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Various computational approaches have been applied to pre-
dict aspects of animal behavior from the recorded activity of
populations of neurons. Here we invert this process to predict
the requisite neuromuscular activity associated with specified
motor behaviors. A probabilistic method based on Bayes’ the-
orem was used to predict the patterns of muscular activity
needed to produce various types of desired finger movements.
The profiles of predicted activity were then used to drive
frequency-modulated muscle stimulators to evoke multijoint
finger movements. Comparison of movements generated by

electrical stimulation with desired movements yielded root
mean squared errors between �18 and 26%. This reasonable
correspondence between desired and evoked movements sug-
gests that this approach might serve as a useful strategy to
control neuroprosthetic systems that aim to restore movement
to paralyzed individuals.
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Fundamental insights into how arrays of neurons encode motor or
sensory variables can be gained from computational methods that
attempt to reconstruct or predict aspects of animal behavior or
sensory stimuli from the recorded activity of neural populations
(Georgopoulos et al., 1986, 1988; Schwartz, 1993; Wilson and
McNaughton, 1993; Deadwyler and Hampson, 1997; Rieke et al.,
1997; Brown et al., 1998; Nicolelis et al., 1998; Zhang et al., 1998;
Wessberg et al., 2000). The accuracy with which a behavior such
as the direction of limb movement or the path of an animal
navigating a maze can be reconstructed provides an estimate of
the amount of behaviorally relevant information represented in
the discharge of the recorded neurons.

It should also be possible to invert this process to predict neural
activity from behavior. One application of such an approach
would be to identify the patterns of neuromuscular activity across
a population of muscles needed to elicit desired movements in
paralyzed individuals using functional electrical stimulation.
Functional electrical stimulation involves artificial activation of
paralyzed muscles with implanted electrodes (Keith et al., 1988;
Hoshimiya et al., 1989; Kilgore et al., 1989; Smith et al., 1998) and
has been used successfully to improve the ability of quadriplegics
to perform activities for daily living (Mulcahey et al., 1997). The
range of motor behaviors that can be generated by functional
electrical stimulation, however, is limited to a relatively small set
of preprogrammed movements, such as hand grasp and lateral
and palmer pinch (Triolo et al., 1996).

A broader range of movements has not been implemented
primarily because of the substantial challenge associated with
identification of the patterns of muscle stimulation needed to

elicit specified movements. Most limb movements, even those
involving a single digit, require intricate coordination among
multiple muscles that act across several joints (Schieber, 1995;
Rose et al., 1999). Such complex mechanical systems do not
readily lend themselves to deterministic solutions. Although elec-
tromyographic (EMG) signals recorded from able-bodied subjects
can be used to identify patterns of muscle activity associated with
a particular movement (Hoshimiya et al., 1989), this painstaking
method yields control signals appropriate only for the motor task
from which the EMG signals were originally recorded.

In an attempt to overcome this limitation, we have used a
probabilistic method called Bayes’ theorem to predict the patterns
of muscle stimulation needed to produce, in theory, an unlimited
set of movements across multiple joints. Our use of Bayes’ theo-
rem was based on previous studies that used this method to
reconstruct various forms of motor behavior from recorded neu-
ral activity (Brown et al., 1998; Zhang et al., 1998; Tresch and
Kiehn, 2000). The bidirectionality of Bayes’ theorem facilitated
the inverse prediction of neuromuscular activity from behavior
required for the present investigation (Rieke et al., 1997). The
aim of this study, therefore, was to determine whether implemen-
tation of Bayes’ theorem was an effective method for predicting
the muscle stimulation patterns needed to artificially evoke a
variety of finger movements. A reasonable correspondence be-
tween desired and evoked movements was observed in this study,
indicating that this approach might provide a flexible means to
control functional electrical stimulation and thereby expand the
repertoire of motor functions available to paralyzed individuals.
An abstract of this work has been published previously (Seifert et
al., 2001).

MATERIALS AND METHODS
Overview. The general approach taken in this study involved two stages,
as outlined in Figure 1. In the first stage, EMG and joint kinematic
signals were recorded during a variety of finger movements in one
subject. These signals were then used as inputs to a computer algorithm
that characterized the relationship between muscle activity and kinemat-
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ics using a probabilistic method known as Bayes’ theorem. In the second
stage, the probabilistic relationship between muscle activity and kine-
matics identified in the first stage was used to predict muscle activity
associated with a new set of intended or desired movements of the finger.
The predicted patterns of muscle activity were then transformed into
frequency-modulated trains of pulses that were used to control a set of
muscle stimulators to evoke finger movements in other subjects. The
accuracy of the method was evaluated by comparing evoked movements
with the corresponding desired movements. Details of the procedures are
given in the following sections. The Institutional Human Investigation
Committee approved the procedures, and all subjects gave their in-
formed consent to participate in the study.

