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Whether allocation of visuospatial attention can be divorced from saccade preparation has been the subject of intense research efforts. A
variant of the visual search paradigm, in which a feature singleton indicates that the correct saccade should be directed to it (prosaccade)
or to the opposite distractor (antisaccade), has been influential in addressing this core topic. We performed a causal assessment of this
controversy by delivering an air puff to one eye to invoke the trigeminal blink reflex as monkeys performed this visual search task. Blinks
effectively remove saccadic inhibition and prematurely trigger impending saccades in reaction time tasks, thus providing a behavioral
readout of the premotor plan. We found that saccades accompanied blinks during the initial allocation of attention epoch and that these
movements were directed to the singleton for both prosaccade and antisaccade trials. Blinks evoked at later times were accompanied with
saccades to the correct end point location: the singleton on prosaccade trials and the opposite distractor on antisaccade trials. These
results provide support for concurrent encoding of visuospatial attention and saccade preparation during visual search behavior.

Introduction

Visual search paradigms serve to enhance selective processing of
a stimulus embedded among distractors. Attention is driven au-
tomatically by exogenous cues like saliency and voluntarily by
endogenous signals set by internal goals (Posner, 1980; Treisman
and Gelade, 1980; Desimone and Duncan, 1995; Egeth and Yan-
tis, 1997; Kastner and Ungerleider, 2000; Corbetta and Shulman,
2002; Bisley and Goldberg, 2010). Typically, a saccade is then
directed to the selected stimulus, although the ability to cancel the
movement or look elsewhere is also valuable. An active research
topic has been to determine whether neural processes that medi-
ate visuospatial attention also encode saccade preparation (Awh
etal., 2006; Mazer, 2011; Smith and Schenk, 2012). The premotor
theory of attention (PMTA) posits that neural modulation asso-
ciated with attention is also the premotor command for prepar-
ing, but not necessarily executing, a saccade to that location
(Rizzolatti et al., 1987). To generate a different saccade, the de-
fault movement plan has to be canceled and a new motor com-
mand programmed. The alternative view claims that the two
processes are discrete and sequential because saccade preparation
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begins only after target selection is complete (Sternberg, 2001;
Woodman et al., 2008; Schall et al., 2011; Purcell et al., 2012).

A flexible stimulus—response association implemented within
visual search offers the potential to dissociate spatial attention
and saccade preparation. For example, the color or orientation of
the singleton can indicate whether the correct saccade should be
directed to it (prosaccade) or the opposite distractor (antisac-
cade). Frontal eye field (FEF) activity has been interpreted in
favor of the discrete processes hypothesis, with visually respon-
sive neurons reflecting target selection and motor neurons, which
come online later, encoding saccade preparation (Sato and
Schall, 2003; Purcell et al., 2010, 2012). Suprathreshold micro-
stimulation of the FEF in primates performing this task also failed
to reveal a motor preparation component signal during the target
selection epoch (Juan et al., 2004). However, other studies using
antisaccades (Everling et al., 1999; Everling and Munoz, 2000)
and different cognitive tasks have supported the PMTA (e.g.,
Sheliga et al., 1995; McPeek et al., 2003; Ramakrishnan et al,,
2012), particularly during exogenous attention (Smith et al.,
2012) and spatial shifts of attention (Belopolsky and Theeu-
wes, 2009, 2012). Thus, the relationship between visuospatial at-
tention and saccade preparation remains unresolved.

We took a novel approach to probe this controversy. Ordinar-
ily, a saccade is generated when underlying activity in the oculo-
motor circuit is robust enough to inhibit pontine omnipause
neurons (OPNs), which gate the saccadic system by firing spikes
at a tonic rate during fixation and becoming quiescent during
saccades (Keller, 1974). It follows that the activity accompanying
attentional modulation across the oculomotor neuraxis could
encode a premotor signal but cannot trigger the movement until
OPN activity stops. Intriguingly, the tonic activity of OPNs also
ceases during blinks evoked by an air puff to the eye (Schultz et al.,
2010). Indeed, a blink evoked before the average latency of reac-
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tive movements prematurely triggers the saccade, revealing its
motor intent (Gandhi and Bonadonna, 2005). We used this tech-
nique to test whether visuospatial attention and saccade prepara-
tion are encoded concurrently in a comparable visual search
paradigm that previously indicated sequential processes.

Materials and Methods

All procedures were approved by the Institutional Animal Care and Use
Committee at the University of Pittsburgh and complied with the guide-
lines of the Public Health Service Policy on Humane Care and Use of
Laboratory Animals. Two male rhesus monkeys (Macaca mulatta) un-
derwent surgery in a sterile environment and under isoflurane anesthe-
sia. The procedure consisted of placing a Teflon-coated stainless-steel
wire (Baird Industries) under the conjunctiva of one eye and securing a
head-restraint post to the skull. After each surgery, the monkey was
returned to its home cage and allowed to fully recover. Postoperatively,
antibiotics and analgesics were administered as indicated in the protocol.

