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Learning is known to facilitate our ability to detect targets in clutter and optimize brain processes for successful visual recognition.
Previous brain-imaging studies have focused on identifying spatial patterns (i.e., brain areas) that change with learning, implicating
occipitotemporal and frontoparietal areas. However, little is known about the interactions within this network that mediate learning-
dependent improvement in complex perceptual tasks (i.e., discrimination of visual forms in clutter). Here we take advantage of the
complementary high spatial and temporal resolution of simultaneous EEG-fMRI to identify the learning-dependent changes in spatio-
temporal brain patterns that mediate enhanced behavioral sensitivity in the discrimination of global forms after training. We measured
the observers’ choices when discriminating between concentric and radial patterns presented in noise before and after training. Similarly,
we measured the choices of a pattern classifier when predicting each stimulus from EEG-fMRI signals. By comparing the performance of
human observers and classifiers, we demonstrated that learning alters sensitivity to visual forms and EEG-fMRI activation patterns
related to distinct visual recognition processes. In particular, behavioral improvement after training was associated with changes in (1)
early processes involved in the integration of global forms in higher occipitotemporal and parietal areas, and (2) later processes related
to categorical judgments in frontal circuits. Thus, our findings provide evidence that learning acts on distinct visual recognition processes
and shapes feedforward interactions across brain areas to support performance in complex perceptual tasks.

Introduction
Successful visual recognition relies on our ability to extract struc-
ture from noisy sensory inputs and integrate local features into
global forms. Learning plays a key role in facilitating performance
in these tasks and optimizing visual recognition processes in the
primate brain. In particular, as previous work has shown, learn-
ing facilitates the detection and recognition of targets in clutter
(Dosher and Lu, 1998; Goldstone, 1998; Schyns et al., 1998;
Gold et al., 1999; Kovacs et al., 1999; Sigman and Gilbert, 2000;
Gilbert et al., 2001; Brady and Kersten, 2003) by enhancing the
integration of relevant features and their segmentation from
noisy backgrounds.

The evidence on the neural mechanisms that support percep-
tual improvements due to training remains controversial. Some
studies argue that learning alters early sensory processing (Adini
et al., 2002; Teich and Qian, 2003), while others propose that
learning alters later decision-related processes (Dosher and Lu,
1999; Li et al., 2004; Law and Gold, 2008; Jacobs, 2009). Previous

fMRI studies have implicated both occipitotemporal and fronto-
parietal circuits in shape learning (Dolan et al., 1997; Gauthier et
al., 1999; Grill-Spector et al., 2000; Chao et al., 2002; Kourtzi et
al., 2005; Op de Beeck et al., 2006). However, little is known about
how learning shapes interactions between these circuits and me-
diates perceptual improvements in the discrimination of global
forms (Scott et al., 2006, 2008; Rossion et al., 2007). Previous EEG
studies have focused on the temporal processes that mediate vi-
sual feature (e.g., orientation, motion) (Fahle and Skrandies,
1994; Skrandies et al., 2001; Ding et al., 2003; Shoji and Skrandies,
2006; Song et al., 2007; Pourtois et al., 2008; Bao et al., 2010)
rather than global form learning. Here, we seek to identify the
learning-dependent mechanisms that support distinct processes
for visual form learning in clutter, ranging from the extraction of
stimulus features from noise to the categorization of global
forms.

Using fMRI alone would make it difficult to identify corti-
cal circuits related to different temporal processes involved in
visual form learning due to the low temporal resolution of the
technique. We exploit the complementary high temporal and
spatial resolution of simultaneous EEG-fMRI recordings to
determine learning-dependent changes in the discrimination
of global forms in clutter. In particular, we trained observers
to discriminate global form patterns (concentric vs radial)
embedded in parametrically manipulated background noise (see
Fig. 1A). Using EEG-informed fMRI and pattern classification
analysis methods, we tested for learning-dependent changes in
EEG-fMRI activation patterns that related to the observers’ en-
hanced sensitivity in discriminating global forms after training.
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Our findings demonstrate that learning acts on distinct visual
recognition processes and shapes feedforward interactions be-
tween visual and frontal areas to support complex perceptual
tasks (e.g., discrimination of visual forms in cluttered back-
grounds). In particular, training improved observers’ sensitivity
in discriminating global forms in noise. This behavioral improve-
ment was associated with neural changes in (1) early processes
involved in the integration of global forms engaging occipitotem-
poral and posterior parietal areas, and (2) later processes related
to categorical judgments engaging frontal circuits.

Materials and Methods
Observers
Ten observers (six male, four female; mean age, 21.4 years) participated
in the experiment. All observers were from the University of Birming-
ham, had normal or corrected-to-normal vision, and gave written in-
formed consent. The study was approved by the local ethics committee.

Stimuli
We used Glass pattern stimuli defined by white dot pairs (dipoles) dis-
played within a square aperture (7.7° � 7.7°) on a black background
(100% contrast). For all stimulus patterns, the dot density was 3% and
the size of each dot was 2.3 � 2.3 arc min. These parameters were chosen
based on pilot psychophysical studies and in accordance with previous
studies (Li et al., 2009; Mayhew et al., 2010a) showing that coherent form
patterns are reliably perceived for these parameters. We generated radial
(0° spiral angle) and concentric (90° spiral angle) Glass patterns by plac-
ing dipoles tangentially (concentric stimuli) or orthogonally (radial
stimuli) to the circumference of a circle centered on the fixation dot. Each
stimulus comprised dot dipoles that were aligned according to the spec-
ified spiral angle (signal dipoles) for a given stimulus, and noise dipoles
for which the spiral angle was randomly selected. Stimuli were embedded
in varying levels of noise by randomizing the orientation of a chosen
percentage (0 –100%) of dot dipoles (see Fig. 1 A).

To control for stimulus-specific training effects, and to ensure gener-
alization of learning, we used the following procedures. We trained ob-
servers using stimuli with Glass shift (i.e., distance between the two dots
in a pair) of 25 arc min, but tested (pretraining and post-training test),
and scanned, using stimuli with Glass shift of 30 arc min. Further, to
control for local adaptation due to stimulus repetition, we generated
different stimulus exemplars by randomly jittering (�5°) the spiral angle
for each stimulus. These procedures ensured that learning could not be
due to similar local cues between the stimuli used for training, tests, and
scanning, but rather global features (i.e., spiral angle) used by the observ-
ers for stimulus categorization.

Design
Observers were trained to perform a categorization task (concentric vs
radial) and tested in two EEG-fMRI sessions. The first imaging session
was preceded by a pretraining psychophysical test session (480 trials).
The first scanning session was conducted a maximum of 5 d after the
behavioral pretraining test session, depending on the availability of the
observers. The second imaging session was preceded by three sessions of
psychophysical training outside the scanner, each comprising between
five and eight runs (256 trials per run). At the end of this training, ob-
servers were tested on a post-training psychophysical test session (480
trials). All three training sessions were completed on consecutive days.
The second scanning session was conducted on the following day after
the post-training test session.