Joint angle and EMG acquisition. A healthy human subject sat in a
dental chair with his or her forearm supported on a platform and
stabilized in a mid-supinated position between two foam-padded rods as
shown in Figure 2. Three flexible strain gauge transducers (Biopac, Santa
Barbara, CA) were used to record joint angles from the metacarpalpha-
langal (MCP) joint, the proximal interphalangeal (PIP) joint, and the
distal interphlangeal (DIP) joint of the third digit. This digit was used
because fewer muscles insert onto it compared with the thumb, index
finger, or little finger and because of its greater independence of move-
ment compared with digit four (Robinson and Fuglevand, 1999; Häger-
Ross and Schieber, 2000). The joint angle transducers were attached with
double-sided tape across each joint after the subject had donned a vinyl
glove. The glove was worn to improve adhesion of the transducers. A
plastic extension was glued to the glove over the fingernail to lengthen
the distal segment and thereby allow the transducer to be fixed across the
DIP joint. Once attached to the subject, each of the joint angle trans-
ducers was calibrated using a metal frame that held the joints at specified
angles. Angular position was measured with respect to a neutral (fully
extended) orientation of the joints with positive angles referring to
flexion and negative angles indicating hyperextension. Joint angle signals
were amplified (gain of 1000; World Precision Instruments, Sarasota, FL)
and sampled with a computerized data acquisition system (Spike 2;
Cambridge Electronics Design, Cambridge, UK) at �2000 Hz.

Tungsten microelectrodes were used to record EMG signals from the
main muscles that control flexion and extension of the third digit [i.e., the
digit 3 compartments of the flexor digitorum profundus (FDP3), flexor
digitorum superficialus (FDS3), and extensor digitorum (ED3)]. The
tungsten microelectrodes (1–5 �m tip diameter, �3 mm of insulation
removed from the tip, 250 �m shaft diameter; Frederick Haer Co.,
Bowdoinham, ME) were inserted through the skin and directed toward
the target muscle. Low-intensity constant current pulses (�0.4 mA, 1
msec duration, and 1 pulse/sec) were delivered via a stimulator coupled

to a stimulus isolation unit (S88 and SIU7; Grass Instruments, West
Warwick, RI), while the intramuscular electrode position was adjusted
manually until a site was found that elicited motor responses in one of the
target muscles. Activation of FDP was distinguished from that of FDS by
the presence of evoked movements in the distal phalanx. Once the
placement of the electrodes in the target muscles had been verified by
electrical stimulation, the electrodes were then connected to alternating
current-coupled differential amplifiers (model 12; Grass Instruments).
Surface electrodes (Ag-AgCl, 4 mm diameter) attached to the skin over
the distal radius served as reference electrodes. EMG signals were
amplified with a gain of 1000, bandpass filtered (30–1000 Hz), and
digitally sampled at �2000 Hz.

Training data. Once the position transducers and electrodes were in
place, the subject was asked to perform a variety of unrestrained flexion–
extension movements of the middle finger in which contact was not made
with external surfaces. Some movement of the other fingers also occurred
inadvertently. However, EMG and joint angle data were recorded only
for the middle finger movements, which were used for subsequent train-
ing of the Bayes’ algorithm to yield the probabilistic relationships be-
tween muscle activity and joint kinematics. The movements were de-
signed to cover much of the joint space associated with relatively natural
movements. The duration of the training set was 60 sec.

Desired movements. Next, the subject was instructed to make a se-
quence of movements from which a set of desired movements was
extracted from the recorded joint angle trajectories. These movements
consisted of repeated tapping motions similar to key presses, pushing
movements involving simultaneous extension of the PIP and DIP joints
and flexion of the MCP joint of the middle finger in a motion similar to
that which occurs when sliding a small object away from the hand across
a flat surface, and pulling movements involving flexion of the PIP and
DIP joints and extension of the MCP joint as if sliding a small object
toward the hand. The three types of movements were performed repet-
itively for �10 sec each. The subject was instructed to make movements
at a comfortable pace but to vary the duration of the movement from one
cycle to the next. The entire 30 sec sequence was performed twice. From
this record, five 10 sec segments were extracted that were used to
represent different types of desired movements: tapping, pushing, pull-
ing, transition from pushing to tapping movements, and transition from
tapping into pulling movements. EMG data were collected during the
desired movements and used for comparison with the predicted patterns
of EMG.

Signal processing. In off-line digital analysis of the training set, EMG
signals were full-wave rectified and low-pass filtered at 2 Hz. Joint

Figure 1. Diagram depicting two main stages of the experimental pro-
cedures. Stage 1, Muscle activity and kinematic signals recorded during a
variety of finger movements in one subject were used to determine the
probabilistic relationship between muscle activity and movement using
Bayes’ rule. Stage 2, The relationship established by application of Bayes’
rule in Stage 1 was used to predict muscle activity associated with a new
set of desired kinematics. Predicted muscle activity was transformed into
frequency-modulated trains of pulses, which were used to control a set of
muscle stimulators to evoke finger movements in other subjects. Evoked
movements were compared with the corresponding desired movements to
evaluate the accuracy of the method.

Figure 2. Experimental setup for recording joint angles and muscle
activity and for stimulating muscle. The subject’s arm was supported on a
horizontal platform, and the wrist was secured in a mid-supinated posi-
tion between two padded rods. Strain gauge transducers that measure
joint angle were fixed over the MCP, PIP, and DIP joints of the middle
finger. Tungsten microelectrodes, inserted through the skin, were used to
record muscle activity from or to stimulate the middle finger (digit 3)
compartments of the FDP3, FDS3, and ED3.
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angular velocities were calculated for each joint by digital differentiation
of the joint angle data. Positive values for joint angular velocity indicated
flexion movements, whereas negative values indicated extension move-
ments. Joint angle, joint angular velocity, and EMG signals were all
resampled at �200 Hz/signal. EMG magnitude was normalized to a
percentage of the peak EMG within the training set and rounded to the
nearest 1% increment. Joint angles and joint angular velocities were
rounded into intervals of 1° and 1°/sec, respectively.

