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Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder affecting millions of elderly individuals worldwide. Advances in the
genetics of AD have led to new levels of understanding and treatment opportunities. Here, we used a systems biology approach based on
weighted gene coexpression network analysis to determine transcriptional networks in AD. This method permits a higher order depiction
of gene expression relationships and identifies modules of coexpressed genes that are functionally related, rather than producing massive
gene lists. Using this framework, we characterized the transcriptional network in AD, identifying 12 distinct modules related to synaptic
and metabolic processes, immune response, and white matter, nine of which were related to disease progression. We further examined
the association of gene expression changes with progression of AD and normal aging, and were able to compare functional modules of
genes defined in both conditions. Two biologically relevant modules were conserved between AD and aging, one related to mitochondrial
processes such as energy metabolism, and the other related to synaptic plasticity. We also identified several genes that were central, or
hub, genes in both aging and AD, including the highly abundant signaling molecule 14.3.3 � (YWHAZ), whose role in AD and aging is
uncharacterized. Finally, we found that presenilin 1 (PSEN1) is highly coexpressed with canonical myelin proteins, suggesting a role for
PSEN1 in aspects of glial-neuronal interactions related to neurodegenerative processes.
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Introduction
Since the introduction of microarray technology over 10 years
ago (Schena et al., 1995; Lockhart et al., 1996), many studies have
been performed to determine the mechanisms behind various
neurodegenerative disorders, including frontotemporal demen-
tia (Karsten et al., 2006) and Alzheimer’s disease (AD) (Loring et
al., 2001; Colangelo et al., 2002; Blalock et al., 2004; Small et al.,
2005; Emilsson et al., 2006). However, comparing gene lists from
different studies often lacks a functional foundation and requires
new methods to allow cross-study integration. Thus, despite the
fact that AD is the most common and well studied neurological
disorder of the elderly (Drachman, 2006), no coherent picture of
AD pathological interactions has emerged from microarray stud-
ies. Additionally, many technical issues, such as small sample
sizes and postmortem artifacts, have further reduced power
(Vawter et al., 2002; Mirnics and Pevsner, 2004).

Here, we apply weighted gene coexpression network analysis
(WGCNA) (Zhang and Horvath, 2005; Horvath et al., 2006; Old-
ham et al., 2006), a method that organizes gene expression data

into a functionally relevant framework, to explore the pathophys-
iology of AD from a systems perspective. We demonstrate the
ability of WGCNA to capture the underlying transcriptome or-
ganization inherent in a study of the CA1 region of the hip-
pocampus in AD (Blalock et al., 2004), yielding modules of coex-
pressed genes involved in common disease-related processes.
Nine modules are related to disease progression, including two
groupings that correspond to synaptic function and metabolic
processes. Within these modules, we are also able to identify the
most central genes in the network (“hub genes”), such as voltage-
dependent anion channel 1 (VDAC1), which are predicted to play
prominent roles in the disease process.

WGCNA also creates a functional basis on which to compare
different microarray studies by organizing gene lists into relevant
transcriptional modules based on their coexpression relation-
ships. So, we also applied WGCNA to determine whether there
were any shared processes revealed by gene expression changes
observed during the progression of AD and in normal aging (Lu
et al., 2004). Although AD has many features that clearly distin-
guish it from normal aging, whether there are areas of biological
overlap with normal aging remains an important issue (Smith et
al., 1991; Price and Morris, 1999; Drachman, 2006; Keller, 2006).
Remarkably, despite the differences between the samples used in
the two studies analyzed here, we find significantly overlapping
aspects of network organization, highlighting common biologi-
cal changes that result from the progression of both AD and
aging. From these networks, we also identify key hub genes that
are in central positions in both studies and relate them to their
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underlying biological processes. Although the roles of some of
these genes, such as cyclin-dependent kinase 5 (CDK5) and pre-
senilin 1 (PSEN1), are well characterized in AD, WGCNA also
identifies many novel genes in the context of AD pathology, pro-
viding a basis for further study.

Materials and Methods
Data acquisition. Microarray data sets from two separate studies were
used in this analysis: (1) microarrays assessing gene expression from the
CA1 region of the hippocampus from 31 individuals, comprising nine
controls, seven with incipient AD, eight with moderate AD, and seven
with severe AD, as defined by the MiniMental State Examination
(MMSE) score and neurofibrillary tangle (NFT) burden [(Blalock et al.,
2004) henceforth, “the AD study”], and (2) 30 microarrays representing
a study of the effects of aging on frontal lobe gene expression of individ-
uals who died of natural causes between the ages of 26 and 106 [(Lu et al.,
2004) henceforth, “the aging study”]. The raw data (.cel files) were ob-
tained from the Geo DataSets database (http://www.ncbi.nlm.nih.gov/
geo/) and directly from the authors (Lu et al., Harvard Medical School,
Boston, MA). Experimental assays are described in full in the initial
publications (Blalock et al., 2004; Lu et al., 2004). The AD study used
Affymetrix HG-U133A chips containing 22,283 probe sets, and the aging
study used HG-U95A chips with 12,625 probe sets.

Data processing. Both datasets were processed identically for consis-
tency. All preprocessing was performed in R (http://cran.r-project.org/),
a freely available programming language, using microarray-specific
packages available through Bioconductor (http://www.bioconductor.
org/). We used the “expresso” function in the “affy” library of Biocon-
ductor, including methods for background correction (mas), normaliza-
tion (quantile), perfect match probe correction (mas), and expression
summary (medianpolish) based on the study by Choe et al. (2005). De-
tails about the significance of each step have been described previously
(Huber et al., 2005).

Outlier subjects were determined calculating the un-normalized cor-
relation matrix between subjects using the Pearson correlation (Oldham
et al., 2006). Subjects were clustered based on their dissimilarity, and any
arrays with average intersubject correlation �2 (AD study) or 3 (aging
study) SDs (�) below the mean were removed. This process was repeated,
until no arrays needed to be removed (Oldham et al., 2006). In all, three
arrays were removed from the AD study (4.3�, 2.61�, and 2.08� below
mean) and two were removed from the aging study (3.76� and 3.27�
below mean). Data were processed using “expresso” as described above,
this time including quantile normalization. Any probe sets that were
called “present” in three or fewer arrays using the “mas5calls” function in
the “affy” library were considered unreliable and removed from further
analysis. Control probe sets and those not associated with known genes
were also removed from further analysis. These steps left 12,073 and 6741
probe sets remaining for the AD and aging studies, respectively.