Visual stimuli, behavioral control, and data acquisition were con-
trolled by a custom-built LabView architecture on a real-time National
Instruments operating system (Bryant and Gandhi, 2005). Each animal
was trained to sit in a primate chair with its head restrained and a sipper
tube placed near the mouth for delivery of a liquid reward. The chair was
placed inside a magnetic field permitting measurement of eye and eyelid
positions using the scleral search coil technique (Robinson, 1963). Eyelid
movements were sensed by a small Teflon-coated stainless-steel wire
taped to the eyelid of the eye not implanted with the scleral coil. Data
were sampled at 1 kHz.

Both animals were trained on a color singleton search array under
three oculomotor tasks: gap, step, and delay. Each experimental session,
or data set, consisted of only one behavioral condition. Every trial began
with directing the line of sight to a fixation point for 300—-500 ms. In the
step task, the fixation point was extinguished, and simultaneously a
search array of four isoeccentric (10°) stimuli, spaced apart by 90°, was
presented along the cardinal axes. In the gap task, the fixation point was
extinguished and the presentation of the search array came after a 200 ms
“gap” interval, during which the animal was required to maintain steady
gaze. In the delay task, the fixation point remained illuminated during
the presentation of the search array and was not extinguished until after
a 500-800 ms “overlap” period. Fixation point offset served as the sac-
cade initiation cue. On each trial, one of the four stimuli could be either
red or green in color, indicating the singleton stimulus in the array, while
the other three targets were purple. The monkeys were trained to make a
saccade to the singleton (prosaccade) if it was green and to the opposite
distractor, 180° from the singleton (antisaccade), if red. The trigeminal
blink reflex was induced by delivering a puff of air at a random time on
30% of the trials. The puff was timed to induce a blink late during the
fixation period, during the reaction time period, or shortly thereafter.
The puff was generated by an air reservoir (output pressure, ~20 psi) and
a solenoid system located outside the experimental room. The air flowed
through a narrow Tygon tube and released the puff ~2 cm from the eye.
The reflex-blink procedure was reported in detail in a previous paper
(Gandhi and Bonadonna, 2005).

Each trial was digitized and stored for off-line analysis with a combi-
nation of in-house software and Matlab. To standardize the alignment of
all movements, the singleton was always rotated to (10°, 0°). Horizontal
and vertical eye velocities were obtained by differentiating the compo-
nent eye position signals. Eyelid signals were maintained in arbitrary
units and examined to detect blinks, which were easily detectable based
on a rapid and transient depression in eyelid position followed by a
slower elevation toward baseline (Fig. 1) (Evinger et al., 1991). We con-
sidered only trials for which the blink occurred ~25 ms after the air puff
reached the eye to gain confidence that the blink was indeed induced by
the trigeminal blink reflex (for details, see Gandhi and Bonadonna,
2005). If a blink was evoked during the fixation interval, before the search
array was presented, the animal did not produce a saccade with the blink
(red trace). The transient eyelid depression is associated with a small
loopy movement of the eyes, which return close to their original posi-
tions by the end of the blink (Goossens and Van Opstal, 2000b). The
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Figure1. Spatiotemporalillustrations of combined saccade— blink movements. 4, Horizon-

taland vertical eye amplitude and velocities (top four rows) and eyelid amplitude (bottom row)
are plotted as a function of time. Four representative eye movements are shown. The dashed
black lineindicates array onset. Red trace denotes an “early blink” trial, in which the blink occurs
during the fixation interval. The actual saccade occurs at a regular latency after array onset.
Magenta trace represents a trial in which the blink was timed too late; it occurred after the
saccade. The green trace identifies a “blink-triggered” movement, in which the saccade accom-
panies the blink. Such saccades are prematurely triggered, as evidenced by the shorter latency.
Theblack trace indicates a control saccade without a blink. Scale bars: horizontal and vertical eye
positions, 5°; horizontal and vertical eye velocities, 200°/s; eyelid position, arbitrary units. B,
The same movements are represented as spatial trajectories. All traces begin near the origin.
The early-blink trial (red trace) shows that the blink-induced eye movement is a loopy pertur-
bation with a small horizontal and a larger vertical component. The eyes return close to their
original position well before the rightward eye movement is produced. The magenta trace
shows a similar loopy movement after the horizontal saccade is completed. The blink-triggered
trial (green trace) starts off as a loopy movement, then deviates from the trajectory in midflight
and produces an oblique saccade that reaches the target location. A Euclidean algorithm, which
identifies the position and instance the blink-triggered movement deviates from an early-blink
template (arrow), was used to detect saccade onset.

saccade is actually produced later in the trial, after the animal processes
the search array onset; we refer to such movements as “early blink” trials.
In contrast, if the blink is evoked after array onset and after the animal has
permission to initiate the eye movement, then the blink is accompanied
with a saccade directed to a stimulus. For such “blink-triggered” move-
ments, the blink and saccade overlap temporally (green trace). In some
cases, the puff occurred late enough that the blink was induced after the
saccade (magenta trace).