Bayesian reconstruction algorithm. Bayes’ theorem is a technique that
uses conditional probabilities to predict the likelihood of an outcome
given that a particular event or set of events has occurred. The basic form
of Bayes’ theorem can be written as follows:

P� A�B� �
P�B�A� � P� A�

P�B�
, (1)

where P(A�B) is the probability that variable A takes on a particular value
given different levels of variable B. In neurophysiology experiments, A is
often a controlled parameter related to a sensory stimulus or a behavior,
and B typically is an index of neural activity. P(B�A) is the probability
that variable B attains a specific value given different levels of A. P( A) is
the distribution representing the probabilities for observing different
levels of A. In practice, the denominator term P( B) is treated as a
normalization constant that represents the sum of probabilities across all
levels of A for the distribution indicated in the numerator of Equation 1,
namely:

P�B� � �
allA

P�B�A� � P� A�. (2)

This normalization simply ensures that total probability represented by
Equation 1 is equal to 1.

In the present case, the variables of interest were joint kinematics (�)
and muscle activity (EMG). In contrast to previous studies, in which
neural activity has been used to predict some aspect of behavior (Geor-
gopoulos et al., 1986, 1988; Schwartz, 1993; Wilson and McNaughton,
1993; Tresch and Kiehn, 2000) or features of sensory stimuli (Rieke et
al., 1997; Nicolelis et al., 1998), our goal was to predict the requisite
neuromuscular activity needed to generate a particular motor behavior.
Consequently, the general form of equation 1 became:

P�EMG��� �
P���EMG� � P�EMG�

�
allEMG

P���EMG� � P�EMG�
(3)

In our application of Bayes’ theorem, six kinematic variables [three joint
angle trajectories (�j) and the three associated joint angular velocities (
��̇j�] were used to predict activity in a muscle (EMGi). Equation 3 was
first applied individually for each of the six kinematic parameters. Then,
under the simplifying assumption of independence among kinematic
parameters, the probability of EMG given values for all six kinematic
parameters was given by the product of the individual probabilities,
namely:

P�EMGi��1, �2, �3, �̇1, �̇2, �̇3� � P�EMGi��1� � P�EMGi��2� � . . .

� P�EMGi��̇3�. (4)

The assumption of independence for angles and angular velocities across
the joints of a finger is not altogether valid. To account for relationships
among the kinematic parameters, however, would have required a sub-
stantially more complex process for the computations. Consequently, we
opted for a more tractable form for predicting EMG represented by
Equation 4 at the possible expense of some loss in accuracy and theo-
retical rigor. Furthermore, although other nonprobabilistic methods
could have been used to predict EMG from kinematics, Zhang et al.
(1998) have shown that the Bayesian approach provides accurate recon-
struction of spatial motor behavior from the activity of neurons also when
implementing the simplifying assumption of independence among neu-
rons. Moreover, Zhang et al. (1998) showed that reconstruction using the
Bayes’ method was somewhat better than nonprobabilistic methods, such
as population vector coding and template matching.

Equation 4 was applied separately to determine the muscle activity
pattern for each of the three muscles (i.e., for EMG1, EMG2, and EMG3).
Once the probabilistic relationships between joint kinematics and muscle
activity had been established by application of Bayes’ theorem on the

training data, a set of new joint angles and angular velocities could be
entered into the algorithm to predict the associated patterns of muscle
activity (Fig. 1). For convenience, in the present case, the new set of
kinematic data was obtained from the same subject from whom the
training data were obtained. In theory, however, any set of desired joint
trajectories could be used to predict muscle activity patterns. Ten second
segments of kinematic data recorded during a variety of finger move-
ments (but not used in the training of the algorithm) were used as inputs
to the Bayes’ algorithm for prediction of muscle activity. Longer seg-
ments were not used because of limitations in memory associated with
generation of timing files needed to control the muscle stimulators.

Muscle stimulation. The predicted patterns of muscle activity that were
based on the desired movement trajectories were converted into
frequency-modulated trains of constant current pulses. To reduce com-
putation time, successive 100 msec epochs of predicted muscle activity
were consolidated into a single average value. Stimulus frequency was
then linearly related to the amplitude of the average muscle activity and
held constant over the 100 msec period. Stimulus frequencies ranged
from 10 to 50 Hz for predicted EMG values from 20 to 100% of the peak
EMG obtained in the training set. Stimulus frequencies between 10 and
50 Hz approximately correspond to the range of firing rates recorded in
human motor units during voluntary contraction (Bellemare et al., 1983).
The long time constant associated with the low-pass filtering of the
rectified EMG led to a relatively slow decay of the EMG after a burst,
such that the filtered EMG often did not reach baseline levels before the
onset of a subsequent burst. Therefore, to avoid continuous stimulation
of muscle because of this filter-induced prolongation of EMG, activity
levels below an arbitrarily chosen threshold value of 20% of the peak
EMG were not converted into stimulus pulses.

In separate sessions on five subjects (one of whom, subject A, was the
subject from whom the training data were obtained), tungsten microelec-
trodes with �3 mm of insulation removed from the tip were placed into
the same muscles recorded from during the training session. Joint angle
transducers were applied in the same way as described above. The
electrodes were connected to three independent stimulators and isolation
units. The amplitude of the current pulses (1 msec in duration) was then
adjusted independently for each stimulator. These adjustments were
made while delivering 1 sec trains at 30 Hz to each muscle. Once a
stimulus intensity was found that evoked, based on subjective criteria, a
moderately brisk movement that spanned �50–75% of the joint range of
motion, the stimulus intensity was then maintained at that level for the
remainder of the experiment.

