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Cognitive functions like motor planning rely on the concerted activity of multiple neuronal assemblies underlying still elusive computa-
tional strategies. During reaching tasks, we observed stereotyped sudden transitions (STs) between low and high multiunit activity of
monkey dorsal premotor cortex (PMd) predicting forthcoming actions on a single-trial basis. Occurrence of STs was observed even when
movement was delayed or successfully canceled after a stop signal, excluding a mere substrate of the motor execution. An attractor model
accounts for upward STs and high-frequency modulations of field potentials, indicative of local synaptic reverberation. We found in vivo
compelling evidence that motor plans in PMd emerge from the coactivation of such attractor modules, heterogeneous in the strength of
local synaptic self-excitation. Modules with strong coupling early reacted with variable times to weak inputs, priming a chain reaction of
both upward and downward STs in other modules. Such web of “flip-flops” rapidly converged to a stereotyped distributed representation
of the motor program, as prescribed by the long-standing theory of associative networks.

Introduction
Motor planning relies on the concerted activity of distributed
neuronal assemblies in different brain areas. Among them, dorsal
premotor cortex (PMd) of primates is involved in building motor
programs suitable for executing reaching movements (Weinrich
and Wise, 1982; Wise, 1985; Crammond and Kalaska, 2000;
Churchland et al., 2010b), after transformation of visuospatial
information about target location into joint-angle changes and
forces needed to reach those targets (Hoshi and Tanji, 2000; Wal-
lis and Miller, 2003; Nakayama et al., 2008). PMd plays a role in
selecting potential options (Ohbayashi et al., 2003; Wallis and
Miller, 2003; Cisek and Kalaska, 2005), even when actions are
observed but not performed (Cisek and Kalaska, 2004), and it is
also involved in more abstract cognitive functions such as time
coding (Lebedev et al., 2008; Genovesio et al., 2009), inhibitory
control (Mattia et al., 2010, 2012; Mirabella et al., 2011), and
set-related working memory (Ohbayashi et al., 2003; Cisek and
Kalaska, 2005; Hernández et al., 2010). All these evidences clearly

show that this area provides an ideal framework to study how
information is integrated, transformed, and stored in cortical
networks.

Theoretical descriptions of cortical computation in motor
cortices have been proposed (Kalaska and Crammond, 1992;
Georgopoulos et al., 1993; Houk and Wise, 1995; Erlhagen
and Schöner, 2002; Cisek, 2006; Sussillo and Abbott, 2009;
Churchland et al., 2010b), but a full understanding of neuro-
nal mechanisms behind motor planning is still lacking. Reli-
able and stereotyped movements, needed to minimize errors
or to compose frequently repeated motor patterns, require
network dynamics capable to attract inner representations of
ongoing actions to low-dimensional subspaces of suited col-
lective variables (Schöner and Kelso, 1988; Shenoy et al.,
2011). Supporting evidence of such attractor dynamics is ac-
cumulating, and both dimensional reductions of the explored
state space and decreases of trial-by-trial variability of neural
activities coding output behaviors have been reported in mo-
tor cortices (Abeles et al., 1995; Churchland et al., 2006a) and
other frontal areas (Balaguer-Ballester et al., 2011). Neverthe-
less, more direct footprints of such nonlinear dynamics have
proven to be elusive, leaving open issues like whether attractor
behavior of recorded neural activity is the result of a local
network activity or is the echo of a remote neuronal machinery
(Ganguli et al., 2008).

