* 1 + exp(—(v + 40)/5) nstantaneous

1
: 50

1+ exp(—0.7(V + 30))

Table 2. Conductance density in microSiemens per centimeters squared
and reversal potentials in millivolts for the ionic channels in the
conductance-based model

x 8x Vi

Na 35 55
NaP 0.08 55
K 15 —-90
A 25 —-90
K, 0.5 -90

with other cells in the network. This network is not modeled here. That
is why we have assumed a larger leak conductance to take these inter-
actions into account.

The model incorporates five ionic currents: a sodium Hodgkin-

Huxley-like current: Iy, = —gnanoh(V — Vyo); a persistent sodium
current: In,p = —8napS-(V)(V — Via); a delayed rectifier potassium
current: Iy = —gen*(V — Vy); an A-type potassium current: [, =

—gat.(V)’b(V — Vy); and a slow potassium current, K, responsible for
spike adaptation: Iy, = —gxz(V — V).
The dynamical equations for the gating variables are:

dx  x.(V)—x
P ®)

where x = h, n, b, z. All the functions x..(V), 7, and the other gating
variables are given in Table 1. The respective maximum conductance
densities and the reversal potentials of the ionic currents are given in
Table 2.

For the external current we assume that a complex cell receives its
input from N simple cells, which are tuned for orientation. These simple
cells fire spikes according to Poisson processes that are uncorrelated
across the cells. Therefore we model the external current as:

I(C, 0,1) =g(C, 0, ) (Vgn = V), (6)

where the reversal potential V,,, = 0 mV, and g is a conductance change
that depends on the contrast and stimulus orientation. It represents the
pooled contribution of all the conductance changes induced by the
synapses from all the input simple cells. It is modeled as:

g(C, 0,0 =g > ft—1), (7

where g characterizes the strength of the synapses impinging on the cell
and:
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flo) = [exp(—t/m) — exp(—t/7))]0(), (®)

T — T
with ©(¢) = 1 if r > 0 and O(¢t) = 0 otherwise, and ¢, is a sequence of
random events with Poisson statistics. The rate of the Poisson process is:

p(C, 8) = py + pi(C)exp(—6/24). )

The first term is untuned. It describes the spontaneous activity of the
simple cells. The second term corresponds to the effect of the visual
stimulus. The parameter A characterizes the degree of tuning of this
effect. The dependence of p,(C) on the contrast will not be modeled here
in detail. We simply assume that it is an increasing function of the
contrast, and we study the effect of changing the contrast by increasing p,.
The parameter values used in our simulations are 7, = 1 msec, 7, = 3
msec, § = 0.5 mS/em?, V,,,, = 0 mV.

As for the integrate-and-fire model described above, a Gaussian
stimulus-independent white noise, om(¢), is added to the external current.
This noise describes the fluctuating part of the network feedback into the
neuron.

The dynamical equations were integrated numerically using a fourth-
order Runge —Kutta scheme with a fixed time step (d¢ = 0.025 msec). The
tuning curves of the output firing rate of the neuron were fitted with a
Gaussian, R = A, exp(—6*2A2). The tuning curves of the average
potential were computed without clipping of the spikes and were fitted
with a Gaussian V' = A, exp(—6*2A2) + C,. The tuning curves of the
membrane potential fluctuations were computed after cutting the spikes,
taking the depolarization of the neuron at the rheobase as a threshold
value.

RESULTS
Conditions for contrast invariance for a general
rate model
In general the noise-averaged transfer function G, (Eq. 2) does
not transform a contrast invariant voltage into a contrast invariant
average rate R(C, #). What constraints does G, have to satisfy to
insure this?

Assuming no stimulus independent contribution, V, = 0, con-
trast invariance of the spike and voltage tuning implies that:

Ry (C)kr(0) = G,(V(C)ky(6)), (10)

where R, is the average rate at the preferred orientation, and kg
the normalized spike tuning curve, with kg(0) = 1.

Taking the derivative with respect to C and 0, respectively,
yields:

RL(O)kr(0) = Go(NVL(C)ry(0) (11)
Ru(C)kr(0) = Go(NVu(C)ki(6), (12)

where the prime indicates the derivative. These equations have
two solutions:

aclog(Ru(C))  GHlog(lin(6))

G.(V)=0or | =3 =
Log(Vn(C))  Llog(liy(6))

a, (13)

where « is a constant. The first solution, G/(V) = 0, leads to R =
R,. The second solution implies log(|R|) = « log(|I"]) + log(A4),
where A is a positive constant. Thus in this solution R is given by
R = A|V|*. Because G, gives the average firing rate after the noise
is taken into account, it should be a continuous function. Making
the plausible assumptions that the rate is a nondecreasing func-
tion of the mean voltage, and that it goes to zero for V' — —x, G,
must have the form:

0 for VA0
GoV) = { AVE for V>0 (14)
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Figure 1. For voltage fluctuations of the right size the firing rate of the

neuron is well approximated by a power of the input over the physiolog-
ical range. The figure shows a log-log plot of firing rate as a function of
voltage for different levels of noise, o = 1 mV (dotted line), o = 3 mV
(dashed line), and o = 6 mV (solid line). To highlight the qualitative
features of the neuronal response, the rate is plotted well outside the
range that can be measured in experiments. For 0 = 1 mV and o = 3 mV,
the power law approximation is also shown (thin dashed and solid line,
respectively). For o = 1 mV the power law behavior only extends rates up
to 10 73 Hz. For o = 3 mV the power law behavior is observed between
0.1 and 30 Hz, whereas for larger noise (¢ = 6 mV) the rate is non-
negligible even at the resting voltage. Other parameters: B = 6 Hz/mV,
Vey=9mV,V,=0mV.

where a and A4 are positive. Therefore:
Ry(C) = AV, (O) (15)

kr(0) = ky(0)~ (16)

This implies that ky(Ogwum) = 127 where 0w iS the
half-width at half-maximal of the spike response (defined by
Kr(Owam) = 1/2). Therefore, the larger the «, the sharper the
tuning of the spike response.

Approximate contrast invariance for a threshold-linear
transfer function

Let us assume a threshold-linear transfer function, g(V) = B[V —
V1], and a Gaussian noise. In Appendix A it is shown that G, is

given by:
- VT I_/_ VT 1 (I_/_ VT)Z
p H o + \fET\/Xp 2 0_2 N
a7)

where H(x) = (2m) "2 [Z ¢ "2 dy is the complementary error
function.

Clearly G (V) # A[V]% for any value of o. Therefore, accord-
ing to the analysis in the previous paragraph, exact contrast
invariance is not expected to occur. However, as we show now,
some range of the noise level, o, G (V) is well approximated by
a power law for a large range of V.

Figure 1 displays a log-log plot of the function G, against V/,
for different values of . For all the values of o, for large enough
V, the curves overlap and are linear, satisfying log(G,) =
log(V) + log(B). This is because for high voltages the effect of the
threshold nonlinearity becomes negligible. For small values of V/,
the curves approach a finite limit, which for o << V. is exponen-
tially small. To smoothly connect these two regions the curves
need to begin to rise with a slope that increases with log(¥). At

some point, V' = V*, the slopes reach a maximum larger than 1

_ v
G.(V) = BU{
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Figure 2. Power law behavior of the voltage-rate relation causes the rate tuning to be contrast invariant. The rate tuning curves are shown for different
levels of noise: 4, 0 = 1 mV; B, 0 = 3mV; C, 0 = 6 mV. Each panel shows the rate response to a Gaussian mean voltage, with half-width at half-maximal
of 30°, with different maximum voltage: 5 mV (solid line), 7 mV (long dashed line), 10 mV (short dashed line), and 15 mV (dotted line). The insets show
the corresponding normalized rate tuning curves. Note that in 4 the response to 5 and 7 mV is so small as to be indistinguishable from 0 Hz. Other
parameters are as in Figure 1. Only for a voltage noise o = 3 mV are the tuning curves for the firing rate contrast invariant. For o = 1 mV, the firing
rate exceeds the region in which the power law holds, causing broadening of the tuning curve for larger contrast. For large voltage fluctuations, o = 6
mV, the rate does not go to 0 Hz at the null orientation, resulting in contrast dependence at the null orientation for the normalized tuning curves.

and start to decrease, i.e., they display an inflection point. Be-
cause at this inflection point (7 = *) the second derivative of the
curve is zero, there is a region around log(}*), from log(}' ") to
log(V'™), at which the curve is well approximated by log(G) = «
log(V) + log(A), as indicated in Figure 1. This figure also shows
that the slope « increases as o is decreased.

If o is sufficiently small, IV~ is exponentially small, and below
I/~ the rate is negligible. By construction G (V) ~ AV~ for V=~ <
V< V*, and hence, for all ¥ < VV*, G can indeed be approxi-
mated by G (V) = A[V']%, provided that ¢ is not too large. On the
other hand, if o is too small, V™" is relatively small, and G (V")
becomes extremely small. Therefore to achieve both sharp tuning
of the spike response and invariance of this tuning over a sub-
stantial range of contrasts, an intermediate noise level must be
selected.

This is demonstrated in Figure 2: 4, B, and C show the spike
tuning of a cell for o = 1 mV, 3 mV, and 6 mV, respectively. In
each panel the spike response for a mean voltage V' = V,,
exp(—0%/2A%) with different values of V,, is shown. The width A
is chosen so that the half-width at half-maximal for the voltage is
30°. With o = 1 mV (Fig. 24), the maximum firing rate is outside
the region in which G can be approximated by a power law. As
a result the spike tuning curves are not contrast invariant. This is
further demonstrated in the inset, which shows the normalized
tuning curves. For o = 3 mV (Fig. 2B), the maximum firing rate
stays within the region in which G is closely approximated by a
power law with & = 3.85, and the normalized spike tuning curves
very nearly overlap (inset). If o is increased to 6 mV (Fig. 2C), the
firing rate at the orthogonal orientation, where the mean voltage
is not elevated, is no longer negligible. As a result, the normalized
tuning curves do not overlap (inset).

