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Cosine Directional Tuning of Theta Cell Burst Frequencies:
Evidence for Spatial Coding by Oscillatory Interference
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The rodent septohippocampal system contains “theta cells,” which burst rhythmically at 4 -12 Hz, but the functional significance of this
rhythm remains poorly understood (Buzsaki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such
as place (O’Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al.,
2008; Solstad et al., 2008). An “oscillatory interference” theory has hypothesized that some of these spatially tuned neurons may derive
their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction
of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by
movement speed (Rivas et al.,1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction
has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats.
Theta cell burst frequencies varied as the cosine of the rat’s movement direction, and this directional tuning was influenced by landmark
cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demon-
strated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the
spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function

by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations.

Introduction
The hippocampus and surrounding cortex contain neural cir-
cuits that store memories for facts and past experiences (Eichen-
baum and Cohen, 1992; Squire and Schacter, 2002). In rodents,
these regions contain neurons that fire selectively at preferred
locations in space and might thus encode memories of familiar
spatial environments (O’Keefe and Nadel, 1978; McNaughton et
al., 2006). Several categories of spatially tuned neurons have
been identified: place cells fire at one or a few preferred loca-
tions (O’Keefe and Dostrovsky, 1971), grid cells fire at multiple
locations forming a hexagonal lattice (Hafting et al., 2005), and
border cells fire in fixed relationships with environmental
boundaries (Savelli et al., 2008; Solstad et al., 2008; Lever et al.,
2009). These neurons are believed to participate in computing
the animal’s location by integrating its movement velocity over
time, a process known as path integration (McNaughton et al.,
1996; Etienne and Jeffery, 2004).

Spike trains of spatially tuned neurons are often modulated by
4-12 Hz theta oscillations, which have been proposed to play a
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key role in memory processing (O’Keefe and Recce, 1993; Buz-
saki, 2006; Diizel et al., 2010; Hasselmo et al., 2010; Rutishauser et
al., 2010; Bissiere et al., 2011). Burgess et al. (2005, 2007) intro-
duced an “oscillatory interference” theory, hypothesizing that
theta oscillations are generated by velocity-controlled oscillators
(VCOs), which perform path integration by modulating their
frequencies in proportion with the speed and direction of a rat’s
translational movements. Supporting this idea, theta frequency is
indeed modulated by a rat’s movement speed (Rivas et al., 1996;
Geisler et al., 2007), and oscillatory properties of spatial neurons
are correlated with their spatial tuning parameters in accordance
with predictions of oscillatory interference models (Burgess et al.,
2007; Giocomo et al., 2007; Jeewajee et al., 2008a; Zilli et al.,
2009). However, oscillatory interference models explicitly re-
quire that VCO frequencies vary as the cosine of an animal’s
movement direction, and such directional modulation of theta
oscillations has never been observed.

Here, rhythmically bursting theta cells were recorded from
medial septum, hippocampus, and anterior thalamus in behaving
rats. We found that burst frequencies of theta cells were modu-
lated by the rat’s movement direction with cosine-like tuning,
and directional tuning functions followed rotations of landmark
cues, suggesting that theta cells might encode VCO signals pre-
dicted by the oscillatory interference theory. Computer simula-
tions revealed that a postsynaptic neuron could exhibit spatially
selective firing by detecting location-dependent synchronization
among inputs from theta cells with firing properties similar to
those observed in our experiments. The postsynaptic neuron
could mimic the firing rate maps not only of grid cells, as in prior
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oscillatory interference models (Burgess et al., 2007; Giocomo et
al., 2007; Hasselmo et al., 2007; Burgess, 2008; Zilli and Has-
selmo, 2010), but also of place and border cells. Based on these
results, we propose how a network of central pattern generator
(CPQG) circuits composed exclusively from theta cells could pro-
vide a basis set of VCO signals for generating diverse populations
of spatially tuned neurons such as place, grid, and border cells.

Materials and Methods

All experiments were conducted in accordance with the U.S. National
Institute of Health Guide for the Care and Use of Laboratory Animals (NTH
Publications No. 80-23), and were approved in advance by the animal
subjects review committee at the University of California, Los Angeles.
Technical descriptions of computer simulations and neurophysiological
data analysis (including source code) are available on the ModelDB da-
tabase (Hines et al, 2004) under accession number 129067
(http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=129067).

Subjects and surgery. Male Long—Evans rats weighing 350—400 g were
housed singly and reduced to 85% of ad libitum weight through limited
daily feeding, then trained over 5 d to forage for food pellets in an en-
closed environment (see below, Recording sessions and behavior track-
ing). Under deep isoflurane anesthesia, rats were chronically implanted
with tetrode arrays targeting medial septum and dorsal hippocampus
(three rats) or anterior thalamus (two rats). Each rat was implanted
with16 tetrodes (64 electrode channels), grouped into four indepen-
dently drivable bundles consisting of four tetrodes each.

Recording sessions. For data analysis purposes, a “recording session”
(also referred to as a “recording” or “session” for short) is defined here as
an uninterrupted period of single-unit recording that began when data
acquisition was initiated and ended when the experimenter terminated
data acquisition just before removing the rat from the experimental en-
vironment. Throughout each recording session, rats foraged for 20 mg
purified food pellets (Bioserv) in one of three maze environments: (1) a
small cylinder (80 cm diameter, 60 cm high, with black walls, a black
floor, and a white cue card), (2) alarge cylinder (200 cm diameter, 60 cm
high, with black walls, a gray floor, and a light blue cue card), or (3) a
small square (50 X 50 cm, with white walls, a white floor, and a black cue
card). All three mazes were centered within a 2 X 2 m square enclosure
surrounded by a black curtain, with light provided by a 40 W bulb
mounted on a stand in the corner of the enclosure where the experi-
menter entered and exited. When a cue card was rotated to assess the
influence of visual landmarks on theta cells, the light and entry position
were rotated by the same angle to maintain coherence among spatial
cues. When the maze environment was swapped between sessions (for
example, from cylinder to square), extramaze cues (light and entry posi-
tion) remained fixed.

Only sessions that met requirements for adequate behavioral sampling
in all movement directions were admitted for data analysis (see below,
Data inclusion criteria). To help ensure that minimal criteria for behav-
ioral sampling in all movement directions were met, sessions were usu-
ally continued for as long as possible, until the experimenter determined
by visual observation that the rat was no longer sufficiently motivated to
forage for food pellets. A slow rate of food delivery (one pellet per 30—45
s, dropped at pseudorandom intervals) prevented rats from becoming
sated too quickly, and thus extended the average duration of the sessions.

Video tracking analysis. Rats wore a pair of red and green light-emitting
diodes (LEDs) spaced 11.25 cm apart from one another, and an overhead
video camera sampled LED positions at r = 30 Hz with a resolution of
either p = 1.7 pixels per centimeter (hippocampal and medial septum
recordings) or p = 4.7 pixels per centimeter (anterior thalamus record-
ings). Each LED’s position was smoothed using a boxcar window 15
samples (0.5 s) wide before computing the midpoint between them.
Another iteration of smoothing was performed on the midpoints, using a
boxcar window 30 samples (1.0 s) wide. The smoothed midpoints were
taken as the rat’s estimated position x, = (x,, y,) at each time sample, t,
and movement velocity (in centimeters per second) at each sample was
estimated by the following:
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The rat’s running speed (in centimeters per second) was estimated by the
following:

R
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The rat’s movement direction was estimated by the following:

_ Ay
0, = arctan ATC, . (3)

Single-unit acquisition. Theta cells were recorded using a DigitalLynx
S-series acquisition system (Neuralynx). Single-unit waveforms were
isolated by manual cluster cutting using Spikesort3D (Neuralynx) soft-
ware running on a Windows PC, and were required to meet minimum
criteria for unit isolation and theta rhythmicity (see below, Data inclu-
sion criteria). Spike trains recorded during different sessions were con-
sidered to be from the same theta cell if (1) they were obtained from the
same tetrode, (2) the tetrode had been advanced <80 wm between re-
cordings, and (3) cluster boundaries and waveform shapes were visually
similar on all tetrode channels for both sessions. Spike trains recorded
from the same tetrode during different sessions were considered to be
from different theta cells only if they were recorded at coordinates >300
wm apart. In one case, spike data from a session were excluded from
analysis because the clusters and waveforms looked similar to a prior
recording on the same tetrode, but the tetrode had been advanced by
<300 wm since the prior session, so it was unclear whether this was an
old or new cell.

Balanced running speed distributions. To analyze modulation of theta
cell bursting by movement direction, the 360° range of movement direc-
tions was subdivided into eight 45° wide bins centered at 0, 45, 90, 135,
180, 225, 270, and 315°. Tracking data from each session were parsed to
extract all movement epochs containing 12 consecutive position samples
(that s, 0.4 s) satisfying two conditions: (1) the rat’s movement direction
remained within the same bin throughout the epoch, and (2) the rat’s
running speed was >7.5 cm/s throughout the epoch. Hence, each unidi-
rectional movement epoch was an episode lasting exactly 0.4 s, during
which the rat was moving continuously in the same directional bin at a
speed of >7.5 cm/s. The rat’s mean running speed, s, during each unidi-
rectional movement epoch was computed by averaging [|v/| in Equation 2
across all 12 samples in the epoch:

12
=2l (4)

where i indexes each position sample. The range of movement speeds
from 7.5 to 50 cm/s was evenly subdivided into 17 bins (bin width, 2.5
cm/s). Every epoch was classified into one of these speed bins according
its 5. The total amount of time, z,; ,, that the rat spent running in direction
bin d and speed bin s during the session was computed as follows:

Zd,s = 0'4Nd,s) (5)

where 0.4 s is the duration of each movement epoch, and N is the total
number of epochs in direction bin d and speed bin s. Since there were 17
speed bins, the speed distribution for direction bin d was a 17-element
vector:

2y = (2415 Zas - - Za17)- (6)

To assure adequate sampling of movements in all directions, recording
sessions were not included in the data analysis unless the area under z,
exceeded 20 s for all directions d.

A uniform distribution of movement speeds in all directions was en-
forced by sampling movement epochs in such a way that z, = Z for all d,
where Z is referred to as the balanced running speed distribution:

Z= (Zl) ZZ’ v Zl7)) (7)
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where Z, is the “balanced” amount of time spent running in speed bin s,
defined as
Z,=H(min(z, , 2,5, ..