Psychophysical training
Familiarization phase. Observers were familiarized with the task and
stimuli in a short practice session. Observers were shown 100% signal
Glass patterns and categorized the presented stimuli as either radial (0°
spiral angle) or concentric (90° spiral angle) patterns.

Training and test. Two test runs were performed where observers were
presented with Glass patterns ranging in signal strength from 0 to 100%
(steps: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 85, 100%) and
performed the categorization task without feedback. Sixteen stimuli were

used for each signal level (eight radial, eight concentric) totaling 240 trials
per run. This pretraining test allowed us to assess each observer’s initial
categorization performance before the first imaging session and training.
Following the first imaging session, observers were presented with stim-
uli (range, 5–75%; signal levels in steps of 5%) and were trained (three
sessions per observer, self-paced procedure with auditory error feed-
back) to categorize between radial and concentric patterns. Each training
session comprised multiple runs (ranging from five to eight runs) with
256 trials per run. For each trial during training, the stimulus was pre-
sented for 300 ms. A white fixation square (7.7 � 7.7 arc min) was
presented at the center of each stimulus. Observers were instructed to
indicate which category the stimulus belonged to by pressing one of two
keys. Observers were trained with auditory error feedback until their
performance reached a stable level. That is, training was completed when
observers reached 80% performance across all trials twice during the
training sessions and 80% performance across all trials during the post-
training test. After training, observers were tested on stimuli ranging
from 0 to 75% (steps of 5%) in two post-training runs (240 trials per run)
without feedback.

FMRI measurements
All observers participated in two scanning sessions during which they
performed the categorization task on the Glass pattern stimuli. For each
observer, we collected data from seven or eight event-related runs in each
session. The order of trials was matched for history (one trial back) such
that each trial was equally likely to be preceded by any of the conditions.
The order of the trials differed across runs and observers. Eight condi-
tions (seven stimulus conditions and one fixation condition during
which only the fixation point was displayed at the center of the screen)
with 16 trials per condition were presented in each run. Each run com-
prised 129 trials (128 trials across conditions and 1 initial trial for balanc-
ing the history of the second trial) and two 9 s fixation periods (one at the
beginning and one at the end of the run).

The stimulus conditions comprised Glass patterns of 0° � 1.5° or
90° � 1.5° spiral angle at 0, 25, 35, 50, 70, 85, and 100% signal level. Each
trial lasted 3 s. For fixation trials, the fixation square was displayed for 3 s.
For experimental trials, each trial started with a 200 ms stimulus presen-
tation followed by a 1300 ms delay, during which a white fixation square
was displayed at the center of the screen. After this fixed delay, the fixa-
tion dot changed color to either green or red. This change in fixation
color served as a cue for the motor response using one of two buttons. If
the color cue was green, observers indicated concentric versus radial by
pressing the left versus right finger key. If the color was red, the opposite
keys were used (e.g., concentric � right key). The fixation color was
changed back to white 300 ms before the next trial onset. This procedure
dissociated the motor response (button press) from the stimulus catego-
ries. Observers were familiarized with this procedure before scanning.

Data acquisition
FMRI scanning. Experiments were conducted at the Birmingham University
Imaging Center (3T Achieva scanner, Philips). EPI and T1-weighted ana-
tomical (1�1�1 mm) data were collected with an eight-channel sensitivity
encoding (SENSE) head coil. EPI data (gradient echo-pulse sequences) were
acquired from 24 slices (whole-brain coverage; TR, 1500 ms; TE, 35 ms;
flip-angle, 73°; 2.5 � 2.5 � 4 mm resolution).

EEG recordings. We recorded EEG and fMRI signals simultaneously
during scanning. EEG data were acquired from 64 electrodes using an
MRI-compatible cap and amplifiers (BrainProducts) with current limit-
ing safety resistors of 5 k� at the amplifier input and in each electrode.
The EEG cap comprises 62 scalp electrodes distributed in the 10 –20
system. To identify trials contaminated by electro-oculographic blinks,
we recorded signals using an electrode placed over the mid-lower eyelid.
To correct for ballistocardiographic (BCG) artifacts, we recorded the
electrocardiogram (ECG) from an electrode attached to the observer’s
chest, below the left collarbone. Data were sampled at 5000 Hz, with a
low-pass hardware filter at 250 Hz. Electrode impedances were always
kept �20 k�. The EEG system clock was synchronized with the MRI
scanner clock using SyncBox (BrainProducts). A custom-made photo
sensor was used to measure the precise timing of stimulus onset on the
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screen inside the scanner. The detected stimulus onsets and the MRI
volume triggers were saved as markers, together with the recorded EEG
signals.

Data analysis
Behavioral data analysis. We fitted psychometric ( proportion concen-
tric) data collected in the laboratory with a cumulative Gaussian function
using a procedure that implements a maximum-likelihood method
(Wichmann and Hill, 2001). Confidence intervals were calculated on the
fits from 2000 bootstrap iterations of the data. Using this procedure for
each individual observer’s behavioral data, we identified the threshold
(i.e., signal level at 78% correct) for each observer.

FMRI data processing. MRI data were processed using Brain Voyager
QX (Brain Innovations). Anatomical data were used for 3D cortex recon-
struction, inflation, and flattening. Preprocessing of functional data in-
cluded slice-scan time correction, head movement correction, temporal
high-pass filtering (three cycles), and removal of linear trends. Trials with
head motion larger than 1 mm of translation or 1° of rotation were
excluded from the analysis. Spatial smoothing (Gaussian filter; full-width
at half-maximum, 6 mm) was performed only for group random-effect
analysis but not for data used for the multivoxel pattern classification
analysis. The functional images were aligned to anatomical data, and the
complete data were transformed into Talairach space. For each observer,
the functional imaging data between the two sessions were coaligned,
registering all volumes of each observer to the first functional volume of
the first run and session. This procedure ensured a cautious registration
across sessions. To avoid confounds from any remaining registration
errors, we compared fMRI signals between stimulus conditions within
each session rather than across sessions. A gray-matter mask was gener-
ated for each observer in Talairach space from the anatomical data for
selecting only gray-matter voxels for further analyses.

