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�-III Spectrin Is Critical for Development of Purkinje Cell
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Mutations in the gene encoding �-III spectrin give rise to spinocerebellar ataxia type 5, a neurodegenerative disease characterized by
progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length �-III spectrin
(�-III �/�) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking �-III spectrin, reveal a critical role for �-III
spectrin in Purkinje cell morphological development. Disruption of the normally well ordered dendritic arborization occurs in Purkinje
cells from �-III �/� mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced
densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal,
proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell
dendritic degeneration, as Purkinje cells from 8-month-old �-III �/� mice have drastically reduced dendritic volumes, surface areas and
total dendritic lengths compared with 5- to 6-week-old �-III �/� mice. These findings highlight a critical role of �-III spectrin in dendritic
biology and are consistent with an early developmental defect in �-III �/� mice, with abnormal Purkinje cell dendritic morphology
potentially underlying disease pathogenesis.

Introduction
Purkinje cells of the cerebellum have an elaborate, monoplanar
dendritic tree with a high density of spines (Rall, 1977). The
acquisition of this morphology, controlled by both intrinsic and
extrinsic factors (Sotelo and Dusart, 2009), underlies important
aspects of cerebellar function. For instance, it allows Purkinje
cells, the sole output of the cerebellum, to integrate information
from an array of synaptic inputs, with dendritic branching pat-
tern and spine density determining the number and types of
input the cell receives (Häusser et al., 2000). Dendritic morpho-
logical characteristics also influence how synaptic signals decay as
they propagate toward the soma (Gulledge et al., 2005).

It has been well established that the assembly of a well ordered
spectrin-actin filamentous network at the plasma membrane is
required to maintain cellular morphology and physiological
function (Bennett and Baines, 2001). For example, in erythro-
cytes spectrin is critical for mechanical support and maintenance

of structural membrane integrity with � spectrin deficiency being
associated with hemolytic anemias arising from the fragmenta-
tion of erythrocytes when placed under mechanical stress in the
circulation (Greenquist et al., 1978; Lux et al., 1979; Agre et al.,
1982, 1985). Studies using Caenorhabditis elegans have also dem-
onstrated a role for spectrin in the maintenance of membrane
integrity with loss of � spectrin in C. elegans resulting in axonal
breakage (Hammarlund et al., 2000, 2007; Moorthy et al., 2000),
while in Drosophila melanogaster synaptic retraction and conse-
quently synapse elimination were observed at the neuromuscular
junction when either � or � presynaptic spectrin was knocked
down (Pielage et al., 2005, 2006).

Unlike invertebrates, vertebrates have two � (�I/�II)-
subunits, four � (�I-�IV)-subunits, and a �-H subunit creating
diversity and specialization of function, with �-III spectrin being
expressed at high levels in the soma and dendrites of Purkinje
cells (Ohara et al., 1998; Sakaguchi et al., 1998; Stankewich et al.,
1998; Jackson et al., 2001). Mutations in the gene encoding �-III
spectrin have been shown to underlie spinocerebellar ataxia type
5 (SCA5) (Ikeda et al., 2006) and we have previously reported the
generation of a functional �-III spectrin knock-out mouse (�-
III�/�) that showed characteristics of cerebellar ataxia, namely
progressive motor deficits and age-related Purkinje cell loss (Per-
kins et al., 2010). Here, using both in vitro and in vivo morpho-
metric analyses of Purkinje cells lacking �-III spectrin, we have
investigated the role of �-III spectrin in dendritic development.
The present study highlights a critical role for �-III spectrin in the
monoplanar organization of the dendritic tree and shows loss of
�-III spectrin to result in thinner dendrites and severe defects in
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dendritic spine development. Furthermore we identify defects in
the distribution of dendritic, but not axonal, proteins.

Materials and Methods
Dissociated cerebellar cultures. Cultures were prepared as previously de-
scribed apart from cerebella were dissected at P0, digested in papain
(Worthington) and dissociated cells were plated on poly-L-lysine-coated
coverslips at cell density of 5 � 10 6/ml in 35 mm dishes (MatTek). Half
the medium was also changed every 4 d (Linden, 1996; Furuya et al.,
1998).