Here we try to fill this gap investigating the cortical computa-
tion underpinning motor plan maturation in PMd. We report
evidence about the existence of diverse degrees of meta-stable
dynamics in local cell assemblies. They seem to be hierarchically
organized in time as a web of heterogeneous cortical modules
capable to produce fast transitions toward distributed and stereo-
typed representations of motor-related programs.
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Materials and Methods
Task description and data acquisition. We
trained two male monkeys (Macaca mulatta)
weighing 6 –7 kg using general procedures de-
scribed recently (Mirabella et al., 2011). Mon-
keys were trained to perform a reaching
version of the stop-signal task (Fig. 1A, left;
Logan and Cowan, 1984; Mirabella et al., 2006,
2011). On each trial, after a variable holding
time (500 – 800 ms), cue disappeared (Go) and
simultaneously a peripheral target appeared at
one of two opposite positions with respect to
the center (movement conditions). In No-stop
trials, the monkey had to reach the target
within a maximum allowed time [reaction
time (RT) of 600 ms for one animal and 750 ms
for the other one]. On a randomized fraction of
trials (33%; Stop trials), central cue reappeared
during RT, instructing the monkey to inhibit
movement initiation. At least 480 trials were
performed per countermanding block, equally
separated for the movement condition. Stop
signal delays (SSDs) varied randomly to allow
the animals to inhibit about half of the Stop
trials (Correct-stop trials), by adapting, ac-
cordingly, the average movement onset timing.
No reward was delivered, and target disap-
peared, when the monkey started the move-
ment despite the Stop signal (Wrong-stop
trials). One of the two monkeys also performed
a standard delayed reaching task (Fig. 1A right;
Weinrich and Wise, 1982; Crammond and
Kalaska, 2000), where Go signal occurred after
a random delay (800 –1600 ms) since the target
appearance.

Animals were cared for and housed in accor-
dance with European guidelines (European
Community Council Directive 86/609/ECC)
and with Italian national law (DL 116/92) on
the use of animals in research. At the start of the
training period, a head-holding device was im-
planted on each monkey, and a scleral search
coil was inserted subconjunctivally to monitor
eye movements (Remmel Labs). The connec-
tor leads of the coil were embedded in a dental
acrylic implant positioned to firmly anchor the head-holding device to
the skull. After training, a chronic recording chamber (18 mm diameter)
was stereotaxically implanted over the left frontal lobe centered around
the arm representation in left PMd. There, a linear array of seven quartz-
insulated platinum–tungsten electrodes (80 �m diameter; impedance,
0.8 –2.5 M�) were inserted transdurally to acquire unfiltered electric
field potential (UFP; the raw signal) simultaneously sampled at 24.4 kHz
from each of the seven probes (Tucker Davis). The location of the neural
recording sites (Fig. 1B) was confirmed by structural MRI on one mon-
key and by visual inspection of the anatomical landmarks on the second
monkey after surgically opening the dura.

Data analysis. Multiunit activity (MUA) was extracted by computing
the time-varying power spectra P(�,t) from the short-time Fourier trans-
form of UFPs in 5 ms sliding windows. Relative spectra R(�,t) were then
obtained normalizing P(�,t) by their average Pref(�) across the first 400
ms of the intertrial intervals. Our spectral estimated MUAs were the
average R(�,t) across the �/2� band [0.2, 1.5] kHz (Fig. 1C), extending a
previous approach based on the moving variance of high-pass filtered
UFPs (Stark and Abeles, 2007). Our estimate relies on two hypotheses.
The first one is that high-� components of UFPs result from the convo-
lution of firing rates �(t) of neurons close to the electrode tip with a
stereotyped single-unit waveform (Martinez et al., 2009; Miller et al.,
2009; Rasch et al., 2009). R(�,t) allows to eliminate the Fourier transform

K(�) of such unknown waveform, making R(�,t) a good approximation
of the ratio of firing rate spectra ��(�,t)� 2/��ref(�)� 2. Second, high-�
power ��(�,t)� 2 is proportional to the firing rate �(t) itself (Mattia and
Del Giudice, 2002), such that our MUA estimate is proportional to �(t).
Logarithmically scaled MUAs were smoothed by a moving average (40
ms sliding window).

Recordings with task-related activity were those with a significant dif-
ference in average log(MUA) between the 50 ms before Go of reaching
trials and either the interval 100 –150 ms after Go (�down) or 50 ms before
the movement onset (�up) (t test, p � 0.001). We looked for sharp up-
ward transitions (SUTs) among task-related recordings showing a signif-
icant increase in activity during RT: �up � �down (t test, p � 0.001). SUT
occurred at the first crossing time of a threshold MUA at 60% between
�down and �up starting from 100 ms after target display. Only those cross-
ings with MUA above threshold for �80 ms were considered. This al-
lowed us to filter fast MUA fluctuations out, thereby reducing the rate of
false positives in SUT detection below 2%. SUT times were refined by
fitting the log(MUA) time course around the detection threshold with a
cubic polynomial and carrying out its crossing time. SUT duration was
the time needed to go from �down to �up assuming the slope resulting
from a linear fit of average MUA around the SUT threshold.

