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A Simple Connectivity Scheme for Sparse Coding in an

Olfactory System
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Recent studies, using unbiased sampling of neuronal activity in vivo, indicate the existence of sparse codes in the brain. These codes are
characterized by highly specific, associative (i.e., dependent on combinations of features) and often invariant neuronal responses. Sparse
representations present many advantages for memory storage and are, thus, of wide interest in sensory physiology. Here, we study the
statistics of connectivity in an olfactory network that contributes to the generation of such codes: Kenyon cells (KCs), the intrinsic
neurons of the mushroom body (a structure involved in learning and memory in insects) receive inputs from a small population of
broadly tuned principal neurons; from these inputs, KCs generate exquisitely selective responses and, thus, sparse representations. We
find, surprisingly, that KCs are on average each connected to about 50% of their input population. Simple analysis indicates that such
connectivity indeed maximizes the difference between input vectors to KCs and helps to explain their high specificity.
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Introduction

Ever since the study by Ramon y Cajal (1990), neuroscientists
have recognized that network connectivity must play a key role in
brain function. On a large scale, connectivity is clearly not ran-
dom (Sporns and Tononi, 2002; Song et al., 2005): interneuronal
connections thus result from some optimization process. The
constraints acting on this optimization are physical (e.g., to min-
imize wiring length), developmental (address specification has
limits defined by genetics and developmental rules), and func-
tional; for example, networks should be stable, but also able to
switch states rapidly (Tsodyks and Sejnowski, 1995) and partic-
ular dynamics (e.g., synchronization) require particular types of
connectivity (Traub et al., 1999). Finally, connectivity must be
constrained also by computation; associativity, for instance, re-
quires convergence and arbitrariness (Fuster, 2000). How these
different pressures eventually shaped and optimized neural cir-
cuits is a fascinating problem. Marr (1969) and Albus (1971) were
among the very first to address this issue. In his explorations of
cerebellar architecture, Marr (1969) examined the statistics of
connectivity between mossy fibers, granule, Golgi, and Purkinje
cells in the context of memory functions (e.g., pattern associa-
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tion, capacity). His work may be the first to point to localized
versus distributed strategies for pattern storage.

Studies in mammals (including humans), in songbirds, and in
insects (Thompson and Best, 1989; Rolls and Tovee, 1995; Vinje
and Gallant, 2000; Hahnloser et al., 2002; Laurent, 2002; Perez-
Orive et al., 2002, 2004; DeWeese et al., 2003; Olshausen and
Field, 2004; Quian Quiroga et al., 2005) reveal that activity in
some neural populations is very sparse, specific (Willmore and
Tolhurst, 2001), and in some instances, invariant to low-level
features (Stopfer et al., 2003). The firing of such neurons usually
occurs on a low background of baseline activity; thus, each action
potential carries a lot of information. In these coding schemes,
each stimulus evokes responses in only a small subset of neurons.
Conversely, each neuron responds to only a small subset of stim-
uli; such neurons are often called “grandmother” or “cardinal
neurons.” Early work by Attneave (1954), Barlow (1969), and
Marr (1969), as well as more recent theoretical work (Willshaw
and Longuet-Higgins, 1970; Kanerva, 1988; Tsodyks and
Feigel'man, 1988; Perez-Vicente and Amit, 1989; Garcia-Sanchez
and Huerta, 2003; Huerta et al., 2004; Olshausen and Field, 2004)
noted the potential relevance of such coding schemes: they can
increase the capacity of associative networks and be beneficial for
learning, classification, and read-out in noisy systems. The exper-
iments we report here examine the issue of network connectivity
and its relationship to representation sparseness, using a small,
well defined, and easily accessible system, the locust olfactory
system. We ask the following question: what are the statistics of
connectivity between a small population of nonspecific principal
neurons [the projection neurons (PNs) of the antennal lobe] and
their targets [the Kenyon cells (KCs) of the mushroom body],
whose responses are highly specific? We then examine the sur-
prising (yet, in hindsight, straightforward) combinatorial impli-
cations of these results for representation sparseness.
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Materials and Methods

Physiology

Preparation and odor stimulation. Results were obtained from young
adult locusts (Schistocerca americana) of either sex taken from an estab-
lished, crowded colony. Locusts were immobilized, with both antennae
intact for olfactory stimulation. The brain was exposed, desheathed, and
superfused with locust saline, as described previously (Laurent and
Naraghi, 1994). Odors were delivered by injection of a controlled volume
of odorized air within a stream of desiccated, carbon-filtered air, custom-
designed to maintain a constant flow over time. Odor pulses of 1 s dura-
tion were delivered at a minimum interval of 10 s. Teflon tubing was used
at and downstream from the mixing point to prevent odor lingering and
cross-contamination. Odors were used at 100% vapor pressure, further
diluted in the desiccated air stream. Odorants used were pentanol, hexa-
nol, hexanal, cis-3-hexen-1-ol, heptanol, isoamyl acetate (Aldrich, Mil-
waukee, WI), cineole, geraniol (Sigma, St. Louis, MO), cherry (Bell Fla-
vor and Fragrances, Northbrook, IL), and clean air. Odors were delivered
for the sole purpose of cell identification: all measurements geared to-
ward estimating PN-KC connectivity were done using spikes produced
during spontaneous activity.

Intracellular and LFP recordings. Intracellular and local field potential
(LFP) recording was done using an Axoclamp-2B amplifier (Molecular
Devices, Union City, CA). KCs were impaled in their soma with intracel-
lular borosilicate micropipettes (DC resistance, ~250-400 M) pulled
on a Sutter horizontal puller and filled with 0.5 M potassium acetate.
Intracellular recordings of PNs were done with similar micropipettes
with a DC resistance of ~150-300 M(). Local field potentials were re-
corded in the mushroom body calyx, using saline-filled heat-polished
patch pipettes (DC resistance, ~5-10 M(}). LFPs were amplified online
with gain 1000X using a Brownlee (San Jose, CA) 440 amplifier. KC
firing threshold (voltage) was that measured at the time of peak d*V,./
dt? preceding spike peak, minus mean membrane potential (V) before
odor-pulse onset (see Fig. 6 A, bottom right).

Tetrode recordings. Extracellular recordings were done with silicon
probes generously provided by the University of Michigan Center for
Neural Communication Technology. Tetrodes were placed within soma
clusters in the antennal lobe, and the tissue was allowed to stabilize
around the probe tips for 30 min. Custom-built 16-channel preamplifi-
ers (X1) and amplifiers (X10,000) were used. Data from each channel
were acquired continuously (15 kHz/channel, 12 bit), filtered online
(custom-built amplifiers, bandpass 0.3—6 kHz), and stored on computer
memory.