EEG data processing. We focused our EEG analysis on robust event-
related signals in the 1– 40 Hz frequency range. These signals have previ-
ously been shown to reflect visual form processing (Ohla et al., 2005; Pei
et al., 2005). The MRI volume triggers were used to identify the onset of
each gradient artifact to create an artifact template. MRI gradient arti-
facts were then removed using average artifact subtraction (Allen et al.,
2000) in BrainVision Analyzer (BrainProducts). EEG data were down-
sampled to 500 Hz, and BCG artifacts were removed using the optimal
basis set method (Niazy et al., 2005) available as a plug-in to EEGLAB
(Delorme and Makeig, 2004). For each imaging session, EEG data from
all experimental runs were concatenated and EEG signals were band-pass
filtered between 0.1 and 40 Hz. The filtered data were then analyzed with
a FastICA (Hyvarinen and Oja, 1997) algorithm to generate 62 indepen-
dent components (ICs). In each session, ICs containing the transient
eye-blink artifact were removed from the data (Jung et al., 2000). These
ICs were identified from (1) plots of trial amplitude or ERP images (Jung
et al., 2000) that showed a distinctive pattern of transient deviations with
large amplitude occurring at unpredictable latencies relative to the stim-
ulus, and (2) scalp maps of electric-field distribution with an obvious
frontal weighting. These measurements are quite distinct from ERP im-
ages and scalp maps from stimulus-related signals. Further, components
whose time course significantly correlated with the recorded ECG signal
were rejected as residual BCG artifacts (Srivastava et al., 2005; Debener et
al., 2007). The remaining ICs were used to reconstruct the EEG signal for
further analysis. Single-trial EEG epochs were extracted using a window
of 0.7 s (from 200 ms prestimulus to 500 ms poststimulus) based on the
stimulus-onset markers provided by the photo sensor. For each epoch, a
baseline correction was performed by subtracting the average of the pre-
stimulus (200 ms) data. Single trials with maximum amplitude difference
�100 �V were excluded from further analysis.

Mutual information estimation for EEG signals. As the mean amplitude
of EEG signals did not allow us to discriminate between radial and con-
centric patterns (see Fig. 2 B), we used information theory (Shannon,
1948; Cover and Thomas, 1991) to estimate mutual information (MI)
between stimulus conditions and EEG responses (Montemurro et al.,
2008). This measure is driven by the distribution of the EEG signal am-
plitudes and therefore is more sensitive than the mean ERP signals in
identifying informative EEG components related to stimulus conditions.

That is, MI between EEG amplitude and a given stimulus condition is a
measure of the statistical dependence between these two variables. High
MI values suggest that the distributions of the two variables share com-
mon information.

We estimated the mutual information I(S;R) between stimulus condi-
tions and EEG responses for each observer, session, and EEG channel as
follows:

I�S;R� � �
s,r

P�s� P�r�s�log2

P�r�s�
P�r�

, (1)

where s is the stimulus condition (N � 13), r is the amplitude of the EEG
response, and P is the probability.

MI was calculated across all stimulus conditions (i.e., signal levels). For
each channel and trial, the EEG time series was smoothed by averaging 10
ms signals around each time point. We then estimated the distribution of
the signal amplitudes using 30 response bins (that is, Ns/R� � 4, where Ns

is the number of trials per condition and R� is the number of bins). For
each session, we set the two-tailed 95% confidence intervals to the upper
and lower bounds of the amplitude distribution. Amplitude values out-
side this range were set to the upper bound and lower bound, respec-
tively. Note that this amplitude correction was applied only for this
mutual information analysis; all subsequent analyses used the prepro-
cessed EEG signal without this correction. This amplitude correction was
performed to preserve the sensitivity of the information measurement
given the number of bins necessary for estimating the mutual informa-
tion (Panzeri et al., 2007).

We estimated the MI for each EEG channel based on Equation 1. We
also shuffled the condition labels 500 times and estimated the shuffled MI
to create a baseline measurement. Due to the limited number of trials, we
corrected the estimated MI following a Bayesian procedure (Panzeri and
Treves, 1996) and subtracting the shuffled MI. Following this correction
separately for each time point, we tested across all observers and sessions
whether MI values differed significantly from chance. Using this proce-
dure, we computed MI separately for each session (pretraining, post-
training) and observer. No significant differences were observed between
the two sessions in either the component latency (Component 1, F(1,9) �
0.95, p � 0.38; Component 2, F(1,9) � 0.31, p � 0.62) or amplitude
(Component 1, F(1,9) � 0.85, p � 0.4; Component 2, F(1,9) � 1.21, p �
0.22). Thus, to ensure sufficient signal power for robust and independent
estimation of informative EEG components, we calculated the MI per
temporal bin (30 ms) across all channels, stimulus conditions, and EEG
single trials in both sessions and observers. In particular, we used the
maximum amplitude peaks of the MI time course (averaged across all
EEG channels and observers) to identify the temporal components that
contained discriminative information across stimulus conditions.

EEG channel selection
To select EEG channels that contained information for discriminating
between radial and concentric patterns, we first computed the scalp to-
pographies based on average ERP signals. However, comparing the to-
pographies for radial versus concentric stimuli did not reveal any
significant differences in EEG amplitude for either Component 1 or 2. As
this analysis was not sensitive enough to reveal channels containing in-
formation useful for discriminating between stimulus conditions, we
used a receiver operating characteristic (ROC) analysis on the response
amplitude of each channel across single trials. We performed this analysis
on the data within a 10 ms window around the peak of each of the two
components and measured the area under the curve that indicated the
discriminability of EEG signals related to radial (0°) and concentric (90°)
trials. We calculated significance values using a bootstrap procedure; that
is, we shuffled the stimulus labels and calculated the ROC value for each
channel 1000 times. We then ranked all channels by ROC significance
value and selected the top 20% channels across the whole scalp. This
procedure allowed us to select channels from across the scalp with higher
frequency of posterior channels selected for Component 1 ( parietal,
27.5%; occipital, 8.3%) than for Component 2 ( parietal, 17.5%; occipi-
tal, 4.6%), while higher frequencies of frontal channels were selected for
Component 2 (31.3%) than for Component 1 (26.7%). This is consistent
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with previous studies that implicate posterior areas in visual processing
and higher frontal circuits in later perceptual judgments. We then aver-
aged the time course of the selected channels to generate a mean EEG
time course for each component and observer.

EEG-informed fMRI mapping
To identify brain regions associated with different stages of shape dis-
crimination in noise, we used an EEG-informed GLM analysis (Debener
et al., 2005; Eichele et al., 2005; Philiastides and Sajda, 2007). We gener-
ated separate regressors for each of the two EEG temporal components
and tested for fMRI responses that correlated with the amplitude of each
EEG component across trials. For each individual observer, a separate
regressor for each EEG temporal component was generated based on the
single-trial variability in the EEG amplitude at the respective component
latency. The regressor amplitude at each trial was calculated by averaging
the amplitude of the selected channel time course within a 10 ms window,
centered at the component peak latency. The two EEG regressors were
decorrelated (using Gram–Schmidt orthogonalization for removing the
common variance between the two from the first or second regressor)
(Eichele et al., 2005). In particular, correlations between regressors
(mean across observers and sessions, r � 0.12; SD, 0.01) were eliminated
(r � 0.00) after removing any common variance from the second or first
component regressor. This procedure ensured that fMRI activations
were specific to each component rather than a general feature of the
visual evoked response. Both regressors were then convolved with a ca-
nonical double-� hemodynamic response function. These regressors

were used to form a GLM along with six other regressors derived from the
motion correction parameters.