Onset and offset of eye movements for which blinks and saccades did
not overlap were detected using a standard 30°/s velocity criterion, re-
spectively. Blink-triggered saccades, which encompass both a saccadic
and a blink component, could not be consistently analyzed with just a
straightforward velocity threshold. Saccade onset and offset were there-
fore detected using a Euclidean template matching algorithm. The loopy
eye movements observed on early blink trials were aligned on movement
onset, and the mean of their radial velocity profiles was taken as a tem-
plate defining the “blink component.” Next, we compared the radial
velocity profile of each blink-triggered saccade to the template. The time
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point when the velocity waveform deviated outside of three SDs of the
template and stayed outside for at least 20 ms marked the onset of the
“saccadic component” (Fig. 1 B, arrow). To detect saccade offset, we first
identified the epoch when eye velocity reached zero and then stepped
backward in time until a 30°/s threshold was reached. This approach
limited the likelihood of false detection due to gross blink-induced per-
turbations in velocity waveforms.

Results

Two animals performed visual search tasks requiring the gener-
ation of either prosaccades or antisaccades based on the color of
the singleton (Fig. 2A). The majority of analyses is based on the
step task version (n = 18 sessions). In control trials in which no
air puff was delivered and no blinks were generated, the average
latency of correctly performed antisaccades was significantly lon-
ger (paired ¢ test, p < 0.01) than that of prosaccades (Monkey 1
prosaccade, mean, 244 ms; SD, 24; antisaccade, mean, 271 ms;
SD, 28; Monkey 2 prosaccade, mean, 258 ms; SD, 27; antisaccade,
mean, 268 ms; SD, 26), consistent with behavior reported previ-
ously (Everling et al., 1999; Everling and Munoz, 2000; Sato and
Schall, 2003). The effects of air-puff delivery were analyzed across
3442 prosaccade trials and 3435 antisaccade trials.

Published accounts of neural activity waveforms recorded
during visual search in the context of a step task can be used to
predict the potential outcomes of the blink perturbation, in terms
of both the PMTA and when target selection and saccade prepa-
ration are discrete and sequential processes. Visually responsive
neurons along the oculomotor neuraxis initially respond equally
to all stimuli, but exhibit higher selectivity for the singleton stim-
ulus starting ~100—-150 ms after array onset (Schall and Hanes,
1993; McPeek and Keller, 2002; Sato and Schall, 2003; Thomas
and Paré, 2007; Balan et al., 2008; Cohen et al., 2009). During
prosaccade trials (Fig. 2 A, left), this activity remains elevated for
the remainder of the trial because the oddball stimulus is also the
saccade target (Fig. 2 B, left, green trace). In principle, it becomes
difficult to determine if the enhancement reflects only spatial
attention, which must be directed to the singleton to perform the
task correctly, or whether a premotor signal is also encoded in the
modulated response. The antisaccade trial (Fig. 2 A, right) poten-
tially offers a means to dissociate between the two signals because
the eye movement must be directed to the distractor located di-
ametrically opposite to the singleton. Based on FEF activity re-
corded during this paradigm (Sato and Schall, 2003), visually
responsive neurons that respond preferably to the singleton re-
duce their firing rates (Fig. 2 B, right, green trace), and enhance-
ment is observed in neurons that prefer the opposite location (red
trace). Notably, there is a brief epoch during which activity asso-
ciated with the singleton is greater than that for the opposite
distractor (Fig. 2 B, right, arrow).

According to the PMTA, neural activity such as that schema-
tized in Figure 2 B encodes both an attention signal and a motor
preparation command, the latter of which should be revealed by
a blink. For prosaccade trials, the blink should lead to a reduced
latency saccade directed to the singleton (Fig. 2C, left, solid green
line), and the shortest saccade latencies should match the time
when visually responsive neurons differentiate between the sin-
gleton and distractors. During the antisaccade condition, the
blink-triggered movement should display a transition in the di-
rection of movements from the singleton at reduced latencies
(Fig. 2C, right, solid green line) to the opposite distractor at reg-
ular latencies (Fig. 2C, right, solid purple line). According to the
discrete stages hypothesis, in contrast, the enhanced activity in
visually responsive neurons represents target selection only (Fig.
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Figure2.  Predictions of blink perturbation on saccade generation for the PMTA and discrete pro-

