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The basic circuitry of auditory, visual, somatosensory and other cortical areas is highly stereotyped (Douglas and Martin, 2004). However,
it remains unclear whether this anatomical stereotypy implies functional homogeneity, or whether instead different cortical areas are
specialized to process the diverse sensory inputs they receive. Here we have used a two alternative forced choice task to assess modality-
specific differences in the ability of rats to exploit precise neuronal timing. We delivered pairs of electrical pulses directly to different areas
of cortex to determine the minimum timing differences subjects could detect. By stimulating the cortex directly, we isolated differences
due to cortical circuitry rather than to sensory transduction and subcortical processing. Surprisingly, the minimum detectable timing
differences varied over more than an order of magnitude, ranging from 1 ms in barrel cortex to 15 ms in visual cortex. Furthermore, these
modality-specific differences depended upon sensory experience: although animals subjected to whisker clipping initially showed an
impaired ability to exploit fine timing in barrel cortical stimulation, behavioral training partially rescued this deficit. Our results suggest
that different cortical areas are adapted to the specific structure of the input signals they process, and that precise spike timing may play
a more important role for some cortical areas than for others.

Introduction
The architecture of sensory neocortex is remarkably stereotyped.
Neurons are distributed across six layers. Within each layer sit
specific types of excitatory and inhibitory neurons, distinguish-
able by size, morphology and connectivity. The consistency of
neocortical architecture has led to the hypothesis that the neocor-
tex consists of a basic repeating unit—a canonical circuit—which
performs similar computations, regardless of the inputs it pro-
cesses (Douglas and Martin, 2004).

Despite the striking similarities, careful analysis also reveals
differences in the architecture among areas, such as differences in
the thickness and composition of each layer, and differences in
the organization of local circuits and projections (Neafsey et al.,
1986; Ohki et al., 2005; Shepherd and Svoboda, 2005; Oviedo et
al., 2010). However, assessing the functional impact of such dif-
ferences on computation and sensory processing poses an exper-
imental challenge: signals from different sensory modalities are
subject to markedly different preprocessing before reaching cor-
tex, potentially confounding the interpretation of any apparent
differences in cortical function. For example, for sound localiza-
tion the auditory system exploits stimulus-timing cues in the

submillisecond range (Jeffress, 1948; Brand et al., 2002), far more
precise than any cues used in vision. However, these submicro-
second timing differences are extracted by highly specialized sub-
cortical structures, and so cannot be used to draw inferences
about any difference in the auditory versus visual cortex.

To bypass confounds due to sensory transduction and subcor-
tical processing, we have previously developed a strategy based on
direct cortical stimulation (Yang et al., 2008; see also Houweling
and Brecht, 2008; Huber et al., 2008). We used this strategy to
probe the ability of rats to use precisely timed neural activity in
auditory cortex to guide behavior. We found that rats could be
trained to interpret precisely timed cortical activity, even pulses
delivered only three milliseconds apart (Yang et al., 2008).

To what extent does this exquisite sensitivity to precise timing
reflect a specialization of the auditory cortex? On the one hand,
auditory cues can take precedence over visual cues in perception
tasks which require fine temporal resolution (Shams et al., 2000),
suggesting that organisms are predisposed to value estimates of
timing based on audition as more reliable than on vision. On the
other hand, the stereotypy of cortical circuitry suggests that all
areas might be wired so as to be equally capable of exploiting
precisely timed activity. Indeed, neurons in the visual cortex can
lock to stimuli with millisecond precision (Bair and Koch, 1996;
Buracas et al., 1998)— comparable to the auditory cortex (Heil,
1997; DeWeese et al., 2003)—indicating that fine stimulus timing
is preserved in both modalities.

To determine whether fine timing in the visual cortex could
also guide behavior, we used the cortical stimulation paradigm
previously developed (Yang et al., 2008) and found that the min-
imum detectable timing difference for visual cortex is much lon-
ger than that of auditory cortex. We further investigated the

Received March 15, 2012; revised Aug. 9, 2012; accepted Aug. 12, 2012.
Author contributions: Y.Y. and A.M.Z. designed research; Y.Y. performed research; Y.Y. analyzed data; Y.Y. and

A.M.Z. wrote the paper.
This research was supported by grants from the Swartz Foundation, the National Institutes of Health, and the

Marie Robertson Fund.
Correspondence should be addressed to Anthony M. Zador, 1 Bungtown Road, Cold Spring Harbor, NY