Off-line analyses were implemented in MATLAB (The MathWorks).
Theory, models, and simulations. We used both a minimal rate model

and a neural network model of integrate-and-fire (IF) neurons. The

Figure 1. Behavioral task, recording sites, and signal extraction. A, Temporal sequence of the visual displays and required motor
behavior for stop-signal and delayed reaching tasks. Go, Cue disappearance; Mov. On, movement onset; Mov. End, movement end’
(see Results for further details). B, Recording sites in the left PMd for the two monkeys magnified in the square (red, monkey A;
blue, monkey B). AS, Arcuate sulcus; PS, principal sulcus; CS, central sulcus. C, UFPs (raw signal) were sampled at 24.4 kHz from
intracortical recordings using arrays of seven platinum–tungsten electrodes. Left, A No-stop trial with UFP, high-pass filtered UFP
(hpFP), and MUA for comparison. Right, Postprocessing steps to extract MUAs from high Fourier frequency spectrum P(�,t) of UFPs
on 5 ms sliding windows. MUA was the average relative spectrum R(�,t) in a high-� band ([0.2, 1.5] kHz), finally smoothed by a
moving average (40 ms sliding window). The reference spectral density Pref(�) to obtain R(�,t) was the average P(�,t) during
intertrial intervals.
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minimal rate model had dynamics determined by the gain function �
(Wilson and Cowan, 1972) as follows: � d�/dt � �(�,��ext) � �, with
instantaneous firing rate �(t) converging asymptotically to one of the
fixed-points � � �(�,��ext). A dependence on ��ext appeared explicitly
since we were interested in the reaction of the model to external stimuli.
We introduced intrinsic fluctuation by adding a finite-size correction to
the firing rate (Mattia and Del Giudice, 2002) such that � � �� 	 
(t)
and � d��/dt � �(�,��ext) � ��, where �� was the firing rate in the limit
of an infinite number of neurons in the network, 
(t) was a Gaussian
white noise with zero mean and variance ���, and � was adjusted to
reproduce time scales similar to those observed in our in vivo recordings.
� was an arbitrary time constant set to 5 ms. We numerically integrated
the model dynamics with a first-order Euler approach with a time step of
0.1 ms. Our typical module included multiple interacting neural popu-
lations (both excitatory with different selectivity and inhibitory); there-
fore, the mean-field dynamics would be described by a multidimensional
gain function. Our gain function � was computed as an “effective” gain
function, along the lines proposed by Mascaro and Amit (1999): this
approximation allows the reduction of the multidimensional mean-field
problem (Amit and Brunel, 1997) to a one-dimensional one correspond-
ing to the dynamics of the firing rate of the population of interest, still
keeping trace of the effects of the interaction with the others. Under
stationary conditions, for activities fluctuating around fixed points of the
minimal rate model, �(t) had power spectrum P(�) � �� (1 	 � 2� 2)/
[(1 � ��) 2 	 � 2� 2], where � was the rate averaged in time and � � 2�f
with f the Fourier frequency. High- and low-� limits for P(�) were P(0)
� �/(1 � ��) 2 and P(�) � �.

Cortical modules we modeled were composed of 20,000 IF excitatory
(80%) and inhibitory (20%) neurons with strengthened synaptic cou-
plings between cells responsive to the same input stimuli (Amit and
Brunel, 1997). Membrane potential V(t) of IF neurons evolved according
to the following: dV(t)/dt � � V(t)/�� 	 Isyn(t) � IAHP(t), where Isyn(t)
was the synaptic incoming current and �� was the membrane decay
constant (�E � 20 ms and �I � 10 ms). Point-like spikes were emitted
when V(t) crossed a 20 mV threshold, after which a 15 mV reset potential
was set for an absolute refractory period of 2 ms (1 ms) for excitatory
(inhibitory) neurons. IAHP(t) was the activity-dependent afterhyperpo-
larizing K 	 current acting as a fatigue mechanism for spiking activity of
excitatory neurons: dIAHP(t)/dt � �IAHP(t)/�AHP 	 gAHP 
k �(t � tk),
with �AHP � 50 ms and gAHP � 0.11 mV/s. The �(t � tk) were the
point-like spikes emitted by the neuron.