cesses hypotheses. 4, Prosaccade (left) and antisaccade (right) trials were indicated by the color of a
singleton among identical distractors in a visual search array. B, Schematized activity patterns in
visually responsive “singleton neuron” (when the singleton is placed in its receptive field) and an
“antineuron” (when the opposite distractor is placed in its receptive field). Green and red traces are
schematics of activity patterns of singleton neuron and antineuron, respectively. Waveforms have
been adapted from FEF data (compare Sato and Schall, 2003, their Fig. 24, left column). The initial
sensory response s similar in both neurons. For prosaccade trials (left), activity continues to accumu-
latein the singleton neuronand s suppressed in the antineuron. The vertical dashed line indicates the
time when activities in the two neurons become significantly different. For antisaccade trials (right),
the enhancement in activity of the singleton neuron is short lived (arrow). It begins to attenuate as
activity in the antineuron becomes enhanced, indicating selection of the opposite distractor and,
perhaps, the formulation of a new motor plan to produce an antisaccade. As in the prosaccade condi-
tion, the first vertical dashed line identifies the time when activities in the two neurons initially be-
come significantly different (singleton neuron shows enhancement). The second vertical line marks
the time when activity in the antineuron becomes higher. Epoch 1 refers to the period for which the
green trace is greater than the red trace, while Epoch 2 spans the duration for which the red trace
resides above the green trace. G, Predictions of saccade direction (toward singleton or antisaccade end
point) as a function of latency of blink-triggered saccades. For the PMTA, a blink triggers a saccade if
activities in the singleton neuron and antineuron are significantly different, and the saccade will be
directed to the neuron with higher activity. Thus, on prosaccade trials, the blink is an effective trigger
for all time points after the first vertical dashed line (Epoch 1, as in B), and all saccades should be
directed to the singleton (solid green line). During antisaccade trials, blinks invoked during Epoch 1 (in
between the two vertical dashed lines) should produce reduced latency saccades to the singleton
(solid green line), while blinks evoked during Epoch 2 should direct saccades to the opposite distractor
(solid purple line). For the discrete processes hypothesis, accumulation in motor neurons (data not
shown) initiate after target selection is complete. For prosaccades, the effectiveness of the blink to
trigger a saccade (dashed green line) will be delayed compared to the PMTA. For antisaccade trials,
target selection of the singleton must be suppressed and the opposite distractor target must be se-
lected hefore motor preparation commences. Thus, a blink evoked during Epoch 1 (in between the
twoverticallines) should not trigger a saccade, whichis denoted by the absence of a dashed green line
in this epoch. Activity in motor neurons will initiate in Epoch 2, but only after target selection is
complete. Only afterthis criterion s fulfilled will a blink become an effective perturbation for triggering
asaccade (dashed purple line). Note that the shortest saccade latency is slightly delayed compared to
the PMTA prediction. The differential effect predicted for antisaccade trialsis the focus of the study. The
vertical offset between the saccade direction predictions (horizontal solid and dashed lines) s only for
illustration purposes.
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2 B). Motor preparation occurs only after the target selection pro-
cess has reached completion (Purcell et al., 2010, 2012; Schall et
al., 2011), and there can often be some delay between the two
processes (Woodman et al., 2008). Since a blink can only trigger a
saccade if premotor activity has accumulated in the oculomotor
circuit, the earliest a saccade can be initiated should be later than
that expected with the PMTA. This distinction is represented by a
later onset of the dashed green trace for prosaccade trials (Fig. 2C,
left). For antisaccade trials, neural selection of the singleton must
be suppressed, and the opposite distractor target must be selected
before motor preparation commences. More specifically, since
the enhanced activity for the singleton (Fig. 2 B, right, epoch be-
tween the dashed vertical lines) is not associated with motor
preparation, a blink should not trigger a saccade in this epoch,
which can be noted by the absence of a dashed green line in Figure
2C (right). Activity in motor neurons (data not shown) com-
mences only after the opposite distractor is selected, at which
point a blink should be able to trigger a saccade to the correct
antisaccade end point, although the shortest latency will be longer
than that predicted by the PMTA (Fig. 2C, right, later onset of dashed
purple relative to solid purple trace). Practically, the conceptual dif-
ferences in onset times of motor preparation may not be easy to
evaluate experimentally, due in part to the stochastic nature of neu-
ral signals. However, the pivotal test that should differentiate be-
tween the two theories comes from antisaccade trials, specifically
during the epoch when activity for the singleton is greater than that
for the opposite distractor (Fig. 2 B, right, arrow). Blink-triggered
saccades to the singleton would conform to the PMTA and cast
strong doubt on the discrete processes framework.

Figure 3 plots saccade latency as a function of blink time rel-
ative to saccade cue for prosaccade (left column) and antisaccade
(right column) trials in the step condition. Qualitatively, the data
can be separated into three groups: (1) When blinks occurred
very early before saccade cue (less than —200 ms) or after typical
saccade reaction time (>200 ms), saccade latency remained rel-
atively constant and comparable to that observed on control trials
(for representative spatial and temporal illustrations, see Fig. 1).
Both animals made saccades to the correct end point on >90% of
the trials (Monkey 1, 93% prosaccade trials, 90% antisaccade
trials; Monkey 2, 96% prosaccade trials, 91% antisaccade trials).
(2) As blink timing approached and overlapped with stimulus
presentation, saccade latency increased systematically with blink
time. This is most likely because the eyes were closed when the
array was illuminated, and the visuomotor transformation can
only begin after the eyes reopen. For the period beginning 100 ms
before array onset and covering the data points for which saccade
latency increased, the success rate performance remained consis-
tent (Monkey 1, 90% prosaccade trials, 84% antisaccade trials;
Monkey 2, 96% prosaccade trials, 89% antisaccade trials). (3)
Most relevant to this study is the subset of trials for which the
blink was evoked shortly after array onset but before the typical
reaction time of the animal. Almost always, a saccade accompa-
nied the blink, and we refer to these combined blink—saccade
movements as blink-triggered saccades (for classification, see
Materials and Methods). Such trials can be identified by the clus-
ter of points encompassed by the dotted ellipse (Fig. 3). Perfor-
mance by both animals on prosaccade trials (Monkey 1, 94%;
Monkey 2, 94%) was not significantly different from success rates
in other groups (x* test, p > 0.01). In contrast, success rates
dropped significantly during antisaccade trials in both animals
(Monkey 1, 70%; Monkey 2, 80%; X test, p < 0.01).

