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Multisensory Representation of Frequency across Audition
and Touch: High Density Electrical Mapping Reveals Early
Sensory-Perceptual Coupling

John S. Butler, John J. Foxe, Ian C. Fiebelkorn, Manuel R. Mercier, and Sophie Molholm

The Sheryl and Daniel R. Tishmann Cognitive Neurophysiology Laboratory, Children’s Evaluation and Rehabilitation Center, Department of Pediatrics,
Albert Einstein College of Medicine, Bronx, New York 10461

The frequency of environmental vibrations is sampled by two of the major sensory systems, audition and touch, notwithstanding that
these signals are transduced through very different physical media and entirely separate sensory epithelia. Psychophysical studies have
shown that manipulating frequency in audition or touch can have a significant cross-sensory impact on perceived frequency in the other
sensory system, pointing to intimate links between these senses during computation of frequency. In this regard, the frequency of a
vibratory event can be thought of as a multisensory perceptual construct. In turn, electrophysiological studies point to temporally early
multisensory interactions that occur in hierarchically early sensory regions where convergent inputs from the auditory and somatosen-
sory systems are to be found. A key question pertains to the level of processing at which the multisensory integration of featural
information, such as frequency, occurs. Do the sensory systems calculate frequency independently before this information is combined,
or is this feature calculated in an integrated fashion during preattentive sensory processing? The well characterized mismatch negativity,
an electrophysiological response that indexes preattentive detection of a change within the context of a regular pattern of stimulation,
served as our dependent measure. High-density electrophysiological recordings were made in humans while they were presented with
separate blocks of somatosensory, auditory, and audio-somatosensory “standards” and “deviants,” where the deviant differed in fre-
quency. Multisensory effects were identified beginning at ~200 ms, with the multisensory mismatch negativity (MMN) significantly
different from the sum of the unisensory MMNs. This provides compelling evidence for preattentive coupling between the somatosensory

and auditory channels in the cortical representation of frequency.

Introduction

In a now classic study, Jousméki and Hari (1998) demonstrated
the powerful influence of sounds on somatosensory experience in
the so-called “parchment-skin illusion.” To elicit this illusion, a
participant rubs their hands together while the sounds of their
hands are fed back to them through head phones, but the sound
is distorted to emphasize the high or the low frequencies on play-
back. When asked to describe what their hands feel like, partici-
pants tend to describe their hands as feeling smooth and dry like
parchment paper for the high-frequency condition. For the low-
frequency manipulation, they report that their hands feel rough
and moist. This and other behavioral studies (Guest et al., 2002;
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Wilson et al., 2009, 2010a,b; Yau et al., 2009) make clear that there
is substantial convergence between the auditory and somatosen-
sory systems in the computation of frequency, especially when
the stimuli are well matched and thus likely to reflect the same
event (Foxe, 2009).

These findings raise the question of when in the information
processing stream auditory and somatosensory inputs interact to
influence the perception of frequency. It has become increasingly
apparent that processing in hierarchically early sensory regions
can be modulated by inputs from nonprimary sensory modal-
ities, and that this occurs within the sensory-perceptual infor-
mation processing timeframe. Indeed, there is corroborative
evidence for early interactions between auditory and somato-
sensory channels ranging from postmortem anatomical tracer
studies, to invasive recordings in regions of sensory cortex,
and to scalp electrical recordings and neuroimaging in hu-
mans (see Foxe and Schroeder, 2005). An intriguing possibil-
ity, then, is that multisensory perception of frequency results
from coupling between the sensory channels early in the in-
formation processing hierarchy during sensory-perceptual
processing. An alternate account could be that the unisensory
systems operate largely independently to extract feature-level
information, before multisensory convergence and integra-
tion in higher-order association areas (see Calvert et al., 1998;
Driver and Noesselt, 2008).
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Here we used the MMN (for mismatch negativity) to test
whether auditory and somatosensory frequency representations
interact within sensory cortical regions early in time and preat-
tentively to influence frequency representations. The MMN is
elicited by changes in a pattern of stimulation and occurs whether
or not the participant is attending the information (Néitinen,
1992; Néitinen et al., 2007), but only in response to stimulus
changes that can be perceived when the stimuli are actively at-
tended (Amenedo and Escera, 2000) and thus is tightly linked to
perceptual experience. The neural locus of MMN generation in
sensory cortex is considered to reflect where the deviating feature
is processed (Molholm et al., 2005; Butler et al., 2011) and thus to
provide insight into the representation of feature-specific sensory
information. We reasoned that if auditory and somatosensory
frequency information interacts to influence perception during
sensory-perceptual stages of processing, the MMN in response to
combined auditory and somatosensory deviants would display
multisensory integrative properties (Stein and Meredith, 1993).
Alternatively, if calculation of frequency is sensory specific and
there is no intersensory coupling at the sensory-perceptual level,
the MMN to combined somatosensory and auditory frequency
deviants should reflect a linear summation of the MMNs evoked
by these deviants when presented in isolation (e.g., Molholm et
al., 2002).