Data acquisition and analysis. Electrophysiological data (intracellular,
extracellular and LFP) were acquired using a NI-DAQ acquisition board
(National Instruments, Austin, TX) via the LabView (National Instru-
ments) interface. Data analysis was performed using Matlab (Math-
works, Natick, MA) and Igor (WaveMetrics, Lake Oswego, OR).

Spike sorting. Tetrode recordings were analyzed as described previ-
ously (Pouzatetal., 2002). Briefly, events were detected on all channels as
voltage peaks above a preset threshold (usually 2.5-3.5 times each chan-
nel’s SD). For any detected event on any channel, the same 3 ms window
(each containing 45 samples) centered on that peak was extracted from
each one of the four channels in a tetrode. Each event was then repre-
sented as a 180-dimension vector (4 X 45 samples). Noise properties for
the recording were estimated from all the recording segments between
detected events by computing the auto- and cross-correlations of all four
channels. A noise covariance matrix was computed and used for noise
whitening. Events were then clustered using a modification of the expec-
tation maximization algorithm. Because of noise whitening, clusters con-
sisting of, and only of, all of the spikes from a single source should form
a Gaussian (SD, 1) distribution in 180-dimension space. This property
enabled us to perform several statistical tests to select only units that met
quantifiable criteria of cluster isolation. Categories 1 and 2 required that
each cluster contain no event classified as belonging to a different cluster,
within a 7- and 5-SD envelope, respectively, around its cluster center
(supplemental information part 1 and supplemental Fig. 1, available at
www.jneurosci.org as supplemental material). Category 3 required at
least 5 SDs between cluster centers. Connectivity analysis was done using
only clusters that (1) passed all standard tests [interspike interval (ISI)
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distribution, SD, and projection tests] (Pouzat et al., 2002) and (2) be-
longed to above categories 1 and 2. Spike sorting, tests, and assignment of
separation quality were done before assessing connectivity.

Spike-triggered statistics and connectivity assessment. KC membrane
potential was correlated with PN firing over a time window of 300 ms
from the PN spike detection time to produce a spike-triggered average
(STA) (Moore et al., 1970; Jack et al., 1971; Mendell and Henneman,
1971; Cope et al., 1987; Kang et al., 1988; Komatsu et al., 1988; Laurent
and Burrows, 1989; Mason et al., 1991; Matsumura et al., 1996). The
delay was measured from the detection-threshold crossing by the extra-
cellular PN spike (~200 us before peak) to the onset of the EPSP, deter-
mined as the peak of the second time derivative of voltage. STAs were
calculated with PN spike clusters of categories 1 and 2 above, only if at
least 200 spikes of spontaneous PN activity were available and if KC
membrane potential was stable over the time of recording. The existence
of a connection between a PN and KC was assessed using three methods.
For methods 1 and 2, the STAs were bandpass filtered (Butterworth sixth
order digital filter, band 2-1000 Hz), smoothed by convolution with a
Gaussian (SD, 1 ms); 5% were trimmed off their start/end margins to
cancel edge effects resulting from this preprocessing. Method 1 was based
on the correlation between time of peak voltage (t,,,.[V], generally cor-
responding to EPSP peak in the STA) and time of peak time-derivative

[dV/dt], generally corresponding to the middle of EPSP rising
phase). We defined the section (0 <t [dV/dt] <t,,, [V] < +40ms) of
the t,. [ V], t,,...[dV/dt] space (see Fig. 2C,D) as corresponding to EPSPs.
All PN-KC pairs yielding (,,,.[ V], t,,..[dV/dt]) pairs within this section
were thus counted as connected. Method 2 defined as EPSPs those STAs
for which V(#) crossed v = 2.5 SD of the average STA voltage within the
time interval [0, +50ms], and crossed v,,, = 1.25 SD only once within
the time interval [0, (| V(£)= v)]. Method 3 relied on visual inspection of
the STAs: time delay and waveform were the critical features (see Fig. 2 B,
asterisks). To address particular issues such as facilitation or EPSP sum-
mation, STAs were computed with special constraints; we thus also al-
lowed cases with <200 spikes. ISI-STAs were computed by selecting as
triggers only spikes separated from the previous one by a delay that fell
within a defined range. Combined events between two PNs were defined
as events where spikes from both PN fell within =15 ms of each other
(average time-to-peak); the trigger for averaging was the first action po-
tential of the two.

Simulated EPSPs. To assess the effect of PN firing statistics on STA
shape, EPSPs were modeled using the a-function, A(f) = a e~ ** (Rall,
1967; Jack and Redman, 1971), with & = 0.075 ms ', which fits the rise
and decay of “clean” STA-EPSPs (i.e., ones calculated from PNs whose
spontaneous discharge deviated the least from Poisson statistics).
Postsynaptic V,,, was modeled by linearly summing the a-functions, a
constant delay (5 ms, based on the PN-KC STAs) after each PN spike
time, taken either from our recordings or from an artificial distribution
with chosen statistics. We added Gaussian noise (SD equal to the
a-function peak amplitude) to the modeled KC potential with some
tests. Quantification of similarity between these modeled STAs and the
real KC STAs was done using three separate measures: correlation coef-
ficient, root-mean-square (RMS) error, and “fit,” (as defined here, fit
computes how well two vectors match in their rising and falling phases).
The rise-fall vector s(x), where x is a vector of continuous values, is
defined as s(x) = sign(dx/dt), and the fit is the scalar product of two
rise-fall vectors, normalized by their size, producing + 1 for identity, —1
for “flipped” waveforms, and 0 for randomly correlated ones.

(tmax

Anatomy

KCs and PNs from adult locusts (Schistocerca americana) were filled
using intracellular electrodes containing 1 m LiCl and tip-filled with ei-
ther 10% Lucifer yellow (PNs and KCs) or 10 mm Alexa Fluor 568 (In-
vitrogen, Eugene, OR) (KCs). Five-hundred-millisecond-long pulses of
negative current (2—7 nA) were applied at 1 Hz for 5 min (KCs) or 30 min
(PNs). After 10—-30 min diffusion time, brains were fixed in situ with 5%
formaldehyde in deionized water for 30 min. Brains were dissected out,
washed in water for 2 h, dehydrated in ethanol, cleared, mounted in
methyl-salycilate, and imaged on a Zeiss (Oberkochen, Germany) con-
focal microscope system. For each cell, stacks of images were taken



J. Neurosci., February 14,2007 - 27(7):1659 -1669 « 1661

C

Jortner et al. e Connectivity for Sparse Coding

A

odor pulse

KCF M AMMWIM swmmonens

B ¥

KC (50,000)

TP AN Ao A AAAR o

WAMWWW\NWM“W adad
NP PN, AN i nihres

PNs

baseline
D ke oie
mushroom body

C

= antennal lobe

]
i
.20 % v~ L ]
-
-40)
-0.2 0 0.2 0.4 0.6

115um

correlation coefft.