Synaptic transmission was instantaneous, and Isyn(t) � 
j Jj 
k �(t �
tjk � �j) 	 
k Jext,k �(t � text,k). The kth spike emitted at t � tjk by the local
presynaptic neuron j affected the postsynaptic membrane potential with
a synaptic efficacy Jj after a transmission delay �j. Synaptic efficacies were
randomly chosen from a Gaussian distribution with mean J�	 and SD
�J�	 depending on the type of presynaptic (	 � {E, I}) and postsynaptic
(� � {E, I}) neurons. In unstructured networks where excitatory neurons
had no preferred connections coding selectivity to an external stimulus,
we set JEE � 0.35 mV, JIE � 0.47 mV, JEI � �1 mV, and JII � �0.8 mV,
whereas �J�	 � 0.25 J�	 for any � and 	. Connectivity was sparse, and
two neurons were synaptically connected with probability c�	 � 5%, for
any � and 	, unless otherwise specified. Transmission delays were chosen
to match the typical time scales of excitatory and inhibitory synaptic
transmissions. In particular, for excitatory synapses delays were drawn
from the sum of two exponential distributions with the average delay 3
and 40 ms, mimicking AMPA and NMDA conductances, respectively.
Inhibitory spike delays were sampled from an exponential distribution
with a 3 ms average aiming to mimic, in this case, GABAergic synaptic
transmission.

For each target neuron in the module, spike trains {text,k} coming from
neurons outside the cortical module were collectively modeled as a Pois-
son process with average spike frequency �ext � 2.4 kHz. Synaptic effica-
cies Jext,k were randomly chosen from a Gaussian distribution with the
same moments as the local ones (J�E and �J�E, with � � E, I). Sensorial
inputs were modeled by increasing �ext to stimulus-selective neurons by
a fraction ��ext. Intermodule connectivity was set only for excitatory
neurons with the same stimulus selectivity (c � 2%), modeling cortico-
cortical long-range synaptic connections. Intermodule spike delays were

sampled from an exponential distribution with a 21 ms average. To keep
spontaneous firing frequencies almost unchanged, neurons receiving
spikes from other modules had a �ext reduced by 120 Hz.

We embedded selectivity to eight abstract stimuli in each cortical mod-
ule, by strengthening the synapses inside eight corresponding, not over-
lapped, neuron pools. Assuming such selectivity to emerge from a
Hebbian learning, synapses connecting neurons with same selectivity
were potentiated by a factor w	 � 1, whereas connections between cells
with different selectivity were depressed by a factor w- � 1 (Amit and
Brunel, 1997; Wang, 2002). Depending on w	, a mean-field approach
(Amit and Brunel, 1997) was used to compute w- to keep the firing rate of
the asynchronous spontaneous state at 3 and 6 Hz for excitatory and
inhibitory pools, respectively.

We also performed simulations of three-module networks in which
one of the downstream modules displayed a sudden downward transi-
tion (SDT) from Up (high-firing) to Down (low-firing) states. In these
networks, neuronal pools with SUTs in the upstream module were con-
nected directly to inhibitory neurons of the downstream SDT module
(c � 2% and c � 2.5% for modules with strong and weak self-excitation,
respectively). Neuronal pools showing SDTs were set in the Up state,
increasing �ext by 560 Hz and 1.04 kHz for strongly and weakly self-
coupled modules, respectively.

