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Development/Plasticity/Repair
Persistent Progenitors at the Retinal Margin of ptc+/— Mice

Ala Moshiri and Thomas A. Reh
Neurobiology and Behavior Program, Department of Biological Structure, University of Washington, School of Medicine, Seattle, Washington 98195

The hedgehog signaling pathway is a key regulator of neural development, affecting both proliferation and differentiation of neural
progenitors. Sonic hedgehog (Shh) is a mitogenic factor for retinal progenitors in vitro. To determine whether this signaling system is
important in vivo for regulating retinal progenitor proliferation, we analyzed mice with a single functional allele of the Shh receptor
patched ( ptc). We found that pfc+/— mice had increased numbers of neural progenitors at every stage of retinal development that we
examined. In addition, these mice had persistent progenitors at the retinal margin for up to 3 months of age, reminiscent of the ciliary
marginal zone of lower vertebrates. To test whether the progenitors at the retinal margin of pfc+/— mice could be induced to regenerate
retinal neurons in response to damage, we bred ptc+/— mice onto a retinal degeneration background (pro23his rhodopsin transgenic)
and labeled newly generated cells with combined immunohistochemistry for bromodeoxyuridine and retinal neuron and photoreceptor-
specific markers. We found newly generated neurons and photoreceptors at the retinal margin in ptc+/—;pro23his mice. We propose

that the Shh pathway may act as a regulator of both prenatal and postnatal retinal growth.
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Introduction

Sonic hedgehog (Shh) signaling is important in several aspects of
neural development, affecting both proliferation and differenti-
ation of cells throughout the CNS. Shh secreted by the notochord
and the floor plate of the neural tube patterns its ventral differ-
entiation (for review, see Ericson et al., 1995). Recent studies have
established a mitogenic role for Shh signaling in CNS progenitor
cells. Cerebellar granule cell precursors depend on Shh secreted
by Purkinje cells to proliferate in vitro and in vivo (Dahmane and
Ruiz i Altaba, 1999; Wallace, 1999; Wechsler-Reya and Scott,
1999). Studies in granule cell precursors have shown that Shh,
through direct transcriptional regulation of N-myc, upregulates
cyclin D1, cyclin D2, and cyclin E mRNA, which promote entry
into S phase (Kenney and Rowitch, 2000; Kenney et al., 2003). In
addition to its mitogenic role in the cerebellum, Shh also pro-
motes proliferation of embryonic neural progenitors in the spinal
cord (Rowitch et al., 1999), midbrain (Britto et al., 2002; Ishi-
bashi and McMahon 2002), forebrain (Dahmane et al., 2001;
Britto et al., 2002), and retina (Jensen and Wallace, 1997; Levine
et al., 1997; Wang et al., 2002).

Recently, Shh has also been implicated in adult neural stem
cell proliferation (Lai et al., 2003). Adult neurogenesis in verte-
brates has been well characterized in the subventricular zone of
the cortex and the dentate gyrus of the hippocampus (Alvarez-
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Buylla etal., 2001). Lai et al. (2003) were able to modulate mitotic
activity of these progenitors in adult rats in vivo by viral delivery
of Shh or injection of cyclopamine, a potent Shh signaling inhib-
itor. Another well-documented neural stem cell zone exists at the
retinal margin of nonmammalian vertebrates. The retinas of
postembryonic frogs and fish grow significantly by the addition
of new cells at the ciliary margin (Hollyfield, 1968; Straznicky and
Gaze, 1971; Johns, 1977; Reh and Constantine-Paton, 1983), by a
zone of stem cells known as the ciliary marginal zone (CMZ).
Recent studies have shown that limited neurogenesis occurs at
the retinal margin of posthatched birds as well (Fischer and Reh,
2000; Kubota et al., 2002). No such source of retinal neurons has
been found in the mammal in vivo (Kubota et al., 2002); however,
recent reports suggest that pigmented cells from the rodent ciliary
body can transdifferentiate into cells with properties of neural
stem cells (Tropepe et al., 2000).

To determine whether the Shh/ptc signaling system is impor-
tant in vivo for regulating retinal progenitor proliferation and
might be important in adult neurogenesis in the mammalian eye,
we analyzed mice with a single functional allele of the Shh recep-
tor patched ( ptc). Secreted Shh binds to its membrane receptor,
Patched, thereby relieving inhibition of its downstream signaling
cascade. Because Patched inhibits Shh signaling in the absence of
ligand, mutations in the Patched ( ptc) gene activate the pathway
constitutively, causing overgrowth of the neural tube (Goodrich
et al., 1997). Homozygous ptc mutants die in utero at E9.5. Ani-
mals heterozygous for ptc have increased cerebellar proliferation
and frequently develop medulloblastoma (Goodrich etal., 1997).
In our analysis of the retinas of ptc+/— mice, we found that mice
with a mutation in the ptc gene have an increased percentage of
proliferating cells in their retinas throughout the first postnatal
week. In addition, the mice have a population of dividing cells at
the retinal margin reminiscent of the CMZ of lower vertebrates.
The population of cells at the retinal margin of ptc+/— mice, like
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cells of the CMZ, proliferate in response to injury, express genes
typical of the CMZ of lower vertebrates, and show a limited po-
tential to regenerate retinal neurons. These results suggest that
the hedgehog pathway may be a critical regulator of postembry-
onic ocular growth.