Immunofluorescence microscopy. Dissociated cerebellar cultures were
fixed with 4% paraformaldehyde in 0.1 M sodium phosphate buffer, pH
7.4 for 15 min, and then incubated for 30 min at room temperature (RT)
with blocking solution [10% goat serum with 0.2% Triton X-100 in 1�
PBS]. Primary antibodies were applied overnight at 4°C [rabbit anti-�-
III spectrin (1:1000), anti-EAAT4 (1:100), anti-GluR�2 (1:2000; Frontier
Science Japan), anti-Nav1.6 (1:100; Alomone Labs), anti-AnkG (1:50;
Santa Cruz Biotechnology), guinea pig anti-Vglut1 (1:1000; Synaptic
Systems), mouse anti-calbindin (1:5000; Swant)]. Cells were washed
three times in PBS, incubated with secondary antibodies for 40 min at RT
(goat anti-mouse IgG 488, anti-rabbit IgG 555, anti-guinea pig IgG 488
Invitrogen) followed by three rinses in PBS and coverslipping with Pro-
long Gold antifade reagent (Invitrogen). For paraffin sections brains
were removed and immersion-fixed with 4% paraformaldehyde in 0.1 M

sodium phosphate buffer, pH 7.4 overnight at 4°C before embedding in
paraffin. Sections (7 �m) were cut and mounted onto poly-L-lysine-
coated slides and immunostained with rabbit anti-�-III spectrin (1:50),
rabbit anti-Vglut1 (1:50: Invitrogen) and mouse anti-calbindin (1:50;
Sigma). Secondary antibodies were cyanine 3 (Cy3)-conjugated goat
anti-mouse IgG (Jackson ImmunoResearch Laboratories) and FITC-
conjugated goat anti-rabbit IgG (Cappel). Images were captured with a
Zeiss inverted LSM510 confocal laser scanning microscope.

Golgi impregnation. Both WT and �-III �/� mice were killed at P4, 8,
15, 30 and 90 and staining followed manufacturer’s instructions (FD
NeuroTechnologies) (male and female mice were used equally). Briefly
after dissection brains and cerebella were incubated in premixed solution
A and B for 2 weeks at RT in the dark before being transferred to solution
C for a further 4 d in the dark but at 4°C. Solution A�B was only changed
after the first 24 h whereas solution C was changed every day. Tissue was
frozen and cut sections (120 �m) dried and mounted onto gelatin-coated
slides overnight.

Electron microscopy. WT and �-III �/� mice at P15 and P120 were
deeply anesthetized with 10% chloral hydrate and killed by transcardial
perfusion with 4% paraformaldehyde/3% glutaraldehyde in 0.1 mM

phosphate buffer, pH7.4, for 10 –15 min (male and female mice were
used equally). Brains and cerebella were dissected and postfixed in the
same fixative for 4 –16 h at 4°C. For ultrastructural analyses, 2 mm 3

regions of cerebellum and hippocampus were dissected out, postfixed in
OsO4, embedded in Epon and 1-�m-thick sections cut, stained with
toluidine blue and viewed in a light microscope to select suitable areas for
investigation. Ultrathin sections, 70-nm-thick were cut from selected
areas and stained with uranyl acetate and lead citrate. Electron micro-
graphs were acquired using Hitachi 7000.

Electrophysiology. Mice were deeply anesthetized with halothane
(Sigma) and decapitated under the United Kingdom Animals (Scientific
Procedures) Act (1986). Cerebella were dissected out into ice-cold mod-
ified artificial CSF (ACSF) containing the following (in mM): 60 NaCl,
118 sucrose, 26 NaHCO3, 2.5 KCl, 11 glucose, 1.3 MgCl2, and 1 NaH2PO4

at pH 7.4 when bubbled with 95% O2/5% CO2. The cerebellar vermis was
glued to the vibratome cutting platform (VT1200S, Leica Microsystems)
with cyanoacrylate adhesive. Sagittal slices (200 �m thick) were cut and
incubated for 30 min at 30°C in standard ACSF composed of the follow-
ing (in mM): 119 NaCl, 2.5 CaCl2, 26 NaHCO3, 2.5 KCl, 11 glucose, 1.3
MgCl2, and 1 NaH2PO4 at pH 7.4 when bubbled with 95% O2/5% CO2.
Slices were stored at room temperature until required for recording.
Slices were transferred to a submerged recording chamber and super-
fused with standard ACSF (3–5 ml min �1) at room temperature. Pur-
kinje cells were initially visualized with a 40� immersion objective and
Normarski differential interference contrast (DIC) optics. Whole-cell