11724. E-mail: zador@cshl.edu.
Y. Yang’s present address: Institute of Neuroscience, Shanghai, China 200031.
DOI:10.1523/JNEUROSCI.1411-12.2012

Copyright © 2012 the authors 0270-6474/12/3215142-06$15.00/0

15142 • The Journal of Neuroscience, October 24, 2012 • 32(43):15142–15147



Figure 1. A, Experimental paradigm. Rats were implanted with two electrodes placed 1.1 mm apart, and trained to discriminate different cortical stimulation patterns. Stimuli consisted of trains
of 5 pulses delivered either simultaneously (AB) or sequentially (A-ISI-B) through the two intracortical electrodes, stimulation frequency 50 Hz. Animals initiated trials by poking into a center port,
which elicited a stimulus after a 50 ms delay. They were rewarded for selecting the correct reward port. B, Brain slices showing rostral (left) and caudal (right) electrode positions in visual and barrel
cortices. Arrows point to the electrode positions. Cytochrome oxidase (CO) staining was used for barrel cortex. Far right panel shows CO staining of flattened barrel cortex. Arrows point to the
electrode positions. C, Training history of a representative visually implanted rat. The performance on successive training sessions is plotted in chronological order. Number on top indicates ISI (ms)
of the training session. Error bars indicate binomial proportion confidence interval for a 95% confidence level. Filled circles, Sessions in which the animal performed significantly above chance. Empty
circles, Sessions in which performance was at chance level. D, Training history of a representative barrel cortex-implanted rat. E, Training history of a representative auditory-cortex-implanted rat
(from Yang et al., 2008).
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barrel cortex, and found that the minimum difference of barrel
cortex is even shorter than auditory cortex. And with sensory
deprivation by whisker trimming, we found that the ability to
exploit fine timing in the barrel cortex is experience-dependent.

Materials and Methods
Surgery. All procedures were approved by the Cold Spring Harbor Labora-
tory Animal Committee. Animals were anesthetized with an intraperitoneal
injection of a mixture of ketamine (60 mg/kg) and medetomidine (0.51
mg/kg). Wounds were infiltrated with lidocaine.

During the surgery, a craniotomy and a duratomy were performed.
For visual cortex animals, stimulation electrodes were implanted 6.0 and
7.1 mm posterior to bregma and 4.0 mm left from the midline. For barrel
cortex animals, electrodes were implanted 1.5 and 2.6 mm posterior to
bregma and 5.6 mm left from the midline. The electrodes were implanted
at depths ranging from 0.7 to 1.1 mm. After surgery, animals were left to
recover for several days before resuming water deprivation.

Electrical stimulation. Stimulation electrodes were made of polyimide-
coated nichrome wires (H.P. Reid), and were gold plated so that the
impedance ranged from 300 to 350 k� at 1 kHz.

Each electrical stimulus consisted of a train of 5 biphasic 4-volt voltage
pulses at 50 Hz (RP2, Real-time processor, Tucker-Davis Technologies)
which were passed through a 1:2.2 transformer (SP-21, Triad Magnetics).
We used a skull screw on the contralateral temporal bone as ground. The
impedance from the electrode to the ground ranged from 400K to 1 M.
The diameter of the stimulated area was estimated to be �75 �m.

Behavior. Animals were water deprived under a protocol approved by
the Cold Spring Harbor Laboratory Animal Committee.

Adult male Long–Evans rats (250 –350 g) were trained to discriminate
differences in the timing of electrical pulses delivered directly to the
cortex implanted with two stimulation electrodes (Fig. 1 A). For simul-
taneous stimulations of the two electrodes, animals had to go to the left
port to get the water reward; for sequential stimulations with an inter-
stimulus interval (ISI), animals had to go right to get reward. The only
cue available to guide behavior was the relative timing of the activity
elicited in the two stimulated populations. Animals were trained for 1–2
sessions each day. Each session contained 200 – 400 trials.

Histology. We marked the electrode position by passing 0.9 mA DC
current for 10 s through the stimulating electrodes. Then we immediately
perfused the animal with 4% paraformaldehyde. We sliced the brain 24 h
after perfusion (Fig. 1 B). For some barrel cortex-implanted animals, we
did cytochrome oxidase staining (Land and Simons, 1985) to mark the
barrels (Fig. 1 B, bottom right).