We performed group random-effects analysis and identified regions
for which the amplitude of each of the two EEG components correlated
significantly ( p � 0.05, cluster threshold correction) with the BOLD
signal. Performing this EEG-informed GLM analysis separately on pre-
training and post-training data and comparing the activation maps (t
test) between sessions did not show any significant ( p � 0.05) differences
in between sessions for either component. Therefore, to identify regions
of interest that correlated with each of the two EEG components, we
pooled the data across the two sessions. We identified the same regions in
individual observers using fixed-effects analysis, and labeled these re-
gions based on the overlap of functional activations and anatomical
landmarks.

Multivoxel pattern fMRI analysis
To test which brain regions showed learning-dependent changes, we
conducted multivoxel pattern analysis (MVPA) on the activation pat-
terns of the regions identified based on the EEG-informed fMRI analysis.
This approach has been shown to be more sensitive than conventional
statistical analyses of fMRI signals in revealing learning-dependent dif-
ferences in the discrimination of visual forms (Li et al., 2009). This ap-
proach is supported by an analysis comparing the functional signal
change between radial and concentric stimuli for each session that
showed no significant differences between the BOLD responses to radial
or concentric stimuli for either the pretraining or post-training session. A
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Figure 1. Stimuli and behavioral data. A, Example radial (top row) and concentric (bottom row) Glass pattern stimuli at signal levels of 100, 70, 35, and 0%. B, Behavioral data collected in the lab
(circles) and the scanner (squares) for pretraining (gray dotted line) and post-training (black solid line) sessions.
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three-way repeated-measures ANOVA (ROI � session � stimulus)
showed no significant effect of session (F(1,9) � 0.88, p � 0.52) or stim-
ulus (F(1,9) � 0.55, p � 0.47) and no significant interaction between
session and stimulus (F(1,9) � 1.06, p � 0.34).

In particular, for each observer, we selected voxels in each ROI that
were activated significantly stronger for the corresponding EEG-fMRI
statistical map ( p � 0.05, uncorrected). We ordered these voxels based
on their t value (in descending order) for radial versus concentric stimuli
(i.e., we compared activations for radial and concentric stimulus trials
across conditions). Following this procedure, we selected up to 100 vox-
els for each ROI and observer for the analysis, as prediction accuracy had
saturated at this pattern size across areas, resulting in a dimensionality
compatible with previous studies (Haynes and Rees, 2005; Kamitani and
Tong, 2005; Li et al., 2007). As the regions of interest were defined by
pooling data across both the pretraining and post-training sessions, a
common set of voxels was selected for pattern classification of the data
from each session. Cautious alignment of the functional data across ses-
sions ensured that the 100 voxels selected for MVPA were the same across
sessions. Each voxel time course was z-score normalized for each exper-
imental run separately. The data pattern for each trial was generated by
shifting the fMRI time series by 3 volumes (4.5 s) to account for the
hemodynamic delay.

Finally, we used a linear support vector machine (SVM) and a leave-
one-run-out cross-validation procedure for the pattern classification.
We trained the classifier to associate fMRI signals with a label (radial vs
concentric) related to the stimulus condition. We averaged the two vol-
umes from each trial (trial duration � 3 s; TR � 1.5 s) to generate one
training pattern per trial. We then tested whether the classifier predicted
the stimulus condition (radial vs concentric) using an independent da-
taset. To ensure generalization of the classification, we used a leave-one-
run-out cross-validation procedure. That is, for each cross-validation, we
left one run out as an independent test dataset. Data from the rest of the
runs were used as the training set (112 patterns per run). For each ob-
server, we calculated the mean performance of the classifier (proportion
of trials classified correctly) in predicting whether each stimulus was
radial or concentric across cross-validations. Finally, we calculated fMR-
metric functions (Li et al., 2009) per ROI by averaging the performance
of the classifier for each stimulus condition across cross-validations and
fitting the data using a cumulative Gaussian. It is important to note that
the classification comparisons were independent from the voxel selection
procedure. The voxel selection was conducted using only the training
dataset for the extreme stimulus conditions (excluding the test dataset for
each cross-validation).

Multivariate pattern analysis for EEG data. To test which temporal
processes associated with each of the two EEG components showed
learning-dependent changes, we performed pattern classification on the
EEG data (112 trials across conditions per run) for each of the two com-
ponents. As described above, we used data from 20% of channels selected
based on an ROC analysis. For each session, we trained a linear SVM to
classify single-trial EEG signals associated with the two different stimulus
categories (concentric vs radial) and tested the classifier’s accuracy using
an independent dataset. For each EEG trial, we averaged the signal from
a 30 ms window centered at the peak of each of the two EEG components.
For each cross-validation, 10% of the data were left out as an indepen-
dent test dataset and the remaining 90% of the data were used as the
training set. We calculated the classifier performance for each condition
across 100 cross-validations and observers and fitted the data using a
cumulative Gaussian.

Eye movement analysis. We recorded eye movements from eight ob-
servers while performing the categorization task in the scanner, as fol-
lows: (1) data from pretraining; and (2) data from post-training. Eye
movements were recorded using the ASL 6000 eye-tracker (Applied Sci-
ence Laboratories) with 60 Hz temporal resolution. Eye-tracking data
were preprocessed using Eyenal software (Applied Science Laboratories)
and analyzed using custom Matlab (Mathworks) software. We computed
horizontal eye position, vertical eye position, proportion of saccades for
each condition at different saccade amplitude ranges, and number of
saccades per trial per condition.

Results
Behavioral results
We tested the observers’ ability to categorize global form pat-
terns as radial or concentric in noise (Fig. 1 A) and plotted
their performance (proportion correct) as a function of stim-
ulus signal level (i.e., number of dot dipoles comprising the
global form patterns). Comparing the psychometric functions
fitted to data averaged across trials for each session (pretrain-
ing vs post-training) showed that training increased the ob-
servers’ task sensitivity. In particular, the 78% performance
threshold improved from 82.2% signal level (�22.6%) before
training to 43.4% signal level (�7.3%) after training (Fig. 1B).
Similar learning-dependent changes in performance threshold
were observed when we estimated the 78% performance thresh-
old separately for radial (81.4% signal level before training;
45.1% signal level after training) and concentric stimuli (83.2%
signal level before training; 42.6% signal level after training). This
was confirmed by a significant increase in the slope of the psy-
chometric function (estimated from cumulative Gaussian fits on
individual observer data) after training (t(9) � 4.84; p � 0.001).