Figure 1. Intracellular voltage in single KCs is correlated with local field potentials. A, Reconstruction of the dendritic tree of a KC within the mushroom body calyx (top) and of two PNs (red and
green)filled simultaneously within the same antennal lobe (bottom). PN somata and axons lie above and below the plane of glomerular projections. PNs and KC were stained by intracellularinjection
of Lucifer yellow. B, Simultaneous recording of mushroom hody LFP (top, red), KC intracellular voltage (middle, black) and six single-unit PNs (bottom, raster plots) in response to an odor
(cis-3-hexen-1-ol, horizontal bar indicates odor delivery; top) and at baseline (bottom). Note V,, oscillations in response to odor and correlation between Vm and LFP. Calibrations: vertical, 10 mV
(V.,), TmV (LFP); horizontal, 1s. C—E, KCmembrane potential is highly correlated with the LFP. C, D, Examples of filtered KCV,,, (KC;) and LFP recorded simultaneously, and sliding cross-correlograms
averaged over nine such trials (bottom). Note frequent covariations of amplitude between KCand LFP in both odor (C; pentanol, black bar) and baseline (D) conditions. KC;and LFP filtered with the
same 5—50 Hz bandpass digital filter. The look-up table represents correlation coefficients: (€) —0.4 (blue) to +0.4 (red); (D) —0.07 (blue) to +0.07 (red). Calibrations: vertical, TmV (KCf), 100wV
(LFP); horizontal, 1. E, Plot of peak correlation coefficients between LFP and V,, traces (5 ms time bins) versus time delay for which correlation coefficient is maximal (At,,,), for 42 KCs (red

triangles) and 22 PNs (blue squares). Each At,
At

max’

max
indicating tightness of coupling between single-cell membrane voltage and LFP.

through the brain and exported for analysis. The profiles of the neurons
were isolated from the background using a dedicated Matlab (Math-
works) script. The calyx was manually outlined for each reconstruction
using Scion (Frederick, MD) Image. Isolated neurons and their traced
calyces were exported to Imaris (Bitplane AG Scientific Solutions, St.
Paul, MN) where three-dimensional volumes were rendered using the
Surpass function. Rendered images were exported as .tif files and pre-
pared for publication using Photoshop (Adobe, San Jose, CA).

Results

Hints of high PN convergence onto Kenyon cells

Using an in vivo preparation (for details about the locust olfac-
tory system and odor-evoked activity, see supplemental informa-
tion part 2, available at www.jneurosci.org as supplemental ma-
terial), we recorded KC activity intracellularly, mushroom body
LFP extracellularly, and antennal lobe PN spike output using
tetrodes (see Materials and Methods) (Fig. 1A, B). Because PN
axon collaterals branch throughout the mushroom body calyx,
LFPs are nearly identical across the entire calyx (Laurent and
Naraghi, 1994) and reflect both mean activity and coherence of
the PN population’s spiking output. Confirming previous obser-
vations (Perez-Orive et al., 2002, 2004; Stopfer et al., 2003), most
KCs had extremely low background firing rates (mean, 0.052
spike/s; median, 0.001 spikes/s) and always responded to odors
with subthreshold oscillations of membrane potential, locked to

is the median over 7—20 trials (pentanol, 512 trials total). KCs and PNs lock to the LFP at different phases; the relevant parameter is the variance of

the LFP (Fig. 1B). These membrane potential oscillations are
caused by phase-delayed nicotinic excitation (from PNs) and
GABA-ergic inhibition (from lateral horn interneurons) (Perez-
Orive et al., 2002). Careful inspection of such recordings revealed
that the instantaneous variations of KC membrane potential were
often highly correlated with those of the LFP, both during odors
(Fig. 1 B,C) and during baseline (Fig. 1 B, D). For each one of 42
KCs tested with the odor pentanol, we calculated the cross-
correlation between membrane potential and LFP; we then iden-
tified, for each trial (n = 512), the time lag at which the correla-
tion was the highest. The values of peak correlation and
corresponding time lag are plotted against each other in Figure
1E (red triangles). Correlation coefficients were distributed
around 0.3 and tracked the LFP with very little jitter (=5 ms). The
same analysis was performed with 22 PNs recorded intracellu-
larly from their soma in the antennal lobe. In this case, peak
correlations were smaller, and distributed broadly in time (Fig.
1E, squares). If, as initially assumed (Perez-Orive et al., 2002),
individual KCs are contacted by only few PNs, how could their
membrane potential reflect so well the activity of the PN popula-
tion as reported by LFPs? This suggested that individual KCs
might receive inputs from a larger fraction of the PN population
than we initially estimated. We next looked for direct physiolog-
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ical evidence for synaptic connections between the two cell
populations.

PN-KC convergence: direct

electrophysiological measurements

Spiking activity was recorded extracellularly from PNs in the an-
tennal lobe using silicon-based tetrode arrays (Fig. 1B). In lo-
custs, PNs are the only antennal lobe neurons that produce so-
dium action potentials (Laurent and Davidowitz, 1994): all spikes
so detected could thus be unambiguously attributed to PNs. In
each recording session, spikes from 2—10 well isolated PN clusters
(Pouzat et al., 2002) (for criteria, see Materials and Methods,
supplemental Fig. 1, available at www.jneurosci.org as supple-
mental material) were taken. We simultaneously recorded intra-
cellularly from the soma (6—8 wm diameter) (Leitch and Lau-
rent, 1996) of one randomly chosen KC anywhere in the
ipsilateral mushroom body (Fig. 1 A, B). These KCs responded to
all odors tested with subthreshold oscillations, indicating that
they received olfactory input; among 42 KCs, only three showed a
reliable spiking response to one of the tested odors, consistent
with previous results (Perez-Orive et al., 2002). Because PNs tend
to synchronize transiently with one another during responses to
odors (Laurent and Davidowitz, 1994; Wehr and Laurent, 1996;
Mazor and Laurent, 2005), we used PN spikes produced solely
during spontaneous activity (Fig. 1 B, bottom, baseline) to signal-
average KC intracellular voltage traces (see Materials and Meth-
ods). PN spikes during baseline (2.5-4 spikes/s) are not corre-
lated across PNs over short time scales (see below). For a number
of PN-KC pairs, STAs of KC voltage revealed, after much aver-
aging, an EPSP-shaped waveform, with a clearly defined delay (5)
of 5.81 = 0.9 ms (mean * SD, n = 28) (Fig. 2A,B). Separate
experiments (Perez-Orive et al., 2004) measured the PN spike
conduction delay between the antennal lobe and the mushroom
body calyx at 4.6 = 0.7 ms (n = 6 PNs). The remaining ~1 ms is
consistent with known delays at insect central cholinergic syn-
apses (Laurent and Burrows, 1989). PNs are known from
electron-microscopy to make direct chemical synapses onto KCs
(Distler and Boeckh, 1997). We thus interpret these STAs as rep-
resenting EPSPs generated directly by the recorded PN onto the
recorded KC.