Materials and Methods

Analysis of mice. Mice were housed in the Department of Comparative
Medicine at the University of Washington. All procedures were per-
formed in accordance with approved protocols. The laboratory of Dr.
M. P. Scott (Stanford University, Stanford, CA) created the ptc+/— mice,
which were obtained from the Jackson Laboratory (Bar Harbor, ME).
The pro23his rhodopsin transgenic animals were a gift from Dr. T. Dryja
(Harvard University, Boston, MA). The analysis of the ptc+/— mice was
done on litters that were killed at various ages. Each mouse was perfused
with 2% paraformaldehyde, and the eyes were harvested. The lens was
removed anteriorly from each eye, and the remaining ocular tissues,
including the retina, were incubated in 2% paraformaldehyde for 1 hr.
Subsequently, the retinas were incubated in 30% sucrose overnight at
4°C, frozen in optimal cutting temperature compound, cryosectioned at
14 pm, and analyzed with immunohistochemistry. Some of the mice
received subcutaneous injections of 100 ul of 10 mg/ml bromodeoxyuri-
dine (BrdU) daily on postnatal days (P) 13—15. Other animals received
injections of 50 ul of 10 mg/ml BrdU every 2 hr for 48 hr during P14-15.
Animals were killed 5 d after the last injection (P20) and prepared the
same as above. Older animals received injections of 100 ul of 10 mg/ml BrdU
daily on P85—89 and were killed on P90 and prepared as above. Animals were
genotyped by PCR using genomic DNA from digestion of tail samples. The
primers used for ptc+/— genotyping were f-GATGTTTCGCTTGGTGGT-
CGAATG and r-GCTGTTCTCCTCTTCCTCATCTCC. Primers used for
genotyping of mice with the pro23his rhodopsin mutation were
f~-GAGTGCACCCTCCTTAGGCA and r-TCCTGACTGGAGGACCCTAC.

Immunohistochemistry. In this study, the following antibodies were
used: (1) rat monoclonal anti-BrdU (1:200; Accurate Chemicals, West-
bury, NY); (2) rabbit anti-phosphohistone H3 (PH3) (1:750; Upstate
Biotechnology, Lake Placid, NY); (3) rabbit anti-recoverin (1:800; pro-
vided by Dr. J. Hurley, University of Washington, Seattle, WA); (4)
mouse anti-TUJ-1 (1:1000; Zymed, San Francisco, CA); (5) mouse anti-
opsin 4D2 (1:500; provided by Dr. R. Molday, University of British Co-
lumbia, Vancouver, British Columbia, Canada); (6) rabbit anti-chx10
(1:4000; provided by Dr. T. Jessell, Columbia University, New York, NY);
(7) rabbit anti-nestin (1:1000; provided by Dr. R. McKay, National In-
stitutes of Health); (8) rabbit anti-Brn3.2 (1:1000; provided by Dr. E.
Turner, University of California—San Diego, La Jolla, CA); and (9) rabbit
anti-Ki67 (1:2000; Vector Laboratories, Burlingame CA). The antibodies
were used at the appropriate dilution in 0.2% Triton X-100 and 3% goat
serum in PBS. Slides stained with anti-BrdU were incubated in 4N HCI
for 15 min before incubation with the primary antibody. The primary
antibodies were incubated overnight at 4°C on glass Superfrost slides
(VWR Scientific) with cryosections that were encircled with a PAP pen
(The Binding Site, San Diego CA). Species-specific secondary antibodies
conjugated to fluorophores were used subsequently to visualize localiza-
tion of the primary antibodies by fluorescent and confocal microscopy.
Double-labeled sections were performed as described previously (Fischer
and Reh, 2000). B-Galactosidase staining was done using standard meth-
ods. Images were taken using a SPOT digital camera.

Cell culture. P10 mice were killed with CO,, and the eyes were dissected
into sterile HBSS with HEPES buffer at 4°C. Neural retinas were dissected
from the retinal pigment and other tissues. The anterior rim of the neural
retina was dissected and dissociated by mild trituration after a 5 min
incubation at 37°C in calcium—magnesium-free saline with trypsin
(0.025%). Cells were plated onto coverslips in 24-well plates. Coverslips
were coated sequentially with poly-p-lysine and Matrigel (1:100 dilution
in HBSS; Collaborative Research, Bedford MA). Cultures were main-
tained at 37°C and 5% CO, for 5 d. The culture medium contained
DMEM-F12 (without glutamate or aspartate), 25 ug/ml insulin, 100
pg/ml transferrin, 60 uMm putrescine, 30 nM selenium, 20 nM progester-
one, 100 U/ml penicillin, 100 pg/ml streptomycin, 0.05 M HEPES, and
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1% FBS (Invitrogen, San Diego, CA). One-half of the media in each well
was changed every 48 hr. BrdU (10 pg/ml) and growth factors (20 ug/ml)
were added on the first day of culture and maintained at the same con-
centration throughout the 5 d culture period. Epidermal growth factor
(EGF) and basic FGFwere both obtained from R & D Systems (Minne-
apolis, MN). After 5 d in culture, coverslips were fixed in 4% paraformal-
dehyde for 1 hr and then rinsed in PBS before processing for immuno-
histochemistry as above. The number of labeled cells on each coverslip
was quantified by counting all of the labeled cells in both a vertical and
horizontal strip across the entire coverslip.

Cell cycle analysis. Retinas were dissected from animals and submerged
in 1 ml of a buffer containing DAPI (10 pwg/ml), NaCl (146 mm), Tris base
(10 mm), CaCl2 (2 mm), MgCI2 (22 mm), BSA (0.1 mg/ml), NP-40
(0.1%), and DMSO (10%) in water. DAPI-labeled nuclei were passed
through a flow cytometer that measured the peak intensity of the DAPI
signal and the area of each particle passing through the sensor. Raw data
were processed (WINCYCLE software) by gating to exclude clumps of
nuclei and cell debris. The gated area contained >90% of the raw data
points, indicating that nearly all of the dissociated tissue was preserved
and analyzed. By measuring the amount of DAPI fluorescence, the
amount of DNA in each nucleus was determined, and the proportion of
cells in each segment of the cell cycle was quantified.