A closer look at the blink-triggered saccade distributions in
Figure 3 reveals that the reduction in saccade latency diminishes
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Figure 3.  Blink effects on the latency of saccades executed during visual search (step task).
A, C, The latency of saccades evoked during prosaccade trials as a function of the time of blink
relative to saccade cue. Each dot represents a puff/blink trial. Every blue point represents a
successful saccade to the singleton, red a failure to the antisaccade end point, and green afailure
to one of the orthogonal distractors. B, D, The latency of saccades evoked during antisaccade
trials as a function of the occurrence of blink relative to saccade cue. Each blue point represents
asuccessful trial to the antisaccade end point (opposite distractor), red a failure to the singleton,
and green a failure to one of the orthogonal distractors. In each panel, the data encircled in the
ellipse represent blink-triggered movements (for criterion, see Materials and Methods). Each
row illustrates data from one animal.

with later blink times. To better characterize the facilitatory effect
of the blink, we isolated the subset of blink-triggered saccades
with latencies less than two SDs from the mean of control trials.
This subset, on average, constituted 27% of all blink-triggered
movements. The mean = SD reaction times on prosaccade trials
were 145 + 22 ms (Monkey 1, n = 114) and 178 = 19 ms (Mon-
key 2, n = 112). The mean = SD reaction times on antisaccade
trials were 193 * 23 ms (Monkey 1, n = 193) and 185 = 20 ms
(Monkey 2, n = 115). The average latency of correct prosaccades
remained significantly less than the mean value for correct anti-
saccades, preserving the cost in reaction time associated with
antisaccade generation. Within this subset of data, a saccade was
successfully made to the correct end point on >90% of prosac-
cades trials (Monkey 1, 90%; Monkey 2, 97%), but <50% of
antisaccade trials (Monkey 1, 49%; Monkey 2, 27%).

As motivated above (Fig. 2), neural activity differentiates the
singleton from distractors shortly after the initial visual response
to array presentation (Schall and Hanes, 1993; McPeek and
Keller, 2002; Sato and Schall, 2003; Thomas and Paré, 2007; Balan
et al., 2008; Cohen et al., 2009). The activity associated with the
singleton is transiently higher ~100-150 ms after array onset,
even when the correct movement must be directed to another
stimulus (Sato and Schall, 2003). We found that a blink pertur-
bation during this putative target selection period consistently
triggered a saccade and, on the majority of trials, the movement
was directed to the singleton (Monkey 1 prosaccade, 90%; anti-
saccade, 90%; Monkey 2 prosaccade, 92%; antisaccade, 87%).
Therefore, the data demonstrate the existence of premotor activ-
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Figure4. Direction of blink-triggered movements executed during visual search (step task).
A, C, The direction of blink-triggered saccades, those encompassed in the dotted ellipse in
Figure 3, evoked during prosaccade trials as a function of saccade latency. Each blue point
represents a successful trial to the singleton, red a failure to the antisaccade end point, and
green a failure to one of the orthogonal distractors. B, D, The direction of blink-triggered sac-
cades evoked during antisaccade trials as a function of saccade latency. Each blue point repre-
sents a successful trial to the antisaccade end point (opposite distractor), red a failure to the
singleton, and green a failure to one of the orthogonal distractors. The cyan line illustrates a
moving average across saccade latency. The eye position at the end of the primary saccade
relative to the initial eye position (close to origin) was used to calculate the direction metric for
each trial. Each row illustrates data from one animal.

ity during allocation of attention, and that the premotor activity
is linked to the singleton. This result is better visualized when
saccade direction (final eye position relative to the initial eye
position) is plotted as a function of latency for all blink-triggered
movements (Fig. 4). For prosaccade trials (left column), most
movements were directed to the singleton, which is confirmed by
the moving average curve (cyan trace) remaining close to the
singleton direction across the entire range of saccade latencies.
There is a small percentage of trials (<12%) directed to the op-
posite and orthogonal distractors, but this fraction was not dif-
ferent from the likelihood of errors the animal made during
control trials (data not shown). For antisaccade trials (right col-
umn), the correct response should be directed 180° away from the
singleton. In contrast, the directional plot shows that earliest
movements were predominately errors to the singleton, and the
transition from the singleton to the correct end point location
occurred at longer reaction times. Errors to the orthogonal and
opposite distractors were observed; however, the majority of
these movements occurred after the time window for target se-
lection and at the same rate made during control trials.