EPSP amplitudes were very small and narrowly distributed
(86 = 44 wV, n = 28) (see below). Because EPSPs were always
much smaller than the SD of the intracellular voltage trace (Fig.
2A), they were revealed only after averaging many hundreds of
sweeps (Fig. 2 B). Over all recordings, we selected 57 PN-KC pairs
for which recording conditions matched our selection criteria
(low intracellular recording noise, stability, stationarity and sep-
arability of PN clusters) (see Materials and Methods), and used
them to estimate the connection probability between the two cell
populations. We obtained a variety of STAs (Fig. 2 B, 14 examples
are shown); in a subset (Fig. 2 B, asterisks), we detected the shape
and delays consistent with direct synaptic connections. We used
three methods to assess whether each STA should be classified as
indicative of a direct connection (Fig. 2C,D) (see Materials and
Methods). With all three methods, ~50% of the STAs were clas-
sified as indicating direct PN-KC connections (Fig. 2 E). Assum-
ing that our classification of STAs is correct and that our sam-
pling is random, this sample size indicates that the PN-KC
connection probability (over the entire population) lies between
0.36 and 0.63 ( p < 0.05), and that individual KCs each receive
~400 PN inputs. Because we often sampled several PNs simulta-
neously with each Kenyon cell intracellular recording, we could
also assess the connection probabilities over these subsets. The
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most commonly sampled KCs were those that appeared to be
connected with half of the PNs that had been recorded simulta-
neously (Fig. 2 F).

Effects of PN firing statistics

The shape and delay of the STAs were generally consistent with
those of monosynaptic EPSPs. Yet, some STAs had complicated
shapes (e.g., membrane potential sag around EPSP proper) (Fig.
2 A, B), warranting additional analysis. We show here that those
nonclassical shapes are spurious effects of PN firing statistics.
Consider for instance a hypothetical neuron that fires action po-
tentials at regular 100 ms intervals. The STA of the membrane
potential in a postsynaptic neuron would reveal not only a shape
consistent with an EPSP right after the presynaptic spike, but also
other similarly shaped events at =100 ms intervals around it. In a
more realistic case, in which presynaptic firing contains an oscil-
latory component around 10 Hz, the spike-triggered average
would, in addition to the EPSP waveform, contain deflections of
decreasing amplitude at intervals of about =100 ms around trig-
ger time. Other features linked to presynaptic spike discharge,
such as refractoriness, could have yet additional consequences on
the shape of the STA (e.g., a sag before EPSP onset time). Even
though our averages were all calculated from long sequences of
PN activity at baseline, thus ruling out strong 20 Hz periodicity,
interspike-interval statistics might have introduced biases. We
thus examined the contribution of PN baseline discharge statis-
tics on the shape of the averaged EPSPs. We used the spike trains
of each recorded PN to average the voltage of a putative mono-
synaptic target, in which the EPSP was modeled as an a-function
(Rall, 1967; Jack and Redman, 1971) (Fig. 3A) (see Materials and
Methods). The shape modulation of the averaged model wave-
form was then compared with that of the recorded KC (Fig. 3B),
using three different metrics (fit, correlation, and RMS error)
(see Materials and Methods). With all three metrics, the model
waveform predicted the shape of the real STA better than the
a-function alone ( p < 0.0001, 0.005, and 0.0001, respectively)
(Fig. 3B,C). We conclude that PN baseline-discharge statistics
account for our observations on averaged EPSPs.

We next considered the possibility that high PN-KC connec-
tivity was an artifact of high inter-PN correlations. We reasoned
that, if the path between a recorded PN and a recorded KC is
indirect, jitter caused by the interposed PNs would produce de-
tectable changes in the STAs. As a test, we introduced into the PN
spike times artificial jitter drawn from uniform distributions
bounded at =1, 2, 5, 10 and 20 ms (Fig. 4A) and calculated the
new STAs. Jitter between 5 and 10 ms blunted the rising phase of
the STAs: their onset occurred at or before the spike time of the
presumed presynaptic PN (Fig. 4A). With 20 ms jitter, the STAs
began before the trigger and lost the asymmetric shape character-
istic of EPSPs (fast rise, slow decay) (Fig. 4A), ruling out the
possibility that we would classify them as connections. Overall,
we observed that the risk of misclassification would be significant
only if PN-PN cross-correlations were high within the interval
[—10, +10 ms]. We then calculated PN-PN cross-correlations
with 75 pairs of PN spike-trains recorded simultaneously (with
separate tetrodes, to eliminate the possibility of misclassifying
superposed spike events; 5-20 min of baseline spiking); all were
inconsistent with this hypothesis (Fig. 4 B-D). Cross-correlations
were generally flat around At = 0; the distributions of cross-
correlation values just around 0 (e.g., [—5, +5 ms]) were not
significantly different from those for wider intervals (Fig. 4C,D)
or from those calculated for randomly shuffled trials (i.e., corre-
lations did not exceed chance levels given their firing rates). Fi-
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Figure 2.  Synaptic connections between PNs and KCs occur with ~0.5 probability. 4, Superimposed intracellular voltage traces from one KC (black) triggered from spontaneous extracellular
spikes of one PN (PN spike at At = 0). Vi (red), Average of 1,000 sweeps, revealing an EPSP-shaped waveform with a delay of ~5 ms from the PN spike (see Results for PN-KC convergence). B,
STAs from 14 different PN—KC pairs (STA in A is fifth from top). STAs were selected only on the basis of unit isolation (highest quality category) (see Materials and Methods) and sorted according to
the numbers of traces used for the average (indicated for each average). Vertical calibration, 100 V. Asterisks indicate pairs classified by eye as synaptic connections. Note (conduction plus synaptic)
delay 8. (-D2, Method 1 for classifying STAs into connected versus unconnected. €, The peak times of the averaged intracellular voltage (¢,,,,,[V,.,]; red dot) and of its time derivative (¢, [dV,, /dt];
green dot) are indicated for each of six PN—KC pairs. The numbers of spikes used for each STA are indicated in brackets. Left column, Three examples classified as connected (with high, intermediate,
and low spike numbers); right column, three examples classified as not connected, with comparable spike numbers. Note that ¢, [V, ], t....[dV,./dt], and At = O are clustered (left) and scattered
(right). Vertical calibration, 100 wV. D7, D2, Scatter plot of all the data that passed quality criteria (categories 1and 2) (see Materials and Methods). t,..,,[V,.] is plotted against ¢, ., [dV . /dt]; points
within window ([0,40ms]) suggest direct connection, with added condition that ¢, [dV . /df] <t,...[V,,]. The expanded section in D2 shows a tight cluster of STAs, indicative of connection. E,
Statistics of connectivity, as determined with three different classification tests (methods 1-3) (see Materials and Methods). PN—KC pairs are treated independently. All three tests find the mean
probability of connection between a PN and a KC to be around 0.5. F, Distribution of connectivity measured between individual KCs and the PNs recorded simultaneously with those KCs. KCs
connected to ~50% of simultaneously recorded PNs form the largest group.