In silico UFPs for modeled cortical modules were a linear transform of
spike trains discharged by all excitatory neurons and a random subset of
inhibitory cells (20%). As transform we used the convolution of emitted
spikes with a stereotyped single-unit waveform K(t), because of well
approximating high-� components of UFPs (Martinez et al., 2009). For
K(t), we adopted a waveform similar to the impulsive response of a
bandpass (�/2� � [0.3, 1.7] kHz) Butterworth filter of second order,
whose shape qualitatively fitted the single-unit waveforms usually ob-
tained from in vivo recordings.

Results
Upward MUA transitions anticipate movements
at single-trial level
We selected recordings with task-related activity (n � 267 of 340;
see Materials and Methods) in at least one movement condition
during No-stop trials. A subset of task-related recordings (n �
112, 42%) showed a significant growth of MUA during the RT.
Among these, we found activity showing SUTs at the single-trial
level. Figure 2A shows an example recording (blue circle repre-
sents the time when SUTs were detected by a thresholding algo-
rithm, as detailed in Materials and Methods). For this recording,
by plotting MUA profiles aligned to the movement onset and
grouping trials with different average RTs, a stereotyped and
sharp neuronal activity growth appeared, the shape of which was
independent of the RT (Fig. 2B). Furthermore, a strong linear
correlation between RTs and SUT occurrence times emerged,
such that SUT times were predictive of RTs at the single-trial level
(Fig. 2C). For population analysis, we selected recordings (61%,
n � 68 of 112) with SUTs detected in at least two-thirds of the
trials and having high correlation with RTs (R � 0.3). A fraction
of them (43%, n � 29 of 68) showed a selective response for only
one of the two movement conditions. This fraction increased to
60% (n � 41 of 68) if the selectivity criterion required a signifi-
cantly different SUT detection rate in the two conditions (Fisher’s
exact test, PF � 0.05). Across the selected recordings/conditions,
the degree of correlation between RTs and SUT times had a pop-
ulation average of R � 0.67 � 0.21 (mean � SD, n � 107, two
conditions for 39 recordings and one for the remaining 29), and
all cases resulted to be significantly correlated (p � 0.001). In
these recordings, we found a narrow distribution of the time
needed for MUAs to rise from low to high levels of activity (Fig.
2D; see Materials and Methods for details), with an average tran-
sition duration of 92.9 � 6.8 ms (mean � SEM): a relatively brief
time compared with RTs, which ranged between 300 and 650 ms
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across all recording sessions. These fast transitions of activity
occurred well before arm movement onset (Fig. 2E; 110.8 � 4.4
ms, mean � SEM before movement onset).

We also recorded saccadic movements in 45 recording ses-
sions to analyze the relationship between SUT times and saccadic
reaction times (SRTs). No-stop trials with SUTs were selected to
have both monkey eyes fixating on the central cue at the target
onset and a saccade occurring within the RT. Detected eye move-
ments were those with angular velocity higher than 30°/s. The

number of recordings/conditions with significant hand RT–SUT
time correlation was a large majority (n � 37 of 45) compared
with those with correlated SRTs and SUT times (n � 6 of 45)
(Fisher’s exact test, p � 0.001). This evidence suggests a modest
oculomotor involvement in the arm movement planning coded
in PMd, in agreement with previous findings (Cisek and Kalaska,
2002).

Hence, in 25% of the PMd’s task-related recordings, SUTs
were well represented. These stereotyped rapid activations were
detectable at the single-trial level, extending previous evidence
based on MUA (Stark and Abeles, 2007). SUTs were also consis-
tent with rapid onsets of single-unit activities (SUAs) observed in
multitrial spike-density profiles during visually guided motor
tasks (Weinrich and Wise, 1982; Weinrich et al., 1984; Cram-
mond and Kalaska, 2000; Churchland et al., 2006a, 2010b; Na-
kayama et al., 2008; Rickert et al., 2009; Afshar et al., 2011).