The direction analysis indicates that the saccade is directed
toward one of the four targets, but it falls short of revealing
whether the end point reaches the stimulus. Figure 5 shows a
scatter plot of the end points of the primary saccades associated
with blink-triggered movements. For both prosaccade and anti-
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Figure5.  End points of blink-triggered saccades executed during visual search (step task). 4,
The distribution of end points of every blink-triggered movement from both animals is plotted
for prosaccade trials. The location of the singleton was always rotated to (10°, 0°) so that all
correct movements (blue) are to the right, failures to the opposite distractor (red) are to the left,
and failures to the orthogonal distractors (green) are to up or down locations. B, The distribution
of end points of every blink-triggered movement from both animals is plotted for antisaccade
trials. The same location (10°, 0°) is used for the singleton. Thus, correct saccades to the opposite
distractor (blue) are to the left, failures to the singleton (red) are to the right, and failures to an
orthogonal distractor (green) are to up or down locations.

saccade trials, the end points were closely clustered near one of
the four target locations.

The visual search task was also performed in 20 gap and 11
delayed saccade sessions in the same animals (see Materials and
Methods). The analyses focus on prosaccade (gap, n = 4641;
delay, n = 2189) and antisaccade (gap, n = 4642; delay, n = 1994)
trials with a puff-induced blink. Figure 6 illustrates data from gap
trials in one animal; data from a second animal were comparable.
The overall pattern of saccade latency as a function of blink time
was similar to the step task and, across all trials, showed the “gap
effect” reduction in latency (Saslow, 1967) when compared with
step-task data (Monkey 1 prosaccade, mean difference, 6 ms;
antisaccade, mean difference, 20 ms; Monkey 2 prosaccade, mean
difference, 22 ms; antisaccade, mean difference, 26 ms). How-
ever, within the subset of prematurely triggered movements (en-
circled in ellipse), the latency of movements was not statistically
different between the gap and step tasks (¢ test, p > 0.05). Thus,
the earliest a saccade can be evoked by the blink perturbation was
similar for step and gap tasks, effectively eliminating the gap ef-
fect. This result provides a lower limit on how quickly sensory
information can be transformed into motor action and that the
time course of motor preparation overlaps with attentional allo-
cation. As in the step task, the majority of early blink-triggered
saccades was directed to the singleton (Monkey 1 prosaccade,
88%; antisaccade, 86%; Monkey 2 prosaccade, 91%; antisaccade,
90%) (Fig. 6B). With increasing latencies, the blink-triggered
saccade transitioned to the opposite distractor in antisaccade tri-
als and remained at the singleton on prosaccade trials, character-
istics consistent with the predictions of PMTA (Fig. 2C).

In the delay-task version, the central fixation target remains
illuminated when the search array is presented. The animal is
required to maintain fixation of the central target until it is extin-
guished, which serves as the cue to initiate the movement. We
predict that the search array is processed and the correct move-
ment is planned during the overlap period. Thus, when a blink is
evoked after the saccade initiation cue, all blink-triggered move-
ments should be directed to the correct location. In other words,
we did not expect to observe erroneous movements to the single-
ton during antisaccade trials. Indeed, the distribution of saccade
latency as a function of blink time resembled that observed for the
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Figure 6.  Effects of blinks during visual search in the gap-task. 4, B, Saccade latency is
plotted as a function of occurrence of blink relative to saccade cue for prosaccade (A) and
antisaccade (B) trials. Blink-triggered saccades are denoted by points within the dotted ellipses.
C, D, The directions of these blink-triggered saccades are plotted as a function of saccade latency
for prosaccade (€) and antisaccade (D) trials. For prosaccade data (left), each blue point repre-
sents a successful trial to the singleton, red a failure to the antisaccade end point, and green a
failure to one of the orthogonal distractors. For antisaccade trials (right), each blue dot repre-
sents a successful trial to the antisaccade end point, red a failure to the singleton, and green a
failure to one of the orthogonal distractors. The cyan line illustrates a moving average across
saccade latency (bin size, 30 ms). The eye position at the end of the primary saccade relative to
the initial eye position (close to origin) was used to calculate the direction metric for each trial.
Data from only one monkey are shown. Data from second animal were similar.

step task (compare Figs. 3, 7A, B), but nearly every movement
was directed to the correct end point target for both prosaccade
and antisaccade trials (compare Figs. 4, 7C,D). The error rate was
<2%. [Note that blinks delivered during the overlap period are
not effective in triggering saccades in trained animals, even when
only one saccade target is illuminated (Gandhi and Bonadonna,
2005) (also see Discussion).]

Discussion

Visual search for a pop-out stimulus embedded among distrac-
tors automatically engages visuospatial attention to the singleton,
generally followed by directing a saccade to that stimulus. By
adopting a flexible stimulus—response mapping, we have the abil-
ity to direct the saccade to another location, such as the opposite
distractor (antisaccade trials), although it comes at a cost of lon-
ger latency. This task variant is well suited to test whether pro-
cesses defined as visuospatial attention and saccade preparation
are dissociated. Invoking the blink reflex at random times within
a trial revealed that a motor plan exists well before the typical
reaction time and as early as the epoch associated with allocation
of attention. For antisaccade trials, the earliest saccades were di-
rected to the singleton, and a transition to the opposite distractor
was observed only at longer latencies. For the prosaccade trials, the
blink-triggered saccades were directed to the singleton. These find-
ings are most readily consistent with the postulates of PMTA (Riz-
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Figure 7.  Effects of blinks during visual search in the delay task. Data collected from one

animal performing the delayed saccade variant of the search task are shown in exactly the same
format as in Figure 6. For prosaccade data (left), each blue point represents a successful trial to
the singleton, red a failure to the antisaccade end point, and green a failure to one of the
orthogonal distractors. For antisaccade trials (right), each blue dot represents a successful trial
to the antisaccade end point, red a failure to the singleton, and green a failure to one of the
orthogonal distractors. The cyan line illustrates a moving average across saccade latency. The
eye position at the end of the primary saccade relative to the initial eye position (close to origin)
was used to calculate the direction metric for each trial. Note the dearth of saccades to the
singleton during antisaccade trials. Data from second animal were similar.