Sensory deprivation. We obtained pregnant rats of embryonic day 14
(E14)–E16. We observed the pregnant rats closely. Immediately after
they gave birth, we trimmed the whiskers of the pups, within 12 h after
birth. All whiskers were trimmed on one side, including the identified
whiskers from A–E rows (arcs 1–5 of 8), and the Greek whiskers. Whis-
kers were trimmed every 24 h until adulthood [postnatal day 0
(P0)�P60].

Before P12, rat pups were held in place by hand, and whiskers where
trimmed without anesthesia. After P12, animals were anesthetized with
2% isoflurane before whisker trimming, and were insensible during the
procedure.

Curve fitting and statistics. We fitted the mean best performances of
different groups of rats with a cumulative Weibull Function (Wichmann
and Hill, 2001): performance � 0.5 � (a � 0.5) * (1 � exp (�(ISI/b) c)).
Parameter a is the asymptotic performance. For the task AB versus B, ISI
is infinite. For fitting, we used 5000 as ISI for AB versus B.

We fitted the learning curve with Weibull Function: performance �
0.5 � (a � 0.5) * (1 � exp(�session/tau)). Parameter a is the asymptote
performance, and tau is the time constant. In Figures 2 B and 3D, we
plotted the fitted curves using average asympotote performance of all 3 or
2 groups, respectively.

We used confidence intervals for the error bars of the performance of
each session. We computed the significance for each session assuming a
binomial distribution, the null hypothesis being equal probability of ob-
taining correct trial and incorrect trial. We set the threshold for signifi-

cance at p � 0.01. For each session, p � 0.01 means that by chance the
probability of obtaining this performance or better was �1%.

Results
We delivered pairs of electrical pulses directly to different areas of
cortex to determine the minimum timing differences subjects
could detect. We first compared stimulation in visual cortex to

Figure 2. Different cortical areas differ in their ability to detect fine timing. A, Cumulative
histogram showing fraction of animals able to discriminate each ISI for auditory (N�26), visual
(N � 10) and barrel (N � 6) cortex stimulation. The barrel cortex is most sensitive to fine
temporal differences, followed by auditory cortex, followed by visual cortex. Auditory data
reanalyzed from reference (Yang et al., 2008). B, The mean best performances as a function of
ISI for different groups of rats recapitulates the sequence barrel�auditory�visual. Data were
fit using cumulative Weibull Function (Wichmann and Hill, 2001; see Materials and Methods). C,
Minimum detectable ISI for different cortices. Significance at 5% level by Fisher exact test.
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previous results (Yang et al., 2008) for stimulation in auditory
cortex. We then tested stimulation of the barrel cortex. Finally,
we compared stimulation of barrel cortex in sensory-deprived
animals with stimulation of untreated controls.

Visual cortex cannot discriminate short timing differences
The training history of a representative subject is shown in Figure
1C. Following implantation, the subject was trained first on a
simple microstimulation task with no timing component, in
which the subject was required to discriminate simultaneous
stimulation of both electrodes from stimulation of just one (AB
vs B). We then introduced a timing component, requiring that
the subject discriminate between simultaneous and sequential
stimulation (AB vs B-ISI-A). We systematically varied the ISI,
beginning with ISI � 100 ms, and then gradually reducing the ISI
on subsequent sessions until the animal could no longer perform
significantly above chance (p � 0.01, red line at 0.5). In this
example, the subject could discriminate stimuli separated by
ISI � 100 and 35 ms, but not could not discriminate ISI � 15 or
shorter even after multiple sessions. Across the population, of the
10 subjects that learned the stimulation task in visual cortex
which involved no timing component (AB vs B), the majority (7
of 10) could discriminate ISI � 100. However, only a minority (2
of 6) could discriminate ISI � 15 ms, and no subject (0 of 7) could

discriminate ISI � 5 ms (Fig. 2A). For the
auditory cortex, however, most rats were
able to perform short timing tasks down
to 5 ms (11 of 13 for ISI � 35 ms, 6 of 8 for
15 ms, 5 of 7 for 7 ms, 10 of 15 for 5 ms), 2
animals (of 7) could even perform above
chance for ISI � 3 ms (an example is
shown in Fig. 1E, data from Yang et al.,
2008). Thus the minimum discriminable
ISI in this paradigm for visual cortex is
between 5 and 15 ms, considerably longer
than the minimum (between 1 and 3 ms)
under comparable conditions for audi-
tory cortex (Fig. 2A–C).

