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Branch-Specific Plasticity Enables Self-Organization of
Nonlinear Computation in Single Neurons
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It has been conjectured that nonlinear processing in dendritic branches endows individual neurons with the capability to perform
complex computational operations that are needed to solve for example the binding problem. However, it is not clear how single neurons
could acquire such functionality in a self-organized manner, because most theoretical studies of synaptic plasticity and learning concen-
trate on neuron models without nonlinear dendritic properties. In the meantime, a complex picture of information processing with
dendritic spikes and a variety of plasticity mechanisms in single neurons has emerged from experiments. In particular, new experimental
data on dendritic branch strength potentiation in rat hippocampus have not yet been incorporated into such models. In this article, we
investigate how experimentally observed plasticity mechanisms, such as depolarization-dependent spike-timing-dependent plasticity
and branch-strength potentiation, could be integrated to self-organize nonlinear neural computations with dendritic spikes. We provide
a mathematical proof that, in a simplified setup, these plasticity mechanisms induce a competition between dendritic branches, a novel
concept in the analysis of single neuron adaptivity. We show via computer simulations that such dendritic competition enables a single
neuron to become member of several neuronal ensembles and to acquire nonlinear computational capabilities, such as the capability to
bind multiple input features. Hence, our results suggest that nonlinear neural computation may self-organize in single neurons through
the interaction of local synaptic and dendritic plasticity mechanisms.

Introduction
Dendritic processing in pyramidal neurons is highly nonlinear,
exhibiting several types of dendritic spikes (Losonczy and Magee,
2006; Sjöström et al., 2008; Larkum et al., 2009). It has been
hypothesized that such dendritic nonlinearities enhance process-
ing capabilities at the single-neuron level (Mel, 1994; Häusser
and Mel, 2003) that could be important for the binding of object
features, for the participation of single neurons in several ensem-
bles, for various memory processes (Morita, 2008; Wu and Mel,
2009), and for sequence detection (Branco et al., 2010). However,
the computational advantage of nonlinear branches for the or-
ganism is unclear, because similar functional properties could be
achieved by networks of neurons without dendritic nonlineari-
ties. In this article, we investigate one striking advantage of non-
linear branch processing, namely that it enables single neurons to
acquire nonlinear functionality with local plasticity mechanisms.
Thus, the independence of any one dendritic branch results in the
entire dendritic tree behaving like a network, and critically, any
one branch is able to optimize responsiveness to a specific input

through plasticity mechanisms that take aspects of the behavior
of the whole dendritic arbor into account.

A rich and diverse set of plasticity mechanisms has been iden-
tified in the pyramidal neuron (Sjöström et al., 2008). Spike-
timing-dependent plasticity (STDP) depends on the precise
timing of presynaptic and postsynaptic spikes (Markram et al.,
1997; Bi and Poo, 1998). However, pairing frequency and local
dendritic depolarization also influence synaptic plasticity (Artola
et al., 1990; Ngezahayo et al., 2000; Sjöström et al., 2001). Recent
experimental data (Losonczy et al., 2008) also show that the cou-
pling between dendritic branches and the soma (via dendritic
spikes) is adapted through a mechanism called “branch-strength
potentiation” (BSP), and evidence exists that BSP is relevant in
vivo (Makara et al., 2009). Finally, synaptic and dendritic plastic-
ity also depend on neuromodulatory input (Reynolds and Wick-
ens, 2002; Gu, 2003; Dringenberg et al., 2007; Losonczy et al.,
2008).

It is unclear how these plasticity mechanisms interact to
enable robust learning and self-organization in neurons and
networks. In this article, we show that synaptic plasticity mech-
anisms that depend on membrane depolarization enable a neu-
ron model with nonlinear dendritic integration to acquire
complex functionality in a self-organized manner. These self-
organization capabilities are made possible by an emerging com-
petition between branches for synaptic activation. Specifically,
we show in a theoretical analysis of a simplified model that the
plasticity mechanisms give rise to a max-operation such that only
the most strongly activated dendritic branches specialize to a
given input pattern. Thus, learning in our model induces a weight
distribution in which stored patterns create clusters of strong

Received Oct. 29, 2010; revised May 26, 2011; accepted May 27, 2011.
Author contributions: R.L. and W.M. designed research; R.L. and W.M. performed research; R.L. and W.M. ana-

lyzed data; R.L. and W.M. wrote the paper.
This work was supported by European Union Projects FP7-243914 (BRAIN-I-NETS) and FP7-216593 (SECO). We
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synapses at individual dendritic branches.
A neuron can in this way self-organize
to solve a binding problem. This self-
organization is possible if the presence of
object features is coded through increased
firing rates of neuronal ensembles or
through increased synchrony in such en-
sembles. BSP can in this context serve as
a mechanism for boosting dendritic re-
sponses to stored patterns, as suggested by
Losonczy et al. (2008), and homeostatically
regulate the effectivity of dendritic spikes.

Materials and Methods
Specific implementation of the neuron
model for computer simulations
In this article, we use a stochastic spiking neu-
ron model with dendritic nonlinearities as il-
lustrated in Figure 1.

Nonlinear summation of EPSPs at dendritic
branches. The local potential bk(t) at a branch k
at time t in our model is constituted by two
components, a passive component pk(t) and an
active component ak(t). The passive compo-
nent pk(t) is given by the linear summation of
incoming postsynaptic potentials:

pk�t� � �
j

wkj �
tkj
� f ��xkj

��t � tkj
� f ��,

(1)

where xkj is the set of spike times of input j to
branch k, and � is the EPSP that results from
one input spike. This means that all EPSPs ar-
riving at a dendritic branch are added up lin-
early and propagated passively. wkj is the synaptic efficacy of a synapse
from input j to branch k. The postsynaptic potential � is modeled by an �
function (for parameters, see Table 2). In addition to the passive compo-
nent pk(t), the membrane potential bk(t) at branch k includes an active
nonlinear component ak(t) of size �0, which is activated whenever pk(t) is
above a threshold � dend:

ak(t) � �0�( pk(t) � � dend), (2)

where � denotes the Heaviside step function. The branch potential bk(t)
is given by the sum of the local synaptic activation pk(t) at the branch and
the additional contribution from the dendritic spike ak(t), leading to
nonlinear branch characteristics as illustrated in Figure 2:

bk(t) � pk(t) � ak(t). (3)

The passive component of the branch potential pk(t) is conducted to the
soma, and its impact on the somatic potential is scaled by an attenuation
factor u passive � 1. The dendritic spike is scaled by a different weighting
factor, the branch strength uk, before it reaches the soma. According to
recent experimental findings, this branch strength can vary dramatically
between branches and is subject to plasticity (Losonczy et al., 2008) (for
the plasticity model used in this study, see below). Thus, the somatic
membrane potential before refractory effects are taken into account is
given by the sum of these weighted components from all branches k:

v�t� � Vrest � �
k � 1

K

upassive pk�t� � ukak�t�, (4)

where Vrest denotes the resting potential of the neuron.
Model for somatic response. The somatic spiking mechanism and reset

behavior of our model is based on the model of Jolivet et al. (2006). To
obtain the somatic membrane voltage Vm of the neuron, relative refrac-

toriness is included by adding a reset kernel 	reset to the membrane
voltage for each action potential. This reset kernel effectively adds a large
negative contribution to the membrane voltage for times after the post-
synaptic spike, which then decays exponentially over time. This can be
described mathematically as follows:

Vm�t� � v�t� � �
t� f ��yt

	reset�t � t� f ��, (5)

where yt denotes the set of output spikes of the neuron up to time t. The
instantaneous firing rate of the neuron at time t is given by an exponential
function of the membrane voltage:


�t� � fout�Vm�t�� � 
oexp�Vm�t� � �

�U �, (6)

where � is the stochastic threshold, �U is the width of the spike trigger
zone, and 
0 is the instantaneous rate at threshold. In other words, the
firing rate of the neuron depends exponentially on its membrane poten-
tial (Fig. 1C). If the membrane potential is clamped to 20 mV above
resting potential, this results in a mean firing rate of 52 Hz, a clamping at
25 mV already results in a mean firing rate of 100 Hz. Because the firing
rate of the model depends only on the difference between the membrane
voltage Vm and the stochastic firing threshold �, we can arbitrarily set the
resting potential to Vrest � 0 mV and the threshold to � � 20 mV (for
other parameter values, see Table 2). Output spikes are generated by a
Poisson process with this instantaneous firing rate. After each spike,
the neuron enters an absolute refractory period of duration trefract during
which no spike can be emitted. This firing mechanism implements a stochas-
tic threshold that has been shown to approximate well the behavior of layer 5
pyramidal neurons of somatosensory cortex of male and female rats with the
parameters used in this article (Jolivet et al., 2006).

Simplified model for theoretical analysis. The model described above
and further elaborated in Results includes a step-like nonlinearity in

Figure 1. Schema of the neuron model with dendritic branches. A, The neuron is schematically illustrated in red. It receives input from
presynaptic neurons (blue spheres), which participate in several neuronal ensembles (indicated by green ellipses). The neuron is composed
of a set of independent branches (horizontal red lines) and a soma (red sphere). Axons of presynaptic neurons (vertical black lines) connect
to the branches via synapses (black dots). Synaptic inputs are weighted by synaptic weights wkj. Dendritic spikes are weighted by branch
strengths uk (red dots). The soma sums the dendritic activations and the weighted dendritic spikes. B, Dendritic nonlinearity. At a certain
local dendritic depolarization, a dendritic spike is initiated, leading to nonlinear dendritic integration. Shown is the modeled somatic
membranevoltageindependenceofthenumberofsynchronously(inatimewindowof10ms)activatedsynapses.ComparewithLosonczy
and Magee (2006, their Fig. 1G). C, Somatic nonlinearity. The neuron fires stochastically with instantaneous firing rate 
(t) that depends
exponentially on the somatic membrane potential Vm(t).
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dendritic branches. This model was used in our simulations; it is, how-
ever, not suited for mathematical analysis. In a simplified model, the
nonlinear dependence of the output bk(t) of branch k is modeled by an
exponential branch nonlinearity,

bk�t� � �0exp�pk�t� � �b

�� �, (7)

and the branch outputs are linearly summed at the somatic site,

Vm�t� � �
k � 1

K

uKbk�t�, (8)

where uk now denotes the branch strength of branch k. In other words, in
the simplified model, the branch voltage depends exponentially on the
summed EPSPs. The membrane voltage at the soma is then given by the
sum of all branch potentials. Reasonable firing behavior of this simplified
model is achieved with parameters �0 � 25 mV, �b � 20 mV, �� � 3 mV.
The advantage of this simplified model is that it allows a thorough anal-
ysis of the weight dynamics.