nally, we note that electrical synapses or dye coupling have, thus ~ neurons. One hundred KCs and 65 PNs were individually labeled
far, never been found between PNs or between KCs in adult  with Alexa Fluor or Lucifer yellow; the calyx arbors of 15 PN
locusts. We conclude that the averaged KC EPSPs are unlikely to  axons and 79 KCs were reconstructed fully, in three dimensions,
be artifacts of high inter-PN correlations, and must therefore  from confocal stacks (see Materials and Methods), and for 30 of

reflect direct PN-KC connections. these KCs, together with the entire surrounding calyx. Figure 5A
shows the dendritic trees of two KCs stained in one mushroom
Anatomical overlap between PN axons and KC dendrites body (top), and the axonal terminals of three PNs stained in the

We next examined the extent of spatial overlap between PN axon =~ mushroom body of a different animal (bottom). Typical of all
collaterals and KC dendrites in the mushroom body, by labeling  intracellular fills examined, PN axons give off two to four dorsal
both cell types either as individuals or in groups of two or three  axonal collaterals as they run ventral to the calyx (Fig. 5A, front
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view); these collaterals branch so exten- A
sively within the calyx that the axonal ter-
minals of only those three (among 830)
PN delineate and fill the entire calyx (Fig.
5A, top view). In contrast with published
observations in fruit flies (Marin et al.,
2002; Wong et al., 2002), we observed no
zonal or heterogeneous innervation of the
calyx by individual PN axon collaterals.
Consistent with observations in other in-
sects (Strausfeld et al., 1998), including B
Drosophila, KCs had, in contrast, re-
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stricted dendritic trees confined to a small
volume of the calyx (Fig. 5A) and were
distributed homogeneously within the ca-

)
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lyx. The linear dendritic span of individual

KCs extended, depending on the KC, over
1/8 to 1/2 of the unfolded calyx (along all
three spatial axes). Because of the exten-
sive PN axonal projections, the dendrites
of individual KCs always overlapped with
the axon of any one PN examined. In fif-
teen concurrent fills of one PN axon and

ll

PN3

one KC (Fig. 5B, C), we could identify be-
tween one and four sites of PN-KC axo-
dendritic juxtaposition within <1 uwm. Al-

PN4

|

though we do not know when these
appositions represent true synaptic con-
tacts, we note that there appears to be no
morphological restriction on PN-KC =

PN5

|
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connectivity. Detailed examination of the -200 0
dendritic trees of 12 KCs (eight filled with
Alexa Fluor, four filled with cobalt hexam-
ine and intensified with silver) revealed
that each neuron contained on average
135 terminal branches (range, 87-205),
each likely to receive several synaptic con-
tacts. Because in locusts PN axon collater-
als terminate only in the main (outer) ca-
lyx (Farivar, 2005), most KC terminal
branches likely contact PN axons. This
suggests that individual KCs are contacted
by numbers of PNs commensurate with our electrophysiological
estimates (half of 830 PNs).

Figure 3.

Estimating Kenyon cell firing threshold

Whereas KCs reliably respond to odors with subthreshold oscil-
lations (Fig. 1B), they respond with an action potential only ex-
tremely rarely (Perez-Orive et al., 2002, 2004; Stopfer et al., 2003;
Laurent and Naraghi, 1994). Previous analyses of PN responses to
odors (Mazor and Laurent, 2005) indicate that each oscillation
cycle contains between 100 and 150 PN spikes; of those spikes,
55% originate from a small number of PNs that fire reliably in
that cycle (10%, or ~80 of all 830 PNs) and 45% from less reliable
PNs (~30% or ~250 of all PNs). All other PNs (60% of total) are
reliably inhibited. At each oscillation cycle, the identities of the
active (reliable and unreliable) and inactive PNs change in an
odor-specific manner (Wehr and Laurent, 1996; Mazor and Lau-
rent, 2005). We attempted here to estimate the number of coin-
cident PN inputs required to bring the membrane potential of a
KC beyond spiking threshold. Figure 6 A shows the measured
amplitudes of PN-evoked EPSPs in KCs (A,,,) and of KC spike
thresholds (6) as distributions on a logarithmic scale. The aver-

At (ms)

STA waveform around the EPSP is explained by non-Poisson firing statistics of PNs at rest. A, Model KC membrane
potential data are generated by triggering an « function 5 ms after each spike of a recorded PN. Black, Segment of recorded
PN-spike time series; red, model V,; cyan, model V, plus Gaussian noise (for details, see Materials and Methods). Horizontal
calibration, 100 ms. The vertical scale is arbitrary. B, Examples of STAs calculated for (connected) PN-KC pairs (KCs) compared with
those computed by applying the model EPSPs to the same PN spikes trains (Models). Left, Autocorrelation function for each PN
spike train (PNi). Note that potential deflections around EPSPs (KCs) are well explained by PN firing statistics. C, RMS error between
KCSTAs and model STAs is smaller than between KC STAs and the c-function ( p << 0.0001).
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aged peak EPSP amplitude was A, = 86 * 44 uV, with over
half of all EPSPs between 60 and 110 wV (Fig. 6A). The mean KC
spike threshold (Table 1, 6), measured over all trials in which a
spiking response had been produced during the odor pulse, was 6
= 8.9 £ 35 mV (n = 10) (Fig. 6A). Assuming perfect spike
synchrony among PNs and linear summation by KCs (see Dis-
cussion), we deduce that ~100 concurrent PN inputs (of ~400
anatomical PN inputs on average per KC) are needed to trigger an
action potential in a KC. This estimate also relies on the assump-
tion that we can use the EPSPs’ mean amplitude for our calcula-
tions, even if their distribution is not Gaussian; this assumption is
justified by the central limit theorem (see supplemental informa-
tion part 3, available at www.jneurosci.org as supplemental ma-
terial). We will call f this firing threshold (in numbers of simul-
taneous PN inputs) (Table 1).