. ZS,s) - 8) X max(zl,s) ZZ,s) CECIESY ZS,S))

(8)

where H is the Heaviside function, and ¢ is an arbitrarily small threshold
so that H evaluates to zero whenever min(z, , z, ;, . . ., zg ;) = 0. In Equa-
tion 8, multiplication by H[min(z, ,, z, , . . ., Z5,) — €] sets the value in
speed bin Z, to zero if speed bin s is equal to zero in any of the eight
directional speed distributions, z, (that is, if z, ; = 0 for any d). Multipli-
cationbymax(z, ,z, , . . ., 2 ;) assigns the remaining nonzero speed bins
to take on the maximum value for speed bin s that can be found among
the eight directional speed distributions, z,. Using Equations 7 and 8 to
derive Z (in combination with resampling methods described below,
Autocorrelograms and spectral analysis), theta cell burst frequencies
could be analyzed in such a way that the speed distribution was uniformly
equal to Z for all movement directions. The mean balanced running
speed for each session was computed as follows:

17
S:;:CSZS/(ZI+ZZ+ .+ 7)), 9)
=1

where ¢, denotes the center speed of bin s.

Autocorrelegrams and spectral analysis. To compute directional auto-
correlograms, a set of “epoch autocorrelograms” was first created (each
from spikes fired during a single 0.4 s epoch of unidirectional movement)
by computing a vector of 513 interspike interval counts spanning the
time range from —0.4 to +0.4 s (bin width, 1.56 ms). Since each move-
ment epoch’s duration was exactly 0.4 s, the autocorrelograms’ tails ta-
pered to zero at their boundaries (—0.4 and +0.4 s), so that artificial
tapering by a window function was not necessary when later taking the
FFT of autocorrelograms to estimate burst frequencies (see below).

To enforce the requirement of constant running speed across all
movement direction bins, a resampling method was used in conjunction
with the balanced running speed distribution to extract epochs for anal-
ysis in such a way that the mean running speed was identical in all direc-
tions. To begin, all epoch autocorrelograms from the session were pooled
together, and z, ; (see Eq. 5) was initialized to zero for all d and s. Epoch
autocorrelograms were then randomly sampled from the pool without
replacement. At each sampling, if z, , < Z,, then z;  was incremented by
0.4 s, and the epoch autocorrelogram was averaged into a cumulative
autocorrelogram for its directional bin, d; otherwise, the epoch autocor-
relogram was discarded. When the pool was depleted, it was checked
whether z; < Z, for any z, ; if 50, then all epoch autocorrelograms were
returned to the pool for another round of random sampling without
replacement (thus, some epoch autocorrelograms could be averaged into
the composite autocorrelogram more than once). When z,; . = Z_ for all
z, ,, calculation of the speed-balanced directional autocorrelograms was
complete.

An FFT of each speed-balanced autocorrelogram was then taken to
derive a power spectrum from which burst frequencies could be esti-
mated. Each autocorrelogram was padded with zeros to a length of 2*°
elements to yield a frequency bin width of 0.0012 Hz for the FFT [as in the
study by Jeewajee et al. (2008a)]. After computing the FFT, frequency
elements were multiplied by their complex conjugates and then divided
by 2'° to obtain the power value at each frequency. After obtaining the
power spectrum for each directional bin d, the composite autocorre-
lograms were discarded, and then they were then regenerated by a
fresh iteration of resampling using the speed-balancing algorithm
described above. The power spectra of the fresh autocorrelograms
were then computed, and this cycle of refreshing the autocorrelo-
grams and recomputing their power spectra was repeated for 100 itera-
tions. Multiple iterations were necessary because, as explained above, the
speed-balancing algorithm selected movement epochs at random for
inclusion in the composite autocorrelogram, and this produced variabil-
ity in the results of the power spectrum analysis on each iteration. Bench-
marking tests confirmed that averaging over 100 iterations was sufficient
to yield an accurate estimate of the true mean around which single iter-
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ation estimates were varying. For each directional bin, the 100 power
spectra obtained from individual iterations were averaged together, and
the final averaged power spectrum was smoothed by a boxcar window 14
frequency bins wide.

Power spectra had to meet the criterion of theta rhythmicity in all eight
movement directions, or else the session was not admitted for analysis
(see below, Data inclusion criteria). To estimate theta cell burst frequen-
cies, the frequency bin of each power spectrum with the highest power in
the 5-11 Hzband was located. The power spectrum was then thresholded
at 50% of this peak (see Fig. 2 E, black shaded regions), and the expected
frequency value of the suprathreshold area of the power spectrum was
obtained by the following:

U
F= > fpilC, (10)
i=L

where F is the estimated burst frequency; L and U are the frequency bin
indices for the lower and upper frequency boundaries, respectively, of the
suprathreshold region; f; and p; are the frequency value and suprathreshold
power, respectively, of the ith power spectrum bin;and C = Ei[j: | Diis the total
area under the suprathreshold region. A theta cell’s directional burst
frequency-tuning (DBFT) curve was plotted as a vector, F = (F,, F,, F;,
E,, Fs, F,, F,, Fg), where F,; denotes the estimated burst frequency in
direction d, computed from Equation 10.

DBFT curves. To analyze how a theta cell’s burst frequency was influ-
enced by the rat’s running speed in different directions, the eight points
of its DBFT curve were subdivided into three movement direction cate-
gories: preferred (the three points nearest to 6), antipreferred (the three
points 180° opposed from 8), and orthogonal (the two remaining points,
approximating directions +90° from ). Within each direction category,
epochs were subdivided into five speed categories according to the rat’s
mean running speed 5 (Eq. 4) during the epoch <10, 10-15, 15-20,
20-25, and 25-30 cm/s. Movement epoch autocorrelograms were then
computed independently for epochs within each speed/direction cate-
gory, and burst frequencies were estimated from the autocorrelograms
by the same methods used for obtaining DBFT curves (see above). Esti-
mated burst frequencies were adjusted to a common baseline across cells
by subtracting each cell’s estimated burst frequency in the 10-15 cm/s
speed bin for the orthogonal direction category from all speed bins in all
direction categories. Burst frequencies for each speed bin within each
direction category were then averaged together across sessions and then
cells. Finally, the population-averaged data for each speed bin and direc-
tion category were all shifted on the y-axis by a common factor that
caused the y-intercept of a linear fit to the all speed data (averaged within
speed bins across directional categories) to pass through y = 0, yielding
the graph in Figure 5D. Since each autocorrelogram included only a
narrow range of running speeds, it was necessary to protect against esti-
mation errors caused by undersampling. To achieve this, three criteria
were enforced for inclusion of data from a particular speed bin of a
particular cell in the population average: (1) to assure sufficient behav-
ioral sampling, the session had to yield at least 10 s of data (that is, 25
movement epochs of 0.4 s each) for that speed bin; (2) to assure sufficient
spike sampling, the mean firing rate of the cell had to be at least 20 Hz
when averaged across all of the movement epochs included in that speed
bin; (3) to assure that data for each direction category were not drawn
from different subpopulations of theta cells in the population average,
data for a given speed bin from a given cell had to meet criteria 1 and 2 in
that speed bin for all three direction categories to be included in the
analysis.

Fach session’s DBFT curve was fit to a cosine function, and fitted
parameters were used to analyze modulation of theta rhythm by running
speed for different directions (see Results). A significance level for the
cosine fit was computed by taking the eight data points on the DBFT
curve, resorting them into all possible permutation orders, and repeating
the cosine fit for each permutation. The 72 value measuring the goodness
of fit for each permutation was recorded, and the session’s p value for
cosine directional tuning was defined as the percentage of permutations
that yielded better fits (that is, higher 72 values) than the permutation
observed in the session’s DBFT curve.
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Positional and directional firing rate analyses. Spatial firing rate maps
for theta cells were generated by parceling the environment into a lattice
of 5 X 5 cm spatial bins and then measuring the amount of time, T}, the
rat spent in each bin, and counting the number of spikes, C,, fired by the
theta cell in each bin. The raw firing rate in each bin was then computed
as R, = C,/T,. The spatial information content of the spike train, in bits
per spike, was computed from the raw firing rate map by the method of
Skaggs et al. (1993). The raw firing rate map was smoothed by a single
iteration of adjacent pixel averaging for plots shown in Figures 2—4. For
head-direction cells, directional tuning curves were computed using
methods described previously (Blair and Sharp, 1995). Like DBFT
curves, head-direction cell tuning curves used the convention that de-
grees increased in the clockwise direction.

Data inclusion criteria. To insure adequate behavioral sampling of each
movement direction, the cumulative duration of the sampled movement
epochs from a session had to be =20 s for each movement direction,
otherwise the session was excluded from the study. In addition, single-
unit spike data recorded from theta cells had to meet several criteria
during each session. First, to insure good single-unit isolation, theta cell
spike waveforms were required to show an amplitude of =80 wV (peak to
peak) against background noise of <30 wV, and interspike intervals had
to show a refractory period =1 ms. Second, to insure that movement
epochs contained enough spikes from which to create autocorrelograms
for burst frequency analysis, theta cells were required to maintain a firing
rate of >10 Hz throughout the session. Third, to assure that the neuron
was a theta cell and not a theta-modulated spatially tuned neuron, theta
cells had to exhibit spatial information content of <0.1 bits per spike.
Fourth, for each of the eight movement directions, at least 40% of the
area under the autocorrelogram’s power spectrum between 4—12 Hz had
to lie within a 3 Hz band centered on the power spectrum’s peak. This
insured that the cell’s burst frequency was measurable in all movement
directions, so that it would be possible to generate a meaningful DBFT
curve for the cell.

Numerical methods for simulations. Theoretical modeling simulations
were performed using Matlab and NEURON (Carnevale and Hines,
2006) running on a Windows PC. Detailed descriptions of the numerical
methods and source code for simulations are available on the ModelDB
website (Hines et al., 2004) under accession number 129067. Briefly,
spatially tuned neurons were simulated in NEURON by a single cylindri-
cal compartment with diameter 10 wm and length 10/ um, with passive
membrane resistance and capacitance of R,, = 15 K() and C,, = 1.0
wF/cm?, and leak reversal potential of E,.,,, = —65 mV. The simulation
time step was df = 0.1 ms. The model neuron received input from N
simulated theta cell spike trains (see Results), with burst frequencies
modulated by movement velocity data obtained from a recording session
with a real rat. Each input spike triggered a synaptic conductance with
dynamics governed by AMPA kinetics from Destexhe et al. (1994). For
simplicity, excitatory (AMPA) and inhibitory (GABA,) conductances
were simulated using the same kinetic parameters, except that the syn-
aptic reversal potential was E, \;pp = 0 mV for AMPA and E s gap = —80
mV for GABA,, synapses. In simulations with inhibitory input from theta
cells, excitatory drive to the model neuron was provided by a voltage-
sensitive persistent sodium (Na,) channel, which was implemented us-
ing the kinetic scheme of Uebachs et al. (2010). Active Hodgkin—-Huxley
kinetics were simulated using the standard NEURON mechanism
“hh.mod,” with peak conductance parameters for the delayed rectifier
and active sodium channels set to g, = 0.005 mho/cm? and gy, =
0.05 mho/cm?, respectively. A vector of spike times generated by the
model neuron was accumulated by recording all upward crossings of a
threshold at —20 mV, from which path plots and firing rate maps for the
simulated spatial neurons were generated.