zolatti et al., 1987; Hoffman and Subramaniam, 1995; Kowler et al.,
1995; Deubel and Schneider, 1996) and argue against a discrete and
sequential processes model (Sternberg, 2001; Woodman et al., 2008;
Schall et al., 2011; Purcell et al., 2012).

Role of blink perturbation

The saccadic system is potently inhibited by “gates” or neurons
that discharge at a tonic rate during fixation and suppress activity
during saccades. Examples include the OPNs (Keller, 1974; Ev-
inger et al., 1982; Everling et al., 1998; Gandhi and Keller, 1999),
neurons in the substantia nigra (Hikosaka and Wurtz, 1983), the
rostral region of the superior colliculus (SC) (Munoz and Wurtz,
1993), lateral intraparietal region (LIP) (Ben Hamed and Du-
hamel, 2002), and FEF (Hanes et al., 1998; Izawa et al., 2009).
When we blink during fixation, the eyes produce a small loopy
movement, and the OPNs and rostral SC neurons pause in asso-
ciation with the movement (Schultz et al., 2010; Jagadisan and
Gandhi, 2013), while the effects of blinks on gate neurons in the
basal ganglia and cortex are not known. Our working hypothesis
has been that if the blink is evoked before the average reaction
time in oculomotor tasks, the premature inhibition of gates
would facilitate the early execution of saccades if the underlying
activity in the oculomotor neuraxis encodes a premotor signal.
The results presented here conform to this prediction. Interest-
ingly, blinks evoked before the saccade cue do not trigger a move-
ment even when the stimulus location is known (delay task; Fig.
7). A likely interpretation of this result is that motor preparation
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signals continue to be encoded in the prelude activity within the
oculomotor neuraxis, but that the blink operates only on low-
level gates (OPNGs, rostral SC) and cannot overcome higher-level
gates. That the correct movement is both known to the animal
and planned during the overlap period of the delayed saccade task
is suggested by the lack of blink-triggered saccades to the single-
ton in antisaccade trials (Fig. 7 B, D).

Concurrent encoding of visuospatial attention and

saccade preparation

The ability of blinks to trigger saccades early after array onset
indicates that target selection and motor preparation occur con-
currently. Of the various types of cells found in oculomotor
structures, visuomotor neurons are well suited candidates to en-
code both processes. The neural activity exhibits selectivity for
the singleton in the epoch associated with target selection and
also before saccades directed in the movement field. For the ma-
jority of neurons in the SC (McPeek and Keller, 2002; Shen et al.,
2011) and area LIP (Thomas and Paré, 2007), the selectivity of
visuomotor neurons for the singleton varies with reaction time,
suggesting a contribution in motor programming. In contrast,
the neural discrimination times of most FEF visuomotor neurons
are best aligned with array onset, consistent with a role in target
selection (Thompson et al., 1996). Additional support for a dis-
tinction between the two processes also comes for neural activity
recorded during other behavioral tasks (Murthy et al., 2001;
Thompson et al., 2005; Ray et al., 2009). Proponents of the dis-
crete processes model have suggested that visuomotor neurons
play a crucial role in ascending pathways, sending corollary dis-
charge information from the SC to FEF (Sommer and Wurtz,
2002) and FEF to V4 (Moore and Armstrong, 2003). However, it
is difficult to discount their role in motor processing and move-
ment generation since they also project to the brainstem burst
generator (Segraves, 1992; Rodgers et al., 2006). Moreover, if one
views the circuitry encompassing the FEF, SC, and LIP as an
interconnected network void of hierarchical organization (Wurtz
et al., 2001), then each class of neurons should perform compa-
rable functions across regions.

Although we favor the conservative interpretation that visuo-
motor neurons are ideally suited to encode both visuospatial at-
tention and saccade preparation, do the observed behavioral
results discount the possibility that the two processes are encoded
concurrently but by different populations of neurons? If the vi-
sually responsive activities in visual and visuomotor neurons en-
code target selection, then motor neurons are the candidate cells
to reflect saccade preparation. To the best of our knowledge,
there is no published account of neural activity of motor neurons
in any structure during antisaccade trials in the context of a visual
search paradigm. Hence, we can only speculate. It is feasible that
low-frequency discharge accumulates in multiple motor neuron
ensembles, each preparing a movement to the stimulus in its
receptive field. Within an interconnected network, the temporal
and spatial distribution of motor activity in each population
could be developing concurrently with target selection, all the
while being continuously updated by the progression of attention
related signals in the visually responsive activity. At a conceptual
level, this mechanism is suggestive of a framework not compati-
ble with the PMTA because visuomotor and motor neurons are
classified in distinct categories. In reality, however, visuomotor
and motor neurons conform to a continuum, which would ren-
der the notion compatible with the PMTA.