Quantitative PCR. RNA was obtained from neural retinas of PO
ptc+/— animals and wild-type littermates using TRIzol (Invitrogen) and
cleaned using an RNeasy mini cleanup kit (Qiagen, Hilden, Germany).
Superscript II Reverse Transcriptase (Invitrogen) was used to produce
¢DNA from each animal, and all samples were normalized with primers
to glyceraldehyde-3-phosphate dehydrogenase. Quantitative PCR was
performed in triplicate for each sample using SYBR Green PCR master
mix (MJ Bioworks) with an Opticon monitor (M]J Research), and the cycle
in which log phase was attained was recorded. Primers designed to the 3’
untranslated region of mouse Glil were f-CAGGTGTGTAACGC-
TCTGGA and r-TTGCTCATGGGAAAGAGGAG, and PCR product sizes
were verified by gel electrophoresis.

Quantification of cell numbers. To determine the number of prolifer-
ating cells, litters of mice were sacrificed at several ages in the first post-
natal week, and retinal sections from each mouse were labeled with anti-
PH3 to identify cells in the G, and M phases of the cell cycle (Hendzel et
al,, 1997). To quantify the number of labeled cells, 14 um sections were
taken at the level of the optic nerve head. At PO, labeled cells were counted
across a uniform length (310 wm) of central retina for each section. The
average number of PH3-labeled cells per unit length of central retina was
then calculated. Using the average total length of a retinal section, the
total number of labeled cells was estimated per section. For older animals,
all PH3-labeled cells per section were counted directly. The number of
dividing cells at the margin of adult mice was determined by counting
BrdU-labeled nuclei per retinal margin. The number of ganglion cells in
P3 animals was determined by counting Brn3.2-positive nuclei in a 310
um length of retinal sections of 14 wm thickness at the level of the optic
nerve head. Total retinal thickness and outer nuclear layer (stained with
rhodopsin) thickness of P3 animals was measured using 14 um sections
analyzed on NIH Image software. All sections were counted blind to the
genotype of the mice. All error bars in the figures represent SE, and n
represents number of animals. Data from pfc+/— and wild-type retinas
were compared statistically using the appropriate Student’s f test, in
which *p < 0.05 and **p < 0.005 in each figure.

Results

ptc+/— mice have normal lamination and increased
proliferation in the retina

Previous experiments have shown that Shh has several roles in
retinal development in fish, chickens, and rodents, including ret-
inal ganglion cell differentiation, rod photoreceptor differentia-
tion, Muller glial development, and mitotic activity of the pro-
genitor cells (for review, see Hartenstein and Reh, 2002).
Targeted deletion of the Shh receptor ptcleads to an activation of
the Shh signaling pathway (see Introduction). To directly verify
that Shh signaling is increased in the retina, we sought to measure
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Figure 1. ptc+/— mice have a morphologically normal retina. A-(, P7 retinal sections
from ptc+/— mice show typical retinal lamination indistinguishable from age-matched wild-
type littermates (D—F). GC, Ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.

Glil transcript levels as a readout of Shh pathway activation. Glil
expression is known to be regulated by Shh signaling (Marigo et
al., 1996; Lee et al., 1997). Using quantitative PCR on cDNA from
PO neural retinas, we found a 75% increase ( p < 0.03; Student’s
t test) in Glil mRNA levels in ptc+/— animals (n = 3) when
compared with wild-type littermates (n = 3). To determine
whether the partial activation of the Shh signaling pathway that
occurs in pfct+/— mice was sufficient to disrupt any of these
aspects of retinal development, we compared the retinas of
ptc+/— mice with those of wild-type mice using immunohisto-
chemistry for several different neuron-specific antigens during
the first postnatal week. There were no clear differences in overall
retinal development (Fig. 1). Markers for ganglion cells, inner
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Figure 2.  ptc+/— mice have increased retinal proliferation during development. 4, The
number of M phase PH3+ cells was consistently greater in the ptc+/— mice when compared
with wild-type littermates. The average number of PH3 + cells per retinal section is plotted. B,
The percentage of increase in PH3+ cells per section is shown, with wild-type normalized to
one. The percentage of increase of M phase cells increases with postnatal age. C, Cell cycle
analysis by flow cytometry reveals ptc+/— animals have an increased percentage of cellsin S
phase at each postnatal age studied. D, The total retinal thickness of P3 ptc+/— animals is the
same as wild-type littermates, although the outer nuclear layer thickness (stained with rhodop-
sin) and the number of ganglion cells (stained with Brn3.2) at P3 are both significantly in-
creased. *p << 0.05; **p << 0.005.

retinal cell types (including amacrine cells and bipolar cells), and
photoreceptors all showed their normal pattern and onset of ex-
pression. We also stained sections for GFAP, S100, and cellular
retinaldehyde binding protein immunohistochemistry to deter-
mine whether the Muller glial cells were reactive in the ptc+/—
retinas (data not shown) but found no difference from wild-type
mice.

Although most of the retinal development appeared unper-
turbed in the ptc+/— mice, when we compared mitotic activity in
the ptc+/— mouse retinas with that in retinas from wild-type
animals, we found that there was an increase in several measures
of cell proliferation. We compared the number of mitotic figures,
using anti-PH3 antibodies to mark dividing cells in M phase, and
found an increase in the number of labeled cells in the ptc+/—
retinas (Fig. 2). To quantify this difference, we counted the num-
ber of labeled cells (see Materials and Methods) at three different
postnatal ages. As shown in Figure 2A, ptc+/— mice had in-
creased numbers of M phase cells at all ages we examined. Over-
all, in both wild-type and ptc+/— mice, the number of PH3+
cells declined with postnatal age because fewer cells remained in
the cell cycle. The difference between the number of dividing cells
in the two groups of mice increases with postnatal development.
At birth (P0) the number of dividing cells is very similar between
ptct+/— pups and their wild-type littermates. However, when
older pups were examined, the difference in terms of percentage
of control was greater (Fig. 2B).