Determining variably expressed genes. We first identified the genes with
variable expression patterns across conditions (variable genes), both to
simplify computation and to eliminate genes that do not change and
therefore do not contribute to the correlation matrix (Zhang and Hor-
vath, 2005; Oldham et al., 2006). We performed two types of network
analyses: one in which the analysis was agnostic to any clinical or patho-
physiological information (“unsupervised”), and a second in which clin-
ical information was used to guide gene selection (“supervised”). We
used a supervised analysis because this allowed us to compare networks
related to the progression of aging (age as clinical variable) directly to the
progression of dementia (as measured by MMSE score and NFT burden).
For the unsupervised AD analysis, we selected the top 5000 most variable
genes, as measured by coefficient of variance (Oldham et al., 2006). For
the supervised AD study, we applied the following filters to identify a
relatively inclusive set of genes: (1) Bayes ANOVA test ( p � 0.05) (Baldi
and Long, 2001) comparing all four groups (control, incipient AD, mod-
erate AD, and severe AD) identified 1122 probe sets; (2) t test ( p � 0.05)
comparing controls and any other group identified 2010 probe sets; (3)
Pearson’s correlation ( p � 0.05) of gene expression values with dementia
stage as determined by NFT burden or MMSE score identified 3024

probe sets. Merging these gene lists together resulted in a total of 3890
variable genes for the AD supervised study. Any probe sets and associated
genes for which any of the above three conditions were true are described
as “correlated with AD.” We also performed a supervised analysis on the
aging study, where we identified 1505 probe sets whose expression cor-
related significantly with age of subject as measured by Pearson correla-
tion ( p � 0.05). We did not perform an unsupervised aging analysis
because the purpose of this study was to characterize normal aging only
in the context of AD progression. False discovery rates [(cutoff p value) �
(number of probe sets tested)/(total number of positives)] for the AD
and aging studies, respectively, were 34% and 22%, so these sets of genes
represent inclusive gene lists, which are appropriate as starting points for
additional analysis.

Network analysis. WGCNA was performed on variably expressed
genes in each study as previously described (Zhang and Horvath,
2005; Horvath et al., 2006; Oldham et al., 2006). After finalizing the
gene list, the correlation matrix was obtained by calculating the Pear-
son correlations between all variable probe sets across all subjects.
Next, the adjacency matrix was calculated by raising the absolute
values of the correlation matrix to a power (� � 6 for the unsuper-
vised AD analysis, � � 8 for the supervised AD analysis, and � � 7 for
the supervised aging analysis) (Zhang and Horvath, 2005). For com-
putational reasons, the gene list was then further restricted by omit-
ting probe sets with very low connectivity (k), the summation of
connection strengths for each gene with all other genes. In the unsu-
pervised AD analysis, probe sets with k/kmax � 0.10 were omitted,
whereas in the AD and aging supervised analyses, the cutoff value was
k/kmax � 0.05, leaving 2628, 2157, and 1334 probe sets remaining in
the three respective analyses. Topological overlap (TO), a biologically
meaningful measure of node similarity (how close the neighbors of
gene 1 are to the neighbors of gene 2), was then calculated as described
previously (Zhang and Horvath, 2005; Oldham et al., 2006). Next, the
probe sets were hierarchically clustered using 1-TO as the distance
measure and modules were determined by choosing a height cutoff
for the resulting dendrogram (see Fig. 4a, top trace) or by using a
dynamic tree-cutting algorithm (see Fig. 1a, top trace) (http://www.
genetics.ucla.edu/labs/horvath/CoexpressionNetwork/).

Once modules were identified, the module eigengene (ME; i.e., first
principal component of the expression values across subjects) was calcu-
lated using all probe sets in each module. The MEs were then correlated
to relevant clinical traits using the Pearson correlation. Within-module
connectivity (kin) for each probe set was determined by summing the
connectivities of that probe set with each other probe set in that module.
Networks were graphically depicted using the program VisANT (Hu et
al., 2004; Oldham et al., 2006). Unless otherwise noted, these “network
depictions” show only the top 250 reciprocal within-module gene– gene
interactions (“connections”) with the strongest TO. The genes were col-
ored based on the module color and labeled as a “hub” if they had at least
15 connections depicted.

MultiTOM analysis. The Multinode Topological Overlap Measure for
Gene Neighborhood Analysis (MultiTOM) software was also used to
create “local networks” for genes of interest (Li and Horvath, 2007).
MultiTOM takes an expression array and a “seed” [probe set(s) of inter-
est] as input, defining this seed as the initial module. The probe set in the
expression array with the highest TO to the seed is then added to the
module, forming a larger module. This process is repeated recursively
until the module contains a specified number of probe sets (typically 60),
after which its network depictions are graphed (as described above), with
orange or gray assigned as the module color. Unlike the network analyses,
these local networks were not restricted to variably expressed genes; any
probe set that was present with an associated gene symbol could form
part of a MultiTOM module.

Comparative analysis. We performed comparative analyses of the two
studies by limiting the analysis to genes with probe sets on both arrays,
choosing first the probe set with the highest kin followed by the probe set
with the highest correlation to phenotype when multiple probe sets for a
single gene were present. This approach identified 4827 overlapping
genes between the two studies. We tested whether the number of genes
correlated with both AD and aging was significantly larger than expected
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by chance using a hypergeometric distribution. Similar analyses were
done comparing only genes changing in parallel or opposite directions in
AD and aging, as well as genes in overlapping modules between the two
studies.