EEG-informed fMRI mapping of regions of interest
We exploited the high temporal resolution of EEG to identify
temporal components that correspond to distinct processes re-

Figure 2. EEG temporal components. A, Mutual information time course of radial versus
concentric stimulus conditions was estimated using all single trials across all channels of each
observer from 200 ms prestimulus to 400 ms poststimulus. Information was smoothed using a
30 ms window and averaged across all channels, observers, and sessions (pre- and post-
training). Information values (bits) are shown after subtraction of the mutual information esti-
mated using shuffled condition labels (500 iterations) and normalization to prestimulus
baseline. The latencies of the two temporal peaks that showed the highest significant mutual
information values (MI significantly different from zero across observers; p � 0.05, paired t
test) are indicated by the gray-shaded portions of B. Group average visual-evoked potential in
response to concentric and radial Glass patterns. The waveforms are averaged across trials, EEG
channels, and observers. This analysis showed similar peaks but lacked sufficient sensitivity to
discriminate between signals related to concentric and radial patterns, in contrast to the MI-
based analysis that enabled us to identify components that discriminated significantly between
these signals.
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lated to global form discrimination. We used information theory
(Shannon, 1948; Cover and Thomas, 1991; Montemurro et al.,
2008) to identify informative components (i.e., temporal compo-
nents that contain stimulus- or task-related information) in the
EEG signal related to stimulus categories (radial, concentric)
based on MI. This method provides a sensitive tool for identifying
task-relevant temporal components of the EEG signal (Fig. 2A)
that may be difficult to discriminate from comparison of stan-
dard ERP waveforms between stimulus conditions (Fig. 2B). We
identified two time intervals that showed significant MI values
(compared with chance levels), as follows: (1) 86 –119 ms (p �
0.05) and (2) 229 –249 ms (p � 0.05) after stimulus onset. High
MI values suggest that the amplitude of the EEG signal at given
latency varies according to the stimulus condition when consid-
ered across all trials and channels. We identified peak time points
with the highest MI value within these significant time intervals
that corresponded to early and later EEG components. The aver-
age peak for the first component was at 105 � 16.1 ms poststimu-
lus, and for the second component was at 242 � 19.2 ms
poststimulus. We concentrated on these two components for fur-
ther analysis, as previous studies suggest that they reflect distinct
processes (Johnson and Olshausen, 2003; Ohla et al., 2005; Pei et
al., 2005; Tanskanen et al., 2008; Das et al., 2010). In particular,
previous studies showing differential responses to global forms at
later rather than early latencies suggest that latencies around the
first component relate to visual form integration, while latencies
around the second component relate to perceptual classification
judgments. Finally, previous studies (Philiastides et al., 2006)

have discriminated between components related to task difficulty
(	220 ms) and decision-related events (later than 300 ms). Fol-
lowing these studies, we explored a third component with average
peak latency of 376 ms. However, analysis of peak latencies
around the second (mean latency of 242 ms) and third (mean
latency of 376 ms) component did not show any significant dif-
ferences across stimulus difficulty levels (F(1,9) � 0.44, p � 0.51)
or a significant interaction between component and stimulus dif-
ficulty (F(1,9) � 1.05, p � 0.33). These results suggest that the
second component could not be discriminated from the third
one on the basis of task difficulty. This is consistent with recent
work showing that ERP signals at latencies 	220 ms reflect sen-
sory processing of stimuli embedded in noise rather than task-
difficulty (Banko et al., 2011). Thus, we focus on the first two
temporal components for the rest of the analyses.

To identify brain regions involved in the different temporal
processes related to the above EEG components, we conducted
an EEG-informed fMRI analysis (Fig. 3), as described in previous
studies (Debener et al., 2005; Eichele et al., 2005; Philiastides and
Sajda, 2007). This analysis showed activations (p � 0.05, cluster
threshold corrected) in V3/V3B [left hemisphere (LH)], lateral
occipital (LO) (LH), inferior parietal sulcus (IPS), postcentral
sulcus (PostCS), posterior cingulate (PCC), and dorsal premotor
cortex (PMd) (LH) that correlated significantly with the ampli-
tude of the first EEG component. Significant correlations with
the amplitude of the second EEG component were found in the
supplementary eye-field (SEF) and superior frontal gyrus (SFG).
These results demonstrate two distinct cortical networks engaged
in shape discrimination in noise. First, occipitotemporal, pari-
etal, and motor regions were engaged early (first component) in
processing. This is consistent with the role of occipitotemporal
regions in the processing of visual forms (Ostwald et al., 2008),
and parietal and motor regions in perceptual categorization
(Freedman and Assad, 2006) and stimulus–response association
processes (Toni et al., 2001). Second, processes related to percep-
tual judgments (i.e., associated with the second component) en-
gaged prefrontal regions, consistent with the role of prefrontal
cortex in categorization and adaptive cognitive processes (Miller,
2000; Duncan, 2001).

In interpreting these results, it is important to take into ac-
count the possible limitation of the EEG-fMRI methodology.
First, the EEG-informed GLM analysis relies on differences in the
amplitude rather than the latency of the regressors, as latencies

Figure 3. Single-trial EEG-informed fMRI analysis. Random effects GLM analysis (data grouped across all observers and sessions) using EEG-defined regressors corresponding to the two temporal
components. Activation maps are shown using regressors orthogonalized by removing the common variance from the second component regressor. Activations that correlated significantly ( p �
0.05, cluster threshold corrected) with the first component (orange/yellow) and second component (blue/green) are shown. t-statistic maps are superimposed on flattened cortical surfaces of both
hemispheres (Table 1: Talairach coordinates). Sulci are shown in dark gray. Gyri are shown in light gray.

Table 1. Talairach coordinates (mean, standard deviation) of all ROIs that showed
significant activations across observers for the EEG-informed fMRI GLM

ROI

Left hemisphere Right hemisphere
Number of
observersx y z x y z

Component 1
V3/V3B 
26 
77 8 10
LO 
36 
63 6 10
IPS 27 
51 42 10
PostCS 
39 
26 41 41 
28 43 10
PMd 
29 
6 50 9
PCC 
15 
6 41 16 
54 39 10