To confirm the increase in retinal proliferation that we ob-
served by immunohistochemical analysis, we used DNA content
flow cytometry. Retinas from litters of ptc+/— mice were disso-
ciated, labeled with DAPI, and passed through a flow cytometer
(see Materials and Methods). After gating to exclude cell clumps,
the proportion of cells in G, G,, and S phase were quantified.

At each age we measured, there were consistently more cells in
S phase in ptc+/— mice, indicating a higher number of replicat-
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ing cells in their retinas when compared
with wild-type littermates (Fig. 2C). As ex-
pected, the proportion of cells in the S
phase of the cell cycle decreased with age
both in wild-type and ptc+/— retinas.
Nevertheless, ptc+/— pups had a 10-23%
increase in S phase at each age. These data
are consistent with those of the PH3 im-
munohistochemical analysis.

The increase in retinal progenitor pro-
liferation in ptc+/— animals should cause
an increase in the retinal size or the total
number of cells in the retina. We measured
the thickness of retinal sections taken at
the level of the optic nerve head from P3
animals. We found that ptc+/— retinas
were not significantly thicker than control.
However, the thickness of the outer nu-
clear layer at this age was significantly
greater in ptc+/— mice compared with
wild-type littermates. We also quantified
the number of ganglion cells in P3 animals.
We found that P3 ptc+/— animals had
significantly more Brn3.2-positive gan-
glion cell nuclei. Thus, although the over-
all size of the retina is not significantly
larger in the ptc+/— animals, there are
changes in the relative numbers of cells.

Figure3.
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ptc+/— mice have extended proliferation at the retinal margin. A, P16 retina from ptc+/— mice has PH3-positive
mitotically active cells (arrow). No PH3 labeling was observed in wild-type littermates. Sections of the peripheral margin of
ptc+/— (B) and wild-type ( () mice atage P20, labeled for BrdU. The ptc+/— mice show proliferating cells at the retinal margin
(arrow), whereas the wild-type mice have labeled cells nearly exclusively in the ciliary body. More frequent BrdU injections were

made to analyze the number of dividing cells at the retinal margin. Animals received injections every 2 hr for 48 hr during P14 15

ptc+/— mice have a zone of cells at the
retinal margin resembling a CMZ
Several previous studies have shown that
retinal histogenesis is complete in the
mouse by P11 in the periphery (Young, 1985). In our analysis of
the P7 mice, we found that there were still some PH3+ cells in the
periphery of wild-type retinas but many more in ptc+/— animals.
To investigate how long neurogenesis continued in ptc+/— mice,
we labeled retinal sections from animals up to 3 weeks after birth
with PH3. We found that ptc+/— mice still had M phase cells
near the retinal margin into their third postnatal week (Fig. 3A).
To further assay whether the ptc+/— mice have a zone of persis-
tent proliferation exclusively at the retinal margin, we made in-
traperitoneal injections of BrdU and subsequently processed the
retinas for BrdU immunohistochemistry. Litters of pups received
injections of BrdU on P13-15 and were killed 5 d later on P20.
The ptc+/— mice had many BrdU-labeled cells at the retinal
margin, whereas wild-type mice from these litters exhibited only
an occasional BrdU-labeled cell (Fig. 3B, C). In addition to the
difference in the number of BrdU-labeled cells between the
ptc+/— and wild-type mice, we also found a difference in the
position of the cells. The BrdU-labeled cells in wild-type mice
were almost exclusively in the ciliary body with only the rare
BrdU-positive cell in the retina proper. In the ptc+/— mice, BrdU
labeling was consistently in the extreme periphery of the neural
retina in every section in addition to the ciliary body (Fig. 3B, C).
We did not observe BrdU labeling in the central retina in any
animals.

To determine whether the daily injections of BrdU were suf-
ficient to label all the dividing cells, we increased the frequency of
BrdU injection. Mice received injections for 48 hr during P14-15
every 2 hr to maximize the number of labeled cells. Even in the
mice that received injections of BrdU more frequently, we found
many more BrdU-labeled cells in the pfc+/— mice than in wild-

and were killed on P20. ptc+/— mice had more BrdU + cellsin the retina and in the nonpigmented epithelium of the ciliary body
than wild-type littermates (D). Inset, Schematic diagram of the location of the BrdU+ cells that were counted. GC, Ganglion cell
layer; INL, inner nuclear layer; ONL, outer nuclear layer. *p << 0.05; **p << 0.005.

type littermates, both in the peripheral retina and ciliary body
(Fig. 3D). The persistence of dividing cells at the retinal margin in
the ptc+/— mice is reminiscent of the CMZ of other vertebrates.