Functional categorization of genes. Group analyses were performed on
all generated gene lists using Expression Analysis Systematic Explorer
(EASE) (Hosack et al., 2003) to functionally categorize genes in an unbi-
ased manner. Modules were characterized based on the gene ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), or SwissProt
terms associated with their gene list that had the lowest EASE scores
(similar to a p value), as long as such scores were significant ( p � 0.05).
When EASE failed to provide such categories, WebGestalt (http://
bioinfo.vanderbilt.edu/webgestalt/) was used for module categorization.
Smaller gene lists (�50 probe sets) were analyzed using Chilibot, a
literature-mining tool that creates biological networks based on co-
occurrence of terms in PubMed abstracts (Chen and Sharp, 2004). Gene
lists were also compared with terms related to clinical traits of interest
(such as “Alzheimer’s disease”) to explore the potential involvement of a
given gene in that process. Ingenuity Pathway Analysis (IPA; Ingenuity
Systems, Redwood City, CA) was applied to a subset of modules to aug-
ment the functional annotation.

Results
Network analysis of AD hippocampus
To circumvent the problems associated with tissue and clinical
heterogeneity and directly address the issue of regional vulnera-
bility, Blalock et al. (2004) performed a microarray study of one
of the earliest and most consistently affected brain regions in AD,
the CA1 region of the hippocampus, using specimens from sub-
jects with relatively well defined clinical and pathological stages of
AD. After preprocessing this data ourselves using R and removing
three outlier arrays (Materials and Methods), these samples rep-
resent eight controls, as well as six incipient, eight moderate, and
six severely afflicted AD patients, as determined by NFT burden
and MMSE score (Blalock et al., 2004). Because CA1 is a highly
vulnerable region of the medial temporal lobe affected fairly early
in the progression of AD (Braak and Braak, 1991), these samples
represent snapshots at a maximal range of NFT burden. To com-
plement traditional differential expression analyses, we per-
formed WGCNA on these samples, as groups of coexpressed
genes are biologically related, and such network analyses may
shed light on underlying functional processes in a manner com-
plementary to standard differential expression analyses (Horvath
et al., 2006). WGCNA starts by calculating a matrix containing all
pairwise Pearson correlations between all genes. The Pearson
correlations are used to calculate TO, a more robust, and biolog-
ically meaningful measure of gene coexpression that takes into
account the shared neighbors of each gene pair in the network
(Ravasz et al., 2002; Zhang and Horvath, 2005). TO was calcu-
lated between each gene and every other gene, and groups of
genes with high TO were then identified by hierarchical cluster-
ing to define modules (Materials and Methods) (Zhang and Hor-
vath, 2005).

We first used WGCNA to analyze the 5000 most variable genes
determined by their coefficient of variance, rather than any sam-
ple characteristics such as disease or control status. Because we
did not filter by any clinical or pathological features, and genes
therefore were not selected based on such top-down information,
we refer to this analysis as “unsupervised.” Twelve modules of
genes with high TO were identified (Fig. 1a) (a full list of genes by
module appears in supplemental Table 1, available at www.
jneurosci.org as supplemental material). Genes in each module
share expression patterns that are more similar to one another
than to the expression patterns of genes in other modules. We
were able to biologically characterize most modules using EASE,

a program that checks for an over-representation of genes with
specific GO, KEGG, and SwissProt terms relative to a reference
list (Hosack et al., 2003). In all modules except black and yellow,
the most significant category identified by EASE was a process
previously associated with AD. These categories included synap-
tic transmission and extracellular transport, mitochondrial and
metabolic functions, and myelination (Table 1) (Mesulam, 1999;
Arendt, 2000; Blass et al., 2002; Bartzokis, 2004; Beal, 2005).
These observations are consistent with the notion that modules
represent groups of biologically related genes, as has been dem-
onstrated in several systems (Jeong et al., 2001; Barabasi and
Oltvai, 2004; Horvath et al., 2006; Oldham et al., 2006).

Modular organization and relationship to underlying
biological processes
Although the expression patterns in each module were different,
many of the modules shared similar GO categorizations, suggest-
ing that some modules may be functionally related. To determine
how related each module was to every other and to phenotypic
assessments of AD, we performed a principal component analysis
(PCA) to obtain the module eigengene (ME; the first PC of the
expression values across subjects) for each module. PCA simpli-
fies a data set by reducing the dimensionality of the data, sorting
the PCs based on the amount of variance each component ex-
plains (supplemental Table 2, available at www.jneurosci.org as
supplemental material). In this case, the ME represents the main
trend of gene expression for a module, and modules with genes
sharing similar expression will also have similar MEs. We plotted
each module in two-dimensional space using the first two PCs
(Fig. 2), which grouped modules with identical or highly related
significant EASE categories (Table 1). Five modules were in-
volved in synaptic processes (blue, green yellow, magenta, pink,
and purple), four in metabolic processes (brown, orange, red,
and turquoise), and two in injury response (black and yellow).
This analysis also identified a single module (tan) containing
myelin-related genes. Because the definition of a module is sub-
jective such groupings were not unexpected, and in fact suggest
that our results are robust with respect to module size. There was
also a strong relationship between module function (as measured
by EASE analysis) and disease progression, with modules in the
synaptic and metabolic groups correlated with MMSE score, a
cognitive indicator of AD progression (Fig. 1b) (Folstein et al.,
1975). However, most genes in the immune response group do
not correlate with MMSE score, and are likely variable because of
postmortem effects or other immune responses unrelated to AD.
These results demonstrate that unsupervised analyses can iden-
tify groups of genes not only with shared biological functions, but
also showing significant correlation to a pathological measure of
disease progression and clinical phenotype in AD.

The red module, which was the only module whose ME cor-
related positively with AD progression (Fig. 1b), was not readily
characterized using EASE. Because this module was relatively
small, we decided to perform more direct assessments of gene
interactions. Using Chilibot (Chen and Sharp, 2004), we found
that many of these genes (45 of 165) shared literature co-
occurrences (supplemental Fig. 1, available at www.jneurosci.org
as supplemental material), suggesting that underlying structure
may exist in this module that was not identified using EASE. To
provide added confidence, we used the more powerful IPA (In-
genuity Systems), which identified a significant number of genes
involved in the mitogen-activated protein kinase kinase kinase
(MAPKKK) cascade ( p � 10�4). Similarly, using WebGestalt
(Zhang et al., 2005), we found a large number of genes in this
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module related to MAPK signaling ( p �
0.01). Inspection of this module found
more uncharacterized genes than expected
by chance ( p � 0.05), suggesting that
genes within this module would make in-
teresting candidate genes for follow up
studies, because many of the genes charac-
terize hypothetical proteins that have not
been previously associated with AD.