Figure 3 shows the half-width at half-maximal for the firing
rate for different values of V,, as a function of the noise level, o.
It demonstrates that approximate contrast invariance can be
achieved only if the noise level is o =~ 2-4 mV. Beyond this value
the width of the spike tuning curve increases rapidly. This is
because for sufficiently large values of o, the baseline rate is of the
same order as the maximum elevation of the rate caused by the
preferred stimulus.

The effect of a stimulus-independent input
So far we have assumed that there is no stimulus-independent
mean voltage, V, = 0. We will now discuss the effect of adding a
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Figure 3. Half-width at half-maximal of the rate response as function of
the noise level for different values of the maximum voltage response:
Vinax = 5 mV (solid line), V.. = 10 mV (dashed line), V., = 15 mV
(dotted line). Other parameters as in Figure 1. For small voltage fluctua-
tions the tuning is much more sharpened, but different for contrasts,
whereas for very high levels of noise the rate at the null orientation is
more than half the rate at the preferred orientation, resulting in a
divergence of the half-width at half-maximal. Only for a noise with a SD
of ~3 mV is the half-width at half-maximal the same for all contrasts,
reflecting the contrast invariance for this noise level.

non-zero stimulus-independent voltage. The firing rate of the
neuron is a function of (V' — Vy)/o:

|

where r is given by Equation 17. Because it is the stimulus-
dependent part of the average voltage that is contrast invariant,
we would like to describe the rate as a function of the mean

R

V- VT>
, (18)

o

voltage response, V.., which is given by V., = V — V,. The
firing rate can be written as:
Vrcs =V e
R= r<7" L f), (19)
g

where the effective threshold, Vi 4, satisfies Vi g = Vo — V.
This demonstrates that including a positive stimulus-independent
part in the input has the effect of reducing the threshold. Alterna-
tively, keeping the threshold the same, the rate can be written as:
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Figure 4. Response of integrate-and-fire neuron for different levels of noise. 4, Log of firing rate against log mean input current. There is only an
approximate power law relation between rate and input current in the range from 1 to 30 Hz, for intermediate values of the input noise. B, Log of mean
voltage against log mean input current. For all noise levels, the voltage varies linearly with the input up to an input value at which the firing rate becomes
appreciable (~5 Hz). C, SD of the voltage against log mean input current. For small inputs the SD of the voltage is constant and equal to that of a passive
integrator without a spiking mechanism. For very large inputs the voltage fluctuations are dominated by reset of the voltage and the drift back to the
threshold, and hence become independent of the noise level of the input. The input current is in microamperes per square centimeters. Parameters: o =
0.8 wA/cm? (msec)"? (solid line), o = 1.6 pAjcm? (msec)"? (dashed line), ¢ = 3.2 pA/cm? (msec)'? (dotted line). Other parameters: Cy; = 1.0 wF/cm?,

gL = 0.1 mS/cm? V.., =0mV, V= 15mV, and I, = 0.

Vrcs ef v
R = r(ip’af T>, (20)
ef
h _ av, _
WACTE Ger = =y, T AN Vresper = 1730y Thus adding

a positive stimulus-independent part to the voltage has the effect
of either reducing the threshold or alternatively increasing the
voltage response and noise level by a factor >1.

Therefore a positive V|, shifts the interval of the rates over
which the power-law relationship between firing rate and voltage
holds to higher rates, but decreases the power, thereby reducing
the degree of sharpening of the rate response relative to the
voltage response.

Contrast invariance in the integrate-and-fire model

For the integrate-and-fire neuron the stochastic Equation 3 leads,
after averaging over the noise, to a probability distribution of the
voltage. From this distribution the average firing rate, the mean
voltage, and SD of the subthreshold voltage fluctuations can be
computed (Gluss, 1967; Tuckwell, 1984). These calculations are
shown in Appendix B. Here we only give the results.

The mean firing rate R is given by:

R= L[ 27 j X‘e"z/zH(x)dx]’l , (21)
™

X—

where 1y, = C\y,/g.is the membrane time constant, and x_ and x
are given byx_ = (V2g,C\/o) (V, — V) andx, = (V28 C\/o)
(Vo = Vieser)> T€SpPECtively.

This equation is not readily interpreted and has to be computed
numerically. Figure 44 shows a log-log plot of the spike rate, R,
versus the input current, /. These curves can be understood
qualitatively as follows. For large input currents the firing rate of
a noiseless integrate-and-fire neuron increases linearly with the
input. This remains true when noise is added. With an average
input of I =~ 0, the rate is exponentially small for a low noise level.
Intermediate values of the input should smoothly interpolate
between these regimes. This is analogous to the way the average
rate depends on the average voltage in the rate model. Thus the
log-log plot of R versus I in the integrate-and-fire model is
qualitatively similar to that of R versus ¥ in the rate model. For
log(I) — —, the curves are flat, and for large I the curves merge

to a straight line with slope 1. At an intermediate level there is an
inflection point, around which the rate varies approximately as a
power law of the input, with a higher power for smaller ¢. In the
figure, « = 16.5, for o = 0.8 uA/cm? (msec)"?, a = 3.25, for ¢ =
1.6 pA/ecm? (msec)?, and a = 121, for ¢ = 32 uwA/cm?
(msec)"? (msec)"? in this intermediate region.
Appendix B also shows that the average voltage is given by:
I_/ = Vrest + g]:ll - (VT - Vreset)TMR' (22)
Likewise the SD, o, of the voltage can be computed directly
(Appendix B). It satisfies:

VT + Vrcsct 5
— R (23)

2 _ ™

g 2 —
Oy = 7(6) + (VT - Vreset)(Vi

Equation 22 for the average voltage, ¥, can be understood
straightforwardly. If the firing rate is very small, the effect of the
threshold can be ignored. Thus the neuron acts as a passive
integrator in this scheme. As a result, the average voltage in-
creases linearly with the input, as long as the spike rate R is small.
When the firing rate becomes appreciable, this is no longer the
case, and the reset current at the time of the spike has to be
incorporated. The net effect of a spike is a reset of the voltage
from Vi to V.- In other words, each spike event delivers a net
charge of (V,cset — Vr)Cp per unit membrane area. Thus the total
current into the cell (external plus spike currents) is equal to [, —
(Ve — Viese)CuR, resulting in Equation 22 for the average
voltage.

When R is negligible, the deviation of the average voltage, V,
from the rest potential, V., is proportional to the input current,
1. Thus the tuning of the average voltage relative to rest is
contrast invariant when the input tuning is contrast invariant. If
I(C, 0) = I,(C)ky(0), V(C, 0) = Vyeer = Vin(C)r(0), with, V,, =
1./g,, and ky = k;. If the average firing rate becomes too large,
(Ve = Viewd) TR = I/g; , and the tuning of the average voltage is
no longer contrast invariant.

Figure 4B shows a log-log plot of the mean voltage, V' — V.,
against the input current, /, for different noise levels. As expected
the mean voltage varies linearly for low input. As I approaches
the threshold current, the rate becomes significant, and the volt-
age increases sublinearly. Somewhat later the rate increase with
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Figure 5. Contrast invariance of the spike rate and voltage tuning of the integrate-and-fire neuron with intermediate input noise. Tuning curves are
shown for the integrate-and-fire neuron for different maximum mean input levels /... A, The rate response. B, Mean voltage. C, SD of voltage
fluctuations. The tuning of spike rate is contrast invariant for the whole range of inputs (inset), because over the whole range of input the power law
relation between input and firing rate holds. Compare Figure 44. For the voltage the contrast independence breaks down for the highest contrast (inset).
This is because at high contrasts the firing rate at the preferred orientation is large, so that the resetting of the voltage can no longer be neglected. The
tuning of the voltage fluctuations is very weak, even for high contrast, because for this input noise level, the SDs of the voltage only weakly depend on

the mean input, as seen in Figure 4C, middle curve. In all graphs: I,

ax

=5 pA/em? (dotted line), 1., = 7 wA/em? (short dashed line), I,

=10 uA/cm?

ax

(long dashed line), and I,,,,, = 15 pA/cm? (solid line). Mean input current has Gaussian tuning with half-width at half-maximal of 30°. Parameters: o =

1.6 pA/cm? (msec)?. Others are as in Figure 4.

input becomes so large that the average voltage decreases with
increased input current. It approaches asymptotically (Vo +
Vieser)/2. The value of the input current at which the dependence
of VV on I starts to deviate from linear varies with the noise level.
The higher o, the sooner this deviation sets in.

Figure 4C shows the SD of the membrane potential, o,, com-
puted from Equation 23 as a function of the input. One sees that
o is approximately constant for inputs that are not too large.
This can be understood as follows. For weak inputs, the effects of
the threshold can be ignored, and the neuron integrates the
Gaussian noisy input passively. Therefore the equilibrium distri-
bution of the voltage is Gaussian, with a width that does not vary
with the mean input. This is reflected in Equation 23: for a firing
rate, R, which is sufficiently small. The second term in Equation
23 is negligible compared with the first one, and therefore o2, =
Tnm/2(0/Cyy)?. When the input becomes large, the fluctuations
change rapidly because the second term in Equation 23 is no
longer negligible. This reflects the fact that for large R the
resetting caused by the spike is appreciable, and the voltage
distribution eventually becomes uniform between V..., and V.
Depending on the noise level, this high rate distribution may be
either broader or narrower than the distribution at low rates, as
can be seen from Figure 4C.