To further characterize the proliferating cells at the retinal
margin in the ptc+/— mice, we labeled retinal sections for several
different markers of retinal progenitors including ptc, Chx10, and
nestin. The mice that we used in this study had a 3-galactosidase
gene in place of a normal prcallele. Thus, lacZ staining showed the
distribution of ptc gene expression. Retinal progenitors in the
neuroblast layer of newborn mice express ptc (Fig. 4A). Ptc+/—
mice have a lacZ label in a small group of cells at the junction
between the ciliary body and the retina (Fig. 4 B), consistent with
these cells being retinal progenitors. Chx10 is an antigen ex-
pressed in retinal progenitor cells in developing retina and retinal
bipolar cells in the mature retina. In the normal mouse at P20,
Chx10is expressed in bipolar cells (inner nuclear layer) but not in
the cells of the ciliary body (Fig. 4C). However, in the ptc+/—
mice, a zone of cells coincident with the BrdU-incorporating
nuclei is labeled with Chx10 antibody at the retinal margin ex-
tending into the ciliary body epithelium (Fig. 4 D). Chx10 stain-
ing has been observed in a similar region in the chick eye, and it
may correlate with the fact that this region of the ciliary epithe-
lium is capable of generating neurons (Fischer and Reh, 2003).
We also used antibodies against the neural progenitor marker
nestin. ptc+/— retinas have a bright region of nestin staining
precisely at the boundary of the retina and ciliary body, whereas
wild-type littermates express nestin at a much lower level in a few
scattered cells. Both ptc+/— and wild-type retinas also show a
low level of nestin immunoreactivity in what we presume to be
Muller glia near the retinal margin, as is evident from the sparse
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Figure4. Proliferating cells at the retinal margin of ptc+/— mice are retinal progenitors. 4,
ptcis aretinal progenitor marker expressed in nearly all progenitors in the neuroblast layer of PO
retina. Proliferating cells at the retinal margin (8, D, arrows) of P20 ptc+/— mice express the
progenitor markers ptc ( B) and Chx10 (D), whereas wild-type littermates do not ( (). Wild-type
mice have very few BrdU-incorporating cells at the margin of the retina. Sections of the periph-
eral margin of wild-type (£) and ptc+/— (F) mice at age P20, labeled for BrdU (green), show
apopulation of dividing cells at the ptc+/— retinal margin (F). The same sections stained with
antibodies against the neural progenitor marker nestin (red) show a distinct population of
labeled cells at the ptc+/— (F) retinal margin, but not in wild-type () littermates. These
nestin-positive cells in ptc-+/— mice are coincident with BrdU incorporation, identifying the
proliferating cells at the ptc+/— retinal margin as undifferentiated progenitors (F, arrow).
ptc+/— mice continued to incorporate (G) BrdU (green) and (H) Ki67 (red) at the retinal
margin even at P90 after daily injections of BrdU on P85—89. These BrdU-positive cells also
express nestin (arrow in G), and other nestin (red)-expressing progenitors are present at the
retinal margin of these mice. No BrdU, nestin, or Ki67 was detected in the retinas of wild-type
P90 littermates (data not shown). The asterisk indicates staining of an artifactual space be-
tween the outer nuclear layer and retinal pigment epithelium as a result of sectioning. GC,
Ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.

filamentous staining. Other work from our laboratory has shown
that immature Muller glia have some potential for neurogenesis
in birds (Fischer and Reh, 2001), and the nestin expression may
reflect this. These nestin-expressing cells at the margin colocalize
with the cells that incorporate BrdU (Fig. 4E,F). To assess
whether or not progenitors at the retinal margin of ptc+/— mice
continue to divide late in adulthood, mice received injections of
BrdU daily during P85—89 and were killed on P90. We found that

M ptc+/-

#BrdU+ cells/255,200 sq. pm
[
(4]

EGF FGF EGF & FGF

control

Figure 5.  Progenitors from the retinal margin of ptc+/— mice proliferate in response to
growth factors and differentiate into neurons. Anterior neural retinas from P10 ptc+/— mice
and wild-type littermates were grown in dissociated cultures for 5 d. A, Ninety-five percent of
BrdU-positive (green) cellsin these cultures express the progenitor marker nestin (red). 8, Other
BrdU-positive cells had neuronal morphology and express neuronal genes, such as Tuj-1 (red),
as confirmed by confocal microscopy. ¢, Similar to CMZ-derived progenitors in other species,
progenitors from P10 ptc+/— mice proliferated in response to growth factors such as EGF and
basic FGF during the 5 d culture period. *p << 0.05; **p << 0.005.

BrdU incorportation persisted, although at a significantly lower
level, at the retinal margin of ptc+/— mice. The BrdU-labeled
cells also expressed nestin (Fig. 4G). In addition, cells in this
location expressed the proliferation marker Ki67 (Fig. 4H). No
BrdU-, nestin-, or Ki67-labeled cells were found in wild-type P90
animals at the retinal margin. These data further support the
hypothesis that the loss of one allele of the pfc gene has allowed a
region of retina in mice to remain in a state resembling the CMZ
of lower vertebrates, both in its proliferative potential and in its
gene expression.

Adult retinal progenitors at the CMZ are known to proliferate
in response to growth factors (Reh, 1989). For example, injection
of EGF, insulin, and IGF-I into posthatched chicken eyes induce
proliferation of CMZ progenitors (Fischer and Reh, 2000). To
determine whether progenitors at the margin of pfc+/— retinas
respond to growth factors in a similar way, we cultured dissoci-
ated retinas from P10 animals, an age in which nearly all retinal
cells in wild-type mice are postmitotic (Young, 1985). As ex-
pected, the vast majority of the dissociated retinal cells did not
survive in culture, but some did proliferate and survive in each
condition. We found that cultures from ptc+/— mice prolifer-
ated more than wild-type littermates as assayed by BrdU incor-
poration. In addition, the progenitors from ptc+/— retinas were
stimulated to proliferate in response to FGF and EGF, similar to
CMZ-derived retinal progenitors in other species (Fig. 5C). Over
95% of the BrdU+ cells in these cultures expressed the progeni-
tor marker nestin (Fig. 5A). Some BrdU+ cells from the ptc+/—
cultures expressed Tuj-1 after 5 d, as confirmed by confocal mi-
croscopy, indicating their potential to produce retinal neurons
(Fig. 5B).
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pro23his