Results

Experimental results

Single-unit activity was recorded from anterior thalamus, hip-
pocampus, or medial septum while rats (n = 5) foraged freely for
food pellets in one of three environments (see Materials and
Methods): a small cylinder (80 cm diameter), large cylinder (200
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cm diameter), or small square (50 X 50 cm). A subset of neurons
were classified as theta cells based on robust 6—8 Hz modulation
of their spike trains and high firing rates that lacked spatial tuning
(see Materials and Methods). Theta cell spike trains were ana-
lyzed to test whether their burst frequencies obeyed a “VCO fre-
quency law,” which predicts that the theta frequency should vary
as the cosine of the rat’s allocentric movement direction (Burgess
et al., 2005, 2007; Giocomo et al., 2007; Hasselmo et al., 2007;
Burgess, 2008).

VCO frequency law

As a rat navigates across the floor of a 2D environment, its posi-
tion x = (x, y) at time t can be derived by calculating the path
integral of its velocity, v = dx/dt, from an initial starting location,
x(0). Just as the rat’s position can be obtained by computing the
time integral its velocity, an oscillator’s phase, ¢, can be obtained
by computing the time integral of its frequency, w = d¢/dt. Con-
sequently, an oscillator with a velocity-dependent frequency will
have a position-dependent phase. Oscillatory interference mod-
els exploit this principle to propose that path integration is per-
formed by VCOs with instantaneous angular frequencies, (w,,
®,, . . ., wy), that are modulated by v as follows (Burgess et al.,
2005, 2007; Giocomo et al., 2007; Hasselmo et al., 2007; Burgess,
2008):

do,

dtn = w,(t) = Q) +d, (1), (11)

where ¢,, is the nth VCO’s phase in radians, {) is a shared angular
base frequency around which all VCOs are modulated, and d,, is
a fixed “preferred vector” in the horizontal floor plane along
which the nth VCO frequency is modulated by v. Here, d,, and v
are Cartesian vectors in an allocentric coordinate system that is
stationary with respect to the lab.

In Equation 11, the dot product term, d,, - v(¢), implies that a
VCO’s frequency should vary as the cosine of the rat’s allocentric
movement direction (that is, the angle between vectors d,, and v)
when running speed (that is, the length of vector v) is held fixed.
We investigated whether theta cell burst frequencies were mod-
ulated by the rat’s movement direction in this predicted manner
to test whether theta cells might function as VCOs.

Directional modulation of theta cell burst frequencies
To analyze how theta cell burst frequencies were modulated by
the rat’s movement direction, the 360° range of directions was
subdivided into eight 45° bins, and tracking data from each re-
cording session were parsed to extract time intervals during
which the rat was moving continuously in one of these eight
directions (Fig. 1A). It was necessary to analyze modulation of
theta frequency by movement direction in isolation from modu-
lation by movement speed, so we devised a “speed-balancing”
algorithm (see Materials and Methods, Balanced running speed
distributions), which made it possible to probabilistically sample
movement intervals from the session in such a way that the dis-
tribution of running speeds was rendered identical (that is, bal-
anced) in all directions (Fig. 1B, center graph). Theta cell spike
trains (Fig. 1C) from movement intervals sampled in this way
were analyzed to generate speed-balanced autocorrelograms for
each direction (Fig. 1 D), and the power spectrum of each auto-
correlogram (Fig. 1 E) was taken to estimate theta cell burst fre-
quencies in each direction.

A DBFT curve was plotted to depict how a theta cell’s burst
frequency varied with the rat’s movement direction (Fig. 1 F). A
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Figure 1. Cosine directional tuning of a theta cell’s burst frequency. A, Rat’s path during a
136 min recording session in the small cylinder, with cue card at the standard (0°) position;
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least-squares gradient search was then performed to fit the eight
points of each session’s DBFT curve to a cosine function, ob-
tained by rewriting Equation 11 as follows:

1(6) =F+%cos(0— 0), (12)
where fis the burst frequency in hertz, and 6 is the rat’s allocentric
movement direction. Before fitting, the running speed parame-
ter, S, was set equal to the mean of the balanced running speed
distribution. The fitting algorithm returned estimated values for
the three parameters decorated by overbars: F is the estimated
base frequency (in hertz) around which the theta cell’s burst fre-
quency is modulated, and (7, 6) are polar coordinates estimating
length and orientation, respectively, of the VCO’s preferred vec-
tor, d,,.

The reformulated VCO frequency law of Equation 12 states
that the amplitude of the cosine function for directional tuning
(that is, the depth of frequency modulation by movement direc-
tion) depends on two parameters: 7 and S. The value of 7 is as-
sumed to depend on the length of a theta cell’s preferred vector,
d,,, whereas the value of S depends on the rat’s running behavior
during the recording session. In our experiments, S ranged be-
tween 13 and 22 cm/s (Figs. 2—4), with amean 0of 16.9 = 3.4 cm/s.
Within this speed range, oscillatory interference models predict
that the cosine function’s amplitude, 7S/27r, should be a few
tenths of a hertz at most (see derivation below, in Distribution of
predicted grid spacings). Hence, to detect the predicted direc-
tional modulation of a theta cell’s burst frequency, it was neces-
sary to obtain eight independent measurements of the burst
frequency (one for each of the analyzed movement directions), all
accurate to within ~0.1 Hz. To help achieve this required preci-
sion of measurement accuracy, sessions were included in the
analysis only if they met minimal inclusion criteria for behavioral
sampling by the rat and theta rhythmicity of single-unit spike
trains (see Materials and Methods, Data inclusion criteria). Ses-
sions that failed to meet these criteria were excluded on the
grounds that cosine directional tuning of theta burst frequencies
would be undetectable even if it were present, and this limited the
number of cells we could analyze.

Inclusion criteria were met by a total of 45 recording sessions
obtained from 21 theta cells in five rats (data from all of these
sessions are summarized in Figs. 2—4). However, satisfying the
minimal inclusion criteria did not guarantee that burst frequency
measurements would be accurate enough to detect cosine direc-
tional tuning during all sessions in which it might have been
present. To test for the presence of cosine directional tuning in
each session, Equation 12 was fitted to each session’s DBFT curve.
A p value was then computed for the cosine fit (see Materials and
Methods, DBFT curves), providing a confidence measure for the
presence of cosine tuning, as well as for the accuracy of the fitted

<«

tracking data are decomposed into episodes of movement in eight directions. B, Gray graphs
show distributions of running speeds for movements in each direction during the session shown
in A; black graph shows the “balanced” running speed distribution derived for the session. C,
Short (3 5) segment of the spike raster (top) and rate histogram (bottom, 25 ms bins) for a theta
cell recorded in anterior thalamus during the session. D, Spike train autocorrelograms in each
movement direction for the theta cell shown in C. E, Power spectra of the autocorrelograms in D.
F, DBFT curve (black line) derived from power spectra in E is superimposed on its cosine fit (gray
line), with estimates for preferred movement direction (6) and base frequency (F indicated by
dashed lines. Predicted grid spacing (A) is calculated from the amplitude of the fitted cosine
function using Equation 16.
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Figure2. Anterior thalamic theta cells. 4, B, Recording sites and session data for anterior thalamic theta cells recorded in rats AT1 (4) and AT2 (B). The top left of each column shows
a photomicrograph of electrode tracks with arrowheads indicating recording sites. Top right plots recording sites at —1.3 mm from bregma in rat atlas diagrams adapted from Paxinos
and Watson (1997). Each row of graphs shows data from a single recording session, with numbered cells (per rat) indicated by brackets to the right (corresponding to numbersin the atlas
diagram above) and session numbers (per cell) indicated by boxed labels (51, S2, etc.) to the left; white or gray shading of box labels denotes cells that were included or excluded,
respectively, from cosine tuning analyses (see Results, Directional modulation of theta cell burst frequencies). From left to right in each row, the first graph plots the DBFT curve (bursting
ratein hertz on the y-axis, allocentric movement direction in degrees on the x-axis), with cosine fit shown in gray, red numbers indicating either the preferred burst direction and baseline
firing rate (included cells) or the p value for cosine tuning (excluded cells), and black numbers (inside rectangles) denoting the mean running speed, S, for the session. The second graph
plots the spatial firing rate map (color scales normalized from 0 to .+ o, or 1 SD over the mean firing rate in hertz, as shown by the scale bar in the top row of A) with cue position for
each session shown by black line and spatial information (bits per spike) shown underneath each map. The third graph shows tetrode spike waveforms, and fourth graph shows cluster
plots of peak-to-peak spike amplitude with the cell’s spikes shown by black points and all other events shown by gray points (x- and y-axes are identically scaled in millivolts, with tetrode
channel numbers displayed below each plot as X vs ¥). The fifth graph plots an autocorrelogram for the session, which was obtained by averaging eight directional autocorrelograms (see
Fig. 1D) together. Inside the autocorrelogram box, the session duration (in minutes) is given at the top left, and the mean firing rate of theta cell during the session (in hertz) is given at
the top right. All anterior thalamic theta cells were recorded in the 80 cm cylinder with a tracking resolution of 4.7 pixels/cm.
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cosine tuning parameters. The degree of overlap between a ses-
sion’s DBFT curve and the fitted cosine function was inversely
proportional to the p value computed for the fit. A significance
level of p < 0.05 (the standard cutoff for two-tailed tests) was
beaten by 14 of 45 (31%) of the recording sessions, a much
greater proportion than would be expected under the null hy-
pothesis that theta cell burst frequencies were not directionally
modulated (binomial test, p < 0.0001). A less stringent signifi-
cance level of p < 0.1 (the standard cutoff for one-tailed tests) was
beaten by 31 of 45 (69%) of the recording sessions, which again
was a much greater proportion than chance would predict (bino-
mial test, p < 0.0001). These results indicate that among record-
ing sessions that met criterion for inclusion in the analysis,
cosine-like directional tuning was much more prevalent than
would be expected by chance alone.