Materials and Methods

Participants. Twelve participants (seven male) ranging in age from 19-32
years (mean 23.6) with normal hearing completed the experiment for a
modest fee of $12 per hour. All participants were right handed and re-
ported normal hearing and no known neurological deficits. All partici-
pants gave written informed consent, and all procedures were approved
by the ethical review board of the City College New York and the Albert
Einstein College of Medicine. Ethical guidelines were in accordance with
the Declaration of Helsinki.

Stimuli and paradigm. Participants viewed a silent movie with subtitles
during stimulus delivery and were instructed to ignore the sounds and
vibrations. The standard stimuli (p = 0.9) and the deviant stimuli (p =
0.1) were 200 Hz tones/vibrations of 100 ms duration and 400 Hz tones/
vibrations of 100 ms. All stimuli were sinusoids convolved with a trape-
zoid such that there was a 5 ms rise at the onset and a 5 ms ramp at the
offset. Tones were presented to the right ear via headphones (Sennheiser
HD600). Somatosensory stimulation was presented via a low-cost linear
amplifier (Piezo Systems) to the index finger of the right hand. The
stimulator was wrapped in gauze, the hand placed on a sound dampening
surface, and pre-experimental testing was performed to ensure that
sounds from the tactile vibrator were fully masked. Stimuli were pre-
sented with an interstimulus interval of 1000 ms.

All experiments were carried out in a darkened acoustically and elec-
trically shielded room. The auditory and somatosensory stimuli could be
presented alone or simultaneously as a pair. There were three blocked
conditions in which: (1) only somatosensory standards and deviants
were presented (the sMMN condition); (2) only auditory standard
and deviant stimuli were presented (the aMMN condition); and (3)
somatosensory-auditory standard pairs and deviant pairs were pre-
sented (saMMN). The order of presentation of the blocks was coun-
terbalanced across participants.

EEG recording and analysis. Electrical brain activity was recorded using
aBioSemi system 168 channel EEG system. The data were recorded at 512
Hz and low-pass filtered at 30 Hz (12 dB/octave). The data were analyzed
offline using the Matlab programming language (MathWorks). Epochs
of 600 ms with 100 ms pre-stimulus baseline were extracted from the
continuous data. An automatic artifact rejection criterion of =85 wV was
applied across all electrodes in the array. Trials with more than six artifact
channels were rejected. In trials with less than six such channels, we
interpolated any remaining bad channels using a nearest neighbor spline
(Perrin etal., 1987; Perrin et al., 1989). The data were re-referenced to the
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average of the mastoid channels. The average accepted trials per condi-
tion were ~90 deviants and ~800 standards.

Mismatch responses. The MMN response was visualized by subtracting
the standard response from the deviant response. To test for the presence
of the MMN, mean amplitude measurements were obtained in a 20 ms
window centered at the group mean peak amplitude in the difference
wave between 100 and 300ms. From the literature, the midline frontal
site (Fz) and the central left site (C3) were identified as regions of interest
for both the somatosensory and auditory MMN conditions (Néitinen,
1992; Butler et al., 2011). A 2 (condition: standard vs deviant) X 2 (elec-
trode site: Fz vs C3) repeated-measures ANOVA was used to test for the
presence of the MMN. Given the dense recording montage for the
planned comparisons and figures, each site of interest (i.e., Fzand C3) is
represented by an average of the five nearest electrodes. This serves to
increase the signal-to-noise ratio.

To provide a more encompassing description of the spatiotemporal
properties of the MMNss, point-wise paired t tests between the standard
and deviant responses were computed for all electrodes at each time
point and are presented in statistical cluster plots (Molholm et al., 2002;
De Sanctis et al., 2009). In this approach, to control for Type 1 errors a
period of statistical significance is only considered if an alpha criterion of
0.05 or less is obtained for at least 11 consecutive sample points (repre-
senting a period of 21 ms) (Guthrie and Buchwald, 1991).