Short-term plasticity at the PN-KC synapse

The existence of short-term depression or facilitation at this syn-
apse would force us to refine our estimates of f in several ways.
First, it could lead to major increases or decreases of our estimate.
Second, it could suggest that our measurements of true unitary
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Seven PN-KC triplets fulfilled these re-
quirements. We selected those PN spikes
(from each one of the simultaneously re-
corded sets) that occurred within <15 ms
of one another (corresponding to the time
to EPSP peak recorded at the KC soma)
and used the first one of each pair to cal-
culate the spike-triggered average of the
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Inter-PN spike correlations do not affect estimates of PN—KC connectivity. 4, Effect of introducing jitter in PN spike

KC membrane potential (Fig. 6D, red
trace). We then compared this compound
EPSP to the arithmetic sum of each average
calculated separately (Fig. 6 D, blue trace). In
all cases (Fig. 6 EI), the compound EPSP was
larger than each unitary EPSP alone (p =
0.0045). In all but one case, the compound
EPSP was equal to or smaller than the arith-
metic sum of the mean unitary EPSPs mea-
sured at their peaks (Fig. 6E2) (p = 0.11).
(That the compound EPSP amplitude was
often less than the sum of the EPSP peaks is
explained by the fact that, in most cases, one
EPSP was in its rising phase while the other
was at its peak.) These results indicate that,
although EPSPs from separate sources do

v 0.01
max (corr ¢)

ooz

0.01

sum (corr ¢)

0.02

times (to simulate PN—PN correlations) on the computed KC membrane potential STA. itter is drawn from uniform distributions
(0to 0—20 ms). Note the gradual effect of jitter on EPSP shape and particularly the elimination of spike-to-EPSP delay for jitters
with max =5ms. False classification (method 3) of a PN-KC STA as a connection would thus require PN—PN spike-time correla-
tions at rest to be high at —10 ms <At <<10 ms and low around this interval. B, B2, Cross-correlation between spike trains of
two simultaneously recorded PNs computed over 1 ms bins (red). Gray lines are cross-correlations calculated over shuffled trials.
Insets, Sample rasters (right) and corresponding auto-correlations (left). BT, Cross-correlation over 2300 ms lags. The box at 0 is
expanded in B2. B2, Cross-correlation over lag of =35 ms. Black bar, Interval [—5,+ 5] ms; pink bars, intervals [— 10, —6], and
[+6,10] (used to compute distributionsin Cand D). Note that no peak in correlation can be seen within a tight interval and that
correlation levels (red) are similar to chance level expected from the ISI distribution alone (shuffled trials, gray). €, Frequency
histogram of the peak correlation coefficients above chance within intervals [—5,+ 5] ms (black) and [— 10, — 6], [+6,+10] ms
(pink) for 75 PN pairs analyzed as in B. Overlap of black and pink is shown in brown. Peak correlation values are small (<<0.005) and
those for the central interval are not statistically different from those calculated for the larger interval ( p = 0.42). D, Frequency
histogram of summed correlation coefficients above chance (summed over all bins within corresponding intervals) for the same 75
PN pairs as in €. The summed coefficient over an interval corresponds to the probability of observing a spike from one PN within
thatinterval from a spike of another. Summed correlation values are small and distributed around 0 (within 2-0.01), and those for
the central interval are not statistically different from those for the larger one ( p = 0.75). B-D, Data from PN pairs recorded
simultaneously from separate tetrodes, to avoid erroneous elimination of events containing spike superpositions, over 5-20 min

summate, they do so without facilitation
and without supralinear enhancement, at
membrane potentials close to rest.

Discussion

In locust, each KC appears to be contacted
on average by about half of the PN popu-
lation (415 * 54 of n = 830 PNs) by weak
synapses. Extrapolating from physiology
alone, the firing threshold of KCs ( f, in
numbers of PN spikes) would lie close to
1/4 of that number (~100), a number
commensurate with the mean total num-
ber of PN spikes produced per each oscil-
lation cycles during an odor response

of spontaneous activity.

EPSPs are underestimated by our averaging procedure, because
of high failure rates. Because low release probability is generally
correlated with facilitation (Katz and Miledi, 1968; Dobrunz and
Stevens, 1997), we first looked for evidence of homosynaptic
plasticity. We calculated the spike-triggered averages for the
PN-KC pairs classified as connected, using only spikes that were
separated from the preceding one by a particular interval (ISIs
0-50, 50-100, and 100-150 ms, respectively) (Fig. 6B). STAs
produced by these selected spikes were, on average, no different
from those produced using all spikes (Fig. 6CI1-C3) (p = 0.37,
0.82, 0.84, respectively). This result is inconsistent with signifi-
cant homosynaptic facilitation and, thus, with high failure rates
at the PN-KC synapse. This reinforces our confidence in the
estimate of unitary EPSP amplitudes.

We next looked for evidence of heterosynaptic effects on the
summation of PN-evoked EPSPs in KCs. For this we selected
experiments in which (1) at least two PNs had been recorded
simultaneously with one KC, (2) where those PNs had both been
identified as being connected to the KC, and (3) where the PN
spikes originated from different tetrodes (thus avoiding wave-
form clustering problems that arise in cases of superposition).

(100-150) (Mazor and Laurent, 2005)

but, as discussed below, probably unreal-

istically high. Note that the total PN spike

output varies little over 1000-fold varia-
tions in odor concentration (Stopfer et al., 2003) or with odor
complexity (K. Shen and G. Laurent, unpublished observations).
Technical issues are discussed in the supplemental information
(parts 2, 3), available at www.jneurosci.org as supplemental ma-
terial. We examine here the functional significance of these
findings.

A connectivity that maximizes differences between

input vectors

The dense connectivity between PNs and KCs was puzzling, be-
cause it seemed incompatible with the high response selectivity of
KCs (Perez-Orive et al., 2002). Simple combinatorics, however,
suggest otherwise: if each KC samples m PNs out of n (Table 1),
and if those connections are distributed randomly, the number K
of possible PN combinations that KCs could sample is given by
the binomial coefficient, K(m) = m!/n!(n-m)!, where K is maxi-
mum for m = n/2 and decreases symmetrically around that value.
For n = 800 PNs and m =~ n/2 = 400, K ~ 10%*°, an enormous
number. Because there are only k = 50,000 KCs in each locust
mushroom body, only as many connection patterns can be
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realized out of all K; assuming (based on
anatomy) that PN-KC connections are
distributed approximately randomly,
these connection patterns should be very
different from one another on average
(the probability that two KCs might sam-
ple the same PNs is 10 ~**° ~ 0). In fact,
the difference between input vectors obeys
a binomial distribution such that most
pairs of input vectors differ from each
other by ~200 PNs (half of the mean
number of inputs to each). These princi-
ples, previously explored with theoretical
networks of binary units (Kanerva, 1988),
might be a key to the design of some asso-
ciative networks. If thresholds are chosen
appropriately (see below), individual KCs
will respond to very few and different B
stimuli, thus producing sparse coding by
sets of specific neurons. At the same time,
the high convergence of PNs onto individ-
ual KCs explains why the membrane po-
tential of each KC is noticeably correlated
with the LFP (Fig. 1 B—E), an observation
that seemed paradoxical. In conclusion,
connectivity with half probability can
maximize the differences between input
vectors to KCs and, thus, increase their re-
sponse selectivity. Note that nonrandom
structure in the PN-KC connection ma-
trix (as might exist because of individual
experience or evolutionary biases) could
modify our conclusions. But given the
enormous numbers of combinations sug-
gested by our experimental measure-
ments, only very strong connection biases
would likely change our conclusions
qualitatively.