Having thus established the presence of directional tuning, we
sought to characterize this tuning by further analyzing the data
from those sessions in which a robust directional tuning signal
was observed. For a session to be included in these analyses, its
DBFT curve was required to exhibit a cosine fit of p < 0.1 or
better. This criterion was met by at least one session for 19 of 21
(90%) of the recorded theta cells (9 of 9 cells in anterior thalamus,
5 of 6 cells in medial septum, and 5 of 6 cells in hippocampus).
Whenever possible, a single theta cell was recorded repeatedly
across multiple sessions. In some cases, a cell’s DBFT curve beat
the p < 0.1 criterion during some sessions while failing to beat
criterion during other sessions. In many (but not all) of these
cases, the DBFT curve resembled a cosine function even during
excluded sessions that failed to beat the p < 0.1 criterion, and
tuning parameters were similar to those observed for included
sessions (Fig. 2A, cell 1). Such variability in the quality of the
cosine fit from different sessions with the same cell may have been
caused by variation of uncontrolled factors (such as the rat’s
movement behavior and the quality of single-unit isolation) that
affected the accuracy of theta cell burst frequency estimates from
one session to the next.

The proportion of sessions passing the p < 0.1 reliability
criterion for cosine tuning differed among the three targeted
brain structures. The criterion was beaten by 18 of 21 (86%) of
the sessions from anterior thalamus (Fig. 2), 5 of 10 (50%)
of the sessions from medial septum (Fig. 3), and 8 of 14 (57%)
of the sessions from hippocampus (Fig. 4). This variation in the
reliability of cosine tuning across brain structures does not nec-
essarily indicate that the prevalence of cosine tuning differed
among structures, because recordings obtained from different
structures also varied in their video tracking resolution, session
duration, and geometry of the recording environment (Figs. 2—4;
also see Materials and Methods), all of which are factors that can
influence the accuracy of burst frequency estimates. Hence, vari-
ability in the experimental conditions may have affected the pro-
portion of sessions beating the cosine tuning threshold, making it
difficult to compare the prevalence of cosine tuning across differ-
ent brain structures.

Figure 5C shows a population DBFT curve which was gener-
ated by averaging curves from all session beating the p < 0.1
threshold, first over sessions (n = 31) and then over cells (n =

<«

sites where a theta cell was recorded but did not meet criteria for inclusion in cosine tuning
analyses during any session). A—C, Medial septal theta cells were recorded in the 50 cm square
for rat MH4 (4), the 200 cm cylinder for rat MH5 (B), and the 80 cm cylinder for rat MH6 (C). All
medial septal recording sessions used a tracking resolution of 1.7 pixels/cm.
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Figure4.

Hippocampal theta cells. Histological reconstructions and session data graphs are as described in Figures 2 and 3. A-C, Hippocampal theta cells were recorded in either the 50 cm square

or the 200 cm cylinder for rats MH4 (A) and MH5 (B), and exclusively in the 80 cm cylinder for rat MH6 (C). All hippocampal recording sessions used a tracking resolution of 1.7 pixels/cm.

19). Before averaging, individual DBFT curves were aligned with
respect to their cosine tuning parameters (6 on the x-axis, F on
the y-axis). The resulting population curve was well fit by Equa-
tion 12 (p < 0.0025), supporting the conclusion that some theta
cells exhibited cosine-like directional tuning of their burst fre-
quencies, in accordance with the VCO frequency law.

Cue control over preferred movement directions

Firing rate maps of spatially tuned neurons can follow rotations
of familiar landmark cues (Muller and Kubie, 1987; Taube et al.,
1990; Knierim et al., 1995, 1998; Hafting et al., 2005; Solstad et al.,
2008). If spatial neurons derive their positional tuning from theta
cells with directionally tuned burst frequencies, then DBFT
curves of theta cells should exhibit a similar tendency to rotate
with landmarks. To test this, we recorded theta cells across mul-
tiple sessions whenever possible, and sometimes rotated a land-

mark cue on the wall between sessions (the extramaze light
source and experimenter’s entry position were also rotated along
with the cue card; see Materials and Methods). DBFT rotation
errors (henceforth denoted by &,5pr) were quantified as the dif-
ference between rotation of 6 and the cue rotation angle. For 12
pairs of consecutive sessions across which a theta cell was held
(Table 1), the circular mean of e,zpr was —9.1 + 13.4° (Fig. 6 A).
Circular statistics indicated that e,z values were nonuniformly
distributed (Rayleigh’s Z = 7.28, p = 0.0002) and significantly
clustered near zero (V = 0.77, p = 0.00002), supporting the
conclusion that DBFT curves were often controlled by landmark
cues.

DBFT curves did not always follow landmark cues, since epgpr
was large for some session pairs. To further study these cases, we
exploited the fact that theta cells in anterior thalamus were some-
times recorded simultaneously with neighboring head-direction
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Figure 5.

Population analysis of cosine-tuned theta cells. Cells from rats AT1 and AT2 were recorded in anterior thalamus; for rats MH4 —MHS, filled symbols indicate medial septum cells, and

open symbols indicate hippocampal cells. A, Circular distribution of preferred movement direction estimates, 6, for each theta cell (n = 19) during the first session in which it was recorded with the
cue card in the standard position. B, Scatter plot shows estimated base frequency (F, x-axis) versus predicted grid spacing (A, y-axis) for all sessions (1 = 31). Dashed lines connect each pair of
symbols plotting two different recordings of the same cell, to show within-cell variability of F and A across sessions. €, Population averaged DBFT curve (19 theta cells recorded during 31 sessions
from 5 rats) is well fit by a cosine function (gray line). D, Population-averaged running speed slopes for movement in the preferred (pref), antipreferred (anti), and orthogonal (ortho) directions of

each theta cell (directional ranges indicated by shaded regions in ). Error bars indicate SEM.

Table 1. Directional tuning and rotation errors across pairs of repeated sessions
Cell ID

Session Bpgrr Oy ABpgrr Abp Abye €pprr  Enp €int

ATT cell1 S1 241 24
S3 192 253 —49 12 0 -4 12 61
ATT cell 3 S1 337 3N
S2 147 112 —190
AT1 cell 5 S1 237 X
52 298 X 61 0 —29
AT2 cell1 S1 31 210
S2 106 286 75 7% 9% —15 —14 1
S3 20 202 —8 —8 —90 4 6 2
$4 281 107 —81  —95 —90 9 =5 —14
AT2 cell 3 S1 352 237
S2 101 347 109 10 90 19 20 1
S3 84 33 —17 46 —90 73 136 63
AT2 cell 4 S1 84 176

—199 —9% —100 —109 —9

S2 1 97 =73 —79 —90 17 n —6
MH5 cell 1 S1 278 X

S2 263 X =15 0 —15

S3 129 X —134 —90 —44

S5 139 X 10 0 10
Circular mean —91 +32 +109
SD 134 221 127
Unsigned mean 320 391 196
SD 8.9 19.7 100

Each row corresponds to an experimental session, with animal, cell, and session numbers listed under Cell ID and
Session. All numeric values are in degrees. The preferred movement directions of theta cells are listed under Opger,
and the preferred firing directions of simultaneously recorded head direction cells are listed under 6, (X denotes
session during which no head direction cell was recorded). Rotations of the DBFT curve, head direction cell tuning
curve, and cue card (in comparison with the session from the row above) are listed under A6y, A6y, and
A0y, respectively. DBFT, head direction, and internal rotation errors are listed under €pger, €yp, and €y,
respectively, where €pger = ABpger — ABcye, €4p = Abyp — Abcye, and €y = €4p — Epger

cells. In these cases, it was possible to measure a head-direction
error (&) that compared rotation of the cue with rotation of the
head-direction cell tuning curve (Table 1). For eight pairs of con-
secutive sessions across which both theta and head-direction cells
were held, the circular mean of ey, was 3.2 = 22.1°, and gy
values were clustered near zero (Rayleigh’s Z = 6.2, p = 0.0004;
V = 0.86; p = 0.00005). These results indicate that head-
direction cell tuning curves were controlled by the landmark cue
in a manner similar to DBFT curves. In cases where DBFT curves
closely followed the cue, head-direction cell tuning also tended to
follow the cue (Fig. 6B), but in cases where DBFT curves were
poorly controlled by the cue, head-direction cell tuning also
tended to be poorly controlled by the cue (Fig. 6C).

To analyze coupling between the directional tuning of theta
and head-direction cells, an internal rotation error (&) was
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Figure 6.  Cue control of DBFT curves. 4, Circular histogram plots distribution of DBFT rota-
tion errors with respect to the cue card for 12 pairs of consecutive sessions over which a theta cell
was held (Table 1); shading indicates angle of cue rotation between sessions, and black lines
show the mean and SD of rotation error. B, Left column shows DBFT curves for an anterior
thalamic theta cell (rat AT2, cell T from Fig. 2B); right column shows tuning curves for a head-
direction cell recorded simultaneously in the 80 cm cylinder across four consecutive cue rotation
sessions. Both cells rotated their directional tuning functions along with the position of the cue
(indicated by diagrams). €, A pair of sessions during which a theta cell (rat AT1, cell 3 from Fig.
24) and simultaneously recorded head-direction cell failed to follow rotations of the cue but
maintained coupling of their directional tuning relative to one another.
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computed to compare rotation of theta cell DBFT's against rota-
tion of head-direction cell tuning curves (Table 1). The circular
mean of ey was 10.9 = 12.7°, and g values were clustered
near zero (Rayleigh’s Z = 2.8, p = 0.056; V = 0.591; p = 0.008),
indicating that DBFT curves and head-direction cell tuning
curves tended to rotate in tandem by similar amounts. Further
supporting this, the absolute (that is, unsigned) means of &,
and epgpr (Table 1, bottom) did not differ significantly from one
another (Mann—-Whitney U = 40, p = 0.92), but the unsigned
mean of gy was significantly smaller than that for epgpr
(Mann—Whitney U = 62.5, p = 0.03), implying that DBFT curves
were more tightly coupled to head-direction cells than to the
landmark cue; that is, theta cell DBFT curves and head-direction
cell tuning curves both showed a significant tendency to follow
rotations of the landmark cue (as indicated by circular statistics
on each population). But both also showed incidences of failure
to follow the cue, and in these instances, the directional tuning
functions of theta and head-direction cells were better coupled to
one another than to the landmark. A likely interpretation of these
results is that rotation of the cue sometimes failed to “fool” the rat
into rotating its directional reference frame with the cue, but in
these cases, preferred movement directions of theta cells re-
mained anchored to the rat’s internal directional reference frame
(as indicated by better coupling of theta cells to head-direction
cells than the cue).

To synthesize spatial tuning functions in two dimensions,
different theta cells would need to integrate the rat’s move-
ment velocity along vectors with different orientations (see
below, Spatially tuned neurons in an open field). To test this
prediction, a circular distribution of 6 values was plotted for
one recording session from each theta cell (Fig. 5A). To main-
tain the same directional reference frame for all data points,
the distribution included only one session from each cell, cho-
sen at random from all sessions during which the cell was
recorded with the cue card and extramaze light source in a
“standard” position. Three cells were not recorded during a
session with cues in the standard position, so for these cells,
a nonstandard cue session was randomly chosen, and the cue
rotation angle (—90° or +90° from standard) for the chosen
session was subtracted from 0 before it was entered into the
distribution. Values of @ were uniformly distributed (Ray-
leigh’s Z = 2.027, p = 0.13; Rao’s spacing test U = 126.0, p >
0.5), supporting the conclusion that each theta cell was tuned
to have its own preferred movement direction.