Despite the suggestion that the blink perturbation unmasks an
underlying premotor signal, can the pattern of neural activity
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linked with a discrete processes model account for the observed
behavioral result? Using a stochastic accumulator architecture,
which has been influential in simulating dynamic discharge pro-
files and reaction time distributions among alternative actions
(Usher and McClelland, 2001; Wang, 2002), Purcell et al. (2010,
2012) implemented discrete target selection and motor prepara-
tion processes by gating or delaying accumulation of activity in
motor neurons until competition among visually responsive
neurons corresponding to each stimulus was resolved. In light of
our results, several assumptions and fast dynamics would be re-
quired to rescue the model. The blink perturbation must some-
how terminate the ongoing target selection process, perhaps by
releasing the gates that delay accumulation in motor neurons,
and also initiate and accelerate the movement plan to the current
locus of attention, almost instantaneously or within a few milli-
seconds. The PMTA, in contrast, offers a more conservative and
straightforward explanation. Nonetheless, additional studies fo-
cusing on the activity patterns in motor neurons during blink
perturbations are needed to better differentiate between PMTA
and discrete processes constructs. We might discover, for exam-
ple, that activity in visuomotor neurons may be a better index of
motor preparation and generation than motor neurons to ac-
count for blink-triggered saccades.

Previous studies of visuospatial attention and

motor preparation

Causal approaches have also been used to obtain a behavioral
readout of the premotor component, mainly by delivering micro-
stimulation during various oculomotor tasks (Kustov and Rob-
inson, 1996; Gold and Shadlen, 2000; Horwitz et al., 2004; Juan et
al., 2004; Schafer and Moore, 2007; Ramakrishnan et al., 2012) or
briefly flashing visual targets (distractors) before or during sac-
cades directed to another stimulus (Walker et al., 1997; Godijn
and Theeuwes, 2002; McSorley et al., 2004; van Zoest et al., 2008;
Viswanathan and Barton, 2013). A drawback of both approaches
is that they recruit a population of neurons that mechanistically
must integrate or compete with the activity associated with the
various stimuli. Such interactions could mask or inhibit pro-
cesses that occur naturally during the task (Dorris et al., 2007),
and therefore could suppress the underlying premotor signal.
This mechanism can explain why a premotor signature for the
singleton was not observed with suprathreshold FEF micro-
stimulation during visual search antisaccade trials (Juan et al.,
2004). The blink perturbation method, in contrast, does not re-
cruit an additional population of neurons that can mask the
target-related activity (Goossens and Van Opstal, 2000a), and
this approach does reveal a premotor component in the same
epoch associated with target selection.

Previous psychological studies (Smith et al., 2004, 2012; Smith
and Schenk, 2012), backed by a theoretical basis (Schneider,
1995; Schneider and Deubel, 2002), propose that motor prepara-
tion is linked to exogenous, but not endogenous, attention. In the
pop-out visual search array, the singleton certainly engages exog-
enous attention initially, and blink-triggered saccades to the sin-
gleton support this idea. However, endogenous attention must be
invoked to switch visual selection to the opposite target (Theeu-
wes, 2010; Markowitz et al., 2011) before the motor preparation
process can be initiated. We sampled blink times across the entire
timeline of the paradigm and did not encounter any epochs after
the attention allocation period during which blinks failed to trig-
ger a saccade. Thus, the results are not entirely consistent with a
differential relationship of motor preparation with top-down
and bottom-up attention systems. Others have argued against the
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dichotomy of exogenous and endogenous attention concepts
(Awh et al., 2012) and instead suggested that motor preparation
is engaged during spatial shifts of attention, but not when atten-
tion is maintained at the same locus (Belopolsky and Theeuwes,
2009, 2012). While the inability of blinks to trigger saccades dur-
ing the overlap period is consistent with this premise, the lack of
blink-triggered saccades immediately after array onset, when at-
tention shifts to the singleton during the overlap period, is not.

Evidence for the PMTA is also available beyond the oculomo-
tor system. Electromyographic activity time locked to target on-
set has been reported in neck and arm muscles during reactive
behaviors (Corneil et al., 2004; Pruszynski et al., 2010) and in
neck muscles during shifts in covert orientation (Corneil et al.,
2008). Also, cortical mirror neurons that respond to action ob-
servation project through the pyramidal tract (Kraskov et al.,
2009; Vigneswaran et al., 2013), indicating that they relay premo-
tor information to the spinal cord even when no movement is
produced; a suppressive mechanism likely occurs at the level of
the spinal cord to prevent muscle recruitment. It is yet another
demonstration of a motor command that is prepared but not
executed. Thus, both oculomotor and skeletomotor circuits are
likely engaged concurrently with visuospatial attention and other
cognitive processes.
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