Figure 6.  pro23his mice undergo severe photoreceptor degeneration. pro23his mice trans-
genically overexpress a mutated rhodopsin gene that causes severe photoreceptor death (Ols-
son et al., 1992). A, Recoverin (red), a photoreceptor marker, labels the outer nuclear layer
(ONL). pro23his animals generate an ONL, which degenerates to a monolayer by P20. 8, P20
pro23his animals that received injections of BrdU daily from P13—15 did not have increased
proliferation at the retinal margin compared with wild-type littermates. Arrow indicates BrdU
(green)-positive cells in the ciliary body epithelium. GC, Ganglion cell layer; INL, inner nuclear
layer; ONL, outer nuclear layer.

ptc+/— mice have a limited capacity for retinal regeneration
Previous work in fish and frogs has shown that retinal injury
causes an upregulation of proliferation in the CMZ and conse-
quent retinal regeneration (reviewed by Reh and Levine, 1998;
Reh and Fischer, 2001). We, therefore, asked whether damage or
degeneration of retinal cells would have a similar effect on the
cells of the retinal margin in the ptc+/— mice. To test for this
possibility, we bred the ptc+/— mice onto a pro23his retinal
degeneration background. The pro23his mice express a rhodop-
sin transgene with a single amino acid mutation at the 23rd po-
sition, replacing a proline with a histidine. The pro23his mice
exhibit rapid and nearly complete degeneration of retinal photo-
receptors by P20 (Olsson et al., 1992; Streichert et al., 1999). The
mice develop a morphologically normal outer nuclear layer,
which rapidly undergoes cell death, leaving only a monolayer of
cone photoreceptors (Fig. 6A).

Litters bred from the two strains received intraperitoneal in-
jections of BrdU on P13-15, after the completion of normal ret-
inal histogenesis and were killed 5 d later on P20. Retinas of the
animals from the genetically crossed litters were examined for
any changes in the number of BrdU-labeled cells. Pro23his ani-
mals, like wild-type littermates, had very few BrdU-
incorporating cells at the retinal margin (Figs. 6B, 8). Ptc+/—
mice on the pro23his background exhibited the typical degener-
ation of the outer nuclear layer seen in pro23his animals (Fig. 6).
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Figure 7.  ptc+/— progenitors proliferate more, upregulate progenitor markers, and re-
generate neurons in response to injury. ptc+/— and pro23his mice were mated to produce
animals with both genotypes. ptc+/—;pro23his mice (P20) continued to express the progen-
itor markers at the retinal margin. A, ptc expression is markedly increased (arrow) at the retinal
margin. Mice received injections of BrdU on P13-15. At P20, tissue was analyzed for the pres-
ence of BrdU-labeled proliferating cells at the retinal margin and with additional immunohis-
tochemical markers toidentify newly generated photoreceptors. Tissue was stained with mark-
ers for BrdU (green) and recoverin (red) to label photoreceptors. Progenitors at the margin
(arrow) of ptc+/—;pro23his mice (B) proliferate more than in ptc+/— alone. Examples ( ()
are shown of double-labeled, newly generated photoreceptors (arrows). Double-labeled cells
(arrow) were confirmed by confocal microscopy (F, F'). BrdU (green)-positive progenitors are
capable of differentiating into other retinal neurons in addition to photoreceptors, including
Tuj-1 (red)-expressing cells (D, £, F). GC, Ganglion cell layer; INL, inner nuclear layer; ONL, outer
nuclear layer.

However, the ptc+/—;pro23his mice show increased numbers of
dividing cells at the retinal margin compared with animals of the
ptc+/— genotype. Figure 7, B and C, shows an example of the
retinal margin from the mice, whereas Figure 8 shows a graph of
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Figure 8. Cells in the ptc+/— retinal margin proliferate more in response to injury. The
number of BrdU-labeled cells at the retinal margin was quantified in each of four mouse geno-
types at age P20. Concomitant photoreceptor death stimulates progenitors at the margin of
ptc+/— mice to divide. *p << 0.05; ** p << 0.005.
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the numbers of BrdU-labeled cells comparing the two genotypes.
The retinal margin of the ptc+/—;pro23his mice has over 50%
more BrdU-labeled cells than that of the pfc+/— animals.

As noted above, we were able to visualize the cells expressing
ptc+/— bylacZ histochemistry. Although the ptc+/— mice show
a few cells at the retinal margin that express the lacZ, the number
of these cells is greatly increased in the pfc+/—;pro23his mice
(Fig. 7A). In addition, the ptc+/—;pro23his mice have a large
region of cells that continue to express the transcription factor
Chx10 at the retinal margin (data not shown). The cells of the
CMZ provide one of the sources of retinal regeneration in lower
vertebrates (Reh and Levine, 1998; Reh and Fischer, 2001). To
determine whether the proliferating cells at the retinal margin of
the ptc+/—;pro23his mice may be differentiating to replace some
of the dying photoreceptors, we labeled retinal sections with an-
tibodies against BrdU and other markers of retinal neurons. Be-
cause the pro23his rhodopsin mutation causes degeneration of
rod photoreceptors in these transgenic animals, using a thodop-
sin antibody to label newly generated rods is problematic. In-
stead, we analyzed expression of recoverin, which is only ex-
pressed in rods, cones, and a small number of cone bipolar cells.
In addition, most of the other photoreceptor markers are ex-
pressed late in their development, and the cells may degenerate
before expressing these markers. Double-label experiments using
BrdU and recoverin revealed that, indeed, some BrdU-labeled
cells also express photoreceptor markers (Fig. 7C, F, F’). Colabel-
ing of single cells was confirmed by confocal microscopy (Fig.
7F,F’). These cells were typically found in the outer nuclear layer
very close to the retinal margin, but occasionally they appeared to
have migrated tens of micrometers into the retina. Additional
experiments showed that the progenitors at the margin of the
retina differentiate into other retinal neurons in addition to pho-
toreceptors. We detected BrdU in the nuclei of some Tuj-1-
labeled cells in the inner retina, indicating the capability of pro-
genitors at the retinal margin to differentiate into ganglion cells
or amacrine cells (Fig. 7D, E,E’). These results indicate that the
proliferating cells at the retinal margin of ptc+/— mice are likely
persistent retinal progenitors.