Amplitude of directional modulation

The fitted value of 7 estimated the amplitude of directional
frequency modulation around F, for the case where running
speed was equal to S. If theta cells function as VCOs, then 7
estimates the length of the VCO’s preferred movement vector.
Empirical values of 7 can be tested against theoretical predic-
tions by recognizing that when a grid cell is formed by inter-
ference among VCOs, the vertex spacing of the grid is inversely
proportional to VCO vector length (Burgess et al., 2007; Gio-
como et al., 2007; Hasselmo et al., 2007). For the case of an
equilateral grid, the smallest obtainable vertex spacing is
formed by combining three VCOs with preferred movement
vectors of the same length, 7 = |d,| = |d,| = |d5|, and differing
orientations that are 120° apart from each other. To compute
the spacing of a grid cell formed from such a triplet of VCOs,
we may express the phases of the three oscillators (k = 1, 2, 3)
as follows:

Welday et al. ® Directional Modulation of Theta Cell Burst Frequencies

di(1) = D(1) + di - x(1),

where @ is a common “reference phase” shared among all VCOs
(Eq. 17). By the VCO envelope formula (Eq. 20), we obtain the
following:

(13)

E= \/3 + 2 cos (D, *x) + 2 cos (D, * x) + 2 cos (D; * x),
(14)

where the three vectors givenby D, =d, — d,, D, =d, — d;,and
D, = d; — d, have identical length D = |D,| = |D,| = |D5|, and
their directions are also 120° apart. Thus, the envelope can be
regarded as a sum of three straight cosine gratings with the spac-
ing A = 2@/D. The spacing A of the hexagonal grid formed by
these three cosine gratings is as follows:

]\—2/\—47T (15)
_\5 _\@.

Based on the geometry, we have D = V/37, which leads to the
following formula for the predicted grid spacing:

_ 4w
A= 3 (16)
Solving Equation 16 with empirically measured values of 7, we
may estimate the smallest vertex spacing obtainable for grid cells
formed by phase interference among theta cells similar to those
we recorded. Figure 5B ( y-axis) shows that the predicted mini-
mal grid spacings were distributed over a range of 25-225 cm
(Fig. 5B, y-axis), which is similar to the range of vertex spacings
that has been reported for grid cells in dorsal medial entorhinal
cortex (Hafting et al., 2005; Sargolini et al., 2006; Brun et al.,
2008D). Plugging this range of predicted grid spacings into Equa-
tion 16 and then algebraically solving for 7, we can then use Equa-
tion 12 to estimate the range over which 7 should vary at the mean
balanced running speed of S = 16.9 cm/s. This calculation yields
a prediction that the cosine amplitude coefficients of DBFT
curves should range between about 0.05 and 0.45 Hz, emphasiz-
ing the point made above (see Directional modulation of theta
cell burst frequencies) that the predicted directional modulation
of theta frequencies is quite small.

It should be emphasized once again that these calculations
assume grids are formed from triplets of theta cells with pre-
ferred direction vectors that are 120° apart. But there are many
different ways to form a hexagonal grid from interference
among VCOs (Burgess, 2008), and the slope of the inverse
relationship between vector length and vertex spacing de-
pends on exactly how VCOs are combined form the grid. For
example, adding six VCOs with preferred directions that are
60° apart would lead to a predicted grid spacing that is larger
than that in Equation 16 by a factor of /3, and an adjusted
range of grid spacings of 43-390 cm, which would still be
within the range of empirically observed values (Hafting et al.,
2005; Sargolini et al., 2006; Brun et al., 2008b).

Modulation of burst frequencies by running speed

The fitted value of F estimated the base frequency around which
theta cell bursting was modulated. Values of F showed variability
among different rats across an approximate range of 6—8 Hz, and
showed a lesser degree of variability (up to ~1 Hz) across differ-
ent sessions within the same rat (Fig. 4 B, x-axis). This pattern of
results is consistent with prior studies showing variability of theta
frequency across rats and sessions (Jeewajee et al., 2008b). If the
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base frequency remains rigidly constant at all times and does not
vary with running speed, then Equation 11 dictates thata VCO’s
frequency should increase with running speed when the rat
moves in the VCO’s preferred direction, and decrease with run-
ning speed when the rat moves in the opposite (antipreferred)
direction. Averaged across all directions, these opposing influ-
ences should cancel each other out, yielding a prediction that the
mean VCO frequency would be identical for all running speeds.
Contradicting this prediction, prior studies have shown that the
theta frequency increases with running speed when movement
direction is disregarded (Rivas et al., 1996; Geisler et al., 2007;
Jeewajee et al., 2008a). One simple way to account for these re-
sults is to assume that the VCO base frequency [Eq. 11, Q(¢)]
increases in proportion with running speed (Burgess, 2008). As
long as this speed-dependent base frequency remains identical
for all VCOs, then path integration would not be impaired.

To investigate modulation of the base frequency by running
speed, an analysis was conducted in which theta cell burst fre-
quencies were analyzed as a function of the rat’s running speed in
directions parallel, antiparallel, and orthogonal to each cell’s pre-
ferred movement direction (Fig. 5D). Averaging results across
sessions and then cells, it was found that theta cell burst frequen-
cies increased with running speed in all directions, and the slope
of speed modulation was steepest for the preferred and shallowest
for the antipreferred direction. The observation that the theta
frequency increased with running speed in all directions (rather
than increasing in the preferred and decreasing in the anti-
preferred direction) suggests that the base frequency was not con-
stant, but instead increased with running speed. As long as Q(t)
varies only with running speed, and not with movement direc-
tion, then the VCO frequency law still dictates that theta burst
frequencies should vary as the cosine of the rat’s movement di-
rection, as we have observed.

Analytic simulations of spatially tuned neurons

Experimental results presented above suggest that VCO sig-
nals may be encoded by spike trains of rhythmically bursting
theta cells. Computer simulations were performed to test
whether spatially tuned neurons could be formed by phase
interference among theta cells with firing properties similar to
those observed in our experiments (source code and input
data for simulations are available on ModelDB). Before de-
scribing these simulation results, we first introduce an analytic
expression for the spatial envelope function that is synthesized
from phase interference among any arbitrary set of VCOs.

VCO envelope and carrier equations

Equation 11 dictates that the nth VCO’s frequency varies linearly
with the rat’s velocity along a preferred vector, d,,, so that a com-
ponent of the VCO’s phase becomes dependent on the rat’s po-
sition along that same vector. To isolate this position-dependent
phase component, we may separately integrate the two summed
terms in Equation 11, and thereby express the instantaneous
phase of the VCO as a sum of two terms:

¢,(t) = O(t) + 8,(x(1),

where @ is a common “reference phase” shared among all VCOs
[obtained by integrating the base frequency, (), between times 0
and ¢ from an initial starting phase, ®(0)], and §,, is the nth VCO’s
unique offset from the reference phase, which depends upon the
rat’s spatial position, x(t), as follows:

8,(x(1) = 8,(x(0)) + d, - [x(t) — x(0)],

(17)

(18)
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with 6,(x(0)) = ¢,(0) — Q(0) denoting the nth VCO’s initial
offset from the reference phase. It follows from Equation 18
that if a rat navigates to an arbitrary position, x(t), then the nth
VCO’s phase at that position will be offset from the reference
phase by an amount that depends strictly upon the distance of
x(t) from the rat’s starting position, x(0), along the VCO’s
preferred vector, d,,. Moreover, if all VCOs share the same
reference phase, then their phase offsets from each other will
also depend strictly on the rat’s location. Consequently, every
location in space will be encoded by a specific pattern of phase
relationships among VCOs. If VCO phase relationships de-
pend strictly on the rat’s position, then phase interference
among VCOs is guaranteed to synthesize an envelope function
that “sits still” in space, regardless of the rat’s movement tra-
jectory through the environment (Burgess et al., 2005; 2007).
The outputs from N VCOs may be thus summed together to
generate an interference pattern as follows (Fig. 7A):

N,
1(t) = 2, w, cos ¢,(1) = C(1) E(x), (19)
n=1

where w,, is a weighting coefficient for the nth VCO. The second
step in Equation 19 states that the sum of VCO outputs can be
rewritten as a product of just two terms: a carrier signal C(¢) that
varies over time, and an envelope signal E(x) that varies over
space. By exploiting a trick based on Euler’s formula 1 (Hart-
mann, 1998), E(x) can be expressed as a sum of complex expo-
nential terms by the following VCO envelope equation:

N.

E(x) = | 2, w, exp(i8,(x)), (20)

where i = V/—1 inside the exponential function. The VCO enve-
lope defined by Equation 20 behaves much like the firing rate of a
spatially tuned neuron, growing large at locations where many
VCOs are synchronized (constructively interfering) and becom-
ing small at locations where most VCOs are desynchronized (de-
structively interfering).

Equation 19 states that the spatial envelope signal is multipli-
catively modulated by a temporal carrier signal, assumed here (as
in prior oscillatory interference models) to account for theta
modulation of spatial neuron spike trains. The carrier signal can
be written as follows:

C(t) = cos(d(t) + @), (21)
where
_ B
¢ = arctan " (22)
with
N
A= w, cos 8,(x) (23)
n=1
and
N
B = E w, sin 8,(x). (24)

n

Analytic model of spatial neurons formed from theta cells

The VCO envelope equation implies that any neuron which can
detect synchrony among VCOs (by firing selectively when their
phases converge) is guaranteed to “pick out” a selected spatial
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Analytic simulations of spatial neurons formed from theta cells. 4, Simulated rat runs at 25 cm/s along a 1.0 m linear track, while eight theta VCOs (6,—6;) oscillate at

differing frequencies; all VCO phases are perfectly aligned in the center of the track (dashed vertical line). Summing VCO outputs can produce interference patterns that mimic the spatial
firing patterns of grid or place cells (see Results, Place cell synthesized from theta cells on a linear track). B, Activity bump (shaded circles) circulates around a ring oscillator circuit to
generate theta rhythm at a frequency that varies with the rat’s velocity along a preferred vector, d,.. €, A matrix of ring oscillator circuits contains a distributed population of theta cells
from which different kinds of spatially tuned neurons can be formed (see main text); simulated tuning functions (Model) are shown beside real fining rate maps (Data) for a hippocampal
place cell (reprinted from Leutgeb et al., 2007), grid cellsin dorsal and ventral entorhinal cortex (reprinted from Hafting etal., 2005), and a border cell in entorhinal cortex (reprinted from

Solstad et al., 2008).

region of the rat’s environment (by firing only when the rat is
located within that region). Prior interference models have dem-
onstrated this for the special case of grid cells, showing how phase
interference among VCOs can synthesize envelopes that form a
hexagonal lattice tiling the environment (Burgess et al., 2005,
2007; Giocomo et al., 2007; Hasselmo et al., 2007; Burgess, 2008;
Zilli and Hasselmo, 2010). Here, we expand on these results by
showing that, more generally, the VCO envelope can mimic al-
most any spatial function and thereby simulate the firing rate
maps of almost any spatially tuned neuron (including place and
border cells, in addition to grid cells).