Multisensory responses. To test for the presence of multisensory inter-
actions in the processing of frequency, the multisensory MMN (saMMN)
was compared to the sum of the unisensory MMNss (referred to hereafter
as the sumMMN). The assumption was that if the auditory and somato-
sensory systems interact to influence frequency representations, the
saMMN should differ from the sumMMN;; that is, that it would show
nonlinearity. Note that a linear outcome is a possibility, with previous
investigations showing that the MMN system can act in a linear manner
under conditions of two deviating features (with no significant differ-
ences between double-deviant MMNs and the sum of the respective
single-deviant MMNs; Paavilainen et al., 2001; Wolff and Schroger,
2001). Mean amplitude measurements were obtained from the same 20
ms windows used to test for the presence of the MMN in the unisensory
conditions and subjected to a 2 (multisensory vs sum) X 2 (electrodes
site; Fz vs C3) repeated-measures ANOVA. To provide a comprehensive
depiction of the spatiotemporal properties of the multisensory interac-
tions, the saMMN and sumMMN were also compared with statistical
cluster plots (described above, Mismatch responses).

Comparison of the topographies of the MMNS. The topographical non-
parametric statistical analysis (TANOVA), as implemented in the Car-
tool software (Lehmann and Skrandies, 1980), was used to test for
differences in the neural generators underlying the multisensory sasMMN
as compared to those underlying the unisensory MMNs. This allowed us
to test whether unique cortical areas were involved in generation of the
multisensory MMN by comparing the saMMN to the sumMMN. The
TANOVA procedure uses global dissimilarity and nonparametric ran-
domized testing to statistically compare the topographies over time
(Lehmann and Skrandies, 1980). Global dissimilarity is an index of
configuration differences between two scalp distributions, independent
of their strength as the data are normalized using the global field power.
For each participant and time point, the global dissimilarity indexes a
single value that varies between 0 and 2 (0, homogeneity; 2, inversion of
topography). To create an empiric probability distribution against which
the global dissimilarity can be tested for statistical significance, the Monte
Carlo MANOVA is applied, as described previously (Manly, 1991). In the
present application of the TANOVA, to control for type I errors, a period
of statistical significance was only plotted and considered significant if an
alpha criterion of 0.05 or less was obtained for at least 11 consecutive
sample points (~21 ms) (Guthrie and Buchwald, 1991; Foxe and Simp-
son, 2002; Butler et al., 2011).

Results

Mismatch response

Clear MMNss were observed for the aMMN and saMMN condi-
tions. Inspection of the grand mean data revealed that the deviant
response was more negative going than the standard response,
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Figure 1. A, Grand Mean ERPS: event-related potentials (ERPS) for the somatosensory, auditory, and somatosensory-auditory conditions at the frontal central site for deviant (red), standard
(green), and subtraction waveforms (black). B, Statistical Cluster Analysis: running t tests comparing the standard versus the deviant ERPs for the somatosensory, auditory, and somatosensory-
auditory conditions. Electrodes are divided into five sections each representing 32 electrodes, the relative positions of which are color coded on the corresponding head. Significance is depicted for

effects meeting an alpha (0.05) riterion and lasting for at least 11 consecutive sample points (~20 ms).
Condition
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Figure2. Topographical plots of the grand average waves for the SMMN, aMMN, saMMN, and sumMMN [(s+a)MMN] (columns) at two time periods (rows).

with a maximum difference that was focused over frontal scalp at
170 ms (see Figs. 1 and 2). In comparison, the somatosensory
MMN was smaller in amplitude and in duration, with a maximal
standard/deviant amplitude difference that peaked at 220 ms
over frontocentral scalp and a distribution similar to that of the

aMMN and saMMNs in this later timeframe (see Figs. 1, 2A).
Figure 2 shows the scalp distributions of the grand mean somato-
sensory, auditory, and somatosensory-auditory MMNs, as well as
the distribution of the summed unisensory MMN, at three time
points. The first corresponds to the peak amplitude of the aMMN
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and saMMN, and the second to the peak amplitude of the sMMN.
From this figure can be seen a slightly left-lateralized frontal neg-
ative distribution for all time periods for the aMMN, whereas the
saMMN is bilateral at 170 ms, and then more left-lateralized at
220 ms. The sMMN shows a left-lateralized negativity at 220 ms.
The sumMMN is shown for comparison to the saMMN. Differ-
ences are apparent at both time points, with the sumMMN
greater in amplitude than the saMMN.