Plasticity mechanisms
STDP model. We adopt a standard model for STDP (Abbott and Nelson,
2000) in which the change �w of the synaptic weight depends on the firing
time tpre of the presynaptic neuron and the firing time tpost � tpre ��t of the
postsynaptic neuron (Fig. 3). If the presynaptic action potential precedes the
postsynaptic action potential in a time window of a few tens of milliseconds
(�t 	 0), long-term potentiation (LTP) is induced. A reversed sequence of
presynaptic and postsynaptic action potentials leads to long-term depression
(LTD).

Recent experiments showed that STDP also depends on the depolar-
ization level at the local dendritic site (Nevian and Sakmann, 2006;
Sjöström and Häusser, 2006; Larkum and Nevian, 2008). More specifi-
cally, these findings suggest that LTP is preferentially induced at large
local depolarizations. For example, it was shown by Sjöström and
Häusser (2006) that LTD at distal synaptic inputs can be converted to
LTP by either stronger stimulation that recruits more inputs (coopera-
tivity) or strong extracellular input. In the same direction, Sjöström et al.
(2001) showed that low-frequency pre-before-post pairings lead to LTP
only for sufficiently strong EPSPs. Again, LTP could be recovered in their

experiments by strong extracellular stimulation in addition to unitary
EPSPs. Interestingly, this dependence on EPSP size was absent for LTD
induced by post-before-pre pairings. Therefore, the model is extended by
an induction threshold for LTP such that LTP is induced only if the local
branch potential bk(t) exceeds a threshold ��. Furthermore, Sjöström et
al. (2001) showed that LTP depends approximately linearly on pairing
frequency, whereas there is no such dependency of LTD below 40 Hz. In
this study, the presynaptic and postsynaptic firing rates were always co-
varied. The relative contribution of each of these two factors is therefore
unclear. We modeled frequency effects by a linear dependency of LTP on
the estimated presynaptic firing rate 
̂kj�t�:

�wkj�t,�t� � � A� �

̂kj�t�


o
LTP � e��t/���(bk�t� � ��) , if �t 
 0

� A_ � e�t/�_ , if �t � 0,

(9)

where � denotes the Heaviside step function, and 
0
LTP defines the linear

scaling of the frequency dependence of LTP. A� (A�) and �� (��) define
the amount of weight change and the width of the exponential learning
windows for LTP and (LTD), respectively. Summarizing, pre-before-
post spike pairs induce LTP if the branch is sufficiently depolarized. The
amount of LTP depends linearly on the presynaptic firing rate and expo-
nentially on the time difference between the presynaptic and the post-
synaptic spike. A presynaptic spike that follows a postsynaptic action
potential leads to LTD (Fig. 3). Weights were clipped at 0 and a maxi-
mum value wmax. In the simulations, the presynaptic firing rate 
kj was
estimated by a running average over inverse presynaptic interspike inter-
vals and updated at presynaptic spike times tkj

(2), tkj
(3), tkj

(4), … as


̂kj�tkj
� f �� � 0.98
̂kj�tkj

� f�1�� � 0.02 max{5ms, tkj
� f � � tkj

� f�1�}�1

(10)

Figure 2. Nonlinear integration of synaptic input at dendritic branches and branch strength
potentiation. The local potential at a dendritic branch k (gray line) is given by the sum of a
passive component pk(t) and an active component ak(t). The value of the passive component is
given by the linear sum of incoming EPSPs. Summation of EPSPs from many synapses that
receive Poissonian input from active cell ensembles leads to temporal fluctuations of the poten-
tial. The active component models dendritic spikes and is nonzero whenever pk(t) is above a
threshold of 7 mV. Such nonlinear events are visible as sharp increases in the dendritic potential.
The temporal evolution of the corresponding branch strength uk is plotted in black. Dendritic
spikes at the branch induce potentiation of its branch strength.

Figure 3. Principle of feature binding in the neuron model. The neuron and presynaptic neuronal
ensemblesareindicatedasinFigure1.Neuronalensemblescodespecificobjectfeatures,suchascolor,
shape, or movement direction. Neurons of the ensembles yellow and star have strong synaptic con-
nections (the size of black dots indicates the strength of the synaptic connection wkj) to branch 4 of the
neurons. Furthermore, strong synapses connect neurons from ensembles black and disk with branch
6. Thus, branch 4 is strongly depolarized by feature combination yellow star and branch 6 by feature
combination black disk (indicated by symbols left to the branch). Dendritic spikes induced by this
depolarization have a strong impact on the soma as a result of large branch strengths of branches 4
and 6 (the size of red dots indicates the branch strength value uk). Somatic activation is less strong for
a black star or a yellow disk because they partly activate branches 4 and 6.
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with initial value 
̂kj�tkj
�1�� � 10 Hz. The maximum operator in the

denominator was included to avoid temporary large estimates. For times t
between presynaptic spikes, 
̂kj(t) was set to its value at the most recent
presynaptic spike time. This means that effectively, 
̂kj estimates the presyn-
aptic firing rate by averaging over recent inverse interspike intervals.

It is well known that pairing of presynaptic spikes with postsynaptic
depolarization is often sufficient for the induction of LTP, i.e., a postsyn-
aptic somatic spike is not necessary (Kelso et al., 1986; Gustafsson et al.,
1987; Hardie and Spruston, 2009). We model LTP in the absence of
postsynaptic somatic spiking by the following weight dynamics:

d

dt
wkj�t� � 	


̂kj


0
LTP (bk�t� � �)PSPkj�t�, (11)

where 	 is a small learning rate, 
̂kj is an estimate of the presynaptic firing
rate as before, and 
0

LTP defines the linear scaling of the frequency depen-
dence of LTP. PSPkj(t) is a low-pass filtered version of the presynaptic
spike train (i.e., PSPkj�t� � �f ��t � tkj

� f �� where tkj
( f ) denotes the fth

spike time of the presynaptic neurons). The constant � increases learning
speed if branch activations are very small initially but is not crucial for the
results. In other words, each presynaptic spike potentiates the synapse by
an amount that depends linearly on the presynaptic firing rate and the
local branch potential. Because the branch potential bk(t) is the sum of
the local synaptic activation pk(t) and the additional contribution from
the dendritic spike ak(t), synapses can be potentiated in the absence of
dendritic spikes, although potentiation in the presences of a dendritic
spike is substantially stronger. Some experimental data indicate that this
form of plasticity needs dendritic spikes (Golding et al., 2002). Con-
versely, potentiation without dendritic spikes may be more pronounced
in the presence of an increased concentration of ACh (Bröcher et al.,
1992; Auerbach and Segal, 1994; Dringenberg et al., 2007). Also, a fairly
large number of experimental data (Watt and Desai, 2010) support the
existence of mechanisms for the so-called synaptic scaling, i.e., mecha-
nisms that potentiate synapses of neurons whose average firing rate is
very low, thereby bringing them back into a normal firing regimen. A
mechanism of this type is also needed in the context of our model, and
therefore a weak potentiation of synapses without postsynaptic firing or
dendritic spikes is included in Equation 11.

As noted above, the contribution of the presynaptic rate in the re-
ported influence of pairing frequency on STDP is still unclear. We there-
fore performed control simulations in which LTP did not depend on the
presynaptic frequency, i.e., in which weight updates are performed with-

out the factor

̂kj


0
LTP in the learning rules 9 and 11. Removing this factor

changes the learning speed as one side effect. To compensate, we adjusted
the learning rates (see below, Simulation parameters). We report in Re-
sults that simulations with this reduced version of LTP leads to results
quantitatively very similar to those obtained with the rate-dependent
version of LTP.

Branch-strength potentiation. Recent experimental data from hip-
pocampal CA1 pyramidal neurons of male rats (Losonczy et al., 2008;
Makara et al., 2009) shows that the impact of a dendritic spike at branch
k in some dendritic structures on the somatic membrane potential de-
pends on branch strength. We denote the branch strength of a branch k as
uk(t). Furthermore, it was shown that this branch strength is plastic. We
model this plastic behavior of branch strength uk by the following tem-
poral dynamics:

d

dt
uk�t� � 	branch��ak�t��
�b � �uk�t�ak�t� � pk�t���. (12)

Here, 	branch denotes a small learning rate, and �b denotes the target
membrane voltage at the site of spike potentiation. The term �(ak(t))
indicates that a branch spike has appeared. In other words, a change in
the branch strength only appears during branch spikes. The term in
square brackets in the dynamics Equation 12 models a saturation of BSP
at a given local membrane voltage. According to this term, BSP vanishes
when the local potential (uk(t)ak(t) � pk(t)) equals a constant �b and the
branch strength is depressed at a higher local potential. We note that only

potentiation of branch strengths was observed in the study by Losonczy
et al. (2008). Hence, our model for BSP, which leads to depression for
excessive branch potentials, is an extension of the experimentally ob-
served effects. The behavior of Equation 12 is illustrated in Figure 2. One
can see that the branch strength is potentiated during dendritic spikes
and potentiation is weakened as it increases, which illustrates the effect of
the saturation term in Equation 12. Alternatively, one can model satura-
tion simply by clipping uk(t) at some constant upper boundary. This
leads to similar results (see Discussion). Although the branch strength is
plastic and thus depends on time, we will in the following denote it
simply by uk and skip the dependency on time for simplicity.

For additional discussion of the branch-strength dynamics, see Re-
sults. A summary of the plasticity rules in the model is given in Table 1.