Component 2
SEF 
8 
11 47 10 
13 49 7
SFG 
16 
35 40 19 
33 39 10
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related to the different EEG components overlap in the fMRI
time course. Despite this limitation, this approach has been suc-
cessful in linking fMRI activations to specific temporal compo-
nents that differ in their response amplitude across trials
(Debener et al., 2005; Eichele et al., 2005; Philiastides and Sajda,
2007). Second, activations associated with the selected channels
may reflect processing across brain regions due to the low spatial
resolution of the EEG. Our selection of the most informative
channels across the whole scalp ensured unbiased use of EEG
information from different scalp locations to identify regions
across the whole brain associated with distinct temporal pro-
cesses. Third, EEG-fMRI enables us to identify cortical areas that
are more strongly rather than causally related to one of the pro-
cesses associated with different temporal components (e.g., form
integration vs perceptual classification). However, it is possible
that additional interactions across areas are engaged at a finer
resolution than can be measured by EEG-fMRI. That is, recurrent
interactions between occipitotemporal and parietal areas may
support fast categorization at early processing stages. Finally, de-
spite recent advances in data acquisition and artifact correction

techniques that have greatly improved the
signal-to-noise ratio of EEG signals re-
corded during fMRI (Laufs et al., 2008),
small residual artifacts may remain in the
EEG and compromise activation maps re-
sulting from EEG-informed fMRI analy-
ses. However, the activations we observed
using EEG-based GLMs corresponded
closely to activation patterns in our previ-
ous fMRI studies on shape discrimination
(Li et al., 2009). This was confirmed by an
additional analysis using searchlight mul-
tivoxel pattern classification analysis to
compare fMRI activations between stim-
ulus categories. Thus, activations revealed
by the EEG-informed fMRI analysis cover
the network of regions engaged in visual
form processing. The advantage of EEG-
informed fMRI is that it allows us to iden-
tify the cortical areas associated with the
distinct temporal processes that mediate
the categorization of global forms (i.e.,
early form integration vs later categorical
judgments).

Learning-dependent changes:
fMR-metric functions
We tested which brain regions identified
by the EEG-informed fMRI analysis
showed learning-dependent changes in
their activation patterns. In particular, we
tested whether activation patterns in these
regions after training corresponded to the
changes in sensitivity that we observed in
behavioral performance after training. As
described above, univariate analyses of
fMRI signals (statistical comparison of ac-
tivation maps, or ROI-based analysis of
BOLD signals for radial vs concentric
patterns before and after training) did
not show any significant differences in
activations between sessions. Therefore,
we used multivariate methods (i.e.,

multivoxel pattern classification) for the analysis of fMRI data
that have been shown to be more sensitive in revealing voxel
preferences.

fMR-metric functions in occipitotemporal (V3/V3B, LO), in-
traparietal (IPS), and somatosensory (PostCS) areas related to
the first EEG component showed training-induced increases in
sensitivity (Fig. 4). In particular, the slope (estimated from cu-
mulative Gaussian fits on individual observer data) of the fMR-
metric functions increased significantly (F(1,9) � 14.4, p � 0.01) after
training, and there was a significant interaction between session
(pre-, post-training) and ROI (F(1,9) � 5.6, p � 0.05). Specifically,
significant differences between sessions were observed in higher oc-
cipitotemporal areas (V3/V3B, F(1,9) � 14.9, p � 0.01; LO, F(1,9) �
4.6, p � 0.05), and parietal areas (IPS, F(1,9) � 15.4, p � 0.01;
PostCS, F(1,9) � 18.3, p � 0.01). In contrast, no significant differ-
ences were observed in frontal regions (PCC, F(1,9) � 1.3, p �
0.28; PMd, F(1,9) � 0.94, p � 0.37). Further, fMR-metric func-
tions in frontal areas related to the second EEG component
showed training-induced increases in sensitivity, as indicated
by a significant increase in the slope of the fMR-metric func-
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Figure 4. FMR-metric functions. A, B, FMR-metric curves based on the classification of radial versus concentric stimuli across
conditions for regions significantly correlated with the first EEG component (A) and the second EEG component (B). The classifier
performance (proportion correct) at each condition was averaged across observers and fitted with cumulative Gaussian functions
for each session. Gray dotted lines indicate pretraining sessions. Black solid lines indicate post-training sessions. The table below
indicates the goodness of the fit (R and p values) for ROIs with nonsignificantly fitted fMR-metric functions in at least one of the two
scanning sessions. All ROIs showed significantly fitted fMR-metric functions with the exception of PMd (Component 1, r � 0.33,
p � 0.47; Component 2, r � 0.57, p � 0.18) and SEF (Component 1, r � 0.17, p � 0.68; Component 2, r � 0.53, p � 0.20).
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tion for SFG (F(1,9) � 14.2, p � 0.01) after training (only seven
of the participants showed activation in SEF resulting in func-
tions that were not significantly fitted). These findings suggest
that learning modulates a feedforward network of areas associ-
ated with distinct processes related to global form discrimination
(i.e., early form integration vs later categorical discrimination).
In particular, learning modulates early processing in higher
occipitotemporal and parietal regions associated with global
form integration, while later processing in prefrontal regions
engaged in categorical judgments.

Learning-dependent changes: EEG-metric functions
As described above, univariate analyses of EEG signals did not
show any significant differences in latency or amplitude between
sessions for either of the two components. Therefore, similar to
the analysis of the fMRI data, we used sensitive multivariate
methods (i.e., pattern classification) for comparing EEG data be-
fore and after training. Similar to the fMR-metric functions, we
generated EEG-metric functions (Philiastides and Sajda, 2006;
Das et al., 2010) for each of the two EEG components (Fig. 5A).
We tested whether decoding radial versus concentric patterns
from single-trial EEG data improved after training. Our results
showed that learning shapes early processes related to global form
perception (i.e., detection and integration) as well as later pro-
cesses related to perceptual judgments (i.e., categorization). In
particular, comparing EEG-metric functions before and after
training showed significant learning-dependent changes in both
EEG components. We observed a significant increase in the slope

of the EEG-metric functions after training for both components
(F(1,9) � 16.6, p � 0.01) and no significant interaction between
component and session (F(1,9) � 0.43, p � 0.50).

Control analyses
We performed the following additional analyses to control for
possible confounding factors. In particular, to control for the
possibility that our results were due to random correlations in the
data, we computed the fMR-metric and EEG-metric functions
from randomly permuted signal patterns (i.e., we randomized
the correspondence between the data and training labels and es-
timated the classifier prediction for each stimulus condition).
The lack of significant correlations in these control analyses sup-
ports our interpretation for a link between task-relevant behav-
ioral performance and neural preferences. Supporting evidence
for this link comes from an additional analysis. In particular,
fitting the fMRI (Fig. 6) and EEG (Fig. 5B) data using a scaled
version of the psychometric function showed similar learning-
dependent changes.