SUTs underlie maturation of motor programs
Now a question arises: Are SUTs the neural substrate of what?
SUTs might represent the neural substrate of the forthcoming
motor act or, instead, underlie the planning of intended move-
ments. We addressed this issue by focusing on the neuronal pop-
ulation activity recorded in Stop trials, in which an imperative
Stop signal required the inhibition to reach displayed targets. For
correctly withheld movements, motor programs could normally
be implemented in the brain after target appearance, but their
translation into an overt action needs to be blocked. In a large
fraction of Correct-stop trials, when no overt movements were
performed, we continued to observe SUTs (Fig. 3A) with a similar
shape and distribution of occurrence time as those in No-stop
trials (Fig. 2A). In Wrong-stop trials, when the monkey failed to
cancel the movements, the overall time structure of the MUA
raster plot in Figure 3B appeared almost overlapping with Figure
2A, as expected.

Interestingly, SUT latencies with respect to SSDs were predic-
tive of the behavioral outcome of Stop trials. For the large major-
ity of the Correct- and Wrong-stop trials in Figure 3, A and B,
SUTs followed and preceded the SSDs, respectively. The same
timing was confirmed at the population level: the distributions of
the average latency between SUT times and SSDs for each record-
ing/condition showed only a small amount of overlap and were
clearly distributed over positive or negative values for Correct- or
Wrong-stop trials, respectively (Fig. 3C). As SUTs occur also on
trials when monkeys successfully vetoed the reaching movement,
they likely represent a neural correlate of motor plans of intended
arm movements.

Such evidence suggested a prediction: SUTs should be found
also during instructed delays of reaching tasks, when PMd is
known to participate in motor plan encoding well before move-
ment execution (Weinrich et al., 1984; Riehle and Requin, 1993;
Crammond and Kalaska, 2000; Hoshi and Tanji, 2000; Cisek and
Kalaska, 2004, 2005; Churchland et al., 2006b). Figure 3D con-
firms this intuition. In fact, in the Delay trials from the previous
recording/condition MUA raster, SUTs were detected during de-
lays well before Go signals. A different example recording/condi-
tion reported a less prominent SUT time variability (Fig. 3E),
together with a stably persistent high firing rate after SUTs. SUTs
in Delay trials were identified selecting recordings/conditions
with a detection rate during the Delay period no less than two-
thirds; correlation with the next RTs was not required (n � 79).
The majority of such recordings/conditions had SUTs also in
No-stop trials (68%, n � 54 of 79). Furthermore, average SUT

Figure 2. MUA sharp upward transitions predict movement onset at single-trial level. A,
Trial-by-trial time course of color-coded log(MUA) from a representative extracellular record-
ing, sorted by RT, for one of the two movement conditions, for reaching trials aligned to the Go
signal (red diamond). Superimposed events are detected SUTs (white circle), movement onsets
(magenta diamond, Mon. On.), and movement ends (black diamond, Mon. End). B, The trials in
A are subdivided into five groups of equal size according to RT, and for each group, the time
courses of log(MUA) are aligned to the movement onset (dashed line) and averaged. Inset,
Average RT within each group of trials. C, Correlation between RTs and SUT times detected
at the single-trial level in A. The dashed red line indicates linear regression. D, E, Histo-
grams of average SUT durations (D) and average time lags between SUTs and RTs (E) (n �
107 recordings/conditions). The black dashed lines indicate population averages.
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times in Delay trials were more widely distributed compared with
those of No-stop trials (Fig. 3F, Levene’s test for equality of vari-
ances, p � 0.001) and occurred later in time than average SUT
times of No-stop trials (above red dashed line in Fig. 3F; Wil-
coxon rank sum test, p � 0.001). These task-dependent differ-
ences in the properties of stereotyped MUA transitions could
further confirm the ability of PMd to code set-related informa-
tion during motor planning (Hoshi et al., 1998; Wallis and Miller,
2003; Cisek and Kalaska, 2005; Nakayama et al., 2008).

Footprints of a possible local origin of SUTs
The observed SUTs could represent the reaction to a strong
change in the synaptic input from remote neurons. Under this
view, recorded neuronal pools would be mere relay stations with
a marginal role in the computation of a movement plan. A more
intriguing hypothesis is to consider the local, recurrent synaptic
coupling as a critical ingredient for pool dynamics. A minimal
rate model (see also Material and Methods) can help to gain
insights into the computational machinery and basic compo-
nents of the network generating SUTs. In this model, the dis-
charge rate �(t) of the pool is driven by incoming synaptic current
via a gain function � (Wilson and Cowan, 1972): � d�/dt �
�(�,��ext) � �.