Discussion

Previous studies have implicated hedgehog signaling in retinal
progenitor proliferation (Jensen and Wallace, 1997; Levine et al.,
1997; Wang et al., 2002; Perron et al., 2003) In this study, we have
found that ptc+/— mice show two abnormalities in cell prolifer-
ation. First, the ptc+/— mice have a significant increase in the
number of proliferating cells at postnatal ages when predomi-
nantly late-born retinal cell types are differentiating. These in-
clude the rod photoreceptors, the bipolar cells, and the Muller
glia. Second, and more strikingly, we found that ptc+/— mice
have a zone of persistent proliferation at the retinal margin rem-
iniscent of the CMZ of fish and amphibians. These cells expressed
markers of retinal progenitors including Chx10, pfc, and nestin.
In addition, these cells responded to photoreceptor degeneration
by increasing their proliferation, similar to cells in the CMZ of
frogs and fish. Finally, we found that some of the progeny of the
proliferating cells differentiate into photoreceptors, as indicated
by their expression of the photoreceptor-specific protein recov-
erin and their laminar position, whereas other cells differentiate
into Tuj-1-expressing cells in the inner retina.

Shh is an important mitogen in the CNS
Our finding that pfc+/— mice have an increase in retinal progen-
itor proliferation is consistent with findings in other areas of the
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CNS. Hedgehog signaling has been shown previously to drive cell
proliferation in several regions of the developing nervous system
(Goodrich et al., 1997; Rowitch et al., 1999; Dahmane et al., 2001;
Ishibashi and McMahon, 2002). In the spinal cord, Shh has been
overexpressed in embryonic mice using GAL4/upstream activat-
ing sequence methodology to study the effects of extended ex-
pression of Shh in vivo. These studies showed that Shh caused
overproliferation of spinal cord precursors while keeping them in
an undifferentiated state (Rowitch et al., 1999). The in vivo results
in the spinal cord agree with previous experiments showing a
proliferative response to Shh in spinal cord precursors in primary
cell culture conditions (Kalyani et al., 1998). In the cerebellum,
Purkinje cells express Shh, and developing granule neurons ex-
press Ptc (Wallace, 1999; Wechsler-Reya and Scott, 1999). Block-
ing Shh signaling with neutralizing antibodies in vitro and in vivo
inhibits the production of granule cells, whereas the addition of
Shh to granule cell cultures in vitro, or injected in vivo, stimulates
granule cell genesis (Dahmane et al., 1999). Shh signaling is also
important in proliferation of neural cells of the cortex and tec-
tum. Reverse transcription-PCR experiments have located Shh
mRNA in the cortex and tectum of E-13.5 mice, with continued
expression through P5. Shh is expressed in progenitors of the
subventricular zone (Charytoniuk et al., 2002) and stimulates
proliferation of precursor cells in the ventricular zones of the
telencephalon and mesencephalon and normal levels of prolifer-
ation can be attenuated with Shh inhibitors (Dahmane et al.,
2001). More recent experiments have directly linked Shh signal-
ing to proliferation of adult neural stem cells in the rat hippocam-
pus. Hippocampal progenitors express ptc, and their prolifera-
tion can be increased more than threefold via adeno-associated
virus-mediated Shh gene transfer to these cells. Normal adult
hippocampal neurogenesis is inhibited by cyclopamine adminis-
tration, which potently inhibits Shh signaling (Lai et al., 2003).

Mechanism of ptc regulation of cell proliferation

The molecular mechanisms of cell cycle regulation by Shh are not
fully understood. Nevertheless, some facts are known about the
role of Shh in cell cycle control. In granule cell precursors, the
effects of Shh on proliferation seem to act through the cyclin—-Rb
axis. Cultures grown in the presence of Shh have increased ex-
pression of cyclin D1, cyclin D2, and cyclin E. In addition, the
proliferative response to Shh is independent of the MAP kinase
pathway, because the cells were unresponsive to MAP kinase ki-
nase inhibitors (Kenney and Rowitch, 2000). Transcriptional
regulation of cyclins by Shh is indirect, and subsequent studies
have shown that Shh directly turns on the immediate early gene
N-myc, which then directly induces cyclin expression (Kenney et
al., 2003). These effects on cell cycle regulators may also be direct,
because two-hybrid studies have shown that Ptc associates with
phosphorylated cyclin B1 (Barnes et al., 2001). These authors
proposed that Ptc binds phosphorylated cyclin Bl to prevent cell
cycle progression. When Shh binds Ptc, cyclin Bl is released,
allowing it to enter the nucleus and allowing the cell cycle to
progress. Interestingly, in skin cell cultures, Shh is also able to
override the inhibitory effect of cyclin-dependent kinase inhibi-
tors such as p21(CIP1/WAF1) (Fan and Khavari, 1999). Al-
though we have not yet examined whether similar mechanisms
might be responsible for the observed effects on retinal progeni-
tor proliferation in ptc+/— mice, several studies have previously
shown a role for cyclin D1 in retinal histogenesis (Fantl et al.,
1995; Sicinski et al., 1995).
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Hedgehog in retinal progenitor proliferation