The design of our study allowed us to rule out a number of less
likely interpretations of our results. First, it is unlikely that the
learning-induced changes we observed resulted from learning-
specific category exemplars or stimulus–response associations, as
the stimuli tested during scanning differed in their visual prop-
erties (i.e., signal level) from the stimuli presented during train-
ing. Further, by randomizing the motor responses based on the
cue in the main experiment, we controlled for the possibility that
the results could be due to memorized stimulus–response asso-
ciations. Second, the learning-dependent changes we observed
could not be due to differences in task difficulty across condi-
tions, as the classification analysis compared trials associated with
different stimuli (radial vs concentric) rather than conditions.
Further, analysis of the fMRI responses (percentage of signal
change) across areas did not show any significant differences be-
tween the two fMRI sessions (F(1,9) � 1.31, p � 0.28) or interac-
tion between ROI and session (F(1,9) � 0.31, p � 0.46). This result
suggests that the learning-dependent fMRI changes we ob-
served could not be accounted for by differences in attentional
allocation between the two sessions (i.e., training may result in
enhanced target salience and increased fMRI responses, or
familiarity with the task may decrease fMRI responses). Thus,
our experimental design and additional analyses control for
the possibility that nonspecific effects rather than form-specific
learning contribute to our findings. This is supported by addi-
tional ongoing behavioral studies showing lack of improvement
in Glass pattern discrimination without training or transfer to
nontrained tasks (e.g., contrast discrimination).

The cued-delay paradigm we used controlled for differences
in the observers’ response time. That is, observers made their
decision during the delay after stimulus offset and waited for the
cue before they could select the correct motor response, resulting
in similar response times across stimulus conditions. As the stim-
ulus–response association was randomized across trials, the mo-
tor response could not be anticipated on a given trial. Further, a
searchlight-based classification (Fig. 7) on the button press used
by the observers to indicate their behavioral choice showed sig-
nificant accuracies in motor regions but not in occipitotemporal,
parietal, or prefrontal regions, suggesting that results in these
areas cannot be simply explained on the basis of motor responses.

Finally, eye-movement recordings during scanning showed
no significant differences in the eye position, number, or ampli-
tude of saccades across stimulus conditions and sessions. In par-
ticular, a repeated-measures ANOVA (Greenhouse–Geisser
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Figure 5. EEG-metric functions. A, EEG-metric curves for the first and second components.
The classifier performance at each condition was averaged across observers and fitted with
cumulative Gaussian functions for each session. Gray dotted lines indicate pretraining. Black
solid lines indicate post-training. EEG-metric functions were significantly fitted for both the first
component (pretraining, r � 0.85, p � 0.02; post-training, r � 0.81, p � 0.03) and second
component (pretraining, r � 0.89, p � 0.01; post-training, r � 0.9, p � 0.01). B, Correlating
psychometric and EEG-metric functions. As with the fMR-metric functions, we scaled the cumu-
lative Gaussian model obtained from the psychophysical data to fit the classifier predictions
based on single-trial EEG data. EEG-metric functions were significantly fitted for both the first
component (pretraining, r � 0.80, p � 0.03; post-training, r � 0.84, p � 0.02) and second
component (pretraining, r � 0.82, p � 0.03; post-training, r � 0.81, p � 0.03).
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corrected) indicated that there was no significant difference be-
tween stimulus conditions on mean horizontal eye position [pre-
training, F(1.6,3.1) � 0.67, p � 0.54; post-training, F(1.2,2.5) � 0.73,
p � 0.50], mean vertical eye position [pretraining, F(1.9,3.8) �
3.19, p � 0.15; post-training: F(1.3,2.6) � 3.26, p � 0.19], mean
saccade amplitude [pretraining, F(1.8,3.6) � 1.60, p � 0.31; post-
training, F(1.4,2.7) � 0.60, p � 0.55], or the number of saccades per
trial per condition [pretraining, F(1.5,3.1) � 0.80, p � 0.49; post-
training, F(1.6,3.2) � 0.54, p � 0.59]. Further, no significant inter-
action was observed between session and stimulus conditions on
horizontal eye position [F(1.8,3.7) � 1.19, p � 0.39], vertical eye po-
sition [F(1.1,2.2) � 5.20, p � 0.14], saccade amplitude [F(1.4,2.9) �
2.02, p � 0.27], and number of saccades [F(1.6,3.2) � 0.09, p � 0.88].
These analyses suggest that it is unlikely that our results were signif-
icantly confounded by eye movements.

Discussion
By combining behavioral measurements
and simultaneous EEG-fMRI recordings,
we provide evidence for distinct brain
mechanisms that mediate learning when
sensory uncertainty (i.e., noise) chal-
lenges perceptual judgments. Our work
advances our understanding of the pro-
cesses that mediate adaptive shape recog-
nition beyond previous studies in the
following main respects.

First, previous functional imaging
studies have implicated occipitotemporal
and frontoparietal circuits in shape learn-
ing (Dolan et al., 1997; Gauthier et al.,
1999; Grill-Spector et al., 2000; Chao et
al., 2002; Kourtzi et al., 2005; Op de Beeck
et al., 2006). However, the indirect, slow
hemodynamic response of fMRI limits
our understanding of the spatiotemporal
brain dynamics that mediate visual form
learning. Here, using simultaneous EEG-
fMRI recordings, we demonstrate that
learning enhances observers’ sensitivity to
discriminate visual forms in noise by
shaping a circuit of feedforward interac-
tions among higher occipitotemporal, pa-
rietal, and frontal areas. In particular,
enhanced visual sensitivity is mediated by
neural changes at (1) early processing
stages in occipitotemporal and parietal re-
gions known to be involved in the detec-
tion and integration of global visual forms
(Ostwald et al., 2008), and (2) later deci-
sion stages in prefrontal regions thought
to accumulate sensory evidence for per-
ceptual judgments (Newsome et al., 1989;
Kim and Shadlen, 1999; Shadlen and
Newsome, 2001; Heekeren et al., 2004;
Grinband et al., 2006).

Second, the learning-dependent changes
we observed in later frontal processes are
consistent with previous imaging studies
implicating frontal regions in category
and rule learning (for review, see Keri,
2003; Ashby and Maddox, 2005; Poldrack
and Foerd, 2008; Seger and Miller, 2010).
In particular, improved sensitivity in vi-

sual categorization in noise is related to learning-dependent
changes in dorsolateral prefrontal regions (SFG) known to con-
tribute to the accumulation of sensory information toward a de-
cision (Newsome et al., 1989; Kim and Shadlen, 1999; Shadlen
and Newsome, 2001; Heekeren et al., 2004; Grinband et al.,
2006). However, our findings demonstrate that improved sensi-
tivity in the discrimination of visual forms involves not only later
but also earlier processes in higher occipital regions (i.e., V3/
V3B) known to mediate perceptual integration (Ostwald et al.,
2008). This is consistent with previous findings showing
learning-dependent changes early in processing (Fahle and Sk-
randies, 1994; Skrandies et al., 2001; Ding et al., 2003; Shoji and
Skrandies, 2006; Song et al., 2007; Pourtois et al., 2008; Bao et al.,
2010). However, these previous studies have concentrated on the
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Figure 6. Correlating psychometric and fMR-metric functions. Similar to previous studies (Zenger-Landolt and Heeger, 2003;
Chandrasekaran et al., 2007), we scaled the cumulative Gaussian model obtained from the psychophysical data to fit the fMRI data
(i.e., the predictions of the pattern classifier) according to the following equation: y � B � (S/[1 � exp(�
�x)]), where B is the
baseline, S is the scale of the fitting, � is the intercept, and � is the slope of the cumulative Gaussian model. A, B, Data are shown
for regions significantly correlated with the first EEG component (A) and the second EEG component (B) for each session. Black solid
lines indicate pretraining. Gray dotted lines indicate post-training. All ROIs showed significantly fitted fMR-metric functions with
the exception of PMd (Component 1, r � 0.38, p � 0.38; Component 2, r � 0.56, p � 0.19) and SEF (Component 1, r � 0.29, p �
0.59; Component 2, r � 0.48, p � 0.25).
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detection of low-level visual features (e.g., orientation, motion)
rather than the discrimination of complex global forms. Our
findings extend beyond this previous work by showing that learn-
ing to discriminate visual forms in noise alters early processes
specific to global form perception in higher occipitotemporal
areas.