Gain functions depend on both local (�, recurrent) and exter-
nal (��ext, i.e., from other neuronal pools) activity. Their sigmoi-
dal shape increases in steepness for larger ��ext, making more

excitable the neuronal pool (Fig. 4A). Nonlinearity of network
dynamics allows the existence of two preferred states where the
output rate is driven to equal the local incoming input
[�(�,��ext) � � and �� � 
�/
� � 1; Fig. 4A, circles]. The Down
(low-firing) and Up (high-firing) attractor states (Amit and
Brunel, 1997) are apparent in the numerical integrations of �(t)
(Fig. 4B). An intrinsic noise for �(t) was introduced (see Materi-
als and Methods) to recover the effect of the spike count fluctu-
ation caused by the finite-size of simulated pools (Zipser et al.,
1993; Mattia and Del Giudice, 2002). We modeled the processing
of the stimulus-related input by a gradual and moderate increase
of ��ext at a fixed latency of 100 ms after stimulus onset signal
(t � 0), as depicted in Figure 4B. Activity dynamics from simu-
lations with different intrinsic noise clearly show how ongoing
fluctuations of �(t) contribute to cause a sudden and stereotyped
increase in the firing rate at random times, similarly to what we
observed in in vivo recordings (Figs. 2, 3). These dynamics could
be better understood by referring to the effective energy land-
scape [the integral of �(�,��ext) � �, the “force” field] in Figure
4C, which shows two equilibrium states (right and left wells are
the Up and Down state, respectively) both before and after the
stimulation onset. By increasing ��ext, the attractive force toward
the Down state reduces. The shallower well facilitates transitions,
i.e., the rapid rolling down toward the Up state (Amit and Brunel,
1997; Wang, 2002), as sketched by the circles representing the

Figure 3. SUTs code motor programs and not movement execution. A, B, Trial-by-trial time course of log(MUA) aligned to Go for Correct-stop (A) and Wrong-stop (B) trials with Stop signal (green
diamond) for the same recording/condition of Figure 2, A and C. Trials were sorted by SSDs. C, Histograms of the average latency between SUTs and SSDs for Correct-stop (blue) and Wrong-stop (red)
trials from recordings/conditions with SUTs during No-stop trials (n � 107 recordings/ conditions). The dashed lines indicate population averages. D, E, Raster plot of log(MUA) centered around
Target on (brown diamond) for Delay trials from two different example recordings/conditions. The recording/condition in D is the same as in A and B. Other symbols are as in Figure 2A. F, Correlation
between average SUT times and average RTs during No-stop trials (white diamond, n � 107 recordings/conditions) and average SUT times in Delay trials (gray circle, the subset n � 54 of
recordings/conditions showing SUTs both in stop-signal and delayed reaching tasks).
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activity distribution during the four stages marked by the num-
bered dashed lines in Figure 4B.

Different strengths of attraction to the energy minima affect
the dynamic time scales of the network, and modulations of the
power spectrum P(�) (�/2�, Fourier frequencies) of �(t) reflect
such variations (Fig. 4D; see Materials and Methods). Before up-

ward transitions (from stage 1 to stage 3), relative spectra R(�)
display a higher increase of power at low � with respect to asymp-
totic high-� components, confirming a dominance of slow time
scales in the destabilized Down state. The opposite happens when
the system falls in the Up state (stage 4), where the landscape
curvature is higher than at stage 1. In this minimal rate model
P(0) � �/(1 � ��) 2, hence the slope �� governs slow time scales.
Therefore, the sigmoidal shape of � determines both the bista-
bility and spectral modulations shown in Figure 4. This suggests
detectable measures to reveal the dynamics of attractor switching
in our recordings and to prove that in vivo SUTs primarily orig-
inate in local neuronal pools.