Our results confirm previous in vitro and in vivo studies docu-
menting a role for hedgehog in retinal progenitor proliferation
(Jensen and Wallace 1997; Levine et al., 1997). Exogenously ap-
plied Shh in cell culture stimulates proliferation of retinal pro-
genitors of rats and mice, as evidenced by increased BrdU uptake.
This effect is especially evident in photoreceptors and Muller glia,
and it has been shown that Shh signaling promotes rod cell fate.
We also found that the ptc+/— mice had a thicker outer nuclear
layer and a greater number of ganglion cells. These results are
consistent with the evidence from in vitro studies showing that
Shh promotes rod photoreceptor development and ganglion cell
formation. Rodents express sonic and desert hedgehog in the
neural retina and Indian hedgehog in the retinal pigmented epi-
thelium (Jensen and Wallace 1997; Levine et al., 1997). Recently,
tissue-specific knock-out animals have shed more light on the
role of Shh in the retina. Mice lacking Shh in retinal ganglion cells
have smaller retinas than littermates, consistent with the role of
Shh in retinal progenitor proliferation (Wang et al., 2002). As
noted above, ptc is expressed in proliferating neuroblasts. The
pattern of hedgehog regulation of histogenesis in the retina and
cerebellum is strikingly similar. In both cases, the early neurons,
retinal ganglion cells and cerebellar Purkinje cells, produce
hedgehog to stimulate progenitors to proliferate (Wallace, 1999).

The role of ptc in the CMZ

The most striking finding of this study is that pfc+/— mice have
a persistent zone of immature, mitotically active cells at the reti-
nal margin reminiscent of the CMZ of lower vertebrates. We
found that BrdU injections in mice up to 90 d after birth labeled
cells in this zone. These cells also expressed markers of progeni-
tors, including ptc, Chx10, and nestin. The progenitors at the
retinal margin of chickens proliferate in response to growth fac-
tors (Fischer and Reh, 2000). To determine whether the putative
progenitors at the margin of ptc+/— mice respond similarly to
growth factor treatment, we cultured dissociated retinal cells
from P10 mice under various conditions. We found that ptc+/—
retinal cultures had increased BrdU uptake compared with litter-
mate controls. In addition, 95% of the BrdU-positive cells in
these cultures expressed nestin, a neural progenitor marker.
Double-label experiments analyzed by confocal microscopy con-
firmed these BrdU-incorporating cells can differentiate into Tuj-
1-expressing neurons.

The cells of the CMZ in lower vertebrates are responsible for
normal retinal growth as the animal grows as well as for regener-
ation of retinal cells in response to injury (Reh and Nagy, 1987).
To test whether the CMZ cells of ptc+/— mice were capable of
regenerating retinal neurons, we bred them onto the pro23his
photoreceptor degeneration background. We found that the cells
at the retinal margin responded similarly to experiments done in
nonmammalian species. In response to photoreceptor degenera-
tion, the immature cells at the margin increased in proliferation
by ~50%, and some differentiated into cells that express the
neuronal marker Tuj-1 or the photoreceptor protein recoverin.

It has been known for many years that fish and frogs increase
the size of their eyes during normal development. The retina in
these organisms has been shown to grow as well, alongside the
ocular growth. Stem cells at the retinal margin of fish and frogs
provide a source of all retinal cell types, which incorporate seam-
lessly as the eye grows (for review, see Reh and Fischer, 2001).
Lineage studies suggest that a slowly dividing more primitive
stem cell is located far peripherally and capable of producing all
retinal cell types as well as pigmented epithelial cells, and that
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faster cycling, more fate-restricted progenitor cells are located
immediately adjacent to the retinal margin (Wetts et al., 1989).
More recent work in the frog eye has directly shown expression of
Shh signaling molecules in the CMZ, strongly implicating this
signaling system in adult retinal proliferation in amphibians
(Perron et al., 2003).

Recently, the margin of the posthatched avian retina has been
reported to have cells that incorporate BrdU (Fischer and Reh,
2000; Kubota et al., 2002). These cells express transcription fac-
tors such as Pax6 and Chx10 that are common in retinal progen-
itors. Double-labeling studies with BrdU and neuron-specific
markers have shown that the cells at the retinal margin of the
chick can also generate retinal neurons. However, the CMZ of the
bird is substantially smaller than that of the fish or frog and
generates far less retinal tissue. Thus, it seems that the potential of
the CMZ has been progressively reduced in higher vertebrate
evolution, with some capability persisting in birds, but no such
proliferative zone in normal rodents.

Recent reports indicate that the rodent eye contains retinal
stem cells capable of proliferating and expressing markers of ret-
inal neurons in cell culture (Ahmad et al., 2000; Tropepe et al.,
2000). Both groups found that dissociated pigmented cells of the
ciliary body of adult rodents proliferated in the presence of
growth factors to form colonies expressing nestin and Chx10.
After 3 weeks in culture, these cells expressed some markers of
retinal neurons and glia. Neither pigmented cells from the poste-
rior eye nor nonpigmented cells from the ciliary body had this
potential. Neither group found dividing cells in the retina proper
as described in ptc+/— mice. Taken together with our results, it
seems that normal mice do not have retinal progenitors in the
nonpigmented ciliary epithelium like frogs and fish; however, the
ptc+/— mice retain these cells for some time.

The presence of what appears to be a retinal CMZ capable of
producing neurons after injury in a mammal is very intriguing.
This observation is especially noteworthy because it appears after
the loss of one allele of ptc, creating a partial activation of the Shh
signaling pathway. This suggests that decreased Shh signaling in
the retina may be involved in the evolutionary restriction and
eventual extinction of progenitors at the margin of the mamma-
lian retina. It may also be that a complex set of genetic variables
controls whether or not cells at the retinal margin are capable of
dividing in adulthood as in amphibians and other lower verte-
brates. Here, we show that increased Shh signaling is able to tip
the balance in favor of producing a progenitor zone in the rodent
retina reminiscent of the CMZ.
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