Comparing Figure 4, 4 and B, one sees that the deviation from
linearity for the voltage occurs before the deviation from a power
law for the rate. Thus with contrast-invariant input tuning, the
contrast invariance of the average voltage tuning should break
down for contrasts lower than the contrast invariance of the spike
tuning. This is confirmed in Figure 5. In Figure 5, 4 and B, the
tuning curves of I and R, respectively, are shown for different
contrasts, with no contrast-invariant current, /, = 0. For low
contrasts the voltage tuning is approximately contrast invariant,
but significant deviations occur for high contrast. For the spike
rate, however, the tuning is approximately contrast invariant for
all levels of contrast shown here. Figure 5C shows the tuning
curves of o, for the same contrasts. It demonstrates that except
for the largest contrast the fluctuations of the membrane potential
are independent of the stimulus angle. Only for the largest con-
trast a slight increase of o, occurs around the preferred orienta-
tion of the neuron. This is because away from the preferred
orientation the input current is small, and therefore the SD of the

voltage fluctuations is independent of the input, as shown in
Figure 4C. Only sufficiently close to the preferred orientation is
the input current large enough to substantially affect voltage noise
level.

The effect of adding a stimulus independent input current, /,,
is similar to adding a stimulus independent voltage V, in the rate
model. It effectively changes the rest voltage V, .y, t0 Vi o given
by Viester = Vies T Io/gL or, alternatively, by changing the
threshold voltage V- and reset V.o t0 Vg = Vo — Iy/gy and
Vieseteft = Vieset — 1o/81- In the region where a power law relation
between the firing rate and average voltage exist, the firing rate,
mean voltage, and voltage fluctuations are hardly affected by
changing the reset voltage. This is because in this region the firing
rate is small, and hence the voltage of the neuron is hardly ever
reset. Thus adding a stimulus-independent current /, has the
same effect as changing the threshold voltage from Vi to Vi —
1,,/g; . This leads to changes in the neuronal response that are the
same as those described for the rate model.

Contrast invariance in the conductance-based model

The conductance-based model was studied numerically. The rest-
ing potential of the neuron is V,.,, = —70.6 mV. Onset to periodic
firing corresponds to a depolarized membrane potential of I, =
—57.6 mV.

Figure 64 shows, in a log-log plot, the spike response of the
neuron against the average firing rate of the input, p, for three
different values of noise, o. One sees that in a range of the input
that depends on o, log R is linearly related to log p with a slope
that decreases with increasing o. This behavior is similar to what
we have found for the integrate-and-fire, with p playing the role
of the input current I in that model. Figure 6 B shows log R as a
function of log(p — p,) for ¢ = 2 wA/cm?msec? and three
different values of p,. Here again the dependency is linear with a
slope that depends on p,,. The range of firing rates over which the
approximation is valid also depends strongly on this parameter, as
in the rate and integrate-and-fire models.

We now consider the response of the neuron to a visual input
modeled according to Equation 9 with half-width at half-maximal
of the stimulus-dependent input of 26.5° (A = 22.5°), and p, =
1500 Hz. This input induces a change in the input conductance of
the neuron, the tuning curve of which is plotted in Figure 7 for
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Figure 6. The results obtained for the integrate-and-fire can
be extended to conductance-based models. The role of the
external input, /, is now played by the input rate p. A, The 100
logarithm of the output spike rate, log R, against the logarithm
of the input rate. In a certain range of the input, log R and log
p are proportional. The input range depends on the SD of the
noise, o, and the proportionality constant decreases with in-
creasing o as seen by comparing three different noise values.

P

Output rate (in Hz)

o = 1(pluses), o = 2 (crosses), and o = 3 (stars). B, Log R and 0.01
log(p — py) are also proportional in a certain range of input
that depends on p,,. This is shown by plotting R and p — p, in
log-log scale for o = 2 pwA/cm?/msec'? and three different 0.0001

values of p,. py = 0 ( pluses), p, = 1500 Hz (crosses), and p, =
3000 Hz (stars). The solid line corresponds to R = 0.22(p/
1000)*. The average firing rate was computed over 300 sec.
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Figure 7. The tuning curves of the input conductance are contrast
invariant. The change in input conductance of the neurons is shown
against the orientation of the stimulus for different values of the contrast.
From rop to bottom in Hz: p, = 10000, 6500, 5000, 3500, 2500, 1950. The
width of the stimulus dependent input is A = 22.5°. For all these curves
po = 1500 Hz.
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Figure 8. The neuronal discharge is noise driven as seen on the traces of
membrane potential. Top, The stimulus is at optimal orientation. Bottom,
The stimulus is at null orientation. The dashed line is the level of
depolarization at the rheobase (V, = —57.6 mV). p, = 1500 Hz; p, = 5000
Hz; A = 22.5° In both the preferred and null orientation the mean voltage
is below rheobase.

different contrast levels. As the contrast increases, the input con-
ductance increases at the preferred orientation by up to 50% of its
value at rest. However, at null orientation it remains almost inde-
pendent of the contrast. Moreover, the width of the tuning curve
relative to the baseline is contrast independent and is equal to A.