Adaptive learning rate. In the intact brain, synaptic plasticity itself is
regulated by activity-dependent mechanisms (Abraham, 2008). In par-
ticular, it is conjectured that the molecular machinery that implements
synaptic plasticity provides a progressive stabilization of changes in the
synapse during the transition from short-term to intermediate-term to
long-term memory storage (Kandel, 2009). Because of the lack of quan-
titative experimental data on this mechanism, we model such progressive
stabilization of synaptic weights by introducing an adaptive learning rate
	kj for each synaptic connection, which starts with initial value 1, and is
multiplied by a constant 	stabilize � 1 each time when the branch poten-
tial bk is above a threshold �stabilize during a postsynaptic spike. The
adaptive learning rate 	kj is set to 0 when it falls below 2% of its initial
value. This is a quite intuitive mechanism that tends to stabilize synaptic
weights at branches that are strongly activated by synaptic input, indicat-
ing that an important synaptic pattern has emerged at the branch. To our
knowledge, this strategy has not been used before in a similar context,
although adaptive learning rates are commonly used in artificial neural
network training. Previous studies on weight stability under STDP-like
synaptic plasticity focused on the retention of memory under random,
i.e., unstructured, stimulation or random weight changes (van Rossum et
al., 2000; Fusi and Abbott, 2007). In our study, input patterns are always
strongly structured with highly correlated input, in terms of either the
input rate or temporally precise spike correlations. Under such condi-
tions, memories are in general quickly erased in these types of models. In
networks of spiking neurons, lateral inhibition can lead to prolonged
retention of weight patterns even during structured ongoing input, indi-
cating that inhibition could act to stabilize synaptic efficacy patterns
(Billings and van Rossum, 2009). However, because stabilization mech-
anisms are not the focus of this work, we only applied the above men-
tioned strategy of an adaptive learning rate that works fine for our
purposes.

Mathematical analysis of neuron adaptation in a rate formulation
Here we analyze plasticity in the simplified model with exponential
branch nonlinearity described by Equations 7 and 8. We show that, in a
mean-field rate approximation, the branch with the highest initial acti-
vation for a given pattern wins the competition and converges to a stable
nonzero branch activation, whereas the activations of other branches

Table 1. Overview of the plasticity model

Synaptic: STDP

Pre–post timing Dendritic depolarization Presynaptic rate Effect

Pre before post Low � No effect
Pre before post High Linear dependence Potentiation
Post before pre � � Depression
Pre Linear dependence Linear dependence Potentiation

Branch strength: BSP

Dendritic spike Dendritic depolarization Presynaptic rate Effect

No * * No effect
Yes Low � Potentiation
Yes High � Saturation/depression

We use STDP for synaptic plasticity and BSP for plasticity of branch strengths. An asterisk denotes that the effect does
not depend on this variable; “Linear dependence” indicates that the amplitude weight change depends linearly on
that variable.
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decay to 0. In this section, we disregard branch strengths, setting them to
1 throughout the analysis. Furthermore, we will only consider the syn-
apses that are activated by the pattern—those with high presynaptic fir-
ing rate—and disregard other synapses for the sake of simplicity. This can
be justified by the frequency dependence of LTP. Because of this depen-
dence, those synapses with low presynaptic activity are subject to weak
LTP only, and their weights will decay quite fast as the postsynaptic rate
increases. As an additional simplifying assumption, we consider weights
without bounds in this analysis, i.e., they are neither clipped at a maximal
weight value nor at 0. This strongly simplifies the analysis in continuous
time.

We first convert the spike-based formulation of our model into a
rate-based formulation. Let tki

( f ) denote the fth firing time of the presyn-
aptic neuron of synapse i at branch k where f � 1, 2, …. We formally
denote the corresponding spike train Ski as a sum of Dirac delta functions
(Gerstner and Kistler, 2002) Ski�t� � �f ��t � tki

� f ��. Denoting the fth
firing time of the postsynaptic neuron as tpost

( f ) for f � 1, 2, …, we can write
the postsynaptic spike train as Spost�t� � �f ��t � tpost

(f) ). The local
voltage at branch k at time t is given by the following:

bk�t� � �0exp��i �
0

�

wkiSki�t � s���s�ds � �b

��
�. (13)

Assuming a large number of inputs, all with the same constant firing rate

 and uncorrelated spike times, we approximate the summed input po-
tential by its mean field:

bk�t� � �0exp�
�i
wki�

0

�

��s�ds � �b

��
�

� �0exp�
wk�
0

�

��s�ds � �b

��
� � �0exp�
wk � �b

�� �, (14)

where wk � �i wki is the summed weight at branch k and, without loss

of generality, we assumed �
0

�
��s�ds � 1. From the plasticity effects

implemented in simulations, we include the minimal set that is essential
for dendritic competition. This set consists of voltage-dependent LTP for
each presynaptic spike as defined in Equation 11 and LTD as defined in
Equation 9 for negative �t. We can thus write the weight change w
ki(t) at
time t as

w
ki�t� � 	




0
LTP �

0

�

Ski�t � s���s��bk�t� � ��ds

� A_Ski�t��
0

�

Spost�t � s�e�
s

�� ds. (15)

The average weight change for the summed weight at branch k—where
the average is taken over realizations of presynaptic and postsynaptic
spike trains—is then

�w
k�t�� � 
2W��bk�t� � �� � 

post�t�W_, (16)

with W� � Nsyn

	


0
LTP
�

0

�
��s�ds � Nsyn

	


0
LTP and W_ � NsynA_�_. Here,

Nsyn is the number of active synapses to the branch (we assume that Nsyn is
equal for all branches). Hence, we arrived at a rate-based description of
weight dynamics for a single pattern presentation.

We assume that, at time t � 0, one branch has higher branch activation
than any other branch. Let k denote the index of the branch with the
largest branch activation at time 0, i.e., bk(0) 	 bj(0) for all j � k,
which implies that wk(0) 	 wj(0) for all j � k. We now show that, for

� �
W_ 
0


W�

, these weight dynamics asymptotically converge to b*,

where b*j � 0 for j � k and b*k 	 0, i.e., lim
t3�

b�t� � b*.

To simplify notation, we will in the following not indicate directly the
dependence of dynamic variables on time; these are bi(t), wi(t), 
 post(t).
First, we note that

b
i � �bi(bi � �) � bi�
post, (17)

with � �

3W�

��
and � �


2W_

��
. We further find that

w
k � w
j � 
2W��bk � bj�. (18)

Observation 1. The local potential at branch k is always greater or equal to
the local potential at any other branch, i.e., bk � bj @t 	 0, j � k (this also
implies wk � wj @t 	 0, j � k).

Proof (sketch). By contradiction, a change of order implies a previous
change of the order of derivatives. This is a contradiction to the fact that
the derivatives are proportional to the branch activations, because they
are ordered at any time before the change.

Observation 2. The local potential at branch k does never fall below a
minimal value bk

min 	 0. More precisely, there exists a bk
min 	 0 and a t* 	

0 such that bk 	 bk
min for all t 	 t*.

Proof. We can bound the weight change at branch k from below:

w
k � 
2W � �bk � �� � 
W_
0exp��i bi � �

�U �

 
2W��bk � �� � 
W_
0exp�Nbk � �

�U �, (19)

where N is the number of branches. Hence, wk

 	 0 independent of other

branch activations if


2W��bk � �� 
 
W_
0exp�Nbk � �

�U �
bk 



0W_


W�

exp�Nbk � �

�U � � �

bk 


0W_


W�
	exp�Nbk � �

�U � � 1
, (20)

for � �

0W_


W�

�
�

�

0. Inequality 20 holds true for bk �

�

N
. Hence,

bk will, independently of other dynamic variables, converge in finite time
to a value above bk

min and stay above bk
min.

Observation 3. The local potential at branch k does never rise above a
maximal value bk

max 	 0. More precisely, there exists a bk
max 	 0 and a t* 	

0 such that bk � bk
max for all t 	 t*.

Proof. We can bound the weight change at branch k from above:

wk

 � 
2W��bk � �� � 
W_
0exp��i bi � �

�U �
� 
2W��bk � �� � 
W_
0exp�bk � �

�U �. (21)

Hence, w
k � 0 independent of other branch activations if


2W��bk � �� � 
W_
0exp�bk � �

�U �
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bk �

0W_


W�

exp�bk � �

�U � � �. (22)

For � �

0W_


W�

�
�

�

0, this condition is fulfilled for all bk 	 bk

max 	

0. Because the exponential grows much faster than the linear function,
such a bk

max can always be found. For reasonable parameters, bk
max is �25

mV. Hence, bk will, independently of other dynamic variables, converge
in finite time to a value below bk

max and stay below bk
max.

In the following we assume without loss of generality that bk
min �

bk(0) � bk
max. Let �kj(t) � wk(t) � wj(t) denote the difference between the

summed weights at branch k and branch j. We show that weights wj for
j � k decay at least linearly with time, i.e.,

wj�t� � wk
max � tCkj � �kj�0� � j � k, (23)

for Ckj � 
2W�bk
min�1 � exp�� �kj�0�

�� ��. We can bound the change

in the weight difference �kj

 (t) by

�
kj�t� � 
2W��bk�t� � bj�t��

� 
2W�bk�t��1 �
bj�t�

bk�t��
� 
2W�bk�t��1 � exp��

�kj�t�

�� ��
� 
2W�bk

min�1 � exp��
�kj�0�

�� ��, (24)

and the validity of Equation 23 follows. This also shows that
lim

t ¡ �
bj(t) � 0 for all j � k. Hence, for all � 	 0 and all j � k, there

exists a t � 	 0 such that bk(t) � bk
min and bj�t� �

�

N � 1
for all t 	 t �.

Consider the dynamics for bk:

b
k � �bk�bk � �� � bk�
0exp��i bi � �

�U
�. (25)

This equation has a fixed point at bk � 0, which is not reached because
bk(t) � bk

min 	 0 for all t and the fixed point bk
* given by the solution to:

b*k �
�

�

0exp��i bi � �

�U � � �. (26)

For � �
�

�

0, the fixed point bk

* defined by Equation 26 is larger or

equal to a fixed point defined by

b*k �
�

�

0 	exp��i bi � �

�U
� � 1
 (27)

and has the same stability properties. Now consider the dynamics after
time t �. The fixed point bk

* defined by Equation 27 is again larger than the
fixed point defined by

bk
� �

�

�

0	 exp�bk

� � � � �

�U � � 1
. (28)

Inspection of the dynamics of the equation b̃k
�
 � �b̃k

��b̃k
� � �� �

b̃k
��
0

postexp�b̃k
� � � � �

�U
� shows that, for sufficiently small �, the fixed

point bk
� is globally stable. In the limit of large t, bk

* converges to
lim

�¡o
bk

� � bk
o. Thus, lim

t¡�
b�t� � b* � �b1

*,. . .,bN
* �T with bj

* � 0 for

j � k and bk
* 	 0.