Three channels of a digital–analog converter (Spike2; Cambridge
Electronics Design) were then used to deliver pulse sequences associated
with the desired movements to trigger the three stimulators. During
these trials, subjects were encouraged to relax the hand and not to resist
the movements generated by the stimulators. The subjects were not
informed of the specific type of finger movements that were to be evoked.
The initial resting configuration of the finger was not specified. Five trials
were evoked for each of five types of movements (tapping, pulling,
pushing, tapping followed by pulling, and pushing followed by tapping).
Each trial consisted of a 10 sec set of three pulse sequences delivered
simultaneously to the three muscles.

Data analysis. The resulting evoked movements were recorded using
three position transducers as described previously. The joint angle tra-
jectories of both the evoked and desired movements were normalized
such that the maximum joint angle within each trial was set to 100%, and
the minimum joint angle was assigned a value of 0%. The evoked joint
angles were then compared with the desired joint angles by calculating
the root mean square (rms) difference over the 10 sec trial. The average
rms error for each subject was calculated over five trials for each joint and
movement. Statistical analysis of rms error was performed using a two-
way repeated-measures ANOVA with joint and desired-movement type
as factors. Post hoc assessment of significant differences across levels
within a factor was performed using a Tukey test. Differences among
means were considered to be significant for p � 0.05.

RESULTS
Figure 3 shows a segment of the training data consisting of the
unprocessed EMG signals and the corresponding rectified and
smoothed EMG (RS-EMG) signals from the three muscles, the
three joint angle trajectories, and the three joint angular velocities
obtained while the subject (subject A) performed unrestrained
movements of the middle finger. In this example, as was often the
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case, the kinematic pattern for the PIP and DIP joints was very
similar.

The method by which conditional probability distributions were
constructed from data such as those shown in Figure 3 is shown
as a diagram in Figure 4. For example, the joint angle values for
joint 1 (�1) associated with an activity level of 20% of the peak
EMG in muscle 1 (Fig. 4, blue arrows) or 30% of the peak EMG
(Fig. 4, red arrows) were used to generate the conditional proba-
bility distributions P(�1�EMG1 � 20%) and P(�1�EMG1 � 30%)
shown in Figure 4, B and C, respectively. To aid in visualization,
these distributions were then depicted as strips of colored ele-
ments, with hot colors indicating high probability and cool colors
representing low probability. The resulting distributions were
plotted on the joint probability distribution, P(�, EMG), as ver-
tical bands shown in Figure 4D. This process was repeated for
each 1% increment in EMG amplitude to fill the entire space
defined by the joint probability distribution in Figure 4D. Once
completed, the color at any location on this plot indicated the
probability that muscle 1 attained a particular value of EMG
when joint 1 was at the specified angle.

A set of six joint probability distributions (one for each kine-
matic parameter) was generated for each of the three EMG signals.
From these joint probability distributions, it was possible to predict
the pattern of EMG activity given a new set of desired movements.
The process by which this was done is illustrated in Figure 5. For
clarity, only two of the six kinematic parameters representing the

desired movement are shown. Figure 5A depicts a section of the
desired angular trajectory for the MCP joint and the correspond-
ing desired angular velocity of the MCP joint. The vertical line on
the desired movement trajectories represents the time at which a
prediction of the EMG was to be made. The horizontal arrows in
Figure 5A indicate the specific values of the desired MCP angle
and MCP angular velocity at that instant.

Figure 5B shows the joint probability distributions for MCP
angle versus ED3-EMG (Fig. 5B, top) and for MCP angular
velocity versus ED3-EMG (Fig. 5B, bottom). The conditional
probabilities associated with the specific values of the desired
kinematics at the time instant in question (i.e., the regions of the
color plots within the thin rectangles) are redrawn as histograms in
Figure 5C. These histograms represent the conditional probabil-
ity that a kinematic parameter, �, will attain a specified value, y,
given different levels of EMG, namely, P(� � y�EMG). Then, in
accordance with Bayes’ theorem, these histograms were multi-
plied by the overall probability of encountering different levels of
EMG during the training trial, i.e., P(EMG) (Fig. 5D). In this
case, the probability distribution, P(EMG), was relatively uniform
over different values of EMG. Consequently, the shapes of the
resulting distributions, P(� � y�EMG) � P(EMG), were similar to
the original P(� � y�EMG) distributions (Fig. 5E). For normal-
ization purposes, these resultant probability distributions were
then divided by the total probability in that distribution, � (see
Eq. 3). The normalized distributions, P(� � y�EMG) �

Figure 3. Short segment of the data re-
corded in one subject (subject A) during
unrestrained movements of the middle fin-
ger that was used as input to Bayes’ theo-
rem to establish probabilistic relationships
between muscle activity and joint kinemat-
ics. The bottom six traces show the unproc-
essed EMG signals and associated full-
wave RS-EMG signals recorded from digit
3 compartments of ED3, FDS3, and FDP3.
The top six traces show the joint angle and
joint angular velocities for the MCP, PIP,
and DIP joints of digit 3.
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P(EMG)/�, are shown in Figure 5F. The total probability across
each of these normalized distributions has a value of 1. This
ensured that each kinematic parameter provided equal weight in
the prediction of EMG.