The traces of the membrane potential of the model neuron in
response to a visual stimulus is plotted in Figure 8 at the pre-
ferred and null orientations for two values of the contrast. On
average, membrane potentials are significantly below the firing
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threshold of the neurons, yet the neuron can fire action potentials.
For instance, at preferred orientation the neuron fires with an
average firing rate of 30 Hz. This substantial level of activity is a
consequence of the large fluctuations of the neuron potential that
are induced by the noise. The tuning curve of the SD of these
fluctuations is plotted in Figure 94 for different contrasts. It
shows that for the chosen model parameters the fluctuation level
is similar to the one observed in the experiments of Anderson et
al. (2000a,b). It also demonstrates that as in these experiments,
the fluctuations are weakly tuned and contrast independent. Note
however that these fluctuations were computed after cutting the
action potentials (i.e., by clipping the potential below the thresh-
old V). A much more pronounced tuning of the fluctuations is
found if the action potentials are not suppressed (data not
shown).

Figure 9, B and C, displays the tuning curves of the average
membrane potentials and the average firing rates of the neuron,
respectively, for different input levels. The solid lines in Figure 9
correspond to the best Gaussian fit of the simulation results.
These results show that both tuning curves are approximately
contrast invariant in most of the range of contrast studied; see
insets. Figure 9D displays the width of the spike response against
the firing rate at preferred orientation. Visual inspection shows
that the tuning of the spike response is sharper than the input
tuning. The sharpening factor is ~1.7, in agreement with the
exponent of the approximate power law presented in Figure 6B
for p, = 1500 Hz, o = 3. This is similar to the results obtained
analytically for the simplified rate and integrate-and-fire model. It
shows that despite all the nonlinearities acting on a large spec-
trum of time scales that are present in the dynamics of our
conductance-based model, noise is still able to induce contrast
invariance of the output spiking rate as well as the average
membrane potential. This also implies that as in the integrate-
and-fire model, the rate and the average membrane potential can
be related by a power law. This is confirmed in Figure 10. Note
that the exponent, vy, of this power law is slightly larger than the
exponent «. Therefore the tuning of the membrane potential
should be slightly broader than the tuning of the input. This is
confirmed by a detailed analysis of our simulation results (data
not shown).

DISCUSSION

The mechanism for contrast invariance of the output
firing rate

It has been reported that noise in the input can contribute to
contrast invariance (Anderson et al. 2000a; M. Shelley and D.
McLaughlin, unpublished observations). Up to now the mecha-
nism governing this occurrence was not fully understood. Our
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Figure 9. Tuning curves for different contrasts. Parameters
are as in Figure 7 (contrast decreases from fop to bottom).
Results are averaged over 30 sec of simulation. A, The SD of
the membrane potential fluctuations depends only weakly
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60 oo on the stimulus orientation. The SD was calculated after
clipping the spikes at V' =V, = —57.6 mV. The tuning of the
average membrane potential (B) and the spike response R (C)
are approximately contrast invariant in most of the contrast

range studied. B, Inset, After normalization to the average
membrane potential at the preferred orientation the tuning
curves of the average membrane potential are superimposed.

C, Inset, Spike responses after normalization to the response
at optimal orientation. D, The tuning of the output rate is
sharper than the tuning of the input. The width of the output
rate and average voltage are plotted against the rate at the
preferred orientation. The width was estimated by fitting the
simulation results with a Gaussian (see Materials and Meth-
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Figure 10. The output rate and the average membrane potential can be
related by a power law. The average rate and the average membrane
potential were computed in simulations for o = 2 wA/cm?/msec'’?. The
continuous line was obtained by fitting the simulations results with R =
AV — V*)Y. Here V* is the value of the average voltage at cross-
orientation in Figure 9B: ’* = —68.05 mV. The fit parameters are 4 =
0.015 = 1073, y = 3.51 = 0.04.

analysis clarifies the mechanism for contrast invariance of the
output, provided that the input is contrast invariant. We have
seen that contrast invariance is exact if the effective transfer
function of the neuron is a power law. Although in general this is
not the case, we have shown that the interplay between noise and
threshold nonlinearity leads to an approximate contrast invari-
ance of the output for a certain range of the stimulus contrast,
provided that the noise is chosen appropriately. In this scheme
the threshold of the effective transfer function of the neuron is
very close to zero. The effect of the noise is to transmute the
threshold nonlinearity of the noiseless neuron into a power law
without a threshold. This mechanism is different from lineariza-
tion by noise that has been studied extensively.

We have shown that this mechanism is a general one. In the
integrate-and-fire that we have studied, we found that the firing
rate of the neuron can be related to its input with a very good
approximation by a power law. The average voltage, V, varies

ods). The error bars are for the error estimate of the fit. The
horizontal line corresponds to the half-width at half-maximal
of the input (26.5°).

linearly with the input because ¥ remains subthreshold where the
neuron behaves like a passive integrator. Deviations from this
linear behavior, attributable to the resetting at threshold, occur
only when the rate becomes too large. Combining these two
properties shows that R and V are related as R « I/* for some « >
0. This is similar to our result for the threshold linear rate model.
Our analysis of the conductance-based model leads to similar
conclusions. The main difference with the integrate-and-fire
model is that because of active processes, the deviations from
linearity in the relationship between the input and the average
potential are more pronounced. However, the relationship be-
tween the average potential and the input can still be related by an
approximate power law. The exponent of this power law, v,
remains close to the exponent, «, of the power law relating the
firing rate to the input.