Barrel cortex can read out timing
information as short as 1 ms
Given the marked differences in the ability
of rats to exploit fine timing information
from auditory versus visual cortex, we
wondered whether one of these areas was
somehow anomalous. We therefore re-
peated these experiments in a third pri-
mary sensory area, the primary barrel
cortex, which processes information from
whiskers (Simons, 1978). As before, we
first trained subjects on a task (AB vs B)
without a timing component, and then in-
troduced different ISIs. Timing thresh-
olds in barrel cortex were markedly
shorter than in visual cortex. All (6 of 6)
subjects could discriminate ISIs as short as
3 ms. Surprisingly, 3 of 6 subjects could
discriminate ISI � 1 ms, surpassing even
the most sensitive of the auditory cortex-
implanted animals. Only upon further
reduction of the ISI to 0.3 ms did perfor-
mance in all barrel implanted animals fall
to chance levels (an example is shown in

Fig. 1D; see also Fig. 2A–C). Performance on the initial task (AB
vs B), which did not require a timing discrimination, was indis-
tinguishable across visual, auditory and barrel cortex-implanted
animals (mean performance: Student’s t test, p � 0.1 for any two
comparisons, Fig. 2B). Even when the analysis was limited to
those visual cortex-implanted animals (N � 3) for which perfor-
mance on the nontemporal (AB vs B) task was better than the
average of the barrel cortex-implanted animals, performance on
the temporal tasks was dramatically impaired, indicating that
that the temporal deficits observed in the visual cortex-implanted
animals were specific to timing and did not reflect a generalized
inability to respond to intracortical stimulation. In the short tim-
ing tasks, the fraction of rats able to perform 5 ms, 3 ms and 1 ms
tasks was significantly higher for barrel cortex-implanted animals
compared with auditory cortex-implanted animals (Fisher’s ex-
act test, p � 0.02, Fig. 2A) and visual cortex-implanted animals
(Fisher’s exact test, on 5 ms task only, p � 0.0001, Fig. 2A).
Moreover, the different performances among areas appeared to
reflect limitations of different cortical areas rather than differ-
ences in learning: if a subject failed to discriminate a particular ISI
above chance on the first or second session, performance rarely
improved upon further training (e.g., in Fig. 1C, the subject failed
to discriminate ISI � 15 ms even after 4 training sessions, whereas
it learned ISI � 100 and 55 ms in the first session, and 35 ms in the

Figure 3. Sensory deprivation impairs the ability of barrel cortex to exploit fine neural timing. A, Sensory deprivation paradigm.
Facial whiskers were trimmed unilaterally every 24 h from P0 to P60. Stimulation electrodes were later implanted in the contralat-
eral barrel cortex (experimental group) or ipsilateral barrel cortex (control group 1) and nondeprived barrel cortex (control group
2). Control groups 1 and 2 did not show any difference in performance ( p � 0.6, two-way ANOVA) and, therefore, were grouped
together for analysis. B, Training history of a representative sensory deprived rat. C, Cumulative histogram showing fraction of
barrel cortex-implanted control and sensory deprived animals able to perform each timing task. D, The mean best performances of
control and sensory deprived rats.
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second). Thus barrel cortex-implanted animals outperformed
both auditory and visual cortex-implanted animals in their abil-
ity to exploit finely timed neural activity, indicating that the abil-
ity to exploit fine timing information varies greatly among areas.

Sensory deprivation causes deficits in exploiting fine
timing information
How do these differences among different areas arise? The tem-
poral statistics of auditory, visual and somatosensory stimuli may
be quite different, raising the possibility that the differential pro-
cessing we observed might arise as an experience-dependent ad-
aptation to the different stimulus ensembles. We therefore tested
whether these differences are innate, or whether disruption of
sensory stimulus statistics during development could affect the
ability of different areas to exploit fine timing. We focused on the
barrel cortex, reasoning that because the barrel cortex-implanted
subjects achieved the best performance, this area might be the
most sensitive to disruption. We used a sensory deprivation par-
adigm— complete unilateral whisker trimming from birth to
adulthood—which has previously been shown to disrupt the nor-
mal development of barrel cortex circuitry (Simons and Land,
1987; Fox, 1992; Fig. 3A). In test animals we implanted stimula-
tion electrodes in the barrel cortex contralateral to the deprived
whiskers. We also implanted a control group with electrodes in
the ipsilateral barrel cortex; since inputs from the whiskers proj-
ect exclusively to the contralateral cortex (Hall and Lindholm,
1974; Welker, 1976), this group controls for nonspecific effects
arising from deprivation.