Identification of key hub genes in
AD hippocampus
Evidence suggests that a gene’s network
position has significant functional impli-
cations, with more centralized genes in the
network (“hub genes” or “hubs”) more
likely to be vital to proper cellular function
than peripheral genes (nodes). For exam-
ple, hubs have previously been shown to
play important roles in yeast protein net-
works (Jeong et al., 2001) and in glioblas-
toma gene networks (Horvath et al., 2006),
where hubs have been shown to be thera-
peutic targets. Network depictions for the
AD study were created by graphing the top
250 gene– gene interactions based on TO,
defining a hub as any gene involved in at
least 15 of the these interactions (for se-
lected network depictions, see Fig. 3). The
brown, “mitochondrial” module has three
hub genes transcribing mitochondrial
membrane proteins involved in ion trans-
port (VDAC1, VDAC3, and ATP5F1) (Fig.
3a). At least two hub genes in both the pink
(WDR7 and SYNJ1) and purple (STXBP1
and SNAP91) “synaptic” modules are di-
rectly involved in synaptic vesicle fusion
and endocytosis (Fig. 3b,c). Other hub
genes within these modules are also likely
to play roles in synaptic transmission:
CACNB2 is a subunit of voltage-
dependent calcium channels, whereas
GLRB is a subunit of the glycine receptor, a
neurotransmitter-gated ion channel. All of
these hub genes are present in modules
that are significantly correlated with
MMSE score (supplemental Table 2, avail-
able at www.jneurosci.org as supplemental
material), likely reflecting mitochondrial
dysfunction and synaptic loss, which are
known consequences of AD (Arendt,
2000; Beal, 2005). Finally, the central posi-
tions of several unknown genes within the
red module (for example, FLJ14346 and
LOC152719) (Fig. 3d), suggest that these
genes may play important roles in cell sig-
naling pathways such as the MAPKKK cas-
cade, or in other unknown processes up-
regulated with AD progression, a result
that would never have been uncovered
using traditional microarray analysis
methods.

Figure 1. Clustering by topological overlap reveals modules of genes that are characterized by distinct expression patterns. A,
Top trace, Cluster dendrogram of genes in the unsupervised AD study groups genes into distinct modules. The y-axis corresponds
to distance determined by the extent of topological overlap (1-TO). Dynamic tree cutting was used to identify the most parsimo-
nious module definitions (Materials and Methods), generally dividing modules at significant branch points in the dendrogram.
Middle trace, The genes in each of the 12 modules are color-coded. Bottom trace, Heat maps corresponding to the correlation
between each ME and both MMSE score and NFT burden. The color scale bar to the right of the bottom trace represents the Pearson
correlation ranging from �1 (green) to 1 (red). B, MMSE score (x-axis) plotted vs module eigengene (y-axis) for all nine modules
that are significantly correlated with MMSE score. Each point represents a single subject and the line is the line of best fit
determined by linear regression across subjects. Only the red module shows negative correlation, indicating an increase in gene
expression with AD.
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Comparative network analysis of AD and aging studies
The previous unsupervised analysis did not use knowledge of
sample characteristics or disease pathophysiology, and therefore
provided an unbiased view of transcriptome organization in AD.
However, using a supervised analysis, we provide a complemen-
tary view in which additional phenotypic information ensures
that a more inclusive set of condition-related genes is used to
construct the network. Here, we filtered genes to include those
most correlated with MMSE score and NFT burden, as well as
including genes that differ significantly in expression between
control subjects and any AD group, so as to enrich our analysis
with genes related to broad aspects of disease progression (Braak
and Braak, 1991; Mouton et al., 1998; Giannakopoulos et al.,

2003), allowing direct comparison to other data sets. In effect, by
using supervised analyses we can improve our signal by filtering
out genes that are not directly correlated with the pathological
progression of AD.

From this analysis, we identified five large gene coexpression
modules (Fig. 4a, top two traces), all showing significant correla-
tion with AD as measured by NFT score (purple), MMSE score
(blue), or both (brown, light blue, and yellow). The blue and light
blue modules show decreased expression with AD progression
and the remaining modules consist of genes whose expression is
increasing (Fig. 4a, bottom trace, supplemental Table 2, available
at www.jneurosci.org as supplemental material). Furthermore,
all five modules in this analysis show significant gene overlap with
the modules identified in the unsupervised analysis (supplemen-
tal Table 3, available at www.jneurosci.org as supplemental ma-
terial), demonstrating that both network analyses group genes by
function in a robust manner. For example, all five modules in the
“synaptic group” show �20% overlap (four showing �50%
overlap) with the blue module in the supervised analysis, suggest-
ing that the new blue module from the supervised analysis is a
synaptic module. Similar overlap can be found between three
unsupervised modules in the “metabolic group” and the light
blue supervised module, which has significant EASE categories
associated with energy metabolism, ion transport, and mito-
chondria. Thus, regardless of the method used to select genes,
modules corresponding both to the mitochondrion and to syn-
aptic function show decreased expression with AD progression,
further suggesting that these processes are disrupted in AD. Fur-
thermore, use of a supervised analysis, where all genes are corre-
lated with AD progression and all samples are age-matched, al-
lows us to compare transcriptional patterns with a disease-free
study of aging, because in both cases we know that the genes
selected are related to progression of the relevant process.