The limitations

In the absence of input the firing rate of the neuron should be
very small. Thus the noise level, o (which is contrast indepen-
dent), cannot be too large. On the other hand the exponent «,
which determines the degree of sharpening of the spike rate
tuning, is a decreasing function of ¢. This imposes an upper limit
on the noise level.

These constraints on o limit the range of contrast over which
the output rate tuning is contrast invariant. This was shown
analytically for the rate and the integrate-and-fire models and
confirmed numerically with simulations for a conductance-based
model. This limitation on the contrast puts an upper bound on the
maximum firing rate for which the mechanism holds. In our
simulations of the conductance-based model using realistic pa-
rameters, the contrast invariance of the spike response breaks
down when the firing rate of the neuron is >30 Hz.

The input to the cells

In the spiking models we assumed that the average input to the
neuron is contrast invariant and that the input fluctuations are
independent of contrast. Under these conditions, the tuning of
both the firing rate and the average potential are contrast invari-
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Figure 11. A, Normalized tuning curves of the spike rate
elevation, using the same parameters as in Figure 2C. In
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Figure 2C the contrast independence breaks down because
the rate at the null orientation is not negligible. Subtracting
the minimum rate overcomes this, resulting in contrast
invariance of the rate elevation tuning. B, Half-width at
half-maximal for the rate elevation, using the same param-
eters as in Figure 3. The half-width at half-maximal of the
rate becomes nondefined for large noise levels, because of
the high rate at the null orientation. This does not create a
problem for the firing rate elevation. The effect of increas-

halfwidth at halfmax
(in degrees)

ing the noise is to increase the half-width at half-maximal
of the response to that of the input at the highest noise
levels. This extreme describes the classical threshold lin-
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-30 0 30
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earization attributable to noise. The result is that the tuning curves of the firing rate elevation are contrast invariant for all noise levels above 3 mV. In
both A and B rate elevation was determined by subtracting the rate at cross-orientation.

ant, in line with experimental results (Anderson et al., 2000a). As
in these experimental findings, this also lead to contrast-
independent voltage fluctuations. Our analysis shows that con-
versely the contrast invariance of the voltage and rate tuning,
combined with the contrast independence of the voltage fluctua-
tions, can be achieved only if the average input tuning is contrast
invariant and the input noise is contrast independent.

The contrast invariance of the average input tuning can be
explained by a purely feedforward mechanism of orientation
selectivity. Indeed, in this mechanism complex cells receive their
input from simple cells, the output of which is contrast invariant.
However, as we have seen, invariance will occur only in a rather
limited range of inputs. Recurrent interactions could extend this
range through effective gain control. Alternatively, they could
extend the range of the output for which the tuning is contrast
invariant by sharpening the input at high contrast, thus offsetting
the broadening of the tuning curve that would occur otherwise.

Explaining the contrast independence of the input fluctuations
is more difficult. If this noise is caused by the irregular activity of
the simple cells, it should increase with contrast. Fluctuations in
the recurrent feedback in the local network would also be contrast
dependent. Thus where do the stimulus independent fluctuations
originate? This remains unresolved.

Experimental issues
Two different definitions of contrast invariance have been used in
the literature. One is the contrast invariance of the firing rate
tuning and the other is the contrast invariance of the tuning of the
firing rate elevation. The latter is less restrictive because it does
not require a small baseline activity compared with the evoked
one. If one uses this definition, contrast invariance can be ob-
tained even if the noise level is high. This is shown in Figure 114
for 0 = 8 mV. These tuning curves are nearly perfectly contrast
invariant, unlike the tuning curves shown in Figure 2C. However,
the width of the tuning curves is now significantly broader than
for o = 4 mV (Fig. 2B). This width is almost the same as the
width of the voltage tuning. This is because for high noise level
there is no sharpening of the input because the effective gain
function of the neuron is close to linear. The width of the tuning
curve of the firing rate elevation is plotted against the noise level
in Figure 11B for three different contrast levels. This shows that
for o above 4 mV the three curves coincide. However, if o
increases further, the width approaches the width of the potential
tuning. Therefore the different definitions of contrast invariance
can lead to qualitatively different conclusions.

Independently of the model we have found that the mean firing
rate is related to the average voltage by a power law. This

prediction is general because it is a consequence of the biophysics
of the neurons. It could be tested by intracellular experiments in
vivo for neurons in V1 as well as in other areas. As long as the
noise is stimulus independent and the average membrane poten-
tial is sufficiently subthreshold, this property should be observed
unless active currents significantly affect the subthreshold neuron
dynamics.

A further experimental test of the mechanism proposed here
would be to measure the neuronal response when noise is injected
into the neuron. Our theory predicts that adding extra noise to
the neuron should increase the firing rate and broaden the spike
tuning curve, and the tuning of the rate elevation should continue
to be contrast invariant.