Simulation parameters
Simulation parameters are listed in Table 2. All simulations were based
on the same parameter sets except for simulations with the correlation-
based coding in which learning rates were adjusted to 	 � 0.002 mV �2

s �1, A� � A� � 0.01, and 	stabilize � 0.995.
We performed control experiments in which LTP was not dependent

on the presynaptic firing rate. In these experiments, learning rates
were adjusted. In the control experiments reported below (see Self-
organization of nonlinear neural computation), if the rate dependency is

Table 2. Parameters for computer simulations

Neuron parameters
� Neuron stochastic threshold 20 mV

0 Neuron firing rate at threshold 52 Hz
�U Width of spike trigger zone 4 mV
trefract Refractory period 2 ms

	reset Reset kernel 	reset�s� � � 10mVe�
s

20ms��s�
Synapse parameters

�(s) EPSP kernel ��s� � 1.3mV
e�
s

20ms � e�
s

0.7ms���s�
wini Initial weight value Uniformly distributed in 
0.0025, 0.0225�
wmax Maximal weight value 0.15 
��

Branch parameters
�0 Dendritic spike amplitude 9 mV
�dend Dendritic spike threshold 7 mV
uini Initial branch strength 0.5 
��
u passive Passive EPSP decay constant 0.8 
��

Plasticity parameters
	 Learning rate, pre-spike LTP 0.004 mV �2 s �1

� Offset for pre-spike LTP 1 mV
A� STDP, LTP factor 0.02 
��
A� STDP, LTD factor 0.01 
��
�� STDP, LTP time constant 16.8 ms
�� STDP, LTD time constant 33.7 ms

0

LTP STDP, rate dependency factor 40 s
�1

�� Threshold for LTP induction 17 mV
	branch Learning rate for BSP 0.25 mV �1 s �1

�b Target potential for BSP 30 mV
�stabilize Threshold for adaptive learn rate 16.5 mV
	stabilize Adaptive learn-rate stabilization factor 0.97 
��
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abolished, synapses from neurons with low rates tend to be more strongly
potentiated. Hence, these weights are on average larger than in experi-
ments with frequency-dependent LTP. This increases the firing rate of
the postsynaptic neuron when a pattern is stored, which in turn leads to
stronger depression of synapses from highly active presynaptic inputs. As
a result, these synapses are not potentiated strongly enough to ensure
robust pattern separation. One possible solution for this problem is to
reduce LTD. In our simulations, we achieved this by reducing the STDP
scaling constants to A� � 0.01 and A� � 0.006 but leaving the learning
rate for LTP without postspikes unchanged at 	 � 0.004 mV �2 s �1. In
the control experiments reported below (see Acquisition of nonlinear
functionality based on synchrony), all inputs have a firing rate of 10 Hz.
Hence, when we ignore the rate-dependent factor, this effectively in-
creases the learning rate. We partially compensated for this increase by
halving the learning rate factors that led to values 	 � 0.001 mV �2 s �1

and A� � A� � 0.005.
The passive EPSP decay constant u passive was chosen to obtain

qualitatively similar behavior as reported previously (Poirazi et al.,
2003; Losonczy and Magee, 2006). Several studies (Williams and Stu-
art, 2002; Nevian et al., 2007), however, report very strong attenua-
tion of the EPSPs in distal as well as basal dendrites toward the soma.
In our simulations, the value of u passive can be varied in a wide range
without a qualitative change of the results. Using, for example, u passive �
0.2 leads to very similar results without any adaptation of other
parameters for most simulations. For the simulations presented be-
low (see Acquisition of nonlinear functionality based on synchrony),
the target voltage �b in Equation 12 has to be increased from 30 to 37
mV such that stronger branches compensate for the smaller passive
component.

For simulations, time was discretized with a discretization time of 0.5
ms. The simulation code was written in C��, and simulations were
performed on a standard UNIX desktop.

Measurement of spike train correlations and generation of
correlated spike trains
To compute correlation coefficients between spike trains for the anal-
ysis shown below (see Acquisition of nonlinear functionality based on
synchrony), spike trains were convolved with a Gaussian kernel with
� � 5 ms, and the correlation coefficient of the resulting time series
were computed.

To produce spike trains with correlation factor cc and frequency 
, we
proceeded as Gütig et al. (2003) with time bin of size �t � 0.5 ms. We
constructed a Poisson spike train Sr with frequency f by assigning a spike
to each bin with probability 
�t. The spike train Sr was used as a template
for the construction of the input spike trains. Each input spike train
was generated by assigning a spike to a bin not in Sr with probability

�t�1 � �cc� and assigning a spike to a bin in Sr with probability

�t�1 � �cc� � �cc.

Results
Nonlinear dendritic responses
According to Losonczy and Magee (2006), radial oblique
branches in CA1 pyramidal neurons act as single integrative com-
partments that integrate synaptic inputs without regard to the
spatial distribution within the branch. The view of oblique
branches as single integrative compartments proposed by Loson-
czy and Magee (2006) was relativized by subsequent findings.
Branco et al. (2010) showed that single oblique and basal den-
dritic branches are able to differentially read out spatiotemporal
synaptic activation sequences. This suggests additional compart-
mentalizaton of individual branches. Multiple integrative com-
partments were also identified in individual basal branches
(Major et al., 2008). Although additional compartmentalization
of single branches increases the number of nonlinear integrative
subunits per neuron and thus it may increase its capabilities for
nonlinear computation, our model described below and illus-
trated in Figure 1 is based on the single-compartment view for the

sake of simplicity and clarity. The branches linearly sum asyn-
chronous postsynaptic potentials from their synapses. We denote
the passive/linear component of the dendritic potential at time t
as pk(t) (for a detailed equation, see Materials and Methods).
Strong synchronous synaptic input at oblique dendrites elicits
dendritic spikes. We model such a spike at branch k by an addi-
tional active contribution to the branch voltage ak(t) whenever
pk(t) is above a certain threshold. Note that this is a purely phe-
nomenological model of dendritic spikes without the explicit in-
clusion of any positive feedback mechanism that underlies the
generation of the event. The branch potential bk(t) is given by
the sum of the local synaptic activation pk(t) at the branch and the
additional contribution from the dendritic spike ak(t), leading to
nonlinear branch characteristics (Fig. 2).

The passive component of the branch potential pk(t) is atten-
uated by a factor u passive � 1 while it is conducted to the soma.
According to recent experimental findings, the impact of a den-
dritic spike on the somatic potential can vary dramatically be-
tween branches and is subject to branch strength potentiation, a
form of dendritic plasticity as detailed below (Losonczy et al.,
2008). Dendritic spikes from different branches are thus scaled by
branch-specific weighting factors—the branch strengths uk—in
our model before they reach the soma. Thus, the somatic mem-
brane potential before refractory effects are taken into account is
given by the sum of these passive and active weighted compo-
nents from all branches (for detailed equations, see Materials and
Methods).

The behavior of this model of nonlinear dendritic integration
is illustrated in Figure 1B. It is consistent with neurophysiological
recordings (Losonczy and Magee, 2006) and a study by Poirazi et
al. (2003) in which a mixture of a sigmoid function with a linear
contribution was found to provide the best fit to experimental
data on the impact of dendritic input on the somatic membrane
voltage.

This dendritic model exhibits two important behaviors. First,
dendritic spikes serve as a basis for nonlinear neural computa-
tions as discussed in detail below. Second, the local branch po-
tential bk(t) is a measure for the total synaptic input at this
branch. This variable can potentially be read out by synaptic plas-
ticity mechanisms—for example, by voltage-dependent STDP—
such that weight updates can be based on the success of synapses
in driving the dendritic branch (see below for the voltage-
dependent plasticity mechanisms used in our model).

The somatic spiking mechanism and reset behavior of our
model was based on the model of Jolivet et al. (2006). It is a
stochastic spiking neuron model with an instantaneous firing
rate that depends exponentially on the somatic membrane
potential (Fig. 1C). The model parameters were fitted by Jol-
ivet et al. (2006) to obtain an optimal fit to the behavior of
layer 5 pyramidal neurons in rat somatosensory cortex. More
details on the soma model can be found in Materials and
Methods.

Nonlinear neural computation
Nonlinear dendritic responses facilitate the processing capabili-
ties of individual neurons. Several important hypotheses on neu-
ral processing in cortex demand nonlinear computations. Two
examples are the binding problem (von der Malsburg, 1981;
Roskies, 1999) and the participation of neurons in neuronal en-
sembles (Hebb, 1949). Suppose that the occurrence of a specific
feature in the input, such as a shape (square, triangular, circular,
etc.), a color, or motion direction, is coded by the activation of a
neuronal ensemble (Fig. 3). Binding problems are in general
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problems in which several features of an object have to be bound
for additional processing or storage. One class of binding prob-
lems is about relating a concept to a percept (Roskies, 1999). It
demands neurons or populations of neurons to store combina-
tions of feature and attributes. A neuron that binds—i.e., re-
sponds to—for example, a black disk and a yellow star, should
however not respond to a yellow disk or a black star. This prob-
lem can be solved with superlinear dendritic integration (Fig. 3).

The same example can be viewed from the perspective of a
neuron that participates in neuronal ensembles. Suppose a neu-
ron participates in two neuronal ensembles. In the previous ex-
ample, the neuron participates in ensembles “black disk” and
“yellow star.” However, the neuron should not be activated if half
of the neurons in each ensemble are active. In the previous exam-
ple, that would be the ensembles “yellow disk” and “black star.”
More abstractly, the binding problem calls for learning of con-
cepts that have the logical form of an OR of ANDs. In other
words, to solve a binding problem, one has to perform first a
logical AND operation for each feature combination and then has
to detect whether one such combination is active by a logical OR
over these ANDs. The situation described above is a nonlinear
pattern separation problem that we refer to as the “feature bind-
ing problem” (FBP) in the following. Given four input features,
the neuron should respond to two disjunct combinations con-
sisting of two features each— black disk and yellow star in the
previously described example— but not to any other two-feature
combination, such as a yellow disk and black star. This function
cannot be computed by a neuron model that linearly sums indi-
vidual synaptic inputs, even if weights can be chosen arbitrarily to
be excitatory or inhibitory. To see this, consider our neuron
model without the dendritic nonlinearity. This means that the
somatic membrane potential is given by the summed EPSPs
from all branches. Now consider the mean somatic potential
vmean if a single input ensemble is active. That is, record the
somatic potential vyellow when only the ensemble coding for
“yellow” is active. Then record the somatic potential vblack

when only the ensemble coding for “black” is active, and so on.
Finally, compute the mean over all these somatic potentials,

that is vmean �
1

4
�vyellow � vblack � vstar � vdisk�. Note that,

for a given neuron with given synaptic efficacies and branch
strengths, we obtain a unique vmean. Because we demand that the
neuron is active for yellow star and black disk, we demand that,
for these combinations, the somatic membrane potential is above
threshold �. It follows that the mean somatic membrane potential

over single features vmean is above half of the threshold �mean 

�

2
.