To approach the question of which aspects of gene expression
in AD overlap with normal aging, or whether AD is essentially a
unique process, we compared the supervised AD network to a
supervised aging study of comparable size and design (Lu et al.,
2004). Because the point of this analysis was to compare normal
aging with AD, not to characterize normal aging in isolation, an
unsupervised aging analysis was not necessary. Unfortunately,
two precisely matched data sets with appropriate clinical and
pathological data were not available, so we compared data from
the only two studies with high quality, publicly available data: the
AD study above and a study of normal aging in the frontal lobes of
disease-free individuals between the ages of 26 and 106 (Lu et al.,
2004). To our knowledge, this aging study is the only one of its
type; thus, we could not match brain regions with the AD study.
Despite the different brain regions in the two studies, by limiting
our analysis to only those genes correlated with AD or aging, our
results would identify general cellular processes in common be-
tween AD and normal aging should they exist, rather than region-
specific changes. Furthermore, in both studies, progression of the
key aspects of the phenotype (MMSE score age or NFT burden for
AD; for normal aging) could be directly correlated with expres-
sion for all genes. Such a correlation with essential metrics of
phenotype progression was essential for interpretation of over-
lapping processes identified in this analysis. However, we cannot
separate true biological differences in AD and aging from techni-
cal confounding factors, and therefore it is not possible to obtain
firm conclusions about distinctions between AD and aging gene
expression in this analysis.

After selecting probe sets correlated with age ( p � 0.05), we
identified three modules of highly coexpressed genes (Fig. 4b, top

Table 1. Top EASE category associated with each module

Module Gene category EASE score

Blue Metal ion transport (glycoprotein) 1.06 � 10�5

Magenta Transmission of nerve impulse 8.98 � 10�5

Pink Synaptic transmission 2.03 � 10�5

Purple Synaptic transmission 3.46 � 10�5

Green yellow Ion transport (calcium transport) 3.61 � 10�4

Brown Mitochondrion 7.96 � 10�23

Orange RNA processing 4.24 � 10�3

Red Transferase (oncogenesis) 3.61 � 10�2

TurquoiseI Intracellular transport (cytoskeleton) 7.58 � 10�4

Yellow Antigen processing (ribosome) 4.79 � 10�5

Black Heat shock protein activity 1.41 � 10�24

Tan Myelin (plasma membrane) 5.69 � 10�5

EASE categories include GO, KEGG, and SwissProt categories. For some modules, the second most significant EASE
category is included in parentheses. p values in bold are significant (p � 0.05) after accounting for multiple com-
parisons. At least one of the presented EASE categories for each module contains 10 or more genes, in an attempt to
provide an overall categorization of the modules rather than characterizing small subsets of the modules.

Figure 2. Multidimensional scaling (MDS) plot of top two PCs of each module reveals clear
functional groupings. The first two PCs of each module in the unsupervised AD analysis, PC1
(x-axis) and PC2 (y-axis), were plotted against one another as a quantitative measure of module
similarity, using the same scaling for both axes. Each colored point corresponds to a module
presented in Figure 1, using the same color depiction. The modules cluster into four distinct
groups that can be functionally annotated using the EASE categories from Table 1, resulting in
the following descriptive group titles: the “synaptic” group (blue, magenta, pink, purple, green
yellow), the “metabolic” group (brown, green, turquoise, red), and the “immune response”
group (yellow, black). The first PC of each module in the “synaptic” and “metabolic” groups
correlates with MMSE score, whereas the first PC of the red module is also correlated with NFT
burden.
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two traces), two of which included genes with expression pre-
dominately increasing with age, the third containing mostly
genes decreasing in expression with age (Fig. 4b, bottom trace).
As with the AD study, each of these modules was comprised of
genes involved in related biological processes. For example, the
blue module, which contains genes downregulated with aging,
has significant EASE categories associated with nucleotide bind-
ing, signal transduction, and metabolism (supplemental Table 4,
available at www.jneurosci.org as supplemental material).

To determine whether similar processes are shared between
AD and aging, we compared the genes in each module between
the two networks. Strikingly, we observed that three module pairs
had significantly more overlapping genes than expected by
chance (Fig. 5, left column). Furthermore, two of these module
pairs, the blue AD and aging modules and the light blue AD and
the blue aging modules, contained overlapping GO biological
process categories in addition to specific genes (Fig. 5, right).
Finally, among the 328 genes that were placed in modules in both
analyses, eight genes ( p � 0.08) were identified as hub genes (kin

� 0.6) in both analyses, seven of which fell into the three over-
lapping modules pairs, again indicating similar processes in AD
and aging (Table 2). In short, whether measuring by number of
genes, GO category, or number of hub genes, the blue (“synap-
tic”) and light blue (“mitochondrial”) modules in the supervised
AD analysis significantly overlap with the blue aging module.

Several of these hub genes have known functions that suggest
plausible connections between AD and normal aging. For exam-
ple, cyclin-dependent kinase 5 (CDK5) is one of the major tau
kinases, and accumulation of pathologically phosphorylated tau

is a hallmark of AD (Geschwind, 2003;
Cruz and Tsai, 2004). Another potential
AD- and aging-related gene is YWHAZ
(14.3.3 �), one of the most highly con-
nected genes in both studies (supplemen-
tal Fig. 2, available at www.jneurosci.org as
supplemental material). YWHAZ is a
member of the highly conserved family of
14.3.3 genes involved in cell signaling, reg-
ulation of cell cycle progression, cytoskel-
etal structure, and transcription (Aitken,
2006), making up �1% of the cytosolic
protein content in the brain (Arendt,
2000). In both aging and AD, decreased
expression of this key linker gene was ob-
served. All overlapping genes in these
modules, their intramodular connectivi-
ties, and their correlations to phenotype
are included in supplemental Table 5
(available at www.jneurosci.org as supple-
mental material).