recording were obtained from Purkinje cells using thick-walled borosili-
cate glass pipettes pulled to 3– 6 M�. For Purkinje cell filling the internal
solution contained the following (in mM): 0.2 Lucifer yellow (Sigma,
L0144), 0.02 Alexa Fluor AR 568 hydrazide (Invitrogen, A-10441), 125
K-gluconate, 15 KCl, 10 HEPES, 5 EGTA, 2 MgCl2, 0.4 NaGTP, 2
NaATP, and 10 Na-phosphocreatine, adjusted to pH7.4 with KOH. Pur-
kinje cells were voltage-clamped at �60 mV for 25–30 min and complete
cell filling was monitored by Lucifer yellow fluorescence. Slices were then
removed and fixed with 4% paraformaldehyde in 0.1 M phosphate buffer,
pH 7.4, overnight at 4°C. Slices were washed twice in 0.1 M phosphate
buffer, pH 7.4 and twice in dH2O then stored in Vectashield (Vector
Laboratories) at 4°C. Slices were wet-mounted with Vectashield onto
0.13-mm-thick borosilicate glass and the Purkinje cell was imaged using
the Alexa Fluor 568 dye and captured using a Zeiss inverted LSM510
confocal scanning laser microscope. For LTD induction the internal so-
lution contained the following (in mM): 108 Cs-methanesulfonate, 9
NaCl, 9 HEPES, 1.8 EGTA, 1.8 MgCl2, 0.4 NaGTP, 2 MgATP, 63 sucrose,
and 5 QX-314, adjusted to pH 7.4 with CsOH. Picrotoxin (50 �M) was
added to the ACSF. Purkinje cells were voltage-clamped at �60 mV and
parallel fiber (PF)-EPSCs were evoked by placing a patch-pipette filled
with standard ACSF in the molecular layer and applying a square-pulse
stimuli that evoked an EPSC of �500 pA in amplitude (lower stimulus
required for �-III �/� animals). PF-EPSCs were recorded at a frequency
of 0.1 Hz for 10 min to obtain a stable baseline. Induction of LTD was
achieved with 30 single PF stimuli (at 0.1 Hz) together with a 200 ms
depolarizing step to �20 mV as described by Kakegawa et al. (2008).
Series resistances were �15 M� and were compensated for by 40 – 60%.
Membrane currents were filtered at 5 kHz and sampled at 10 kHz. EPSCs
were recorded using an Axopatch 200B amplifier (Molecular Devices)
and in-house National Instruments software written by Tim O’Leary
(O’Leary et al., 2010). Data were analyzed using IGOR Pro
(WaveMetrics).

Image analysis and statistics. Images of dissociated Purkinje cells (cap-
tured at 0.5 �m intervals) and filled Purkinje cells captured at Nyquist
sampling rates and deconvolved using Huygens Deconvolution Software
(Scientific Volume Imaging) were analyzed with filament tracer (Imaris

Figure 1. �-III spectrin localizes to Purkinje cell dendritic spines. A1, B1, Cerebellar sections
(A1) and dissociated cerebellar cultures (B1) immunostained with C-terminal anti-�-III spec-
trin antibody show somatodendritic distribution of �-III spectrin in Purkinje cells (scale bar, 20
�m). Higher magnification reveals staining throughout dendritic spines with C-terminal (A2,
B2) and N-terminal (A3, B3) anti-�-III spectrin antibody (bottom, scale bar, 10 �m).
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7.1) and NeuronStudio (Computational Neurobiology and Imaging
Center). Colocalization analysis was performed with Imaris 7.1 Coloc
mode. Spine analysis was performed using MetaMorph. Statistical anal-
ysis was performed using Student’s t test, two sample assuming unequal
variance, apart from analysis of filled Purkinje cells where Bonferroni-
corrected Mann–Whitney tests were used after Kruskal–Wallis test.

Results
To investigate whether developmental defects can arise from loss
of �-III spectrin we first looked at Purkinje cell morphology in
dissociated cerebellar cultures. We initially confirmed that �-III
spectrin displayed the same distribution in culture as in vivo by
immunostaining cerebellar sections and dissociated cerebellar
cultures with an antibody raised against a C-terminal epitope of
�-III spectrin. This confirmed that in dissociated Purkinje cells
�-III spectrin is found throughout the soma and dendritic tree
but is not observed in the axon, similar to in vivo findings. More-
over this staining and that using an antibody against an
N-terminal epitope of �-III spectrin revealed that �-III spectrin is
located within Purkinje cell dendritic spines both in vivo and in
vitro (Fig. 1).