The role of learning in modifying early sensory processing
remains highly debated (Adini et al., 2002; Teich and Qian, 2003).
Recent studies suggest that learning alters later decision-related
processes thought to reweight the contributions of early sensory
representations (Dosher and Lu, 1999; Li et al., 2004; Law and
Gold, 2008; Jacobs, 2009). Our findings suggest that learning
modifies early recurrent processing (Roelfsema and van Ooyen,
2005; Roelfsema, 2006) within higher visual and parietal areas
engaged in the integration (Ostwald et al., 2008) and categoriza-
tion (Freedman and Assad, 2006) of global visual forms. Specifi-
cally, our findings showing that learning modulates shape
processing in higher occipitotemporal regions (LO) sheds light
on the contested role of temporal cortex in visual learning. LO has
been suggested to contribute to the comparison of sensory evi-
dence during decision making by accumulating information to
the time of recognition (Ploran et al., 2007), and supporting the
persistence of a percept (Philiastides and Sajda, 2007). Here we
show that learning to discriminate visual forms in clutter modu-
lates early sensory processing in LO, suggesting that visual detec-
tion and integration in occipitotemporal areas are modulated by
early recurrent mechanisms. In contrast to previous physiology
(Schoups et al., 2001; Li et al., 2004) and imaging studies
(Schwartz et al., 2002; Furmanski et al., 2004; Kourtzi et al., 2005;
Sigman et al., 2005; Mukai et al., 2007; Yotsumoto et al., 2008;

Bao et al., 2010), we did not observe learning-dependent changes
in primary visual cortex. This finding could be due to our stim-
ulus choice (global form rather than local orientation features)
and may relate to previous electrophysiological results that dem-
onstrate enhanced perceptual learning effects in higher com-
pared with primary visual areas (Yang and Maunsell, 2004;
Raiguel et al., 2006).

Third, our work provides novel methodological advances by
combining simultaneous EEG-fMRI with pattern classification
and applying this methodology for the first time to the study of
visual form learning. Combining the high temporal and spatial
resolution of EEG and fMRI allows us to investigate the process-
ing dynamics between cortical circuits involved in perceptual
judgments. Although previous studies (Philiastides and Sajda,
2007) have recorded EEG and fMRI data at different sessions,
simultaneous recordings avoid differences across sessions (e.g.,
alertness, adaptation, familiarity) that confound learning effects.
Further, the EEG-informed fMRI analysis bypasses the source
localization limitations of EEG related to the infinite number of
possible source configurations that may give rise to a given scalp
distribution. Finally, comparing the choices of linear classifiers
(EEG/fMR-metric functions) with the observers’ choices (psy-
chometric functions) provides us with a sensitive tool for directly
comparing brain activity and behavior and determining the link
between adaptive human choices and learning-dependent brain
plasticity (Pessoa and Padmala, 2007; Li et al., 2009).

Using this methodology, we provide novel evidence for learn-
ing mechanisms that modify processing across distinct visual rec-
ognition processes. It is important to note that EEG-fMRI signals
reflect processing at the level of large neural populations and do

Figure 7. Searchlight analysis related to motor responses. A, B, Using the searchlight method (Kriegeskorte et al., 2006) with a leave-one-run-out cross-validation, we trained a linear SVM to
classify the finger used by the observers for indicating their behavioral choice based on fMRI data from the first volume (A) and the second volume (B) for each trial. For each observer, the classification
accuracy was obtained by averaging the accuracy across cross-validations. We then performed a second-level analysis (t test on the accuracies across observers and the two sessions) and identified
the voxels showing significantly higher accuracy than chance ( p � 0.001, with cluster threshold). The t-statistic maps are superimposed on flattened cortical surfaces of both hemispheres. The
analysis on the first volume of each trial, during which the stimulus was presented, showed significant activations in the central sulcus (CS) and premotor ventral cortex (PMv), possibly related to
motor response preparation. The same analysis on the second volume, during which the motor response was executed, showed significant CS activation, consistent with the role of this area in motor
execution. Sulci are shown in dark gray. Gyri are shown in light gray.
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not allow us to discern whether learning reflects changes in the
selectivity of single neurons or correlations across neural popu-
lations. Further, correlations between EEG and fMRI signals do
not necessarily imply that the signals have the same underlying
physiological source. However, recent work shows that trial-by-
trial EEG analysis has the potential to identify correlated fMRI
activity, thus providing information about the cortical network
engaged in specific temporal processes (Debener et al., 2005;
Eichele et al., 2005; Mayhew et al., 2010b). Despite these potential
limitations, our findings make interesting predictions that can be
further tested by physiology. In particular, we suggest that im-
proved sensitivity in the discrimination of global forms in clut-
ter may relate to changes in neural sensitivity (i.e., tuning of
neural populations that show weak preferences to stimuli in
clutter before training), as indicated by learning-dependent
changes in visual form areas at early stages of processing. In
sum, our findings propose distinct functional brain plasticity
mechanisms that support behavioral improvements and me-
diate our ability to make successful perceptual judgments in
the face of sensory uncertainty.
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Kovács I, Kozma P, Fehér A, Benedek G (1999) Late maturation of visual
spatial integration in humans. Proc Natl Acad Sci U S A 96:12204 –12209.

Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based func-
tional brain mapping. Proc Natl Acad Sci U S A 103:3863–3868.

Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A (2008) Recent ad-
vances in recording electrophysiological data simultaneously with mag-
netic resonance imaging. Neuroimage 40:515–528.

Law CT, Gold JI (2008) Neural correlates of perceptual learning in a
sensory-motor, but not a sensory, cortical area. Nat Neurosci 11:505–513.

Li S, Ostwald D, Giese M, Kourtzi Z (2007) Flexible coding for categorical
decisions in the human brain. J Neurosci 27:12321–12330.

Li S, Mayhew SD, Kourtzi Z (2009) Learning shapes the representation of
behavioral choice in the human brain. Neuron 62:441– 452.
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