Bayes’ theorem specifies that the normalized distributions in
Figure 5F are equivalent to the conditional probability of observ-
ing various levels of EMG given the specified value of the kine-
matic parameter, namely, P(EMG�� � y) (Eq. 3). Therefore, to
estimate the most likely value of the EMG given the simultaneous
occurrence of the specific values of MCP angle and MCP angular
velocity, the normalized histograms in Figure 5F were multiplied
together (Eq. 4). The outcome of that multiplication is shown in
Figure 5G. A measure of the central tendency of that distribution
was calculated (mean, arrowhead), and that value was then used as
the predicted value of the EMG for that time instant (Rieke et al.,
1997). In the present application of Bayes’ theorem, six kinematic
parameters (angle and angular velocity for each of three joints)
were actually used to predict the most likely value of the EMG.
This process was then repeated at each increment in time over the
duration of the desired movement trial. The same procedure was
performed separately to predict the EMG activity for each of the
three muscles.

The landscape of the joint probability distribution for MCP
joint angle versus EMG was relatively uniform over most of the
surface shown in Figure 5B (top). This was also the case for the
PIP and DIP joints. Consequently, the shapes of the conditional
probability distributions associated with different values of joint
angle were similar. Hence, the ability of joint angle, by itself, to
predict different levels of EMG was poor. This was in contrast to

joint angular velocity, in which a systematic change in the condi-
tional probability distribution occurred for different values of
angular velocity. For example, in Figure 5B (bottom), as extension
angular velocity increased (i.e., increasing negative values), there
was a progressive shift in the probability density toward higher
values of ED3 EMG. Therefore, the inclusion of joint angular
velocity was important for the prediction of EMG.

Once EMG activity for a desired set of kinematic data was
predicted, the EMG signal was converted into a frequency-
modulated pulse pattern. Figure 6A shows a typical predicted
EMG signal derived from the process outlined in Figure 5 for a
push–tap movement. For comparison, Figure 6A also shows the
actual ED3 EMG signal recorded (but not used in the prediction)
during the trial to obtain the desired movements. The correspon-
dence between actual and predicted EMG was quite good, with
an average rms error (	SD) across all muscles and movements of
12.1 	 3.2% (range, 6.9–16.2%). The dashed horizontal line
indicates the threshold level for converting predicted EMG into
stimulus pulses. Figure 6B shows the stimulus pulse pattern
resulting from the predicted EMG signal shown in Figure 6A.
Stimulus frequency was a linear function of the EMG amplitude
such that the greater the amplitude of the EMG, the higher the
frequency of pulses.

The stimulation pulse patterns derived from the predicted
EMG signals for the three muscles were used to trigger three
separate stimulators. In general, the resulting evoked movements
were highly consistent over repeated trials. For example, Figure
7A shows the angular displacement of the MCP joint superim-
posed for five repeated trials of evoked tapping movements in one
subject (subject C). The reproducibility of the movement was
good, indicating that factors such as fatigue or electrode move-
ment did not noticeably affect the evoked responses over the
course of the experiment. Indeed, in only one case in a different
subject (subject A) did the pattern of evoked movement change
markedly over the course of five trials for one type of movement.
This was probably attributable to migration of one of the elec-
trodes outside the target muscle. In this case, only the first two
trials were used in the analysis. For all other movement types and
subjects, all five trials were included in the analysis.

Figure 7B compares the joint angle trajectory for one of the
trials of evoked movement shown in Figure 7A with the desired
trajectory. A relatively constant bias in joint angle between de-
sired and evoked movements led to a large rms error (38% of the
maximum angular displacement of the desired movement) de-
spite similarities in the underlying pattern of motion. After nor-
malization (see Materials and Methods), the correspondence
between desired and evoked movements was good, as reflected in
the comparatively low rms error value of 13% (Fig. 7C).

Figure 8 shows an example of normalized evoked and desired
trajectories for the three joints of the finger in one subject (subject
B) for a movement that involved a transition from tapping into
pulling at �4.5 sec into the trial. During the initial tapping
portion of the trial, all three joints moved more or less in phase,
flexing and extending together. However, little angular displace-
ment was evoked at the DIP joint during this phase, because the
predicted level of EMG activity for the FDP (the only muscle that
acts to flex the DIP joint) was less than the threshold level (20%
of the peak EMG) set for conversion into stimulus pulses. At the
time of transition from tapping to pulling (�4.5 sec), a brisk
extension of the MCP joint altered the phase relationship among
the joints such that extension of the MCP joint then occurred
while the PIP and MCP joints were flexing. This subtle transition