Statistical tests confirmed the presence of MMN:ss for all three
conditions. For the aMMN, there was a main effect of condition
in the 160-180 ms time window (F, ;;, = 11.395, p = 0.006),
which did not interact with the electrode site (F(, ;,) = 0.334,p =
0.58). For the SMMN there was a main effect of condition in the
210-230 ms time window (F, ;,, = 4.907, p = 0.049) and no
condition by electrode site interaction (F,,,, = 0.406, p =
0.537). The saMMN was also found to be significant, with a main
effect of condition in the 160-180 ms time window (F(, ;,) =
6.689, p = 0.025) and no condition by electrode site interaction
(F111y = 0.006, p = 0.941). Note that while the timing of the
somatosensory MMN was later than has been previously re-
ported in the literature (Butler et al., 2011; Kekoni et al., 1997),
this can readily be attributed to one of two factors: (1) the use of
a different deviating feature (frequency vs duration), since the
deviating feature impacts the neuronal generators of the MMN
(Molholm et al., 2005) and consequently the scalp distribution
and/or latency of the response (Giard et al., 1995); and (2) differ-
ences in perceived magnitude of deviance across the studies. That
is, MMN latency increases for smaller deviances (Horvéth et al.,
2008), and in the present study the subjective magnitude of so-
matosensory deviance was small, which would be expected to
lead to a relatively later MMN onset latency.

The statistical cluster plots show clear MMNs for all three
conditions (see Fig. 1 A), with the timing and topography of the
MMN differing somewhat across the three. From these it can be
seen that the aMMN onset at ~100 ms, was focused over left
frontal and central scalp (Fig. 1), and lasted for about 120 ms. The
saMMN onset, slightly later at ~120 ms, lasted for a shorter time
over frontocentral scalp regions, offsetting at ~190 ms, and had a
more distributed topography that included right frontal scalp
regions as well. The sSMMN onset later still, at 200 ms with a more
focal distribution over left central scalp, was of relatively short
duration, offsetting only 50 ms later at ~250 ms.

Multisensory effects

There was clear nonlinearity in the multisensory response, with
the saMMN smaller in amplitude than the sumMMN (Fig. 3).
Statistical comparison in the 210-230 ms window established the
reliability of this difference, with a main effect of condition
(F1,11y = 5.350, p = 0.041), whereas condition and electrode site
did not interact (F; ;) = 0.78, p = 0.682). There was no main
effect or condition by electrode site interaction for the earlier
tested timeframe of 170-190 ms.

To further characterize the spatiotemporal characteristics of
this multisensory effect, statistical cluster plots comparing the
saMMN and sumMMN were generated. This revealed a differ-
ence that was focused over left central scalp in the 200-240 ms
time period (Fig. 4). TANOVA analysis did not reveal differences
in the scalp distribution of the saMMN and the sumMMN

Discussion

The present results establish that interactions between auditory
and somatosensory inputs can lead to the multisensory modula-
tion of sensory-perceptual representations of frequency. While
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Figure 3.  Multisensory effects: somatosensory-auditory (SomaAudio; black) and summed
(Sum; blue) ERPS and their difference (Subtraction; gray) are shown for two electrode sites (Fz
and (3).
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Figure 4. A, Statistical Cluster Analysis: running t tests comparing the saMMN versus the
sumMMN. Significance is depicted for effects meeting an alpha (0.05) criterion and lasting for at
least 10 consecutive sample points (~20 ms). B, TANOVA Analysis: significant topographical
between the saMMN versus the sumMMN are depicted for effects meeting a 1-alpha (0.05)
criterion and lasting for at least 11 consecutive sample points (~20 ms).