A

KCs

PNs

Figure 5.

Firing thresholds and sparseness

Although 50% connectivity maximizes differences between input
vectors, it does not, on its own, explain why target-cell responses
are rare: sparsening must rely also on an appropriate adjustment
of global strength of the input and synaptic integration/spike
threshold in the target neurons. As noted previously, part of the
solution lies in the observations (1) that the number of active PNs
per oscillation cycle (Table 1, a) is limited to ~100-150 (Mazor
and Laurent, 2005), (2) that PNs rarely fire more than once per
oscillation cycle and (3) that temporal integration of PN input by
KCs is limited to single half-oscillations-cycles (Perez-Orive et
al., 2002;2004). These results define an upper bound for the firing
threshold of KCs (which we called ), compatible with our exper-
imental estimates ( f~ 100): if f were higher than a, no KC would
ever fire. In fact, even if KC firing thresholds were slightly smaller
than a, the probability that one KC would fire would still be
infinitesimally small, because there exist only k = 50,000 KCs of
all the possible K = 10>* input vectors to KCs; that is, the prob-
ability that all, or nearly all, a active PNs converge on the same KC
among all k is infinitesimally small. Our intuition is therefore that
fshould be significantly less than a so as to ensure that some KCs
at least can be activated by any PN pattern. We now explore
quantitatively the relationships between KC firing threshold ( f,
in numbers of PN inputs) and KC response probabilities, given
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Extensive overlap between PN axon collaterals and KC dendrites in the mushroom body. A, Reconstructions of the
calyx of the mushroom body (yellow, from background autofluorescence). The top row shows two KC dendritic trees (cyan and
purple) from three different views. KCs were filled within the same calyx with Lucifer yellow as described in the text. The bottom
row shows the axonal arbor of three PNs (red) from the same three views, filled simultaneously with Lucifer yellow, in a different
animal. B, Reconstruction showing one KC (green) and axon collaterals of one PN (red) filled in the same brain. The KC was filled
with Alexa Fluor 568; the PN was filled with Lucifer yellow. €, Magnified (ray-traced) reconstruction of processes of KCand PN in B.
Asterisks indicate sites where KC dendrites and PN axons are =<1 wum apart, as measured in the original three-dimensional stack.

Table 1. List of abbreviations and symbols used in this paper

n Number of PNs in the antennal lobe [ 830 (Leitch and Laurent, 1996) ]

a Number of PNs active during an oscillation cycle [ 100—150 (Mazor and Laurent,
2005)]

m Number of PNs sampled by one average KC (present study)

K Number of possible combinations of m among n PNs (equals the number of
possible PN input patterns to KCs)

k Number of KCs in one mushroom body [ 50,000 (Leitch and Laurent, 1996)]

f KCfiring threshold, in numbers of simultaneous PNs (present study)

0 KCfiring threshold, in millivolts (present study)

See also Discussion and supplemental material (available at www.jneurosci.org).

what our experiments revealed about PN activity (a) and PN-KC
connectivity (m =~ n/2).

Of n PNs in the antennal lobe, we previously measured the
number (a) that are active (rarely producing more than one
spike) during an average oscillation cycle (Mazor and Laurent,
2005). An average KC samples m PNs. Of the K possible combi-
nations of m PNs among n, only k = 50,000 are realized in a
mushroom body. We knew # and k (Leitch and Laurent, 1996);
we now have experimental estimates for m [~ n/2 (present
study)] and a [100-150 (Mazor & Laurent, 2005)]. We will now
estimate the average KC firing threshold f (in numbers of coinci-
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Figure 6.  K(firing threshold and summation. A, Histograms of PN—KC EPSP peak-amplitudes (A,,,,,) and KC threshold values
(6) plotted on the same logarithmic scale (log,,V). PN—KC EPSPs are very small and mostly distributed around 60 -110 V. KC
thresholds are mostly within 5—10 mV. Means of distributions are indicated by arrowheads. Note that two orders of magnitude of
voltage separate the two distributions. Insets, Top, A, is the difference between peak voltage and voltage before EPSP onset.
Bottom, KC firing threshold 6, calculated for odor-evoked spikes, defined as the membrane potential at the time of peak of the
second time derivative of the membrane potential before the spike peak, minus the mean membrane potential before odor-pulse
onset. B, C, No evidence is found for paired-pulse facilitation (or depression). B, Examples of spike-triggered averages calculated
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dent PN action potentials) such that a
given fraction of the k KCs can be activated
reliably during an oscillation cycle; we
thus wish to determine the relationship
between f and KC response probability
p(f) in an average KC. That probability
can be expressed as follows (for deriva-
tion, see supplemental information part 4,
available at www.jneurosci.org as supple-
mental material):

b= () Ef (5) ()

We plot p(f) for n = 800 PNs, m = 400,
and a = 100 or a = 150 in Figure 7A—C.
We observe that the range of thresholds
compatible with measured KC response
probabilities (~1% per oscillation cycle,
in reality probably less, because of experi-
mental bias toward sampling responsive
KCs when recording with tetrodes)
(Perez-Orive et al., 2002) is significantly
less than the 100 we estimated from our
physiological measurements (above); for
a = 100, we find f =~ 62 (Fig. 7C); for a =
150, we find f =~ 89 (Fig. 7C). This is con-
sistent with the proposal that EPSP sum-
mation in KCs is supralinear once mem-
brane depolarization is sufficient (Laurent
and Naraghi, 1994; Perez-Orive et al.,
2002; 2004). We observe also that very
small variations of f have large conse-
quences on KC response probabilities;
said differently, the range for f consistent
with experimental measurements of p( f)
is narrow (Fig. 7C): for example, with a =
100 and f = 67, p drops to ~0.1%, yielding