Conversely, we demand that, for combinations yellow disk and black
star, the somatic membrane potential is below threshold. This con-
straint implies that the mean somatic membrane potential over sin-

gle features vmean is below half of the threshold vmean �
�

2
. Because

for a given neuron, vmean cannot be above and below half of the
threshold, the function cannot be computed by such a neuron.
Hence, nonlinear dendritic operations are essential to solve
the tasks with single neurons, because a linear model would
always classify at least one of the four patterns incorrectly
regardless of its weight configuration. Note however that the
traditionally often considered exclusive or (XOR) function
(Minsky and Papert, 1988) cannot be computed by our neuron
model even with nonlinear branches, because this function
requires that the neuron responds to a pattern like yellow but

does not respond to a pattern like yellow disk, which is a
superset of the stored pattern. The classical XOR can thus only
be solved with the help of inhibitory synapses, which are not
modeled in this article. A possible role of inhibitory circuits
could thus be to enable pyramidal neurons to store such XOR-
like pattern configurations.

Synaptic plasticity and branch-strength potentiation
To examine whether such nonlinear functionality could in prin-
ciple be acquired by a neuron in a self-organized manner, we used
a plasticity model based on several experimentally observed plas-
ticity effects in pyramidal neurons, including depolarization-
dependent STDP (Ngezahayo et al., 2000; Nevian and Sakmann,
2006; Sjöström and Häusser, 2006), dependence of STDP pairing
frequency (Sjöström et al., 2001), and the potentiation of branch
strengths (Losonczy et al., 2008). Acetylcholine (ACh) has a
strong effect on synaptic plasticity and branch-strength potenti-
ation. Specifically, our model for branch-strength potentiation
discussed below is based on findings of Losonczy et al. (2008) for
elevated cholinergic modulation levels. Furthermore, ACh can
lower the threshold for LTP induction (Auerbach and Segal,
1994; Dringenberg et al., 2007). We thus assume that learning is
enabled when local acetylcholine levels are elevated, which might
signal exploratory behavior, saliency of the stimulus, or alertness.
Conversely, we hypothesize that ACh levels are low during recall,
which reduces plasticity effects. These assumptions are supported
by experimental data that indicate that ACh can gate cortical
plasticity (Weinberger, 2008) and enhance memory storage in
hippocampus (Ragozzino et al., 1996). For the sake of simplicity,
we do not explicitly model the ACh signal in our simulations but
disable all plasticity mechanisms in the testing phase.

Spike-timing-dependent plasticity is a Hebbian plasticity
mechanism in which the weight change of a synapse depends on
the precise timing of the presynaptic and postsynaptic action
potentials (Markram et al., 1997; Bi and Poo, 1998). Recent ex-
periments showed that STDP also depends on the local dendritic
depolarization and Ca 2� level at the local dendritic site (Nevian
and Sakmann, 2006; Sjöström and Häusser, 2006; Larkum and
Nevian, 2008). These findings are of special importance for
neuron models with dendritic arborizations because dendritic
depolarization may be an important regulating factor that dif-
ferentiates plasticity at different dendritic branches for the same
input pattern. We therefore extended a standard model for STDP
(Abbott and Nelson, 2000) to include depolarization dependence
(a related model for depolarization-dependent STDP was studied
by Clopath et al., 2010). Pre-before-post spike pairs within a
certain time window induce LTP if the depolarization at the
branch exceeds a certain threshold ��. Conversely, post-before-
pre spike pairs induce LTD (Fig. 4). Sjöström et al. (2001) showed
that LTP depends approximately linearly on pairing frequency,
whereas there is no such dependency of LTD below 40 Hz. Be-
cause the presynaptic and postsynaptic firing rates were always
covaried in this study, the relative contribution of each of these
two factors remains unclear. From a theoretical perspective, the
presynaptic firing rate is especially interesting. If low presynaptic
rates reduce LTP but not LTD, weakly activated inputs can be
depressed selectively. We therefore modeled frequency depen-
dence by a linear dependence of LTP on the presynaptic firing
rate (Fig. 4). Because the contribution of the presynaptic rate in
the reported influence of pairing frequency on STDP is still un-
clear, we performed control simulations in which LTP did not
depend on the presynaptic frequency. As reported below, this
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leads to quantitatively very similar results (for details on the
STDP learning rule used, see Materials and Methods).

By definition, induction of STDP requires a postsynaptic
spike. It is well known, however, that pairing of presynaptic
spikes with postsynaptic depolarization can be sufficient for the

induction of LTP (Kelso et al., 1986; Gustafsson et al., 1987; Har-
die and Spruston, 2009). In our model, synapses can also be
somewhat potentiated in the absence of postsynaptic firing and
dendritic spikes, although potentiation in the presences of a den-
dritic spike is substantially stronger because the amount of po-
tentiation increases linearly with the local branch depolarization
bk (see Eq. 11 and discussion in Materials and Methods). The
plasticity mechanism therefore preferentially potentiates groups
of synapses at a single branch that tend to be coactivated and thus
depolarize the branch. We will see in the analysis below that this
feature of the plasticity dynamics contributes to synaptic clustering
and dendritic competition. Furthermore, as in the STDP model de-
scribed above, we model a linear dependence on presynaptic firing
rate (for detailed equations, see Materials and Methods).

Recent experimental data (Losonczy et al., 2008; Makara et al.,
2009) show that the impact of a spike in oblique dendrites on the
somatic membrane potential depends on properties of the den-
dritic branch giving rise to the notion of a branch strength. Fur-
thermore, it was shown that this branch strength is plastic. More
precisely, the strength of the branch–soma coupling can be in-
creased through pairing of dendritic spikes with ACh. The phe-

nomenon was termed BSP. We model this
plastic behavior of branch strength uk by
the temporal dynamics given in Equation
12 in Materials and Methods. Further-
more, potentiation was only reported for
weak branches, indicating a saturating
mechanism. We therefore implemented a
saturation of BSP if the local potential
equals a constant �b (see Materials and
Methods).

Finally, to stabilize weights, every syn-
apse has an individual adaptive learning
rate. This learning rate decreases when-
ever the local membrane voltage is above a
threshold �stabilize (set to 0.5 mV above the
voltage that occurs during a dendritic
spike) in coincidence with a postsynaptic
somatic spike (for details, see Materials
and Methods). A summary of the plastic-
ity rules in the model is given in Table 1.

Dendritic competition
We first tested how the model behaves
when a single pattern of presynaptic en-
semble activity is presented to the neuron.
In these simulations, we considered six in-
put ensembles, each consisting of 144
neurons. Each neuron in the input ensem-
bles was synaptically connected to a ran-
domly chosen branch of the adapting
neuron (using a uniform distribution
over branches) as schematically indicated
in Figure 3. This resulted in an average of
24 synaptic connections from each en-
semble to each of the six branches. Neu-
rons in an active ensemble were emitting
35 Hz Poisson spike trains in which spike–

spike correlations between neurons in the ensemble were not
enforced in the generation of these spike trains. Other neurons
were spiking at a background rate of 2 Hz. We presented one
combination of two active ensembles for 10 s to the neuron.

Figure 5 shows that the neuron becomes responsive for this

Figure 4. Rate-dependent STDP. The model includes linear dependence of LTP on presyn-
aptic firing rate and an induction threshold for LTP. Shown is the weight change for a presyn-
aptic rate of 35 Hz (black curve) and 10 Hz (gray dashed curve) scaled to the maximum possible
weight change at 35 Hz in dependence of the time difference �t � tpost � tpre of a pre–post
spike pair.

Figure 5. Emergent competition between dendritic branches. A, Black dots denote input spikes to the neuron (every 10th neuron is
shown). Ensembles a and c are highly active. B, Voltages at individual branches. Colors code for branch identity; the voltage of branch 6 (the
winning branch) is plotted in red. C, Bars denote output spikes of the trained neuron. Once the neuron becomes responsive, its firing rate
increases to �50 Hz. D, Weights and branch strengths for branch 1 (left panels) and branch 6 (right panels; the winning branch). The top
six panels show average weights for synapses from the six input ensembles to these two branches. The bottom plot shows the evolution of
branch strengths for these two branches. The branch strength of the winning branch (right panel) increases, whereas others stay approx-
imately constant because no dendritic spikes are elicited in these branches.
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input pattern and that a single branch
stores the pattern as a result of an emer-
gent competition between branches. Until
t � 5 s, all branch activities rise because
presynaptic activity potentiates synaptic
efficacies (Eq. 11). One can see, however,
that the voltage difference between
branch 6 (Fig. 5B, red trace) and other
branches is consistently growing starting
at time t � 2.5 s. This effect arises because
higher local branch potential leads to
stronger LTP. At time t � 5 s, the thresh-
old for dendritic spikes is first reached at
branch 6. When the neuron starts to fire at
high rate (starting at t � 5.5 s), less
strongly active branches become less and
less responsive to the pattern. In this case, a
single branch wins and specializes to the
given combination of active ensembles.

The weight dynamics at two branches
are shown in Figure 5D and follow a sim-
ilar pattern: in a first phase, the weight
updates at all branches favor synapses
originating from active ensembles be-
cause of the linear dependence of LTP on
presynaptic frequency. Thus, all branches
increase their response to this pattern.
However, because the updates depend on
the local membrane voltage at the branch,
the most active branch— branch 6 —is favored and increases its
response most strongly. As dendritic spikes are robustly evoked
in branch 6 at t � 5.5 s, the neuron starts to fire at high rate and
STDP leads to LTD. At this time, the local branch voltage at
branch 6 has a high value as a result of dendritic spikes. Therefore,
depolarization-dependent LTP can compensate for the depres-
sion at this branch. The local branch voltage at other branches is
much lower (Fig. 5B) and the mean synaptic weight decreases at
these branches. As dendritic spikes are robustly evoked in branch
6 after t � 5 s, the corresponding branch strength u6 also increases
(Fig. 5D, bottom plots). This leads to an increase of the firing rate
of the neuron until the branch strength reaches a steady state (see
below). Note that the backpropagating postsynaptic spike plays
an important part in the competitive dynamics through its
critical role in LTD induction. It indicates that the neuron
reached threshold and thus that some branch was strongly acti-
vated. This information is used to weaken competing branches to
avoid redundant information storage.