Reduced dendritic surface area and spine density in Purkinje
cells lacking �-III spectrin in vitro
Dissociated cultures from WT and �-III�/� spectrin mice were
fixed and immunostained for calbindin after 8, 15, and 22 d in
vitro (DIV) and the area of the soma and dendritic arborization
quantified (Fig. 2A,B). This revealed that at 8 DIV the dendritic
area of Purkinje cells lacking �-III spectrin is significantly smaller
than WT Purkinje neurons (�52% of WT cells) but the area of
somas is slightly larger (�110% of WT cells). However, by 15 and
22 DIV, although the dendritic area is still smaller in Purkinje

cells lacking �-III spectrin, the difference, while still significant, is
not as great (�88 and �77% of WT cells, respectively) and there
is no longer any difference in the area of Purkinje cell somas.
Importantly, quantification of spine density (also based on cal-
bindin immunostaining) revealed significantly lower spine den-
sities in Purkinje cells lacking �-III spectrin at all time points
compared with WT cells (Fig. 2C,D).

�-III spectrin loss specifically affects Purkinje cell spine
density
Given the morphological defects observed in dissociated Purkinje
cell cultures we went on to examine whether similar deficits could
be observed in vivo. For this we undertook Golgi impregnation
and looked at the effect loss of �-III spectrin had on Purkinje cell
spine density. Similar to the in vitro findings a �80% reduction in
spine density was observed in �-III�/� Purkinje cells from as
early as P8 (Fig. 3A,B). To ascertain whether this dramatic effect
of �-III spectrin on spine development/maintenance was specific
to Purkinje neurons, or a more ubiquitous phenomenon, we
looked at the effect of �-III spectrin loss on spine density in
hippocampal CA1 pyramidal neurons (Fig. 3C,D), since after the
cerebellum the highest level of �-III spectrin expression is within
the hippocampus (Jackson et al., 2001). We observed no differ-
ence in spine density of pyramidal neurons in �-III�/� mice at
P8, 15, 30 and 90 (Fig. 3D). Similarly transmission electron mi-
croscopy revealed a reduction in number of synapses within the
cerebellar molecular layer of �-III�/� mice compared with WT
but no difference in the hippocampus (Fig. 4A–D). Together the
in vivo data demonstrate a specific effect of �-III spectrin’s ab-
sence on Purkinje cell spine development and synapse formation
onto these cells.

Figure 2. Reduced dendritic surface area and spine density in cultured �-III �/� Purkinje cells. A, Dissociated cerebellar cultures from WT and �-III �/� mice stained for calbindin after 8, 15, and
22 DIV (scale bar, 100 �m). B, Quantification reveals smaller dendritic area in �-III �/� mice at all time points and larger somatic area at 8 DIV only (WT, N � 44 –50; �-III �/�, N � 43–54). C,
High-magnification images of dissociated Purkinje cells immunostained for calbindin (scale bar, 10 �m). D, Reduction in dendritic spine density in dissociated Purkinje cells from �-III �/� mice at
all time points (N � 10 –11 for both genotypes). All data are means 	 SEM. *p � 0.05; ***p � 0.001.
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�-III spectrin required for wider
diameter dendrites and monoplanar
dendritic tree in vivo
Golgi impregnation was insufficient for
morphometric analyses of entire Purkinje
cell dendritic trees and therefore individ-
ual Purkinje cells in acute cerebellar sagit-
tal slices from young (5- to 6-week-old)
and old (8 months of age) mice were filled
with Alexa Fluor 568 by diffusion from a
whole-cell patch pipette and visualized by
confocal microscopy. Serial stacks of the
confocal fluorescent images were used for
three-dimensional reconstruction of the
entire dendritic arbors (Fig. 5A–C).
Quantification showed that total den-
dritic surface area and actual dendritic
volume of Purkinje cells from 5- to
6-week-old �-III�/� mice were signifi-
cantly smaller than WT Purkinje cells but
total dendritic length was the same (Fig.
5D–F). However, average distal dendrite
diameter was narrower in young �-III�/�

mice compared with WT mice (Fig. 5G).
Analysis of cells from 8-month-old ani-
mals confirmed our previous assumption
that the observed thinning of the molecu-
lar layer in old �-III�/� mice was due to
degeneration of the Purkinje cell dendritic
tree (Perkins et al., 2010) as Purkinje cells
from 8-month-old �-III�/� mice were
found to be substantially smaller than age-
matched WT cells in all morphometric
parameters (total dendritic surface area,
volume and length; Fig. 5D–F). In con-
trast there was no difference in basal diameter of the primary
dendrite (Fig. 5H) or cell body diameter (Fig. 5I) between geno-
types at either age. Finally, loss of �-III spectrin resulted in abnor-
mal branching of higher order dendrites (Fig. 5J,K) and disruption
to the monoplanar dendritic arborization of Purkinje neurons in
young mice, visualized by much greater dendritic protrusion in the z
(coronal)-plane (Fig. 5L,M).