Local network analyses of
AD-related genes
Next, we compared the local networks of
known AD genes in the AD study with
their local networks in the aging study us-
ing MultiTOM (Materials and Methods)
(Li and Horvath, 2007), which constructs
modules by starting with a seed gene and
recursively adding the next gene with the
highest TO to the current module. Prese-
nilin 1 (PSEN1) is a hub gene in its local
network of 60 genes in the AD study, but is

not highly connected with its nearest 60 neighbors in the aging
study, suggesting that PSEN1 function in CA1 during AD may be
different from PSEN1 function in the prefrontal cortex during
normal aging (Fig. 6). Although this effect may reflect differences
in brain regions, microarrays, or AD progression, a changed role
for PSEN1 in the AD network is consistent with its established
role in the disease. Interestingly, the organization and composi-
tion of the local network involving PSEN1 is similar in AD and
aging. Autotaxin (ENPP2) is a hub gene in both local networks,
and five other genes are also observed in the local network of
PSEN1 in both studies (CD9, FRMD4B, GPR37, LIPA, and
ZNF536), constituting significantly higher overlap than expected
by chance ( p � 10�8). These local networks are likely related to
myelination processes, as PSEN1 is highly coexpressed with ca-
nonical oligodendrocyte markers, including myelin associated
glycoprotein (MAG), myelin oligodendrocyte glycoprotein
(MOG) and transferrin (TF) in the AD study, and plasmolipin
(PLLP) and myelin proteolipid protein (PLP1) in the aging study
(Fig. 6). As additional evidence that these overlapping networks
are myelin-related, in a core list of 50 “oligodendrocyte-related
genes” compiled in our lab using multiple human brain data sets
(M. C. Oldham and J. A. Miller, unpublished observations), 20
overlapped with the local module of PSEN1 in AD ( p � 10�36),
whereas 18 overlapped with the aging PSEN1 module ( p �
10�26). These results provide a new set of evidence supporting
the hypothesis that demyelination and oligodendrocyte dysfunc-
tion may play a role in AD progression (Braak and Braak, 1991;
Bartzokis, 2004).

Figure 3. Network depictions of selected modules allow visualization of intramodular connections and hub genes. A, The
brown module contains a significant cohort of mitochondrial genes (p � 10�22), including three mitochondrial membrane
proteins as hubs (VDAC1, VDAC3, and ATP5F1). B, C, Both the pink (B) and purple (C) modules contain genes primarily related to
synaptic transmission, including four hub genes, WDR7, SYNJ1, STXBP1, and SNAP91. D, The red module contains hubs of largely
unknown function, but that are connected with genes involved in important signaling pathways, such as the MAP kinase cascade.
For each network depiction, orange lines indicate positively correlated genes, whereas black lines indicate negatively correlated
genes. Large, labeled nodes (genes) represent hub genes with at least 15 connections of the 250 displayed in each plot. The length
of each line and the position of each node were arbitrarily chosen by VisANT to highlight network structure.
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Comparative gene expression analysis of AD and aging genes
We also performed a comparative analysis between AD and aging
that follows the traditional approach of creating lists of genes that
are differentially expressed between two groups. In this case,
comparing multiple phenotypes allowed for the statistical analy-
sis of gene overlap between the two studies, regardless of the
microarray platforms used. Of the 4826 genes in common be-
tween studies, 2010 were significantly correlated with AD pro-
gression (Materials and Methods) (902 increased, 1108 de-
creased), whereas 1221 were significantly correlated with aging
(738 increased, 483 decreased). Because the samples in the AD
study were age matched, any gene expression changes in the AD
study were caused by changes above and beyond normal aging.
Not only did we find significantly more overlapping genes be-
tween the two studies than expected by chance (558 vs 508; p �
4 � 10�4) (for a list of all overlapping genes, see supplemental
Table 6, available at www.jneurosci.org as supplemental mate-
rial), but also more genes than expected showed parallel expres-
sion changes with advancing age and dementia (Fig. 7) ( p �
10�22). Likewise, significantly fewer genes than expected
changed in opposite directions ( p � 10�15). GO and IPA suggest

that genes upregulated with both AD and aging are related to
transcription and cell death, whereas genes downregulated with
both AD and aging are involved in neurotransmission and signal-
ing pathways (supplemental Table 6, available at www.
jneurosci.org as supplemental material), consistent with previous
data (Vernadakis, 1985; Arendt, 2004) and with our network
analyses.

These results become even more impressive when only the
genes in overlapping modules between the supervised AD and
aging studies are considered (Fig. 5, supplemental Table 5, avail-
able at www.jneurosci.org as supplemental material); of 160 such
genes, all but three (98%) show parallel expression changes with
advancing age and dementia, and only one of these is negatively
correlated with its respective ME. Thus, traditional differential
expression analyses provide support that similar transcriptional
changes occur in AD and normal aging; however, WGCNA orga-
nizes this information into a framework that reflects underlying
biological relationships (Horvath et al., 2006), allowing biologi-
cally relevant changes to be partially separated from changes at-
tributable to inherent variability. Together, these analyses lend
support to the idea that several processes known to occur in both
normal aging and AD (including mitochondrial and synaptic
dysfunction and cell death) result in similar transcriptional
changes and thus may have similar underlying mechanisms.

Discussion
Moving from gene lists to function remains a challenge in most
microarray studies, especially when the focus is on gene-by-gene
analysis of differential expression, which relies on known biolog-
ical categorizations such as GO to provide notions of biological
structure. Network analysis moves beyond single gene investiga-
tion to provide a systems level understanding of the relationships
between members of a network (Ravasz et al., 2002; Barabasi and
Oltvai, 2004). WGCNA in particular provides a framework based
on the underlying transcriptome organization measured in a
given study, and allows identification of hub genes that play cen-
tral roles in the biological system in question (Horvath et al.,
2006; Oldham et al., 2006). There is increasing evidence linking
gene and protein coexpression to functional relationships. For
example, a previous meta-study of 60 diverse data sets across
many human tissues found that many genes share similar coex-
pression patterns in multiple data sets, and that these coexpressed
genes tend to have overlapping GO terms (Lee et al., 2004). Sim-
ilar results have been found in studies of cancer tissue (Mischel et
al., 2004; Horvath et al., 2006), yeast protein networks (Jeong et
al., 2001), and Escherichia coli (Ravasz et al., 2002).