Contralateral whisker deprivation had no effect on subjects’
ability to perform the microstimulation task which involved no
timing component (AB vs B), suggesting that the organization of
the barrel cortex was not grossly disrupted (mean performance
comparison between barrel cortex-implanted control and sen-
sory deprived animals: p � 0.57, Student’s t test; Fig. 3D). For the
finer temporal discriminations, sensory deprivation led to defi-
cits. Only 4 of 8 deprived animals could discriminate ISI � 3 ms
(vs 9 of 9 control subjects, p � 0.0095, Fisher’s exact test, Fig. 3C),
and none could discriminate ISI � 1 ms. Performance was also
impaired (Fig. 3D; p � 7*10�9, two-way ANOVA between de-
prived and control group with repeated measures on ISIs). Thus
the ability to exploit fine spike timing depends partly on appro-
priate prior sensory experience.

The behavioral deficit can be partly rescued by training
Further analysis revealed a striking difference in the rate of learn-
ing in control vs deprived subjects. Control subjects learned the
timing tasks more quickly, typically reaching asymptotic perfor-
mance within the first two or three sessions, whereas in deprived
subjects performance improved gradually with training over as
many as a dozen sessions (Fig. 4A,C). To compare the learning
rate of the two groups, we fit an exponential function to the
learning curve of each animal (see Materials and Methods).
Learning rates were significantly slower in the deprived subjects
for both the 100 ms (tau � 2.2 vs 9.6 sessions; Student’s t test, p �
0.0028, Fig. 4B) and 5 ms (tau � 3.1 vs 13.9 sessions; p � 0.0004)
tasks. Learning in the visual and auditory cortex-implanted animals
was also fast (tau � 1.3 and 1.5, 100 ms task; Student’s t test for each
two groups, p � 0.1, Fig. 4C) indicating that the slow learning was
the result of deprivation per se and not simply due to the impaired
ability to learn fine timing. Analysis of the number of sessions needed
to achieve above-chance performance gave similar results for 100
and 5 ms tasks (p � 0.0098 and 0.0004, respectively), but not for AB
vs B task (p � 0.19), suggesting that the ability to detect cortical

stimulation per se (as opposed to timing differences) was unaffected.
Thus although sensory deprivation initially impaired the ability of
animals to exploit fine timing information, this impairment could be
at least partially overcome by training.

Figure 4. Impairment in fine timing discrimination of sensory deprived animals was partially
rescued by training. A, Training history on ISI � 100 ms task of a barrel cortex control animal (blue)
and a barrel cortex sensory deprived animal (red). Each closed or open point indicates one training
session. Data were fit with an exponential function (see Materials and Methods). B, Cumulative his-
togram showing comparison of learning rates on the ISI�100 ms task for control (blue) and sensory
deprived (red) animals. C, Median performance of barrel cortex control, sensory deprived, and visual
cortex-implanted animals at 100 ms across days. In normal animals (as opposed to sensory deprived
animals), extensive training led to very little increase in performance. As is shown, visual cortex-
implanted animals showed no improvement even after 2 weeks of training.
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Discussion
We have shown that different sensory cortices differ in their abil-
ity to exploit fine timing. These differences may in part reflect
adaptations to the temporal statistics of the stimuli encountered
in each modality: although it is difficult to compare typical audi-
tory, somatosensory and visual stimulus ensembles rigorously,
we have the intuition that audition and whisker sensation
(Ahissar and Arieli, 2001) are “faster” modalities. These differ-
ences also raise the intriguing possibility that the importance of
spiking timing in the neural code may vary with cortical region; in
this view, visual cortex may be less disposed to make use of a
“timing code” than other sensory cortices.

Although we have demonstrated behaviorally relevant differ-
ences among cortical areas, our results suggest a refinement
rather than an invalidation of the idea that the stereotypy of
cortical circuitry implies commonality in the computations these
areas perform. Many “canonical” electrical circuits are designed
to include a few convenient free parameters which can be ad-
justed as needed. A bandpass filter for example, might include
knobs which control the low- and high-pass cutoffs. We suggest
that although the canonical cortical circuit may perform the same
basic computation across areas, our experiments have uncovered
a “knob” which is twiddled in a use-dependent way to tune each
area to the statistics of the spike trains it receives. Presumably the
setting of this knob reflects a tradeoff between temporal sensitiv-
ity and other considerations, such as the ability to integrate over
longer times or across many neurons. Our findings provide a
foundation for understanding how different cortical areas adjust
their function to suit their inputs.
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