A simplified case is illustrated in Figure 7A, which plots
output from eight VCOs (modeled as cosine functions) while
a simulated rat runs at a constant speed of 25 cm/s along the
length of a 1 m linear track. In this example, all of the VCOs
have different fixed frequencies, and they converge in phase at
the center of the track. If a postsynaptic neuron sums input

from just two of these eight VCOs, then its output can generate
a beat envelope that waxes and wanes at fixed intervals along
the length of the track, mimicking the spatially periodic firing
pattern of a grid cell as in prior models (Fig. 7A, E4). But if
the target neuron sums input from all eight of the VCOs, then
its output will grow large only at the center of the track where
all VCO phases converge, mimicking the unitary firing field of
a place cell (Fig. 74, E,,.)- Thus, detection of phase conver-
gence among few VCOs (a common event that recurs at fixed
intervals along the track) simulates a grid cell, whereas detec-
tion of phase convergence among many VCOs (a rare event
which occurs at just one location on the track) simulates a
place cell.

More generally, a postsynaptic neuron can generate almost
any spatial function by detecting phase convergence among a
properly chosen set of VCOs. To see why this is so, it is helpful to
rewrite Equation 20 in the following form:
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E(x) = (A’ + B = kil—i wiw; cos(8i(x) — §(x)),
(25)

where A and B are given by Equations 23 and 24, and x is now
assumed to be a vector representing the rat’s location in a 2D
environment instead of a linear track (note that generalization to
arbitrary dimensions is possible; see Discussion). Here, the enve-
lope equation becomes a sum of 2D cosine functions (or gratings)
formed by interferences between all possible pairs of the N VCOs,
indexed by k and I. These cosine gratings define the components
of the envelope’s 2D spatial frequency spectrum, and they are
fully determined by the preferred vectors (d,, d,, ..., dy),
weighting coefficients (w,, w,, ..., wy), and starting phases
[$1(0), $,(0), ..., ¢p(0)] of the VCOs that interfere with one
another to synthesize the envelope. If these parameters are prop-
erly chosen, then a sufficiently large number of VCOs should be
able to approximate the spatial frequency spectrum of almost any
desired spatial function.

Let us suppose that the rat brain contains a large and diverse
population of VCOs, all sharing a common reference phase as
assumed by Equations 17 through 25, and that each VCO signal is
generated by a rhythmically bursting theta cell (as suggested by
our experimental findings above). Such a population of theta
cells can encode a basis set from which arbitrary spatial tuning
functions could be synthesized. A different spatial envelope
would be formed by interference among any unique subset of
theta cells in the population, and a few key parameters would
determine the frequency spectra (and thus the shapes) of these
envelope functions. As noted above, one such parameter is the
temporal phase of each VCO signal. Hence, to generate a diversity
of different spatially tuned neurons, it would be useful for VCOs
to be implemented as multiphase oscillators, which generate
multiple copies of the same VCO signal at diverse phase shifts.
Supporting this possibility, there appears to be a continuous gra-
dient of theta phase along the septotemporal axis of the hip-
pocampus (Lubenov and Siapas, 2009).

This phase diversity requirement entices us to conceptualize
the CPG circuit for theta rhythm as “ring oscillator” composed
from a circular layer of theta cells (Blair et al., 2008). A localized
“bump” of activity can circulate around the ring at the theta
frequency, so that each cell in the ring generates rhythmic theta
bursts on a different phase of the same VCO cycle (Fig. 7B). To
regulate the VCO frequency in accordance with Equation 11, the
ring may receive an external driving input that encodes the rat’s
translational velocity along the ring’s preferred vector, d,,. In a
population of ring oscillators with different velocity inputs, the
nth ring oscillator serves as a multiphase VCO that performs
translational path integration along its own preferred vector, d,,.
This ring oscillator model of translational path integration is
quite similar to hypothetical ring attractor models of angular
path integration by head-direction cells (Skaggs et al., 1995; Re-
dish et al., 1996; Zhang, 1996; Song and Wang, 2005), raising the
possibility that translational and angular path integration might
both be performed by similar ring attractor circuits (Blair et al.,
2008; Mhatre et al., 2010).

Figure 7C illustrates a hypothetical arrangement of ring oscil-
lators within a structured matrix of VCOs that contains a distrib-
uted population of theta cells from which many different spatial
tuning functions can be synthesized. The VCO parameters of
each theta cell in Figure 7C are determined by the cell’s position
in the matrix; theta cells residing in the same ring share the same
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preferred vector, and thus generate the same VCO signal at dif-
ferent phase shifts. Theta cells residing in different rings have
different preferred vectors, and thus generate different VCO fre-
quencies. The matrix is organized so that rings in the same row
are modulated by running speed with the same slope (and thus
have VCO vectors of identical length), whereas rings in the same
column prefer movement in the same direction (and thus have
VCO vectors of identical orientation).

A target neuron that sums input from theta cells in the VCO
matrix can simulate the positional firing properties of almost any
spatially tuned neuron, depending on the rows, columns, and
ring positions of the theta cells that provide its input. This is
illustrated on the right side of Fig. 7C, which shows analytic en-
velope functions that were simulated by solving Equation 20. To
simplify the derivation of spatial envelopes in these simulations,
the rat’s initial starting position, x(0), was set equal the origin of
the spatial coordinate system, which corresponded to the center
of the arena. In addition, the starting phases, ¢,,(0), for all VCOs
were initialized to zero, and all VCO weighting coefficients, w,),
were set uniformly equal to 1. Spatial tuning functions were sim-
ulated by assigning preferred vectors, [d;, d,, . . ., dy], to a set of
N VCOs and then solving Equation 20 at each point on a square
lattice representing positions in a 1 m?” square environment. The
amplitude of E(x) was converted to a “firing rate” by filtering
through a spike threshold:

R(x) = H(E(x) — k), (26)
where R(x) is the firing rate at x, H is the Heaviside function, and
k represents the spike threshold which was set to k = 0.7 X
max[E(x)] for all simulations presented here.

As in prior oscillatory interference models (Burgess et al.,
2005, 2007; Giocomo et al., 2007; Hasselmo et al., 2007; Burgess,
2008), a target neuron that receives input from properly chosen
theta cells can simulate a grid cell with various vertex spacings
(blue and green lines in Fig. 7C). Here, the vertex spacing de-
pends on which matrix row theta cells reside in, and the grid
orientation depends on which columns theta cells reside in. But
in addition to grid cells, other types of spatially tuned neurons can
also be formed. For example, suppose that a target neuron’s input
comes from theta cells residing in different rows of the same
column (Fig. 7C, red lines). Since all of these theta cells have
preferred vectors of the same orientation (but with different
slopes of speed modulation), the target neuron fires along a linear
band oriented perpendicular to the preferred vector orientation.
This linear band can mimic the firing rate map of a border cell
that fires along a straight wall (Fig. 7C, bottom right) or of a
boundary vector cell (Lever et al., 2009) that fires at a fixed dis-
tance from the wall (data not shown). Alternatively, if the target
neuron’s input comes from theta cells in every column of a single
row, then it can simulate a place cell (Fig. 7C, top right). Like the
vertex spacing of a grid cell, the size of a place cell’s firing field
would depend on which row of the matrix provides input to the
target neuron.

As a general rule, a target neuron that receives input from many
theta cells will tend to fire in very few (and possibly zero) subregions
within a the circumscribed area of any given environment (since
phase convergence among many theta cells is a rare event that occurs
at very few locations); the shape and size of this subregion will de-
pend on exactly which theta cells provide the neuron’s input. Con-
versely, a target neuron that receives input from just a few theta cells
will tend to fire within multiple subregions of an environment (since
phase convergence among a small number of theta cells isa common
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derived from power spectrain D, along with VCO parameter estimates (6, A, F) derived from the curve. The actual V(O parameters

event that recurs at multiple locations). For
example, we have already seen that grid cell
firing patterns can emerge from interference
among a few systematically chosen theta
cells. Alternatively, interference among ran-
domly chosen theta cells can mimic the fir-
ing patterns of neurons that fire at multiple
locations that are randomly distributed (re-
sults not shown), such as those found in the
dentate gyrus (Leutgeb et al., 2007).

Biophysical simulations of spatially
tuned neurons

In Figure 7, spatial neurons were simulated
by analytically solving Equation 20 to gener-
ate envelope functions. Hence, the enve-
lopes were obtained by linearly summing a
basis set of idealized VCOs, each repre-
sented as a velocity-modulated cosine func-
tion consisting of a single fundamental
harmonic component. But our experimen-
tal data suggest that VCO signals may be en-
coded by noisy theta cell spike trains. Unlike
idealized cosine VCOs, these noisy spike
trains contain many complex harmonics in
addition to the “fundamental” theta fre-
quency of their bursting rate. There is thus
no guarantee that spike trains from biologi-
cal theta cells could interfere with one
another to synthesize spatial envelopes, be-
cause the additional harmonics introduced
into the VCO signals by noise and the spik-
ing process—which are not accounted for
by the VCO envelope equations—might in-
terfere with one another in ways that com-
promise the spatial rigidity and trajectory
invariance of the envelopes. Moreover, a bi-
ological neuron typically does not compute
aperfect linear sum of its inputs, as assumed
in the analytic simulations of Figure 7.