We wanted to better understand how and under which con-
ditions this competitive behavior arises from the interplay be-
tween LTP and LTD. To answer these questions, we have
analyzed the weight dynamics theoretically. To make a theoreti-
cal analysis possible, we used a simplified model in which the
discontinuous branch behavior is replaced by an exponential
nonlinearity. From the learning rules, we included the minimal
set from our model that is essential for dendritic competition.
This set consists of voltage-dependent LTP for each presynaptic
spike and LTD for post-before-pre spike pairs. The full analysis
can be found in Materials and Methods. Assuming a large num-
ber of synaptic inputs, we have then approximated the voltage at
dendritic branches by their mean field, which yields a rate formu-
lation of neuronal dynamics. Accordingly, the weight changes
attributable to spike-based synaptic learning rules were approxi-
mated by the average change over different realizations of the

Poissonian input statistics, again yielding a rate-based formula-
tion of the weight dynamics. In this simplified model, we proved
that the weight dynamics in fact lead to dendritic competition
such that only the most strongly activated dendritic branch stores
the presented pattern. More precisely, assume a pattern of con-
stant input rates and assume that, at time t � 0, branch k has
higher branch activation than any other branch, i.e., bk(0) 	 bj(0)
for all j � k. We then showed that, for a wide range of parameters,
the weight dynamics imply changes in the branch potentials such
that the potential bk(t) of the most strongly activated branch will
converge to a positive value, whereas the potentials of other
branches will converge to 0. The proof is quite instructive for the
understanding of the basic mechanism of dendritic competition
and sketched in the following. First, we observe that there is a
minimal and a maximal value of the branch potential bk(t) such
that, after some time, bk will always stay within these bounds. This
happens because, at low postsynaptic firing rates, LTP dominates
LTD, which increases the synaptic weights and as a consequence
also increases the branch potential bk. At high firing rates, on the
contrary, LTD dominates, which decreases the synaptic weights
and therefore the branch potential bk. It follows that the sum of
weights at branch k is also bounded. Consider the difference be-
tween the sum of weights at branch k and the sum of weights at
another branch j � k. Because of voltage-dependent LTP, this
difference increases linearly with time. These observations imply
that bj converges to 0 for j � k, whereas the initially highest
branch potential bk converges to some positive value.

Self-organization of nonlinear neural computation
With such a competitive mechanism, a neuron can dedicate a
small number of dendritic compartments to the storage of a given
input pattern. This endows a neuron with the capability to store
many different patterns in its dendritic arborizations and thus to
self-organize nonlinear behavior. We tested the self-organization

Figure 6. A neuron with STDP and BSP can store three different patterns on individual branches. A, Black dots denote input
spikes to the neuron. Each line corresponds to one input neuron (every 30th neuron is shown). Input spike trains were sorted
according to their input ensemble. Different patterns are presented sequentially. B, Voltages at individual branches. Colors code for
branch identity (green, branch 2; blue, branch 4; red, branch 6). C, Firing rate of the trained neuron during learning.
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capabilities of the neuron in two difficult situations of the binding
problem. First, consider the case in which two input patterns
should be stored, where we define a pattern as a set of coactive
input ensembles. The first pattern is given by active ensembles a
and c—we abbreviate such patterns as (a,c) in the following—and
the second combination is indicated by active ensembles (b,d)
(Fig. 6A, t � 0 –15 s and t � 15–30 s, respectively). This situation
corresponds to the FBP problem discussed above and illustrated
in Figure 3. Using again the example illustrated in Figure 3, en-
semble a codes the feature yellow and ensemble c the feature star.
The first pattern thus represents a yellow star. The second pattern
represents a black disk with ensemble b coding for black and d for
disk. After training, the neuron should respond to these positive
patterns, but it should not respond to the patterns yellow disk
indicated by active ensembles a and d and black star indicated by
active ensembles b and c. The situation is summarized in Figure
7A, where the patterns yellow star and black disk are emphasized
by light green shading, and the patterns yellow disk and black star
are indicated by light red shading.

The second situation is again characterized by two patterns,
one in which ensembles (b,d) are active and another pattern with
active ensembles (b,e) (Fig. 6A, t � 15–30 s and t � 30 – 45 s,
respectively). Hence, there is an �50% overlap between the pat-
terns. Combining these two situations, the neuron should re-
spond to the patterns (a,c), (b,d), and (b,e) and stay unresponsive
to any other combination of two active ensembles, especially for
other combinations with ensemble b. We refer to this problem as

the extended feature binding problem
(eFBP) in the following. Note that this
problem is at least as hard as the FBP. For
reasons discussed below (see The role of
branch strength potentiation), it is actually
harder from the practical point of view.

We tested the self-organization capa-
bilities of a neuron in this situation, i.e., in
the eFBP, in the following simulation: the
three patterns were presented sequen-
tially, each for 15 s of simulated biological
time (Fig. 6A). We refer to patterns that
are presented during training as trained
patterns in the following. The behavior
during learning is shown in Figure 6, B
and C. Individual branches specialize to
specific patterns as can be seen in B. This
behavior results from dendritic competi-
tion as described above.

Figure 7 shows the response of the neu-
ron after training to the three trained pat-
terns and to three nontrained patterns.
Synaptic input during presentation of
nontrained patterns does not depolarize
dendritic branches strongly enough to
cause dendritic spikes. Therefore, the fir-
ing rate of the neuron for these patterns is
quite low. Figure 7D summarizes the re-
sponses of the trained neuron to all possible
combinations of active ensembles (each
presented for 2 s after training). It shows
that the neuron responds to an input pat-
tern only if it contains at least one of the
trained patterns. Formally, we say that an
input pattern Pin contains a trained pat-
tern Ptr if all coactive ensembles of Ptr are

also in the set of coactive ensembles of Pin, i.e., if the set of coactive
ensembles in Ptr is a subset of the set of coactive ensembles in Pin.
For examples, the input pattern (a,b,c) (the 23rd pattern in Fig.
7D) contains the trained pattern (a,c) but not the pattern (b,d)
because ensemble d is not active in this input pattern. Because we
do not model inhibitory inputs, the model is monotone. That is,
the addition of an active ensemble to an input pattern cannot lead
to a decrease of the neuron response (see also the discussion of the
XOR problem above). Hence, every input pattern that contains a
trained pattern activates the neuron (Fig. 7D). The firing rate of
the neuron increases with the number of trained patterns con-
tained in the current input, because each trained ensemble com-
bination activates at least one distinct branch. In summary,
Figure 7D shows that the neuron has learned to separate inputs
that contain trained patterns from those that do not contain any
trained pattern.

These capabilities of the neuron have been tested in 20 inde-
pendent simulations with different random connectivity from
the input ensembles to the neuron, different random initial
weights, and different realizations of the Poissonian spike trains
emitted by the ensemble neurons. The neuron was trained for 40 s
simulated biological time on each of the three patterns. To assess
the ability of the neuron to separate trained from nontrained
patterns, we tested the response of the neuron to the presentation
of any possible combination of two active ensemble for 500 ms
after training. The results are summarized in Figure 8A together
with experiments in which neuron parameters were varied ran-

Figure 7. A neuron with STDP and BSP can acquire nonlinear functionality through STDP and BSP. A, Black dots denote input
spikes to the neuron (every 30th neuron is shown). Different combinations of active ensembles are presented sequentially. The first
three patterns were previously entrained by STDP and BSP. Color shading indicates patterns corresponding to the FBP problem
discussed in Results. B, Voltages at individual branches. Colors code for branch identity (green, branch 2; blue, branch 4; red, branch
6; data smoothed). C, Firing rate of the trained neuron during testing. The neuron has high firing rate for all trained patterns and
low firing rate for other patterns. It has high firing rate for patterns 1 and 2 (light green shading) and is silent for patterns 4 and 5
(light red shading), which define an FBP problem. This shows that the neuron has acquired nonlinear functionality. D, Summary of
neuron responses after training. Each row shows the result for 1 of the 64 possible combinations of active ensembles. Top, Input
patterns; active ensembles are indicated in black. Middle, Number of trained patterns that are contained in this input (left color
bar). Bottom, Neuron firing rate (right color bar) for the corresponding input pattern. The neuron is activated only if at least one
trained pattern is contained in the current input. If an input contains several trained patterns, the neuron is more strongly
activated, because each pattern activates one branch.
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domly to investigate the robustness to pa-
rameter perturbations. In these control
experiments, the stochastic threshold �, the
firing rate at threshold 
0, the width of the
spike-trigger zone �U, and the absolute re-
fractory time trefract were concurrently per-
turbed. The parameters were concurrently
varied by various perturbation levels � of up
to �100%. That is, for a simulation with
perturbation level � (in percentage), each
parameter value was multiplied in each run
by a random number between 1 � �/100
and 1 ��/100, for the threshold �, the firing
rate at threshold 
0, and �U. The refractory
period was at the same time varied by
�50%. As can be seen in Figure 8A, the pat-
terns are well separated even for large pa-
rameter perturbations. We note that BSP
has only been described in CA1 pyramidal
neurons that have also extensive oblique
dendrites, whereas we used a soma model that has been fit to a layer
5 pyramidal neuron in somatosensory cortex. We used this soma
model because it provides a good tradeoff between physiological
plausibility and model complexity. The control experiments de-
scribed above, in which soma parameters were randomly varied,
show that the details of the soma model are not important for the
main results reported here.

These results were obtained with a plasticity model in which
LTP depends linearly on the presynaptic firing rate (see update
rules Eq. 6 and 8). To assess whether this dependence is necessary
for neuronal self-organization, we performed control simula-
tions with a model in which this dependency was dropped (see
Materials and Methods). In 20 independent simulations, the re-
sponse to trained patterns was 52 � 10 Hz, whereas for other
patterns, it was 3 � 3 Hz. This shows that the rate dependence is
not essential for pattern storage in this model.