<«

from one PN-KC pair using only spikes with preceding ISls in
rangesindicated. All ISI-STAs are aligned on the voltage at the
time of EPSP onset in the STA including all the spikes. Note
that ISI-STAs are more noisy than the STA for all spikes, be-
cause events available for averaging are much fewer (up to
10-fold). C7-C3, Group data over all connected pairs showing
that peak amplitude distributions for ISIs as in B (indicated in
top left of scatter plots) are not significantly different from
controls (all spikes). D, E, EPSP summation is near-linear
when close to V. D, STAs of two PN—KC pairs [corr(PN1-KC),
black; corr(PN2-KC), gray; same KC for PNs 1and 2], compared
with STA constructed using only spikes from the two PNs oc-
curring within 015 ms of each other [corr(PN1-PN2-KC),
red]. Arithmetic sum of black and gray STAs is shown in blue.
Slightly sublinear summation occurs in this example. 1, E2,
Group data over pairs fulfilling conditions as in Dand analyzed
in the same way. E1, Combined-event STAs (abscissa) were
always larger than any single-event STAs with the same PNs
(ordinate; p << 0.005), indicating summation. E2, Most
combined-event STAs (abscissa) were slightly smaller (6 of 7
experiments), although not statistically different from the
arithmetic sum of single-event STAs for the same PN (ordi-
nate), indicating that EPSP summation is close to linear
within this range of V..
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an action potential in ~50 KCs of the
50,000. The steepness of the p(f) curve
thus suggests a critical need for adaptive
gain control. One possible mechanism in-
vokes a wide-field GABAergic mushroom
body neuron with feedforward and feed-
back projections (Leitch and Laurent,
1996); feedback onto KCs could contrib-
ute to instantaneous, adaptive regulation
of their population output; this issue is be-
ing examined.

Finally, we observe that the values of f
consistent with measured KC response
probabilities (f ~ 0.6 a) corresponds
roughly to the proportion of reliable PN
spikes among the a produced during each
integration cycle (~0.55 a) (Mazor and
Laurent, 2005); in other words, the system
seems to be set (1) so that a small number
of KCs will always detect the reliable bits of
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Figure 7.  Effect of firing threshold on sparseness of KC responses (see also supplemental information part 4, available at

www.jneurosci.org as supplemental material). A, Response probability p of a hypothetical KCas a function of its firing threshold f
(innumber of PNiinputs) forn = 800 and m = 400. PN activation levels (a) examined are a = 100 spikes per oscillation cycle (red)
and a = 150 (blue), as indicated by experiments (Mazor and Laurent, 2005). Note that for each value of g, only a limited range of
threshold values is useful for coding: for thresholds smaller than ~30 (a = 100) or ~50 (a = 150) inputs, the KC responds to
most antennal lobe states; for thresholds larger than ~70 (a = 100) or ~100 (a = 150), the KCbarely responds to any state. For
f=a/2 (in our cases, 50 and 75, respectively), p(response) = 1/2. B, Log-linear plot of A. The box is expanded in C. C, The range
of thresholds relevant for sparse coding seems to lie between 60 and 100 inputs (fora = 100 —150). The lower bound (green) is set
sothat p(response) = 0.01 (500 KCs respond to each state); the higher bound (black) is set so that p(response) = 2 X 10 —° (only
one KC on average responds to each state). Note the steepness of the relationship: for any value of a, threshold changes of only a
few inputs cause large differences in specificity.

an instantaneous PN activity vector and

(2) so that these KCs will safely pass firing threshold, exploiting
both a small surplus of excitation from a smaller set of less reliable
PN in that integration cycle (Mazor and Laurent, 2005), and
nonlinear summation (Laurent and Naraghi, 1994; Perez-Orive
etal., 2002, 2004). Again, the maximum separation of input vec-
tors to KCs (attributable to 50% PN-KC connectivity and to the
small numbers of KCs relative to the number of possible combi-
nations, k << K) ensures that, if a KC is reliably activated by an
input vector, most other KCs will not. These features together
contribute to generating a sparse code.

Our results are interesting also in view of Valiant’s theory of
neural computation (Valiant, 2005, 2006). In it, the roles played
by each neuron are determined by its random inputs from other
neurons and the roles played in turn by those other neurons. His
theory predicts that the four parameters of neuron numbers (our
n and k), synapse numbers (our 1), synapse strengths (which we
consider all equal so far), and numbers of neurons that represent
an item (our a), are constrained by a mathematical relationship
(Valiant, 2005, 2006). Our results provide the values of all these
parameters for a significant neural system; these parameters agree
well with the prediction of the theory (Valiant, 2006).

KCs are not “grandmother cells”

We showed that a population of principal neurons diverges to a
larger population of sparsely responding neurons, the KCs, with a
mean connection probability of 0.5 (£0.13, p < 0.05). The fact
that connection probability between the two layers is so high
seemed surprising given the specificity of the target cells’ respons-
es; yet, simple analysis shows that such design maximizes differ-
ences between input patterns, thus favoring KC selectivity. Nev-
ertheless, because the firing threshold of a target cell (<< 100
coincident inputs) is much less than the number m of its physical
inputs (=400 PNs), a KC could still respond to an enormous
number of PN patterns. It is thus not appropriate to describe this
connectivity as one that generates uniquely responding “grand-
mother cells.” Rather, we should think of this organization as one
that causes decorrelation: overlaps that may exist between input
patterns are reduced, simply as a result of sparsening. A given
Kenyon cell may thus participate in representing many inputs,
but the assemblies of Kenyon cells representing (sparsely) those
inputs will differ more from one another than those that repre-
sent the same inputs in the input layer. Sparsening thus accom-

plishes at least two very useful operations: first, it decorrelates
stimulus representations; second, it reduces the number of nodes
on which learning will be required to act. This double operation is
precisely that hypothesized by Marr (1969) and Kanerva (1988)
for cerebellar granule cells, although, paradoxically, it may not
apply to those neurons: the convergence ratios of mossy fibers
onto granule cells do not appear to be sufficiently high (Chadder-
ton et al., 2004). Recent results in the olfactory system of mam-
mals suggest that convergence and rules of integration may be
different there (Franks and Isaacson, 2006). It will be interesting
to understand whether those differences indicate fundamentally
different encoding rules, or rather whether insect Kenyon cells
and pyramidal cells in piriform cortex are not the functionally
equivalent cell types that should be chosen for comparison. Fi-
nally, we note that the rules uncovered here, although unlikely to
hold for areas where projections are highly topographical, could
apply well to any associative network involved in generating
object-based, sparse and specific neural representations of mul-
tidimensional inputs (e.g., inferotemporal cortex) (Tanaka,
2003) in a format appropriate for memorization and recall.
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