Simulating theta cell spike trains

To investigate whether spatially tuned
neurons can be formed from spiking theta
cells similar to those we observed in our
experiments, we simulated theta cell spike
trains using a Poisson process. A theta cell
spike was generated pseudorandomly at
each simulation time step (dt = 2 ms)
with an oscillating probability that varied
with the amplitude of an ideal cosine VCO
(Fig. 8A). Experiments indicated that the
base frequency of theta cell VCOs in-
creased with running speed (Fig. 5D). To
incorporate this result into simulations of

<«

used in this simulation were § = 315°, A = 60 cm, and
F(t) = 7.0 + 0.25 r(t) Hz (the base frequency was linearly
dependent on running speed, to approximate experimental
results shown in Fig. 5D). It can be seen that the data analysis
algorithm recovered these VCO parameters with good
accuracy.
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theta cell spike trains, the following version of the VCO frequency
law was used:

d¢ S(1)
E— QO"‘K"’ d, - v(1),

(27)
where dd/dt is the instantaneous angular frequency of the oscil-
lating spike probability, S(¢) is the rat’s instantaneous running
speed, and ), + S(#)/40 defines the speed-dependent base fre-
quency, so that (¢) increases with running speed at a slope of
1/40 Hz/cm/s. To generate simulated spike trains, movement ve-
locity data from a 60 min segment of an experimental recording
session were upsampled to 500 Hz (from the video tracking rate
of 30 Hz) to match the simulation time resolution of dt = 2 ms. At
each time step, the VCO phase, ¢(t), was computed by numeri-
cally integrating the VCO frequency defined by Equation 27
across the 60 min session, with the values for movement velocity
derived from the tracking data. Spike probability at each time step
was then computed as follows:

1+2 cosd)(t))

p(t) = H( 5 (28)

where H is the Heaviside function. Thresholding by H gives a
spike probability of P(f) = 0 in an interval of width 7/2 centered
upon the valley of each theta cycle (so that the simulated theta cell
falls silent between bursts on each cycle). Outside of this silent
interval, P(t) varies as a continuous function of the VCO ampli-
tude, reaching a maximum value of 0.5 spikes per dt at the peak of
each theta cycle. When (), was set to 7 Hz (as in simulations
presented here), Equation 28 produced simulated theta cell spike
trains with a mean spiking rate of ~100 Hz (note that a refractory
period of 2 ms between spikes was automatically conferred by the
2 ms time resolution of the simulations). To obtain firing rates
lower than 100 Hz, spikes were randomly selected for deletion
from the train with a probability inversely proportional to the
desired firing rate. When simulated spike trains were analyzed
using the same algorithms that were used for experimental data
analysis, simulated theta cells exhibited directional tuning of
their burst frequencies similar to that observed for real theta cells
(Fig. 8).

Place cell synthesized from theta cells on a linear track

Based on existing knowledge of hippocampal and thalamocorti-
cal circuits, it is reasonable to assume that many of the theta cells
we recorded in medial septum (Fig. 3) and hippocampus (Fig. 4)
were inhibitory neurons (Ranck, 1973; Freund and Antal, 1988),
whereas theta cells in the anterior thalamus (Fig. 2) may have
been excitatory thalamocortical projection neurons (Jones, 1985;
Tsanov et al., 2011b). We thus conducted simulations to test
whether spatial tuning functions could be formed by inhibitory
versus excitatory inputs to a postsynaptic target neuron from
theta cells.

To compare interference among excitatory versus inhibitory
theta cells, we replicated the place cell simulation of Figure 74, in
which a rat runs at constant speed across a linear track. Each of
the eight cosine VCO signals in Figure 7A was converted into a
theta cell spike train by the method illustrated in Figure 8. The
NEURON simulation environment (Carnevale and Hines, 2006)
was then used to create a single-compartment model of a post-
synaptic target cell, which received identically weighted inputs
(either excitatory or inhibitory) from the eight simulated theta
cell spike trains.
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In simulations where theta cell spike trains triggered IPSPs,
the target neuron was able to fire selectively in the center of the
track by detecting location-dependent synchrony among its in-
puts from theta cells (Fig. 9A4). It may seem counterintuitive that
synchronization among inhibitory inputs would excite the post-
synaptic neuron, but similar results were also reported by Zilli
and Hasselmo (2010) in simulations of grid cells. This paradoxi-
cal excitation of the postsynaptic cell by synchronized inhibitory
inputs occurs because desynchronized input from inhibitory
theta cells produces a constant, uninterrupted barrage of inhibi-
tion that prevents the target neuron from firing; when inhibitory
theta bursts become synchronized, prolonged relief from inhibi-
tion (lasting tens of milliseconds) occurs during gaps between
synchronized theta bursts. Under the influence of an excitatory
drive, which was provided in our simulations by a persistent so-
dium (Nap) current (Fig. 94, blue trace), the target neuron can
fire reliably during the disinhibitory gaps. Hence, by detecting
coincident gaps between synchronized theta bursts, the target
neuron can measure location-dependent burst synchrony among
its inputs from inhibitory theta cells, so that its firing rate approx-
imates the spatial envelope defined by Equations 20 and 25.

We next conducted simulations in which the postsynaptic
neuron was excited (rather than inhibited) by inputs from theta
cells. To detect synchrony among excitatory theta cell inputs, it is
necessary for the postsynaptic neuron to sum EPSPs in such a way
that its membrane becomes depolarized above spike threshold
only when theta inputs are synchronized, but not when they are
desynchronized. When EPSPs were triggered by the same eight
theta cell spike trains that were used for inhibitory simulations in
Figure 9A, the target neuron consistently failed to detect location-
dependent synchrony among the theta cells (and thus did not fire
selectively in the center of the track), and this failure was repli-
cated over a wide range of parameter values for synaptic and
membrane conductances (results not shown).

Synchrony detection by EPSP summation failed because the
VCO signals were “undersampled” by noisy theta cell spike
trains; that is, since the timing of theta cell spikes was noisy,
alignment of burst phases on the slow time scale of the theta
period did not necessarily cause individual input spikes to be-
come better aligned on the faster time scale of EPSP summation.
One way to overcome this undersampling problem would be to
reduce the level of noise in the spike times [for example, as in the
study by Hasselmo (2008)], so that alignment of burst phases
would cause better alignment of individual spikes (and thus bet-
ter summation of EPSPs). However, such low-noise spike trains
would no longer resemble the noisy spike trains of theta cells
recorded in our experiments. Another possibility would be to
increase the number of spikes generated per theta cycle (Zilli and
Hasselmo, 2010), and thereby increase the density at which each
VCO signal is sampled by theta cell spikes. However, the mean
firing rate of biological theta cells rarely exceeds ~80 Hz, and this
imposes an upper bound on the number of spikes that a single
theta cell can generate on each theta cycle. In our model, simu-
lated theta cells fired at a mean rate of about 40 Hz, similar to the
mean firing rate of theta cells we recorded in anterior thalamus
(Fig. 2). To increase the number of spikes per theta cycle without
exceeding biological limits on the firing rates of theta cells, we
conducted simulations in which eight VCOs were each redun-
dantly encoded by four excitatory theta cells with noisy spike
trains at mean firing rates of ~40 Hz (Fig. 9B). Thus, the target
neuron received a total of 32 excitatory inputs, from eight VCOs
encoded by four theta cells each. In these simulations, the target
neuron was able to fire selectively in the center of the track by
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detecting location-dependent synchrony among excitatory in-
puts from theta cells (Fig. 9B).

Together, simulation results in Figure 9, A and B, indicate
that spatially selective firing can be generated by a postsynap-
tic neuron that detects location-dependent synchrony among
either inhibitory or excitatory theta cells with firing properties
similar to those observed in our experiments. However, a
larger number of theta cell inputs may be required to achieve
robust spatial tuning in the excitatory than in the inhibitory
case. This is because in the excitatory case, the postsynaptic
neuron must perform the difficult task of detecting coinci-
dences among EPSPs (which are brief events lasting only a few
milliseconds), whereas in the inhibitory case, the postsynaptic
neuron performs the easier task of detecting coincidences
among the gaps between theta bursts (which are more pro-
longed events lasting tens of milliseconds).

Spatially tuned neurons in an open field

To simulate spatially tuned neurons in an open field environ-
ment, theta cell VCOs were modulated by a movement velocity
signal derived from the video tracking data for a 60 min segment
of an experimental recording session in the 80 cm cylinder. Each
simulated theta cell’s burst frequency was modulated by the rat’s
movement velocity along a preferred vector, d,. The single-
compartment target neuron received identically weighted inhib-
itory inputs from N simulated theta cell spike trains, where N
differed depending upon the simulation (Fig. 9). By assigning
appropriate values for the phases and preferred vectors of the
theta cell VCOs, it was possible for the target neuron to sim-
ulate firing rate maps of grid, place, or border cells (Fig. 9C;
source code with parameter values available on ModelDB).
These results demonstrate that many different kinds of spa-
tially tuned neurons can be formed by detecting burst syn-
chrony among inputs from theta cells with firing properties
similar to those observed in our experiments.

Phase precession

In linear track simulations, place cell bursting occurred in phase
with synchronized excitatory theta cell inputs (Fig. 9B) or in an-
tiphase with synchronized inhibitory theta cells inputs (Fig. 9A).
In both cases, place cell spikes exhibited phase precession against
the shared VCO reference phase, ®(t) (Fig. 9A, B, bottom). This
is similar to the manner in which real place cell spikes (O’Keefe
and Recce, 1993) and membrane oscillations (Harvey et al., 2009)
exhibit phase precession against the hippocampal local field po-
tential (LFP) in behaving rodents.

It is not fully understood what oscillatory signal is actually
measured by the LFP in experimental recordings (Blair et al.,
2008; Burgess, 2008; Geisler et al., 2010), but we equated the
common phase factor ®(¢) with the LFP since it is the only phase
component that is shared among all theta oscillators in the
model, and might therefore dominate the field EEG in physiolog-
ical recordings. Under this assumption, spikes generated by spa-
tially tuned neurons can only exhibit phase precession under

<«

(Figure legend continued.)  voltage (V) for simulations with a purely passive membrane; the
bottom V,, trace shows simulations with spike channels (Na, currents were not included in
simulations with excitatory theta inputs). At the bottom, the raster plot shows spike phase
precession with respect to &, asin A. €, Path and firing rate plots for spike trains of a simulated
theta cell, grid cell (formed by 3 theta cells), place cell (formed by 12 theta cells), and border cell
(formed by 9 theta cells), all modeled from 60 min of behavior data collected in the 80 cm
cylinder.
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certain conditions. To define these conditions, let us first suppose
that the phase offset term ¢ (Eq. 22) is a constant and does not
change in time (that is, dg/dt = 0), so that the carrier signal defined
by Equation 21 becomes identical to cos ®(¢), up to a constant offset.
In this case, the burst frequency of the target cell (such as a place cell)
would be identical to the LFP frequency, so there would be neither
phase precession nor phase procession. But if ¢ increases in time
(that is, dg/dt > 0), then the carrier frequency becomes faster than
the LFP frequency, and we should see theta phase precession. More
generally, it follows from Equation 22 that

de 1 A dB B dA -
dt A+ B>\ dr dt) (29)
To simplify this expression without loss of generality, we may
assume that the animal is running in the positive x direction in
the lab coordinate system. Then Equation 18 reduces to the fol-
lowing scalar form:

8,(x) = 8,(0) +d, [ x(t) — x(0)], (30)

where d,, , is the x component of the preferred vector d,, for theta
modulation. Thus we have the following:

%Bn(x) =d, v, (31)
where dx/dt = v is the animal’s running speed.