The role of branch strength potentiation
Potentiation of a branch strength through BSP increases the in-
fluence of dendritic spikes originating from this branch on the
somatic membrane potential. Hence, the probability of postsyn-
aptic spikes is increased, which contributes to the competitive
mechanism described above. Consistent with a hypothesis ex-
pressed by Losonczy et al. (2008), the branch strength stores a
reference to the input pattern, and a subsequent pattern presen-
tation will elicit reliable spiking of the neuron. Figure 9A (top)
summarizes the results of the eFBP experiment described above
and illustrated in Figure 7, in which we trained a neuron on three
feature combinations (a,c), (b,d), and (b,e) and tested on any
other combination of two features in 20 independent trials. Fig-
ure 9A (top) shows the minimal response to any of the trained
patterns (left) and the maximal response to any of the other pat-
terns (right; mean and SD over 20 independent trials). One can
see that the patterns are well separated. To illustrate the role of
BSP in the separation of patterns, we performed the same exper-
iments but without BSP. The branch strengths thus stay at their
initial value of 0.5 during the learning experiment. We first tested
this setup on the FBP, i.e., when only the patterns (a,c) and (b,c)
are trained (Fig. 9A, middle). The neuron is activated by the
trained patterns, although this activation is weaker because
branch strengths are not potentiated. The impact of the dendritic
spike onto the soma is weak, such that trained patterns are not
well separated from other patterns. As one can see in the bottom

of Figure 9A, in the case of the eFBP, nontrained patterns activate
the neuron as strongly as trained patterns. The problem becomes
apparent when we consider the pattern (b,c). Because this pattern
was not presented to the neuron during training, no branch is
activated strongly enough to elicit branch spikes reliably. Still, the
soma is activated by the linear voltage components of three
branches that store patterns that partially overlap with (b,c).
Those are the branches that store the patterns (a,c), (b,d), and
(b,e) respectively. This linear activation outweighs the weak non-
linear component that is added to trained patterns and the two
cannot be separated anymore. Hence, increasing the branch
strength through mechanisms such as BSP is essential for these
types of feature binding problems.

The weak activation of trained patterns in the absence of BSP
could be compensated by increasing the maximum possible syn-
aptic efficacy wmax. In that process, however, the nonlinear com-

Figure 8. Pattern separation is possible under a wide range of neuron parameters. Several somatic parameters were perturbed
by up to 100% of their standard values (x-axis, perturbation level). Full lines show means (over 20 experiments) and shaded areas
show STDs. Dark gray shaded areas indicate overlapping SEs. A, Mean firing rate response to trained patterns (black line) and mean
response to other patterns (gray line) in the pattern separation experiment based on firing rates of input ensembles. Pattern
separation is possible even for parameter perturbations of up to 75%. B, C, Mean spike coincidences (B) and firing rates (C) for
trained patterns (black line) and for other patterns (gray line) in the pattern separation experiment based on synchrony of input
ensembles. Although firing rates can overlap, the patterns can well be separated based on spike coincidences for parameter
perturbations of up to 25%.

Figure 9. BSP improves the pattern separation capabilities of a neuron. A, Comparison of
learning with STDP and BSP (top) to learning without BSP for small initial branch strengths
(middle, bottom). Shown is the minimum response to a trained pattern (left; mean and SD over
20 trials) and the maximum response to a nontrained pattern (right; mean and SD over 20
trials). With BSP, patterns are clearly separated in the extended feature binding problem (top).
Without BSP, patterns are not well separated in the feature binding problem (middle) and not
separated in the extended feature binding problem (bottom). B, A comparison of neuron re-
sponses with BSP during training (black lines) to the responses of a neuron with constant high
branch strength (gray lines) as a function of the number of synapses projected from an ensem-
ble to each branch (effective ensemble size). Shown are responses after training to the full
pattern (dashed lines) and to a partial activation in which only 50% of the neurons in these
ensembles were activated (full lines). Without BSP, neuron responses increase steadily with
increasing ensemble size, whereas BSP stabilizes responses over a wide range of effective en-
semble sizes.
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ponent of branches is even less pronounced compared with the
linear component, and the neuron totally fails to solve even the
less demanding FBP.

In the above analysis, we have considered the case in which the
branch strength is weak initially. This seems to be the general
situation in pyramidal neurons, in which initially weak branch
strengths are potentiated by BSP (Losonczy et al., 2008; Makara et
al., 2009). We then asked the question what would happen if
potentiation with BSP would not occur. We now consider the
hypothetical case in which branch strengths are already large ini-
tially and patterns are stored by synaptic plasticity only.

In this case, feature binding would be possible with synaptic
plasticity alone if branch strengths were set to correct values.
However, as we show in the following, adaptive branch strengths
are advantageous even in this case. More specifically, the postu-
lated dependence of BSP on the local membrane potential in the
dynamics Equation 12 can serve a homeostatic role. Because the
number of synapses that connect a given ensemble with a specific
branch—referred to here informally as effective ensemble size—
varies between ensembles and branches, different patterns would
lead to quite different neural responses if branch strengths were
fixed. Our model for BSP leads to an approximate equalization of
the somatic voltage across patterns of different sizes. Figure 9B
summarizes several simulations in which a neuron was trained on
a single pattern consisting of two active ensembles as before. To
test the influence of effective ensemble size on the neural re-
sponse, we varied the number of synapses that each ensemble
projected onto each of the six branches between 24 and 60. We
then compared the responses of two neurons, one neuron trained
with BSP as above and the other one with constant branch
strength. This constant value was set such that the neurons had
the same firing rate of 40 Hz at 26 synapses per ensemble and
branch after training. The responses of these neurons after train-

ing to the full pattern and to a presenta-
tion in which 50% of the synapses onto
each branch were activated were then
compared. Figure 9B shows that, with
BSP, the neuron stabilizes its response to
the full pattern at �40 Hz when the effec-
tive ensemble size is large enough to reli-
ably elicit dendritic spikes after training.
For constant branch strength, the branch
cannot compensate for the stronger input
drive and the response increases with ef-
fective ensemble size. A similar observa-
tion can be made for the half-activated
pattern. In this case, the rate of the neuron
equipped with BSP stabilizes at �20 Hz.
With constant branch strength, the re-
sponse increases more strongly and
steadily with increasing effective ensemble
size, making it impossible to distinguish
between a fully activated pattern of low
effective ensemble size and a partly acti-
vated pattern of large effective ensemble
size. With BSP, however, patterns can be
stored over a wide range of effective en-
semble sizes, although lower ensemble
sizes may be advantageous because of
weaker responses to partial activations.
Thus, we have shown that, for both cases
of small and large initial values, adapta-
tion of branch strengths significantly im-

proves the feature binding capabilities of single neurons.

Acquisition of nonlinear functionality based on synchrony
We then considered the case when information about input patterns
is coded by synchronous activation of neurons instead of by firing
rate. All neurons were activated at a constant rate of 10 Hz. The firing
times of neurons in active ensembles were correlated while other
neurons emitted uncorrelated Poissonian spike trains. Again, com-
petition between branches emerges like in the rate-based coding
scheme. However, because all inputs have the same firing rate, the
rate dependency of LTP cannot be exploited to exclusively
strengthen synapses that contribute to the currently presented pat-
tern. Instead, when the threshold for LTP is reached at an individual
branch, correlated inputs are subject to considerably more LTP than
noncorrelated inputs because they produce postsynaptic spikes and
therefore presynaptic spikes fall more frequently in the LTP part
of the STDP learning window. As the postsynaptic firing rate in-
creases, the net-negative weight changes attributable to STDP at un-
correlated inputs exceeds the amount of potentiation, and these
synapses are depressed (for detailed analysis of this effect of STDP for
correlated inputs, see Kempter et al., 1999, 2001; Song et al., 2000).

We simulated one neuron with four branches and presented
two patterns representing the FBP as in the rate-based scheme,
but now with 10Hz Poisson input spike trains at all inputs. These
input spike trains were correlated with a correlation coefficient of
0.5 at active ensembles and uncorrelated at other ensembles. Each
ensemble consisted of 196 neurons, and each neuron was synap-
tically connected to a randomly chosen branch of the adapting
neuron. This resulted in an average of 24 synaptic connections
from each ensemble to each of the four branches.

Again, we tested the response of the neuron to trained patterns
and other combinations of active ensembles. Figure 10 shows a
simulation in which four patterns were presented after training.

Figure 10. A neuron with STDP and BSP can acquire nonlinear functionality through STDP and BSP in a correlation-based coding
scheme. A, Black dots denote input spikes to the neuron (every 10th neuron is shown). Different patterns are presented sequen-
tially. Green areas indicate correlated input ensembles. The first two patterns were previously entrained by STDP and BSP. B,
Voltages at individual branches. Colors code for branch identity (green, branch 2; cyan, branch 4). C, Spike times of the neuron
during testing.
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For the trained patterns, the neuron produces action potentials
that are correlated with the input while spikes occur only occa-
sionally for other patterns. The evolution of weights and branch
strengths during training is shown in Figure 11.

To assess the influence of random initial conditions, we per-
formed 20 independent simulations with different random con-
nectivity from the input ensembles to the neuron, different
random initial weights, and different realizations of the Poisso-
nian spike trains emitted by the ensemble neurons. In each trial,
every pattern was presented for 20 s after training. The firing rate
for the trained patterns was 7.3 � 1.9 Hz, whereas for the other
patterns, the neuron spiked with a firing rate of 3 � 1 Hz. The
mean correlation coefficient between the output spike train and
the input spike trains of correlated ensembles was 0.38 � 0.06 for
trained patterns and 0.21 � 0.06 for other patterns. Downstream
neurons should thus be able to discriminate whether the pattern
has been stored by the neuron not only on the basis of its firing
rate but also based on its spike correlation with the input ensem-
ble. For the membrane potential of a downstream neuron, how-
ever, the correlation coefficient itself is probably less relevant
than the number of coincident spikes between the input ensem-
ble and the trained neuron. We therefore analyzed the fraction of
spikes from an input ensemble neuron that coincide with a spike
from the trained neuron. Here, two spikes were said to coincide
when the time difference between them was �5 ms. Averaged
over all neurons of the correlated ensembles, this yielded frac-
tions of 0.4 � 0.09 for the trained patterns and 0.12 � 0.04 for the
other patterns. In other words, from 100 spikes of a given input
ensemble neuron, a downstream neuron experiences on average
40, which coincides with spikes of the trained neuron if the pat-
tern was presented during training. If the pattern was not trained,
this number reduces to 12. We conclude that a discrimination
based on spike coincidences is quite plausible.