Figure 4. Diagram depicting method by which joint probability distribu-
tions were generated for each combination of kinematic parameter and
EMG signal. A, For each increment in magnitude of EMG activity (e.g.,
20% of peak EMG, blue horizontal line; 30% of peak EMG, red horizontal
line) for muscle 1, the corresponding joint angle (�) values (vertical
arrows) from joint 1 were used to construct the conditional probability
distributions, P(�1 EMG1 � 20%), shown in B, and P(�1 EMG1 � 30%),
shown in C. The histogram representations shown in B and C were
transposed into bands of colored elements based on the scale depicted on
the ordinate. These colored representations are depicted in D as vertical
bands for which the color of any element indicates the probability that
joint 1 passed through the angle specified by the ordinate given that the
EMG in muscle 1 attained a value of 20 or 30% of the peak EMG. This
process was repeated for each increment in EMG magnitude to fill in the
surface shown in D representing the joint probability distribution, P(�1 ,
EMG1 ).
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Figure 5. Conversion of desired movements into predicted EMG by application of Bayes’ theorem. For clarity, only two of the six kinematic parameters
used in the prediction of EMG in one muscle (ED3) are shown. A, Short time segment of desired angular trajectory for the MCP joint and associated
angular velocity (Vel.) for the MCP joint. Positive angular velocities represent flexion, and negative angular velocities indicate extension movements. At
the time instant indicated by the vertical line, the corresponding desired values for MCP angle and angular velocity were �25° and 
200°/sec, respectively.
These values were then used to select from the joint probability distributions, P(�, EMG) (B, derived from training data recorded in one subject), the
conditional probability associated with the desired joint angle, and joint angular velocity (thin rectangles superimposed on the color plots). EMG values
are represented as a percentage of the peak EMG value recorded during the training set, and only EMG values above the threshold level for converting
to stimulus pulses (20% of peak EMG) are shown. The specific conditional probabilities indicated on the color plots are redrawn as histograms (C) and
represent the likelihood that a kinematic parameter �, such as MCP angle, will attain a specific value, y (e.g., 25°), given different levels of EMG. These
histograms were then multiplied by the overall probability of observing different levels of EMG, P(EMG) (D). The resultant histograms are shown in
E. The resultant histograms were then divided by the total probability in the histogram (�) to yield the normalized histograms shown in F. The
normalized histograms were then multiplied together to yield the conditional probability distribution shown in G, P(EMG �1 , �̇1 ), which represents the
likelihood of obtaining different levels of EMG given that the MCP joint angle is 25° and the MCP joint angular velocity is 
200°/sec. The average value
of that distribution (large arrowhead) was used as the best estimate of the EMG given the specified values of the kinematic parameters. In the present
application, six kinematic parameters (angles and angular velocities for MCP, PIP, and DIP joints) were actually used to predict the most likely value
of the EMG. This process was repeated for each increment in time over the entire trial.
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in the phase relationship among the joints was reproduced with
good fidelity in the evoked movement. During the latter pulling
phase of the movement, the greatest discrepancy between evoked
and desired movement was in the PIP joint, where the depth of
flexion was shallower for the evoked compared with the desired
movements. However, a good match between evoked and desired
movements occurred during this phase for the MCP and DIP
joints. Over the trial, rms errors were 15.4, 19.1, and 15.4% for the
MCP, PIP, and DIP joints, respectively.

An issue of particular interest in the present study was whether
prediction of muscle activity based on kinematic and EMG mea-
surements taken from one subject could be used to generate
desired movements in other subjects. In most cases, the pattern of
evoked movements was similar across subjects. For example,
Figure 9 shows evoked trajectories of the MCP joint for the five
subjects during trials involving tapping motion. Also, superim-
posed on these traces is the desired trajectory. Qualitatively,
there was a good correspondence in the pattern of evoked move-
ments across the five subjects, particularly in the timing of tran-
sitions from flexion to extension. However, some minor differ-
ences existed in the relative magnitudes of the movements across
subjects at different phases of the trial. Quantitatively, the match
between the desired and evoked movements in these trials was
quite good for all subjects, with rms errors ranging from 12 to
17%. Furthermore, the correspondence between evoked and de-
sired movements was no better for the subject in whom the
original training data were obtained (subject A) than for the other
subjects. This was true across all movements, as revealed by a
one-way ANOVA in which no statistical difference in the magni-
tude of rms errors was detected across subjects for all evoked
movements. Therefore, patterns of finger muscle activity pre-

dicted from data obtained in one subject can be used as templates
to generate finger movements in other subjects that are reason-
ably close to desired movements. Whether this holds for more
complex movements involving more muscles and joints is yet to be
determined.

To evaluate the overall performance of the Bayes’ stimulation
technique, the rms errors between the desired and evoked move-
ments for all five subjects are summarized in Figure 10. For each
subject, the average rms error over the five trials of each 10 sec
movement sequence was calculated for each joint. Figure 10A
shows the mean rms error and SD for the five types of movements
tested (tap, push, pull, push tap, and tap pull) averaged across the
three joints for all subjects. The normalized rms errors range
from 17.8 to 26.5%. ANOVA indicated there was a significant
difference among the mean rms error values across the different
types of movements. Post hoc analysis revealed that the only
significant difference in rms error among movements was between
tapping and pushing movements. The lower error in tapping may
have been caused by the relative simplicity of this movement,
which involved alternating flexion and extension of all three joints
together, whereas the pushing task required a more complex
coordination with the MCP joint, flexing and extending out of
phase with the other two joints. Figure 10B shows the normalized

Figure 6. An example of predicted EMG and the corresponding stimulus
pulse pattern. A, Predicted EMG (thick trace) for the ED3 muscle using
Bayes’ theorem based on a set of desired kinematics. Superimposed on
this trace is the actual ED3 EMG (thin trace) recorded (but not used in the
prediction) during the trial used to obtain desired movements. The rms
error between actual and predicted EMG was 8.8% of peak amplitude of
the actual EMG. The dashed line indicates the threshold below which
conversion to stimulus pulses was not performed. B, Timing of stimulus
pulses derived from the predicted EMG shown in A. Stimulus frequency
was linearly related to the amplitude of muscle activity. Frequencies
ranged from 10 to 50 Hz corresponding to 20–100% peak value of the
EMG obtained in the training set.