Several lines of evidence suggest that the above networks are
biologically significant. First, WGCNA sorts variable genes by
biological or molecular function, delineating genes into modules
with highly significant and specific EASE categorizations (Table
1), many of them correlated with AD progression (Fig. 1). It is
reassuring that many of the resulting EASE categorizations, such
as synaptic function, are processes specific to the CNS, because
we would expect modules to be enriched for such genes. How-
ever, the glial or neuronal specificity of these genes alone would
not account for the fact that expression within these modules is
strongly related to both progression of AD and aging. Second,
hub genes from many modules are key players in the biological
processes suggested by EASE. For example, VDAC1, a hub in the
brown (mitochondrial) unsupervised AD module (Fig. 3a), is an
important mitochondrial membrane protein involved in ATP
regulation and apoptosis that has isoforms known to show de-
creased expression in the temporal lobe of AD patients (Yoo et al.,

Figure 4. Direct comparison of AD and aging by supervised network analysis. A, B, Cluster
dendrogram of genes corresponds to the AD gene expression network (A, top trace) and to the
aging gene expression network (B, top trace). The y-axis corresponds to topological distance
(1-TO). A height cutoff was used to characterize modules to allow for a large number of genes
per module. Middle traces, The modules in each study are color-coded such that modules with
significant overlap between studies (A, AD; B, aging) share a module color. Bottom traces, Heat
maps corresponding to the correlation between each ME and the relevant phenotypic measures
[MMSE score and NFT burden in the AD study (A) and age in the aging study (B)]. The color scale
bar to the right of the bottom trace represents the Pearson correlation ranging from�1 (green)
to 1 (red).
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2001). Finally, multiple network modules are conserved between
AD and aging, including the mitochondrial and synaptic mod-
ules from Figure 5, and the PSEN1 local networks (Fig. 6), which
contain numerous canonical myelin-related genes.

Gene discovery: identification of hub genes as candidate
AD-related genes
Determining whether the high connectivities of hubs in this study
are attributable to a functional role of these genes in disrupting
essential cellular processes, or whether they instead mark or-
ganelle dysfunction and neuronal loss induced through other
means, will require further study. In either case, hubs of modules
correlated with AD progression play key roles in processes dis-
rupted in AD, and understanding the function of such genes may
lead to a better understanding of AD progression. For example,
the role of YWHAZ, an abundant signaling protein involved in
many essential cellular processes (Aitken, 2006) that shows high
correlations to both AD and aging (Table 2, supplemental Fig. 2,
available at www.jneurosci.org as supplemental material) war-
rants follow up study. This network analysis also identified CDK5
as a reproducible hub in both data sets. CDK5/p25 is known to
participate in the pathological phosphorylation of tau (Geschwind,
2003) and cause neurodegeneration when overexpressed in mice
(Cruz et al., 2003). Furthermore, emerging evidence suggests that
CDK5/p25 dysregulation may also lead to aberrant amyloid pre-
cursor protein (APP) processing and accumulation of forebrain
�-amyloid (Cruz et al., 2006). These data strongly suggest that
this pathway may be crucial for AD pathophysiology, providing a
potential leverage point for understanding the role of environ-
mental and other genetic factors related to tau phosphorylation
in the transition between normal aging and AD.

Neurodegeneration of CA1 is another hallmark pathology of
AD. Thus, neuronally expressed genes, such as synaptic markers,
decreasing in expression with advancing AD could be partially
explained by neuronal loss. It is less likely that such changes are
directly responsible for genes positively correlated with AD.

Thus, the over-representation of unchar-
acterized genes, and especially hubs, in the
unsupervised red module is particularly
interesting (Fig. 3d). This module likely
represents distinct biological processes,
given the large number of genes with
shared literature co-occurrences (supple-
mental Fig. 1, available at www.jneuro-
sci.org as supplemental material), as well
as the over-representation of MAPK sig-
naling genes (see Results). Furthermore,
this module falls within the metabolic
group, suggesting that the unknown hubs
in this module (LOC152719, FLJ14346,
and FLJ12151) may play important roles in
processes leading to or caused by mito-
chondrial and metabolic dysfunction.

PSEN1 module suggests a role for
oligodendrocyte dysfunction in AD
Mutations in the presenilins account for
over half of the early onset familial AD
cases. PSEN1 is one component of the
gamma secretase complex, which cleaves
APP, preventing buildup of toxic moieties
of �-amyloid peptide (Borchelt et al.,
1996; Cai et al., 2003). Of all the genes in-

volved in APP cleavage or �-amyloid production in the AD study,
only APBB2, an APP-binding protein involved in cholesterol me-
tabolism (Carter, 2007), was a member of the PSEN1 coexpres-
sion network, suggesting multiple roles of PSEN1 in the adult
brain. The coexpression of PSEN1 with known myelin-associated
genes in both studies, and its high connectivity in the AD study,
suggests that PSEN1 may play a role in oligodendrocyte dysfunc-
tion or demyelination in AD. Pak et al. (2003) found that oligo-
dendrocytes in PSEN1 mutant knock-in mice were more prone to
damage by demyelinating agents and death by glutamate and
�-amyloid toxicity. These results fit the hypothesis that AD pro-
gression follows a trajectory opposite in time to cortical myelina-
tion (Braak and Braak, 1996), because the later-made oligoden-
drocytes progressively myelinate a greater number of axonal
segments, making them more vulnerable to AD risk factors such
as head injury and high cholesterol (Bartzokis, 2004).

Mitochondria and synaptic dysfunction in AD
The unsupervised network analysis of AD provides an interesting
perspective on mitochondrial and synaptic dysfunction. Because
both mitochondria and synapses fail with increasing age and dis-
ease progression, and because oxidative damage is one of the
earliest pathological changes seen in AD (Nunomura et al., 2001),
it has been suggested that mitochondrial dysfunction is the un-
derlying cause for disease pathology (Beal, 2005; Lin and Beal,
2006). Although the expression profiles for the mitochondrial
and synaptic modules look relatively similar, they can clearly be
separated by their PCs (Fig. 2, the brown point falls in the “met-
abolic group,” not the “synaptic group”). This separation sug-
gests that mitochondrial and synaptic genes are likely involved in
distinct, yet related processes. Such results cannot determine
causal relationships, yet the idea that mitochondrial dysfunction
may in part lead to neuroplasticity failure, as suggested by Beal et
al. (Beal, 2005; Lin and Beal, 2006), remains intriguing.