Normal parallel fiber abundance in �-III �/� mice
To determine whether the morphological changes were a conse-
quence of reduced parallel fiber abundance we looked at expres-
sion of Vglut1, a presynaptic marker selective for parallel fiber
terminals. Using confocal immunofluorescence and Western
blot analysis we observed no difference in overall expression lev-
els between �-III�/� and WT animals at 3-weeks of age but the
staining appeared more diffuse with fewer bright puncta (Fig.
6A,B). The early morphological defects therefore appear not to
be due to loss of parallel fiber terminals. Similarly in dissociated
cultures there was wide spread staining of Vglut1 on Purkinje
cells lacking �-III spectrin and quantification revealed that the
degree of colocalization of Vglut1 with GluR�2, a parallel fiber-
Purkinje cell postsynaptic marker, was lower in �-III�/� Pur-
kinje cells (Fig. 6C), highlighting the redistribution at the
membrane of a postsynaptic protein thought to interact with
�-III spectrin (Hirai et al., 1999). More GluR�2 protein was ob-
served within the cell body of �-III�/� Purkinje cells compared
with WT from 8 DIV (Fig. 6D) and the GluR�2 located at the
dendritic plasma membrane in �-III�/� Purkinje cells, instead of

being located within spines was distributed over a large area of the
dendrites (Fig. 6E). To determine whether there was any physio-
logical effect of this mislocalization we examined whether long
term depression (LTD), thought to be the cellular basis of motor
learning (Ito, 1989, 2001; Hansel et al., 2001), was normal in
�-III�/� mice, since GluR�2 is essential for induction of LTD
(Hirano et al., 1994; Jeromin et al., 1996). This revealed that the
downstream signaling of GluR�2 was unaffected in �-III�/�

mice as there was no impairment in cerebellar LTD following
conjunctive stimulation, which consisted of 30 single PF stimuli
together with a 200 ms depolarization of the Purkinje cell (Fig.
6F). The amplitude of PF-EPSCs 25–30 min after conjunctive
stimulation was 41 	 0.4% (N � 5, n � 7) of baseline responses,
similar to that of WT cells (42 	 0.3% of baseline, N � 5, n � 8).

Early defects in distribution of dendritic but not
axonal proteins
In another mutant mouse with disrupted �-III spectrin expres-
sion (Spnb3�/�) EAAT4, a Purkinje cell protein known to inter-
act with �-III spectrin (Jackson et al., 2001) was reported to
accumulate in the cell soma and dendritic shafts of Purkinje cells
from aged mice (Stankewich et al., 2010). Therefore, the localiza-
tion of EAAT4 was examined in dissociated Purkinje cells from
�-III�/� mice. This revealed large accumulations of EAAT4 in
the cell body and dendrites after only 8 DIV, indicating early
defects in protein distribution (Fig. 7A,B). In contrast no defects,
either in vivo or in vitro, were observed in the development or the
localization of proteins to the axon initial segment (AIS). Ankyrin

Figure 3. Loss of �-III spectrin alters Purkinje cell spine density in vivo. A, High-magnification images of Golgi impregnated
Purkinje cells from WT and �-III �/� mice at P8, 15, 30 and 90 (scale bar, 10 �m). B, Reduced Purkinje cell dendritic spine density
from P8 (WT, N � 2–3, n � 18 –36; �-III �/�, N � 2–3, n � 13–39). C, High-magnification images of Golgi impregnated CA1
pyramidal neurons from WT and �-III �/� mice at P8, 15, 30 and 90 (scale bar, 10 �m). D, No difference in hippocampal pyramidal
dendritic spine density in �-III �/� mice compared with WT animals at any age (WT, N � 2–3, n � 25– 40; �-III �/�, N � 2–3,
n � 20 – 45). All data are means 	 SEM; ***p � 0.001.
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G, an AIS-restricted protein (Davis et al., 1996), was still targeted
to this region in �-III�/� Purkinje cells (Fig. 7C). Furthermore,
the AnkG immunoreactivity revealed no difference in the length
or width of AISs in �-III�/� Purkinje cells compared with WT
animals (Length, WT 12.8 	 0.4; �-III�/� 12.1 	 0.6 �m; p �
0.378: Width, WT 0.9 	 0.04; �-III�/� 1.02 	 0.02; p � 0.113;
N � 2, n � 13 for both genotypes). Similarly, a normal localiza-
tion of Nav1.6 was observed at the AIS (Fig. 7D) indicating the
loss of �-III spectrin has a specific effect on the distribution of
dendritic, but not axonal proteins.