For neurons in V1 the exponent of the power is directly related
to the amount of sharpening. This can also be tested experimen-
tally. It should be noted that power law compressive nonlinear
transfer functions have also been suggested to account for the way
neurons in the Macaque primary visual cortex respond to gratings
and plaids (Carandini et al., 1997) in the framework of the
“normalization model” proposed by Heeger (1991, 1992). In this
study a power law with an exponent around 2 was found to
account for the data recorded extracellularly. In our study of the
conductance-based neuron model, we find an exponent of 3.9,
significantly larger than that reported by Heeger (1991, 1992). It
is unclear whether this difference reflects a misrepresentation of
the input noise in our model or whether the model parameters of
our V1 neuron deviate substantially from those of the complex
cells in V1.

Deviations from the power law relationship between average
firing rate and average voltage are expected to occur if the firing
rate is too high. For high contrast, the invariance to contrast of
the output tuning should start to break down near the preferred
orientation but will still hold sufficiently far from it. Therefore,
the spike rate tuning width derived from fitting the output tuning
curve with a Gaussian is not sensitive to these deviations. How-
ever, one can fit the output with the function f(6) = a(1 + b
exp(—c6* — d6*)), which is more sensitive to these deviations.

In conclusion, we have shown that noise can play a role in
achieving contrast invariance of orientation tuning in V1. How-
ever, this mechanism is strongly constrained by a tradeoff between
the sharpening of the response and the range in contrast that can be
accommodated. The results presented here indicate that noise can
account for contrast invariance of spike outputs that are sharper
than the input by a factor in the range of 1-2 and for firing rates
that are below 30 spikes per second. Whether these numbers are
typical for neurons in V1 requires further exploration.

Note added in proof. After this work was completed we became
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aware that some of the results derived here regarding the behav-
ior of the rate model have also been obtained independently by K.
Miller and T. Troyer (2002). We thank them for informing us
about their work.

APPENDIX A: The effective transfer function for the
threshold linear rate model with Gaussian noise

Here we derive the effective transfer function, G, for a threshold
linear neuron with Gaussian noise of width o in the voltage. The
effective transfer function is given by:

G,(V)=(G(V + an)),

= f GV + on)P(mdn,  (24)

where P(n) is the probability distribution of the noise.

For a threshold linear neuron with Gaussian noise, G is given
by G(V) = B[V — V], and P satisfies P(n) = exp(—n*/2)/V2m.
Thus:

e 2
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where H is the complementary error function, H(x) = [; e )

dy/V2m.

APPENDIX B: The effective transfer function, average
voltage, and voltage fluctuations for the integrate-and-
fire neuron
Here we calculate the mean firing rate, average voltage, and SD of
the voltage fluctuations for an integrate-and-fire neuron that
receives stochastic Gaussian input. From the stochastic Equation
3, a Fokker—Planck equation for the probability density function
p(V, t) of the voltage can be derived (Gluss, 1967; Tuckwell,
1984).

The probability density function p satisfies:

J d
5[)([/, t) = _W(I/: t) + 8(V_ Vrcsct)J(VTa t)a (26)

where J(V 1) is the flux through voltage 17 at time ¢, given by:

](V7 t) = (FM(VreSt - V) + CiMl - TCZW)F)(I/’ t)’ (27)

and the term 8(V — ViV, t), where 8(.) is the Dirac
S-function (Dirac, 1924), describes the reset when the neuron
reaches threshold.

After sufficient time has passed, the voltage distribution will
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have evolved to the equilibrium distribution, p(V, £) = p.q(V),
which is given by (Gluss, 1967; Tuckwell, 1984):

puV) = A expl—BWo— 17| explBWy— v PH,
Y (28)
for V < Voo, and:
Vr
pealV) = A expl—B(Vy — VY f explB(Vy — V'YlaV,
’ (29)

for V, .oy <V < Vy. Here B =g CyJo*and V, =V, + I/g;. The
validity of this solution can be checked by inserting it into Equa-
tions 26 and 27. For the flux J,, this yields J (V) = 0 for V' <
Vieset and Jo (V) = 0A/2C34 for V,eeoy < V < Vi As a result
dpeq(V)/dt = 0, as it should be for the equilibrium distribution.
The constant A is determined by the normalization of p,, [

Peq(V)dV = 1, and satisfies:

ZB X+ -1
A= [ f e"Z/ZH(x)dx] , (30)

Ve

where x_ = V2B(V, — V), and x . = V2B(Vy = Viesed)-
The mean firing rate R is given by the flux through the thresh-
old voltage, J.,(V'1):

2

R=-"_4
20

8L

-1
=c 27 J e"z/zH(x)dx] . (31)

X—

The mean voltage ¥ can also be calculated using the equilib-
rium distribution of the voltage. Using V' = [YI V p. (V)dV one
obtains, after some manipulation:

f/ = Vrcsl + nglI - (VT - Vrcsct)TMR~ (32)

Likewise, the SD of the subthreshold voltage, oy, can be
computed from o3, = [VI (V' = V)?p(V)dV and is given by:

2 ™ O z =, VT + Vresel =
ov=751¢) T Ve = Viesed| V = MR (33)
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