We also performed a set of control simulations to test whether
perturbations of soma parameters have an influence on these
results. Here, we performed 20 independent simulations in which
the parameters were concurrently varied as described above (see

Self-organization of nonlinear neural computation). We found,
however, that the stochastic firing threshold cannot be much
lowered without increasing the neurons firing rate significantly.
For a perturbation level of �, the threshold � was thus varied in
the range between 100% and (100 � �)% of its initial value. The
results are shown in Figure 8B for the fraction of coincident
spikes and in Figure 8C for the firing rate response of the neuron.
Although the firing rate responses for trained and nontrained
patterns shows some overlap for weak parameter changes, the
fraction of spike coincidences is well separable for parameter
variations of up to 25%. This shows that the basic mechanism
works despite considerable variation of somatic parameters.

Again, these results were obtained with a plasticity model in
which LTP depends linearly on the presynaptic firing rate (see up-
date rules Eq. 6 and 8). Because all input neurons fire with the same
average rate, this dependence should not be essential for the results.
Control simulations with a model in which this dependency of LTP
was dropped showed that this intuition is correct. In 20 independent
simulations, the firing rate was 7.4 � 2.5 and 3.4 � 1 Hz for trained
and other patterns, respectively. The mean correlation coefficient
between the output spike train and the input spike trains of corre-
lated ensembles was 0.38 � 0.1 for the trained patterns and 0.24 �
0.05 for other patterns. Finally, the fraction of coincident input out-
put spike pairs was 0.4 � 0.13 for the trained patterns and 0.14 �
0.04 for other patterns.

Discussion
Nonlinear dendritic behavior has been proposed as a plausible
basis for single-neuron computation (Häusser and Mel, 2003;
Mel, 2007; Morita, 2008; Wu and Mel, 2009). However, it is not
clear how such functionality could emerge in single neurons in
a self-organized manner. The hypothesis that synaptic and
dendritic plasticity rules provide the substrate for such self-
organization of neuronal behavior is strengthened by recent find-
ings that show, on the one hand, the dependence of synaptic
plasticity on local dendritic variables and, on the other hand,
plasticity of dendritic excitability (for review, see Sjöström et al.,
2008). To our knowledge, the present study provides the first
model for how emergence of nonlinear computation could take
place in single pyramidal neurons based on experimentally ob-
served plasticity mechanisms. We show that single neurons can in
this way learn to solve difficult problems that arise for example in
the context of feature binding. Which general principles can be
extracted from our results? First, LTD mechanisms that depend
on postsynaptic activity via the backpropagating action potential
(bAP) can lead to competition between dendritic branches of
pyramidal neurons. Such mechanisms use global information
conveyed by somatic action potentials that indicate that some
parts of the neuron were activated strongly. Second, LTP, which
depends linearly on the local dendritic depolarization, supports
this competitive mechanism because it consistently favors strongly
activated branches over less strongly activated ones. Third, the LTP
part of STDP at above-threshold depolarization results (1) in the
stabilization of potentiated synapses at highly activated branches de-
spite strong LTD for high postsynaptic firing rates and (2) in the
preference of correlated over uncorrelated inputs, although (3) this
does not lead to unnecessary potentiation of synapses at weakly ac-
tivated branches. Finally, BSP can act as a homeostatic mechanism
that adapts the branch strength to regulate somatic depolarization
for the stored synaptic input pattern.

It has been hypothesized that synaptic clustering, i.e., the clus-
tering of correlated synapses onto dendritic branches, could be
important for single-neuron computation (Iannella and Tanaka,

Figure 11. Weights and branch strengths during neuronal self-organization in a synchrony-
based coding scheme. The panels show average weights for the two winning branches 1 (left)
and 2 (right). The top four panels show average weights for synapses from the four input
ensembles to these two branches. The two correlated ensembles are a and c for the first 600 s
and b and d for the remaining time. The bottom plots show the evolution of branch strengths for
these two branches. Because all ensembles have the same average firing rate, all weights
increase initially. However, as soon as postsynaptic spikes appear, the synaptic strengths of
uncorrelated inputs as well as synaptic strengths of non-winning branches decay quickly.
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2006; Larkum and Nevian, 2008; Migliore et al., 2008; Morita,
2008). We show that synaptic clustering is an emergent property
of the plasticity mechanisms in our model. The clustering results
from dendritic competition because correlated input ensembles
are potentiated at the winning branch whereas correlated syn-
apses at other branches are depressed. Recent findings indicate
that LTP at individual synapses can reduce the threshold for po-
tentiation at neighboring synapses (Harvey and Svoboda, 2007).
Although such local interaction between plasticity events may
further favor synaptic clustering, our study shows that it is in
principle not necessary. An intriguing possibility is that synaptic
clusters in our model may interact with micro-rewiring pro-
cesses, i.e., with local changes in synaptic connectivity (DeBello,
2008). We have assumed in this study a static connectivity pat-
tern. Additional micro-rewiring processes could eliminate weak
synapses that contribute little to the branch activation and estab-
lish new synaptic connections that contribute to branch depolar-
ization. In contrast, Jia et al. (2010) found through calcium
imaging that synaptic inputs onto dendrites of layer 2/3 spiny
neurons of mouse visual cortex were not clustered with respect to
their orientation selectivity. However, this leaves open the possi-
bility that these inputs were clustered with respect to other task-
relevant features.

Relation to other plasticity models
Iannella and Tanaka (2006) showed in a modeling study that, in
the presence of two weakly correlated groups of inputs, local
dendritic compartments specialize to one of the groups if a vari-
ant of STDP is used that is driven by the local dendritic spike
instead of the postsynaptic somatic spike. The study also showed
that all parts of the dendrite specialize to one of the input groups.
This property may, however, lead to an inefficient use of synaptic
resources. If a neuron becomes responsive to a certain input pat-
tern, it may be sufficient that a single or a few branches produce
dendritic spikes when the pattern is present, whereas other
branches are still free to store other patterns. In general, efficient
pattern storage requires a competitive mechanism between
branches such as the one identified in this study.

The influence of the bAP on STDP was studied theoretically
by Tamosiunaite et al. (2007). They also report a form a winner-
take-all competition between branches. In contrast to our study,
they consider only the case in which different presynaptic ensem-
bles project to different branches.

The competitive nature of STDP on the synapse level has been
emphasized by several theoretical and modeling studies (Kempter et
al., 1999, 2001; Song et al., 2000). These studies were based on point-
neuron models. Taking spatial structure through dendritic compart-
ments into account leads to important new properties. For example,
in our correlation-based coding scheme, we can see two levels of
competition. On the level of branches, the branches compete for
synaptic activation. At the winning branch, we also observe a com-
petition among synapses, because only the correlated synapses are
potentiated whereas the strength of other synapses decay.

Assumptions for the plasticity model
Experimentally observed plasticity mechanisms provided the ba-
sis for our model for synaptic and dendritic plasticity. Our model
for branch strength potentiation (Table 1) is matched to the find-
ings of Losonczy et al. (2008) for elevated ACh levels. In our
model for BSP, we assume an additional dependence on the local
membrane potential that leads to a favorable homeostatic effect.
For the competitive effect demonstrated in this study, however,
the voltage dependence of BSP is not necessary. Omitting the

term in the square brackets in Equation 9 and clipping uk at an
upper bound of 2.3 leads to similar results in all simulations
except for the homeostasis experiment (Fig. 9B). Losonczy et al.
(2008) also reported induction of BSP in the absence of ACh
when dendritic spikes coincide with bAPs. Because we assumed
elevated ACh levels during learning, we did not model this form
of BSP. One can, however, speculate that such a mechanism
could contribute to the stabilization of branch strengths in a sec-
ond phase in which high branch activations lead to increased
probability of postsynaptic spiking. Also, interactions between
BSP and the bAP are possible, because they share a mechanism
for active propagation based on sodium channels. As Remy et al.
(2009) showed, this may lead to a cross-desensitization between
dendritic spikes and bAPs. Therefore, strong dendritic spiking
activity could block subsequent action potential propagation into
strong branches but not into weak ones and reduce bAP-
dependent plasticity in strong branches, further stabilizing the
stored patterns.

We disabled plasticity during testing in our simulations. This
is, however, not necessary if the recall stimulus is brief. In our
model, plasticity during recall of stored patterns has no effect on
the behavior of the neuron. Naturally, other patterns are stored
when the recall stimulus is presented long enough. In control
simulations identical to those summarized in Figure 8, but with
plasticity during testing, we observed very similar performances.

Predictions of the model
Our modeling study provides several predictions that can be ex-
perimentally tested. The model predicts that neurons that partic-
ipate in a neuronal ensemble should excite each other only
through one or a few dendritic branches and preferentially lead to
dendritic spikes at these branches. This prediction is hard to test
with current techniques. Alternatively, one could strongly activate in
an experiment several dendritic branches, for example, through glu-
tamate uncaging. Our model predicts that these branches will com-
pete such that, after repeated stimulation, synapses on only a few
branches will be potentiated. Furthermore, according to our model,
blocking of the bAP should abolish competition leading to potenti-
ated synapses at all stimulated branches. Finally, our simulations
showed that a dependence of BSP on the local membrane potential
stabilizes neural responses over a wide range of ensemble sizes. It is
not yet clear whether the quantitative change in branch strengths
depends on dendritic voltages. By measuring dendritic depolariza-
tions during BSP induction, experimental studies could clarify
whether BSP depends on the amount of local dendritic depolariza-
tion before or during branch spikes.

Conclusions
This study provides for the first time an integrated model for
nonlinear dendritic computation with synaptic plasticity and
branch-strength potentiation. It shows that single pyramidal
neurons can acquire through their synapses nonlinear function-
ality that is needed for example in the context of feature binding.
We have analyzed the role of dendritic competition in the learn-
ing dynamics, a novel concept in the analysis of single neuron
learning, that emerges from the interplay of local variables and
the bAP in the plasticity model. Our model is self-organizing in
the sense that the neuron organizes the use of dendritic nonlin-
earities during pattern presentation without the need of external
teacher signals that guide this process. For example, we did not
assume that different branches receive input from different input
ensembles but rather allowed that all ensembles project to all
branches. Still, synaptic efficacies can self-organize on the den-
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dritic arbor to cluster stored patterns on individual dendritic
branches. This study thus provides evidence that complex non-
linear functions can be acquired by single neurons in a self-
organizing manner through biologically plausible local plasticity
mechanisms.
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