Figure 7. Example of evoked tapping movement in one subject (subject
C). A, Five superimposed traces of the evoked angular displacement of
the MCP joint. B, Desired angular displacement of the MCP joint (thin
trace) and one trial of evoked movements of MCP (thick trace). Differ-
ences in joint angle bias and differences in magnitude of movements led
to a relatively large rms error between two traces of 37.9% of maximum
angular displacement of the desired movement. C, After normalization of
the traces in B, the correspondence in the pattern of motion at the MCP
joint between desired and evoked trials is good (rms error, 13%).
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error for the different joints (MCP, PIP, and DIP) across all
movement conditions. The average errors ranged from 21.8 to
23.8%, with no statistical difference in the amount of error
measured for different joints. Overall, the errors were relatively
modest, suggesting that the evoked movements corresponded
reasonably well to the desired movements.

DISCUSSION
Here we have shown that it is feasible to estimate the patterns of
neuromuscular activity associated with a range of multijoint fin-
ger movements and to use those patterns to evoke desired move-
ments with good fidelity using electrical stimulation. The foun-
dation of our approach was based on previous studies that have
used Bayes’ theorem to reconstruct features of motor behavior
from the activity of neural populations (Brown et al., 1998; Zhang

et al., 1998; Tresch and Kiehn, 2000). An implicit aim in those
studies was to evaluate the amount of information contained
within the activity of neural ensembles related to the behavior
under study. In the present investigation, we inverted this ap-
proach and used Bayes’ theorem to estimate the activity in a small
ensemble of muscles based on the motion of a multijoint system.
We have also shown that the probabilistic relationship between
EMG and kinematics derived from one individual can be used to
predict patterns of activity appropriate to control muscles in other
individuals. The practical importance of this finding is that exist-
ing functional electrical stimulation systems using chronically
implanted electrodes (Kilgore et al., 1989; Smith et al., 1998) but
implementing a probabilistic control strategy as described here
could be trained on an able-bodied subject and then be deployed
in paralyzed individuals.

The relationship between muscle activity and joint kinematics
has been explored previously using other analytical techniques.
One approach has been to predict muscle force from EMG
activity using Hill-type models of muscle dynamics (Hof and Van
den Berg, 1981; Olney and Winter, 1985; Winters and Stark, 1987;
Soechting and Flanders, 1997). Predicted muscle forces are then
used as inputs to a linked-segment model of a joint system to
estimate joint kinematics using classical equations of motion
(Zajac and Gordon, 1989; Kashima et al., 2000). Although this
type of approach has provided an important framework for un-
derstanding the control of limb movements, such analytical meth-
ods are extremely complex, even for one or two joint systems
(Winters and Stark, 1987; Zajac and Gordon, 1989), and are
susceptible to several sources of error (Soechting and Flanders,
1997).

Recently, artificial neural networks have been implemented in
an attempt to predict limb trajectory from muscle activity
(Cheron et al., 1996; Au and Kirsch, 2000). From a practical
standpoint, the advantage of this approach is that there is no need
to specify an explicit algorithm that represents the complex set of
interactions by which activity in several muscles is transformed
into movement of a limb possessing multiple degrees of freedom.
Instead, the interconnected elements that comprise the artificial
neural network learn relationships among a set of input and
output variables when trained with example data. Such neural
networks have been shown to yield excellent predictions of com-
plex arm movements based on EMG activity recorded from
several muscles (Cheron et al., 1996; Au and Kirsch, 2000).

Figure 8. Normalized angular trajectories for MCP, PIP, and DIP joints
during a trial involving a transition from tapping to pulling movement at
�4.5 sec into the trial for one subject (subject B). Thick traces indicate
evoked movements; thin traces indicate desired movements. The rms
errors ranged from 15 to 19% in this trial. The drawing of the hand was
adapted from Hepp-Reymond et al. (1996).

Figure 9. Normalized angular displacement of the MCP joint during
tapping motion evoked in five subjects. Each trace was obtained in a
different subject. The dashed trace indicates the desired trajectory. Over-
all, there was a high degree of consistency in the evoked movements
across subjects, which corresponded well to the desired movements. rms
errors: subject A, 16.5%; subject B, 11.9%; subject C, 12.8%; subject D,
15.4%; subject E, 15.7%. Only data from subject A were used to train the
Bayes’ algorithm and predict the muscle activation patterns used to evoke
movements in all subjects.

Figure 10. Mean and SD rms errors between desired and evoked re-
sponses across different movements and different joints. A, rms error
across five different movements: tapping, pushing, pulling, pushing to
tapping, and tapping to pulling. Errors range from 18 to 26%. The rms
error for tapping was significantly less than that for pulling. B, rms error
across three different joints (MCP, PIP, and DIP). There was no signif-
icant difference in rms error across joints.
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We followed a similar approach to that involving artificial
neural networks in that no attempt was made to represent the
internal mechanisms that underlie the relationship between mus-
cle activity and movement. However, unlike the studies of Cheron
et al. (1996) and Au and Kirsch (2000), our goal was to predict
muscle activity patterns from movements rather than to predict
movement from muscle activity. For this purpose, we used Bayes’
theorem to ascertain the most likely value of muscle activity given
a set of kinematic variables recorded from multiple joints of a
finger. Furthermore, we extended the work of Cheron et al.
(1996) and Au and Kirsch (2000) in that we used predicted
muscle activity associated with desired movements to drive mus-
cle stimulators to artificially elicit finger movements. The evoked
movements were reasonably similar to the desired movements
(mean rms error ranged from 18 to 26%), suggesting that this
approach ultimately might serve as a useful strategy in attempts
to restore movement in paralyzed individuals. The desired move-
ments used in the present study, however, were relatively simple
and repetitive. Consequently, it remains to be determined
whether more elaborate and episodic movements involving more
of the degrees of freedom of the hand can be reproduced using
the approach described here.