Discussion
In this study we show that �-III spectrin is critical for the correct
development and maintenance of Purkinje cell dendritic struc-
ture. In young �-III�/� mice the dendritic tree is no longer well
ordered and planar, and although total dendritic length is un-
changed the dendrites are thinner and have very reduced spine
density, resulting in alterations to dendritic protein distribution.
In addition, in old �-III�/� mice there is substantial loss of total
dendritic length, surface area, and volume. To our knowledge,
this is the first full morphometric study of a SCA mouse model,
yielding important findings concerning the mechanisms of pla-
nar dendritic organization, spine formation and development of
the Purkinje cell dendritic tree.

Spectrin and membrane integrity
Studies looking at the structure of the erythrocyte membrane
have shown that spectrins are required for both mechanical resil-
ience and elasticity. These features have been shown to arise
through the formation of flexible rod-like spectrin heterodimers,
which self-associate into tetramers (Ungewickell and Gratzer,

1978; Shotton et al., 1979) and subsequently interact with
ankyrin, protein 4.1 and actin giving rise to stable membrane
skeletons (Bennett and Stenbuck, 1980; Speicher et al., 1982; Co-
hen, 1983; Bennett, 1985; Cianci et al., 1988; Kennedy et al.,
1991). Here we show that in Purkinje cells the loss of �-III spec-
trin function appears to disrupt the formation of a normal sup-
portive membrane skeleton as the dendrites are thinner in its
absence, resulting in a loss in dendritic surface area, analogous to
the reduced erythrocytic surface area observed in �-I spectrin
deficient patients with hereditary spherocytosis (HS) (Chasis et
al., 1988). It is relevant to note, however, that although �-I spec-
trin deficiency is associated with HS, the disease is mainly a con-
sequence of null mutations within ankyrin R (Eber et al., 1996;
Randon et al., 1997; Hayette et al., 1998). Therefore, it is possible
that Purkinje cell structural defects may arise in SCA5 if the
disease-causing mutations result in conformational changes in
�-III spectrin that not only disrupt membrane skeleton stability
by hindering formation of spectrin dimers/tetramers, but also
reduce or weaken interaction of spectrin with associated proteins,
such as ankyrin.

Molecular processes for Purkinje cell development
It is known that intrinsic properties, rather than the presence of
presynaptic partners, governs Purkinje cell spine formation, as
spine development is normal in mice lacking granule cell affer-
ents (Rakic and Sidman, 1973; Sotelo, 1975; Hirano et al., 1977;
O’Brien and Unwin, 2006). Similarly, here we show that spine
formation is abnormal in the absence of any change in granule
cell afferent terminals as indicated by Vglut1 staining, indicating
the importance of Purkinje cell intrinsic properties. Although

Figure 4. Reduction in parallel fiber-Purkinje cell synapses in �-III �/� mice. A, Representative electron micrographs from cerebellum and hippocampus of WT and �-III �/� mice at P15 and
P120. Asterisks denote postsynaptic densities (scale bar, 1 �m). B, Quantification of synapse density shows an early loss of PF-PC synapses but no loss of hippocampal synapses in �-III �/� mice
[WT, N � 2, n � 97–124; �-III �/�, N � 2, n � 125–144 fields of view (28 �m 2)]. All data are means 	 SEM; ***p � 0.001.
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intracellular calcium concentrations are thought to shape spine
morphology (Segal et al., 2000; Vecellio et al., 2000), little is
known about how the three-dimensional arrangement of spines
around Purkinje cell dendritic shafts is achieved. It has been sug-
gested that the presence of a regularly spaced filamentous cyto-
skeletal protein lattice could form the basis for spine distribution
(O’Brien and Unwin, 2006). Here we show that loss of one such

protein, �-III spectrin, does lead to severe defects in both spine
formation and three-dimensional organization of dendrites, re-
sulting in disrupted planar organization of the dendritic tree.
�-III spectrin would therefore appear to be one important factor
in governing the regular patterning of Purkinje cell dendrites and
spine development. The identification of other key proteins
that interact with �-III spectrin will be instrumental in unrav-