Figure 5. Modules from AD analysis overlap significantly with modules from aging analysis, as measured by both gene number
and gene ontology categories. A, Blue AD and blue aging modules. B, Light blue AD and blue aging modules. C, Brown AD and
brown aging modules. Left trace, Number of genes overlapping between modules in the AD and aging studies. *p�0.001; **p�
10�9. p values were obtained using a hypergeometric distribution. Right trace, Top GO biological process categories for overlap-
ping modules in the two studies. Italicized categories are GO molecular function. p values in bold are significant ( p � 0.05) after
accounting for multiple comparisons. Because there were no GO categories significant in both brown modules, categories with
nearly significant p values in both AD and aging are included.
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Common features shared between AD and aging
A fundamental question in both AD and aging research is
whether AD is an extreme form of aging, or whether it is an
entirely distinct process (Finch and Cohen, 1997; Drachman,
2006; Keller, 2006; Pereira et al., 2007). Because our data sets
involve distinct individuals, microarray platforms, and brain re-
gions, it is unclear which network differences identified between

studies are attributable to these potential confounders. These
same issues, however, make any similarities between the studies
even more surprising, given the generally poor repeatability of
microarray experiments. Even in experimental replications, it is
relatively uncommon to find lists of differentially expressed genes
with significant overlap between microarray studies (Kuo et al.,
2002). For example, of the 29 differentially expressed genes iden-
tified in a similar, older study of AD in CA1 (Colangelo et al.,
2002) also present in the Blalock et al. (2004) AD study, only eight
correlated with MMSE or NFT, and six of these genes changed in
opposite directions between the studies. Thus, our current find-
ing of highly significant overlap between two entirely different
conditions is remarkable, and likely biologically meaningful.

Our analysis uncovered evidence of significant overlap be-
tween AD and aging at a molecular level, identifying core biolog-
ical processes and genes they share. Because samples from the AD
study were taken from age-matched subjects at varying states of
cognitive decline (Blalock et al., 2004), all variable genes repre-
sent genes upregulated or downregulated in AD separate from
what would be seen in normal aging. For example, the downregu-
lation of synapse-related genes in both studies suggests that syn-
aptic transmission is disrupted with normal aging, and then fur-
ther disrupted with AD. Not only do specific genes show parallel
expression changes in AD and aging, but many also cluster into
modules within a transcriptional coexpression network (Fig. 5),
with shared GO categories generally related to synaptic and mi-

Table 2. Hub genes common to both AD and aging

AD Aging

Gene symbol Probe set Assay p value Module Kin Probe set p value Module Kin Gene description

ATP5A1 213738_s_at MMSE 4.17 � 10�2 Light blue 0.67 40096_at 7.44 � 10�5 Blue 0.91 ATP synthase alpha chain, mitochondrial
ATP6V1G2 214762_at ANOVA 1.52 � 10�3 Light blue 0.85 33033_at 1.50 � 10�4 Blue 0.64 Vacuolar ATP synthase subunit G 2
RAB6A 210406_s_at MMSE 3.05 � 10�2 Light blue 0.76 622_at 1.58 � 10�4 Blue 0.86 RAB6A, member RAS oncogene family
YWHAZ 200638_s_at MMSE 3.44 � 10�3 Light blue 0.97 34642_at 1.68 � 10�6 Blue 0.96 14-3-3 protein zeta/delta
CDK5 204247_s_at MMSE 3.13 � 10�3 Blue 0.63 1206_at 2.28 � 10�4 Blue 0.64 Cyclin-dependent kinase 5
PRKCB1 207957_s_at ANOVA 2.88 � 10�4 Blue 0.71 1217_g_at 1.66 � 10�5 Blue 0.77 Protein kinase C, beta 1
DICER1 213229_at CvsM 1.78 � 10�2 Brown 0.75 38764_at 1.33 � 10�2 Brown 0.64 Dicer1, Dcr-1 homolog (Drosophila)
LARP4 212714_at NFT 6.72 � 10�3 Purple 0.64 35180_at 2.72 � 10�2 Brown 0.73 La ribonucleoprotein domain family member 4

These genes are highly connected in each data set and are highly correlated with the respective phenotype of aging or AD progression; both DICER1 and LARP4 increase expression with increasing AD progression and aging, whereas all the
other hubs decrease expression with both phenotypes. The method of measuring probe set significance in AD that led to the lowest p value is presented in the AD assay column (with its associated p value). The aging p value represents the
probe set’s correlation with age. For both studies, kin represents the intramodular connectivity, with kin � 0.6 considered significant. In the CvsM assay, the control and moderate AD samples were compared using a t test.

Figure 6. PSEN1 modules in AD and aging. A, B, VisANT was used to create network depic-
tions as in Figure 3 for the AD network (A), where PSEN1 is a hub, and aging network (B), where
PSEN1 is not a hub. The local networks of PSEN1 are similar in AD and aging, however, as seven
genes (including the hubs ENPP2 and LIPA) overlap between both PSEN1 local networks (hyper-
geometric probability; p � 10 �8). Both hub genes (large nodes) and canonical oligodendro-
cyte genes are labeled, and all lines represent positive gene– gene correlations. As with Figure
3, node positions and line lengths are chosen to highlight network structure and do not have any
biological meaning.

Figure 7. Overlapping genes in AD and aging show parallel changes. Among genes with
probe sets that are present in both studies, there are more genes significantly correlated with
both AD and aging (�48% of possible overlapping genes) than expected by chance (590 vs 526;
p�4�10 �4), and most of these genes increase or decrease with both AD and aging. Both the
over-representation of genes with parallel changes ( p � 10 �22) and the under-
representation of genes with opposite changes ( p � 10 �15) are highly significant. p values
were obtained using a hypergeometric distribution (for a list of these genes, see supplemental
Table 6, available at www.jneurosci.org as supplemental material).
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tochondrial function. These data support the notion that AD and
aging share common pathophysiological processes. Given these
results, a comprehensive analysis of both conditions in tandem,
for example using the same tissues and microarray platforms
across both age and AD progression, would be quite powerful.
Such direct comparison would complement these analyses, per-
mitting quantitative assessment of biological differences, as well
as the similarities, between aging and AD.
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