Disparity between desired and evoked trajectories in the
present study arose primarily because of two categories of error:
(1) those associated with prediction of muscle activity from joint
kinematics and (2) those related to transformation of predicted
muscle activity into actual muscle activity through electrical stim-
ulation. Overall, errors associated with prediction of EMG pat-
terns from joint kinematics were modest (Fig. 6A). One probable
cause for errors associated with this first category was that we did
not obtain EMG recordings from some of the intrinsic muscles of
the hand (such as second and third dorsal interossei), which can
assist in flexing the MCP joint of the middle finger. Their role was
likely to be particularly important during movements in which the
MCP joint was flexed while the PIP and DIP joints were ex-
tended, such as occurs during different phases of pushing and
pulling tasks. These movements usually were those associated
with the largest rms errors (Fig. 10A). Therefore, in the training
data, there were some movements that could not be readily
accounted for in the activity of the muscles from which we did
record. Inclusion of additional muscles in the training set should
help to further reduce errors in the kinematic-based prediction of
muscle activity patterns.

Another factor that likely contributed to EMG prediction er-
rors was the simplifying assumption of independence among the
kinematic parameters used in our implementation of Bayes’ the-
orem. Such independence clearly was not the case, as is evident in
the congruity of the joint angle trajectories depicted in Figure 3.
Consequently, the prediction of EMG likely would have improved
had we accounted for correlation among kinematic parameters in
our representation of Bayes’ theorem.

The other category of error in the present study was related to
the attempt to artificially recreate the active state of the muscle
developed during voluntary contraction using a frequency-
modulated pulse train delivered to the muscle through a single
electrode. A number of simplifying assumptions and approxima-
tions were required to implement such a transfer function. In
natural muscle contraction, the force exerted by a muscle is depen-
dent on the number of muscle fibers recruited and on the rate of
action potentials imposed by the motor neurons on the active fibers
(Fuglevand et al., 1993). The muscle fibers are organized into
motor units, which are groups of spatially dispersed fibers inner-

vated by branches of the same motor axon. Variation in the
strength of contraction is brought about by concurrent change in
both recruitment and rate coding of motor units. The intensity of
the electromyogram detected with large surface area electrodes is
also influenced by both recruitment and rate coding such that a
fixed (and practically linear) relationship exists between muscle
force and EMG (Fuglevand et al., 1993). Accordingly, the magni-
tude of the EMG provides an index of the active state of muscle,
which in turn is related to its mechanical (force) output.

The conversion of a predicted level of EMG into muscle acti-
vation in the present study involved delivery of current pulses
through intramuscular electrodes. Because only one electrode was
placed in each muscle, and because the magnitude of the stimulus
current was held at a fixed level, variations in muscle activity were
brought about entirely through changes in rate coding. Although
this method was relatively simple to implement, it did not emulate
the actual process by which muscle activity is modulated. The
inclusion of a means to concurrently vary recruitment and rate
coding, for example, by altering both the amplitude and frequency
of the delivered current pulses, would likely improve the repro-
duction of the active state of the muscle and thereby enhance the
match between desired and evoked movements.

Nevertheless, the overall performance of the present approach
was satisfactory in reproducing desired movements and would
seem to justify additional exploration and improvement of the
Bayes’ stimulation method. One future direction would be to
include contact force signals, perhaps mediated through tactile
sensors, that together with kinematic signals could be used to
predict EMG activity associated with tasks that involve interac-
tion with external objects. Another logical extension of the cur-
rent method would be to expand the number of muscles included
in the algorithm to predict muscle activity associated with a wide
range of movements of an entire limb. However, a major obstacle
to the practical implementation of such a system relates to how a
paralyzed individual would supply the desired movement trajec-
tory as input to the trained Bayes’ algorithm. One possible solu-
tion would be to provide a menu of stored desired movements
from which the patient could select using nonparalyzed muscles.
This approach, although feasible, would not take advantage of the
flexible nature of the Bayes’ method.

A promising alternative would be to decipher the desired
movement trajectory directly from ensembles of neurons in the
cerebral cortex (Nicolelis, 2001). Previous work in nonhuman
primates has indicated that the activity of populations of neurons
in the primary motor, premotor, and parietal cortices can be used
to predict the intended direction of hand motion during reaching
movements toward targets distributed in extrapersonal space
(Georgopoulos et al., 1986, 1988; Kalaska et al., 1990; Schwartz,
1993; Kakei et al., 1999, 2001; Wessberg et al., 2000). Moreover,
Chapin et al. (1999) and Wessberg et al. (2000) have shown that
it is possible to interpret the cortical code for a desired or actual
movement and to use that brain-derived signal to control a
robotic device in real time. Therefore, desired trajectories ex-
tracted from cortical recordings conceivably could be used as
inputs to the Bayes’ stimulation method to produce movements in
an arm and hand instead of in a robot (Hoffer et al., 1996). Such
an integrated system would restore movement and independence
to paralyzed individuals.
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