Figure 5. Aberrant Purkinje cell dendritic morphology in �-III �/� mice. A, Representative images of Purkinje cells filled with Alexa Fluor 568 from WT and �-III �/� mice at 5– 6 weeks and
8-months of age (scale bar, 50 �m). B, C, Examples of dendritic reconstruction (B) and dendritic tracing (C) using Imaris software. D–F, Quantification of morphological parameters measured from
reconstructed images shows reduction in total dendritic surface area (D) and volume (E) but no difference in total dendritic length (F ) in young �-III �/� mice compared with age-matched WT
animals. Significant reductions in all parameters in old �-III �/� mice (D–F ). G, Narrower distal dendrite diameters in �-III �/� mice. H, No difference in basal diameter of primary dendrite
between genotypes. I, Purkinje cell body diameter not altered in �-III �/� mice. J, Graphic representation of higher order dendrites in young WT and �-III �/� Purkinje cell. K, Larger number of
branch intersections in Purkinje cell from young �-III �/� mice. L, Filled Purkinje cells viewed in coronal plane (scale bar, 50�m). M, Quantification of coronal dendritic protrusion in young and old WT and
�-III �/� mice. All data are medians with 25th and 75th percentiles indicated (WT, N � 3–5, n � 9 –10; �-III �/�, N � 3– 4, n � 8; Kruskal–Wallis test, *p � 0.05; **p � 0.01 ***p � 0.001).
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eling the complex mechanism of dendritic development and
spine morphogenesis.

GluR�2 has been shown to interact with � spectrin (Hirai and
Matsuda, 1999) and the N terminus of GluR�2 has been shown to
be involved in the formation and stabilization of parallel fiber-
Purkinje cell synapses (Kurihara et al., 1997; Lalouette et al.,
2001). However, the fact that total spine density is normal in the

GluR�2 knock-out mouse (Kurihara et al., 1997) demonstrates
that GluR�2 is not an intrinsic factor required for spine forma-
tion. Therefore, the absence of spines in �-III�/� Purkinje cells is
unlikely to be due to the mislocalization of GluR�2, but altera-
tions in the membrane distribution of GluR�2 could play a part in
the loss of parallel fiber-Purkinje cell synapses. However, it seems
that despite the observed redistribution of GluR�2 in �-III�/�

Figure 6. No change in parallel-fiber afferents in �-III �/� mice but GluR�2 is differently distributed. A, Parasagittal cerebellar sections immunostained for Vglut1 show more diffuse staining
but similar levels of reactivity throughout molecular layer of 3-week-old �-III �/� mice (scale bar, 20 �m). B, Western blot analysis of total cerebellar homogenates from 3-week-old mice shows
no loss of Vglut1 in �-III �/� mice. C, Reduced colocalization of Vglut1 and GluR�2 in dissociated Purkinje cells (n � 29 –34; scale bar, 20 �m). Data are means 	 SEM; ***p � 0.001. D, Presence
of GluR�2 reactivity in Purkinje cell soma of �-III �/� mice (scale bar, 10 �m). E, GluR�2 displays different dendritic distribution in �-III �/� mice (scale bar, 10 �m). F, Averaged data of cerebellar
LTD recorded from 5- to 6-week-old WT (closed triangle) and �-III �/� mice (open triangle). The inset traces show PF-EPSC just before (a) and 30 min after (b) conjunctive-stimulation (CJ-stim) and
their superimposition (a�b).
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Purkinje cells induction of LTD in �-III�/� mice was similar to
WT demonstrating normal signaling via the C terminus of
GluR�2, the region essential for LTD induction (Kohda et al.,
2007; Kakegawa et al., 2008). The lack of LTD impairment in
young �-III�/� mice does correlate with our finding that
3-week-old �-III�/� mice display signs of motor learning, shown
by their ability to improve performance on less demanding motor
tasks (Perkins et al., 2010). Nevertheless the accumulation of
dendritic proteins within the perikaryon of �-III�/� Purkinje
cells correlates with studies reporting a role for �-III spectrin in
protein trafficking via dynein-mediated vesicular transport
(Clarkson et al., 2010; Holleran et al., 2001; Lorenzo et al., 2010;
Stankewich et al., 2010).

Physiological consequences of �-III spectrin loss
Determining what in fact the physiological consequences of these
morphological defects are will be crucial to understanding the
cellular mechanisms leading to Purkinje cell dysfunction and
death in SCA5. One possibility is that since Purkinje cell density is
not altered in young �-III�/� mice (Perkins et al., 2010) the
protrusion of dendrites beyond their normal dendritic fields
would lead to overlap with adjacent fields, and hence the poten-
tial for multiple climbing fiber innervation. In the majority of

mouse models that exhibit motor impairments Purkinje cell in-
nervation by multiple climbing fibers (CFs) has been found in
adulthood (Crepel and Mariani, 1976; Mariani et al., 1977; Crepel
et al., 1980; Mariani and Changeux, 1980; Aiba et al., 1994; Chen
et al., 1995; Kano et al., 1995, 1997, 1998; Kashiwabuchi et al.,
1995; Offermanns et al., 1997; Watase et al., 1998). However, to
our knowledge no three-dimensional morphological studies have
been performed with any of these mutant mice and so it may be
that overlapping dendritic trees could underlie some of the ob-
served defects in climbing fiber innervation. One plausible mech-
anism for such effects could be an increased potential for multiple
CF innervation by transverse CF branches (Miyazaki and Wa-
tanabe, 2011) as a result of the interdigitation of the dendritic
trees from neighboring Purkinje cells.