previous work has repeatedly shown that auditory and somato-
sensory inputs converge and are integrated early on in sensory
cortices (Foxe et al., 2000, 2002; Schroeder et al., 2001; Meredith
and Allman, 2009; Meredith et al., 2009; Keniston et al., 2010;
Brandwein et al., 2011), to our knowledge this has not been asso-
ciated with changes in the neural representation of a particular
stimulus feature. The data show clear evidence of multisensory
integrative properties in the MMN in that combined bisensory
stimulation resulted in an MMN that was not the simple linear
sum of the MMNs to the constituent unisensory frequency
deviations. Statistical comparison of the topographies of the
multisensory and composite unisensory MMNs (saMMN vs
sumMMN) did not reveal significant differences in their scalp
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distributions. This suggests that integrative processing involved
coupling of existing auditory and somatosensory circuits rather
than recruitment of unique multisensory structures. The current
data also support that integration of frequency information does
not require directed attention. That is, there were clear multisen-
sory effects on the representation of frequency, even though par-
ticipants were not engaged in a frequency discrimination task or
indeed any sort of task related to the auditory and somatosensory
stimuli.

Recent psychophysical work has characterized the interplay of
auditory and somatosensory frequency information (Yau et al.,
2009; Wilson et al., 2010b). For example, Wilson and colleagues
(2010) presented audio-somatosensory stimuli at threshold lev-
els while participants engaged in a detection task. The distance
between the frequencies of the auditory and somatosensory ele-
ments of the stimuli was manipulated, and the influence of fre-
quency convergence versus divergence on detection levels was
assayed. Audio-somatosensory detection levels showed the great-
est facilitation compared to unisensory performance when the
frequencies of the component stimuli were closest. Using a quite
different approach, Yau et al. (2009) also showed that auditory
and somatosensory frequency information interact to influence
perception. In Yau et al. (2009), participants engaged in a two-
alternative, forced-choice task in which they judged which of two
sequentially presented somatosensory stimuli was higher in fre-
quency. On most trials, a task-irrelevant auditory distractor was
presented simultaneously with the comparator somatosensory
stimulus. The sound could be a simple or a complex tone and it
could be close or distant in frequency from the somatosensory
stimulus. When the frequency of the auditory stimulus was close
to that of the somatosensory stimulus, judgments of somato-
sensory frequency were drawn toward the frequency of the
auditory stimulus, systematically affecting participants’ per-
formance. Here we provide initial evidence that such behav-
ioral effects may be mediated by interactions between auditory
and somatosensory inputs at the sensory-perceptual level of
information processing.

It has become increasingly clear that processing in cortical
sensory regions can be modulated by inputs from nonsensory
modalities, and that this occurs within the sensory-perceptual
information processing timeframe. While this idea was consid-
ered highly implausible when first proposed, it is now well ac-
cepted. Animal studies have revealed that there are monosynaptic
connections between auditory and somatosensory and auditory
and visual sensory cortices (Meredith et al., 2006; Keniston et al.,
2010), and that nonprimary sensory inputs can modulate pro-
cessing of the primary sensory input (Fu et al., 2003; Meredith
and Allman, 2009; Meredith et al., 2009). Human neurophysio-
logical studies have also shown early processing links between the
auditory, somatosensory, and visual sensory systems (Foxe et al.,
2000, 2002; Molholm et al., 2002; Schroeder and Foxe, 2002; Foxe
and Schroeder, 2005; Murray et al., 2005; Schroeder and Foxe,
2005; Brandwein et al., 2011, 2012), with evidence from scalp
electrical recordings that multisensory integration occurs early in
sensory processing regions (as early as ~50 ms poststimulus on-
set). The current findings reveal multisensory influences on the
representation of frequency. Speculating on possible underlying
mechanisms, the temporal alignment of the multisensory effect
and the sSMMN is suggestive of the multisensory modulation of
somatosensory frequency representations. The subadditive na-
ture of the multisensory effect further suggests that the somato-
sensory MMN was minimized when paired with the concurrent
auditory stimulation. In support of this line of reasoning, the
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topographies of the aMMN and saMMN were very similar in this
time-frame (Fig. 2), an observation supported by a post hoc anal-
ysis of topographical differences (i.e., a TANOVA did not reveal
significant differences). Alternatively, one might consider that
the auditory stimuli partially masked early sensory processing of
the somatosensory stimuli and thus led to their reduced contri-
bution to the saMMN. However, such an account would predict
a diminution of the early sensory response, and there was no
evidence for this (i.e., the multisensory and sum responses did
not differ in this earlier timeframe, neither for the standard nor
the deviant). Going forward, to better understand the nature and
consequences of audio-somatosensory interactions, it will be es-
sential to determine the extent to which the magnitude and di-
rection of neural interactions are influenced by the similarity
versus difference of frequency across sensory channels, and to
characterize the perceptual consequences of these neural effects.