Now suppose the animal is momentarily located at the peak of
the envelope (e.g., place field). The maximum peak value is possible
only when the phases of all the oscillators are aligned. Without loss of
generality, we write this condition as 8, = 0 for all n. Now Equations
23 and 24 are reduced simply to A = 3" w, and B = 0. Combin-
ing these relations with Equation 31 above and Equation 22, we can
rewrite Equation 29 as follows:

\'a ( N ow,d )
d‘P B szzl Wndn,x B n=1 "Yntn "
dr nN:I Wa N EWN:] w, (32)

This equation suggests that as the rat passes through the peak of
the envelope, we should see phase precession (d¢/dt > 0) if two
conditions are satisfied: (1) all weights w,, are positive, and (2) all
slopes of speed modulation are positive [thatis, d, ., =v+d, > 0;
this condition is equivalent to the positivity constraint intro-
duced by Burgess (2008)]. In our simulations, the first condition
was always satisfied because weight coefficients were set uni-
formly equal to one. The second condition dictates that the car-
rier frequency must exceed the base frequency by a greater
amount at higher running speeds, and it is satisfied if the absolute
angle between the preferred direction vector d,, and the velocity
vector v does not exceed 90°. In our simulations of a place cell on
the linear track (Fig. 9A,B), we chose VCO vectors that were
aligned with the rat’s direction of movement on the track, so that
d,. = v-d, > 0 was satisfied and phase precession occurred.
However, VCO vectors were not always aligned with the rat’s
movement direction in open field simulations (Fig. 9C), so phase
precession did not always occur during spike activity in these
simulations (results not shown)

Discussion

Here we recorded theta cells with burst frequencies that varied as
the cosine of a rat’s allocentric movement direction (Figs. 1-6),
and thus appeared to behave like VCOs in oscillatory interference
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models of path integration (Burgess et al., 2005, 2007; Giocomo
etal., 2007; Hasselmo et al., 2007; Blair at al., 2008; Burgess, 2008;
Hasselmo, 2008; Zilli and Hasselmo, 2010). Computer simula-
tions demonstrated how grid, place, and border cells could all be
formed by a postsynaptic neuron that detects location-dependent
synchrony among inputs from theta cells with firing properties
similar to those observed in our experiments (Figs. 7-9). These
results suggest that populations of theta cells might generate VCO
signals from which spatial memories can be synthesized via oscil-
latory interference.

Theta cells as VCOs

It has been proposed that theta oscillations encoding VCO signals
might arise from intrinsic membrane currents within the den-
drites of spatially tuned neurons (Kamondi et al., 1998; Lengyel et
al., 2003; Burgess et al., 2007; Giocomo et al., 2007; Hasselmo et
al., 2007; Losonczy et al. 2010) (but see Remme et al., 2010) or
from populations of neurons that fire rhythmically at velocity-
modulated frequencies (Blair et al., 2008; Burgess, 2008; Has-
selmo, 2008; Zilli et al., 2009; Zilli and Hasselmo, 2010). In the
latter case, theory predicts that rhythmic firing should be modu-
lated by a rat’s movement direction. It has been shown previously
that anterior thalamus contains neurons with firing rates that are
modulated by both head direction and theta rhythm (Tsanov et
al., 2011a) and that medial septum contains neurons that exhibit
maximal theta rhythmicity when a rat runs in a specific direction
on a linear track (King et al., 1998). However, our present find-
ings provide the first evidence for theta oscillations that with
frequencies that vary as the cosine of a rat’s allocentric movement
direction, which is absolutely necessary for path integration by
oscillatory interference.

Cosine directional tuning was observed in a higher proportion
of recording sessions from anterior thalamus (Fig. 2) than medial
septum (Fig. 3) or hippocampus (Fig. 4), which may have been a
consequence of variable experimental conditions that affected
the accuracy of burst frequency measurements, rather than an
indicator of functional differences among theta cells recorded in
different brain regions (see Results). At the running speeds we
observed here, theory predicts that VCO frequencies should vary
with movement direction by only fractions of a hertz. To measure
theta cell burst frequencies with this level of accuracy, we applied
strict criteria for inclusion of session data in the analysis, which
unavoidably biased the sample of theta cells we analyzed. Thus,
from our present findings, it is difficult to estimate the overall
proportion of theta-modulated cells that exhibits directional tun-
ing of their burst frequencies. However, directional modulation
of theta cell burst frequencies appeared to be quite prevalent in
the structures we targeted, since our reliability threshold for co-
sine directional tuning was beaten during at least one session by
90% (19 of 21) of the cells admitted for analysis. Moreover, di-
rectional tuning followed landmark rotations (Fig. 6), as would
be expected for neurons involved in path integration.

Spatial envelopes can only be synthesized from a set of VCOs
that are modulated around exactly the same base frequency, and
thereby coupled to one another through a shared reference phase
(Eq. 17). To test whether different theta cells share a common
reference phase, it would be necessary to simultaneously record
pairs of theta cells (which was not done here) and show that the
offset between their burst phases varies with the rat’s positionin a
manner that forms a 2D cosine grating (Burgess, 2008). Such
experiments could provide a critical test of whether theta cells
encode VCO signals that share a common reference phase. How-
ever, they would be challenging to perform, because only theta
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cells with sufficiently different preferred vectors (separated by
sufficiently long difference vectors) would form gratings with
spatial frequencies high enough to observe within the confines of
an experimental environment.

Spatial memory coding by theta cells

Computational models have assumed that place cells form their
firing fields by summing inputs from grid cells (McNaughton et
al., 2006; Solstad et al., 2006; Blair et al., 2007; Gorchetchnikov
and Grossberg, 2007; Savelli and Knierim, 2010; Monaco and
Abbott, 2011) or boundary vector cells (Hartley et al., 2000).
Here, we showed how place cells might instead form by summing
direct excitatory or inhibitory inputs from theta cell VCOs (Figs.
7,9). This does not necessarily conflict with prior models, since
grid and boundary vector cells can themselves be synthesized
from theta cells (Fig. 9C). Hence, place cells could either receive
direct inputs from theta cell VCOs (as in our simulations) or
indirect inputs from grid, border, or boundary vector cells (as in
prior models) that are each formed by “bundling” several VCOs
together. In either case, a place cell which fires over a small region
of space would ultimately derive its positional selectivity by de-
tecting rare occurrences of location-dependent synchrony
among many VCOs.

Recent studies reported that hexagonal firing patterns of en-
torhinal grid cells were severely impaired when theta rhythm was
disrupted by inactivation of the medial septum (Brandon et al.,
2011; Koenig et al., 2011), supporting the possibility that grid
cells may derive their positional firing from theta oscillations.
However, hippocampal place cells can continue to exhibit spatial
firing (and retain some theta modulation of their spike trains)
after disruption of ascending theta pathways (Mizumori et al.,
1989; Sharp and Koester, 2008; Koenig et al., 2011), after loss of
inputs from entorhinal cortex (Van Cauter et al., 2008; Brun et
al., 2008a), and before the development of entorhinal grid cells in
rat pups (Wills et al., 2010). One explanation for this pattern of
findings could be that place cells receive diverse VCO inputs from
both direct (e.g., theta cells) and indirect (e.g., grid or boundary
vector cells) sources, and any of these inputs may be sufficient to
support some degree of spatial firing by place cells after other
inputs are lost. Moreover, some inputs may be less susceptible
than others to disruptions of theta rhythm. For example, bound-
ary vector cells might derive some of their spatial tuning from
sensory signals generated by encounters with landmarks or
boundaries, rather than by detecting synchrony among VCOs
that perform path integration (O’Keefe and Burgess, 2005; Bur-
gess et al., 2007; Wills et al. 2010).

Anatomical origins of VCO signals

To synthesize diverse populations of spatially tuned neurons
from VCOs, identical copies of each VCO signal must be gener-
ated at different temporal phase shifts. To satisfy this computa-
tional requirement, we conceptualized the VCO circuit as a “ring
oscillator” composed from a circular layer of theta cells, each
bursting on its own phase of the VCO cycle (Fig. 7B) (Blair et al.,
2008). In simulations, we showed how place, grid, and border
cells could all be formed by target neurons that detect synchrony
among inputs from different theta cells residing in a matrix of
such ring oscillators (Fig. 7C).

Evidence suggests that theta oscillations in hippocampus and
cortex may be driven and synchronized by subcortical CPGs,
which send ascending projections to spatial memory circuits via
the medial septum and limbic thalamus (Petsche et al., 1965;
Gogolak et al., 1967; Vertes and Kocsis, 1997). These ascending
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theta pathways exhibit considerable anatomical overlap with as-
cending head-direction pathways (Vann and Aggleton, 2004;
Taube, 2007; Blair et al., 2008; Sharp and Koester, 2008). Inter-
estingly, our ring oscillator model of the theta CPG circuit per-
forms translational path integration in almost exactly the same
way that angular path integration is performed by ring attractor
models of head-direction cells (Skaggs et al., 1995; Redish et al.,
1996; Zhang, 1996; Song and Wang, 2005; Blair et al., 2008). This
suggests the intriguing possibility that head-direction signals and
velocity-modulated theta rhythm might both emerge from simi-
lar subcortical ring attractor circuits and then follow parallel as-
cending pathways to reach spatial memory circuits in the
hippocampus and cortex. To test this, future studies should in-
vestigate whether theta cells with directionally tuned burst fre-
quencies can be identified in subcortical structures from which
theta rhythm originates.

Neural coding by envelope synthesis

The nervous system generates a multitude of oscillatory rhythms
spanning a wide range of frequency bands (Buzsaki, 2006), and
phase relationships among such oscillators have been proposed
to encode information not only about space, but also about time
(Miall, 1989; Hopfield and Brody, 2001; Matell and Meck 2004)
or complex sensory stimuli (Laurent et al., 2001; Tiesinga et al.,
2008; Koepsell et al., 2010). If the phase of a neural oscillator shifts
smoothly in conjunction with a time-varying state variable, x,
then that oscillator’s frequency would inherently be modulated
by dx/dt, and thereby exhibit firing properties analogous to the
velocity-modulated theta cells we observed here. In principle, the
existence of such oscillators in the nervous system would make it
possible to synthesize almost any desired envelope function (as
specified by Egs. 20, 25) in the state space of x, and thereby
provide a powerful and flexible mechanism for constructing
mental representations in biological neural networks.
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