The current morphological study has provided further insight
into the mechanism underlying previous observations of en-
hanced parallel fiber-mediated EPSCs in young �-III�/� mice
(Perkins et al., 2010). The current data reveal this is not a conse-
quence of increased Purkinje cell spine density, as in fact this
appears to be reduced in �-III�/� mice. Instead the discovery
that, in the absence of �-III spectrin, dendrites are thinner sug-
gests that increased PF-EPSCs may arise from larger changes in
membrane potential upon stimulation, a consequence of smaller

Figure 7. No disruption to AIS or mislocalization of axonal proteins in �-III �/� mice. A, B, Accumulations of EAAT4 protein observed in cell bodies (A) and dendrites (B) of dissociated �-III �/�

Purkinje cells after 8 DIV (scale bar, 10 �m). C, D, High levels of AnkG (C) and Nav1.6 (D) reactivity localized to AIS with no aberrant accumulation in Purkinje cell bodies of �-III �/� mice (scale bar,
20 �m).
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dendritic diameters (Rall, 1977), and subsequently earlier activa-
tion of low-voltage gated channels. Over time this hyperexcitable
state of Purkinje cells lacking �-III spectrin may result in them
being more prone to damage through excitotoxicity and explain
the observed degeneration of dendritic structures in old �-III�/�

mice. Further evidence supporting this interpretation comes
from the SCA1 transgenic mouse, for which it was proposed that
Purkinje cells would be closer to firing threshold due to smaller
somata and reduced dendritic arborization (Inoue et al., 2001).
Alternatively, or in combination, the larger EPSCs may be a con-
sequence of the formation of dendritic shaft synapses in the ab-
sence of spines, since shaft synapses are thought to produce larger
synaptic currents resulting in neurons being more vulnerable
to cell death (Fishbein and Segal, 2007). Another possibility is
that altered transmembrane ion channel expression in the ab-
sence of �-III spectrin and/or changes to the composition/
distribution of AMPA receptor subunits could underlie the
increased conductance.

In conclusion, these morphometric analyses reveal a critical
role for �-III spectrin in the development of the well ordered
monoplanar dendritic arborization of Purkinje neurons and have
identified �-III spectrin as an important intrinsic factor in spine
morphogenesis. Further analysis of proteins whose cellular traf-
ficking or stability are impaired either due to the loss-of or pres-
ence of mutant forms of �-III spectrin will provide a greater
understanding of cellular mechanisms that underlie SCA patho-
genesis. Future investigations also need to address whether or not
the late-onset dendritic degeneration and cell loss observed in
SCA5 patients are in fact downstream consequences of a devel-
opmental defect, and, consequently, whether developmental de-
fects might be the crux of various progressive neurodegenerative
diseases.
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SE (1996) Ankyrin-1 mutations are a major cause of dominant and re-
cessive hereditary spherocytosis. Nat Genet 13:214 –218.

Fishbein I, Segal M (2007) Miniature synaptic currents become neurotoxic
to chronically silenced neurons. Cereb Cortex 17:1292–1306.

Furuya S, Makino A, Hirabayashi Y (1998) An improved method for cultur-
ing cerebellar Purkinje cells with differentiated dendrites under a mixed
monolayer setting. Brain Res Brain Res Protoc 3:192–198.

Greenquist AC, Shohet SB, Bernstein SE (1978) Marked reduction of spec-
trin in hereditary spherocytosis in the common house mouse. Blood
51:1149 –1155.

Gulledge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic
trees. J Neurobiol 64:75–90.

Hammarlund M, Davis WS, Jorgensen EM (2000) Mutations in beta-
spectrin disrupt axon outgrowth and sarcomere structure. J Cell Biol
149:931–942.

Hammarlund M, Jorgensen EM, Bastiani MJ (2007) Axons break in animals
lacking beta-spectrin. J Cell Biol 176:269 –275.

Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the
diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat
Neurosci 4:467– 475.
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