The mismatch negativity and multisensory processing

Only a few studies to date have used MMN to investigate multi-
sensory influences on sensory-perceptual processing. These have
largely focused on audio-visual speech processing, showing that
visual speech affects sensory level speech representations in audi-
tory cortex (Mottonen et al., 2002; Saint-Amour et al., 2007;
Winkler et al., 2009), or on letter-sound combinations, showing
that the presence of sound-congruent or sound-incongruent let-
ters influenced the MMN (Froyen et al., 2008; Andres et al.,
2011). These data suggest that both seen speech and seen letters
automatically influence speech representations in the auditory
cortex. A study by Pantev et al. (2009) further demonstrates the
lasting effects of nonauditory influences on auditory representa-
tions with the use of the MMN. In this study, nonmusicians
received either piano lessons, thus engaging in a multisensory
learning experience (sensorimotor and auditory learning), or lis-
tened to the music produced by the first group and detected
errors, a purely auditory learning experience. For both groups,
the MMN was recorded to musical tokens that were similar to
those they were trained on, before and after training. The results
showed a clear amplification of the auditory MMN in the multi-
sensory trained group in comparison to the auditory-alone
trained group, strongly suggesting a lasting influence of the mul-
tisensory experience on auditory representations. With the pres-
ent study, we extend the use of the MMN to interrogate
multisensory processing at the feature-level of representation,
showing not only that these multisensory inputs interact, but that
they do so to influence the representation of frequency.

Additional considerations
In interpreting the current data, several factors should be consid-
ered. One is that increases in the frequency of an auditory stim-
ulus are accompanied by systematic increases in perceived
intensity (Stevens, 1934). Examination of the psychometric
curves of Stevens (1934) suggests that the auditory frequency
differences that we used could lead to small changes in the per-
ceived loudness on the order of ~2 dB. Nevertheless, the bulk of
the auditory MMN should be driven by the much larger suprath-
reshold frequency deviation, and therefore an interpretation of
interaction between the frequency representations is justified.
Clearly, future work will need to control perceived intensity to
fully segregate the role of frequency from intensity in audio-
somatosensory interactions.

Another consideration is refractory effects. In a standard odd-
ball paradigm, repeated stimulation at the same frequency leads
to refractoriness of the responding cortical neurons in sensory
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cortex, while switching to another frequency stimulus invokes a
“release” from refractoriness. Such refractory effects can confuse
interpretation of the frequency MMN (Jacobsen and Schroger,
2001; Jacobsen et al., 2003), and one should consider whether
low-level refractory effects and audio-somatosensory interac-
tions therein might partially account for the multisensory effects
observed in the present study. Refractory effects are seen in the
early cortical evoked responses within the first 150 ms of stimulus
processing, whereas here nonlinearity was only observed begin-
ning at 200 ms following considerable auditory and somatosen-
sory processing (see Fig. 1). Thus, the timing of the nonlinear
multisensory effects are not in line with multisensory modulation
of sensory-level refractory effects.

Finally, there is an open question regarding the spatial misalign-
ment of the multisensory stimuli. Here, auditory stimulation was to
the right ear (over headphones), whereas somatosensory stimula-
tion was to the right index finger. Despite this obvious misalignment
of the stimuli, robust effects were observed. This is consistent with
previous work that has shown cortical multisensory integration and
multisensory behavioral effects to be surprisingly impervious to spa-
tial coregistration of the multisensory inputs (Fiebelkorn et al. 2011;
Murray et al., 2005). Still, further work is needed to explore
the highly reasonable idea that manipulations of spatial regis-
tration would impact how auditory and somatosensory inputs
are integrated.

Conclusion

Psychophysical studies clearly demonstrate that somatosensory and
auditory frequency information interacts to influence frequency
judgments. Here, we took advantage of a well characterized elec-
trophysiological component, the MMN, to test the hypothesis
that auditory and somatosensory inputs interact to influence
sensory-perceptual level processing of frequency information.
Analyses of the data revealed nonlinearity in the audio-
somatosensory MMN when compared to the sum of its unisen-
sory counterparts. This finding is consistent with preattentive
coupling between the somatosensory and auditory frequency
processing streams during sensory-perceptual processing.
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