A local synaptic reverberation hypothesis for SUTs
The minimal rate model provides quantitatively reliable hints for
more detailed networks of IF neurons, once a good approxima-
tion for � is taken into account (Gigante et al., 2007; Linaro et al.,
2011; Ostojic and Brunel, 2011). This is apparent in Figure 5A,
where firing rates �(t) of a stimulus-selective subset of IF neurons
in a wider network show SUTs as in Figure 4B. Here the same
stimulation was delivered, and microscopic parameters were set
to have, under mean-field approximation (Amit and Brunel,
1997; Mascaro and Amit, 1999), the same � as in Figure 4A. A
neuronal population (cortical module) was composed of both
excitatory and inhibitory neurons differently selective to the two
conditions (Amit and Brunel, 1997) (Fig. 5B, top; see Materials
and Methods). Synaptic couplings between excitatory neurons
with similar selectivity were strengthened by a factor w	 with
respect to synapses among nonselective cells. Connectivity was
sparse, and two neurons were synaptically coupled with proba-
bility c. Stimulus-related input was modeled by a relative increase
in ��ext of incoming spike rates from neurons outside the mod-
ule. Similar models have been suggested as substrates for working
memory and decision making (Amit and Brunel, 1997; Wang,
2002; Martí et al., 2008).

Up to now, we considered only a single isolated pool of neu-
rons. To test a more realistic scenario, we performed simulations
of three synaptically connected (and individually recurrent)
modules of IF neurons (Fig. 5B, bottom). This in silico experi-
ment allowed us to investigate whether the modulation of self-
excitation w	 is crucial to shape � and hence to establish the
spectral footprint suggested by Figure 4D. From simulated activ-
ity, we modeled in silico UFPs by convolving emitted spikes with
a single-unit waveform (Martinez et al., 2009; Mattia et al., 2010)
(see Materials and Methods) to map simulations onto in vivo
recordings. In Figure 5, C and D (top right), extracted in silico
MUAs display raster plots looking like the in vivo ones, within
simulated RTs that we randomly assigned as Gaussian distributed
time lags from the detected SUTs. We considered log(MUA)
samples, within the RT of all trials, starting from the time when
��ext increases. Such MUAs were averaged on moving time win-
dows of 20 ms and pooled in seven groups with logarithmically
spaced levels of activity, shown as different colored stripes in the
histograms of Figure 5, C and D. Then we worked out the power
spectra P(�) of in silico UFPs within the selected 20 ms time
windows, grouping and averaging them in the same log(MUA)
intervals as in the histograms. Finally, we computed relative spec-
tra R(�) as ratios of P(�), taking as reference the average spectrum
of the log(MUA) interval representative of the Down state before
SUTs (Fig. 5C,D, left). This activity-driven analysis was approxi-
mately equivalent to monitor the changes of P(�) in time, as in
Figure 4D, because during RTs, �(t) had a roughly monotonic in-

Figure 4. Spectral modulation of activity in a bistable minimal model showing SUT. A, Ex-
ample gain functions �(�,��ext) driving the minimal rate model dynamics when different
additional external inputs ��ext are delivered (solid curves). The dashed black line indicates
where input and output rates are equal. Circles, Stable fixed points of the dynamics where input
equals output firing rate (�(�) ��) and ���
�/
�� 1. B, Numerical integration of the
minimal model dynamics around stimulation onset. Activity �(t) fluctuates to mimic the intrin-
sic variability of a finite number of interacting neurons. Purple traces, �(t) of 10 simulated trials
(left axis); right axis, gray shaded ��ext modulating � and modeling the target-related input.
Dashed vertical lines show four reference dynamical stages of modeled trials defined by the
activity level and the ��ext value. C, Effective energy landscapes obtained integrating the
“restoring” force �(�,��ext) � � in the different reference stages. Bistability of the system is
determined by the coexistence of two wells separated by an energy barrier. Colored circles
represent �(t) distribution in the reference periods in B. D, Relative power spectra R(�) �
P(�)/Pref(�) of �(t) at different stages (Pref(�), spectrum at stage 1). Inset, Power spectra
P(�) estimated from simulations (colored dots) and theoretical predictions (solid lines). Power
spectral densities in Figure 4D were estimated from 5-s-long simulations of the rate model.
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crease. The advantage of such analysis was to be insensitive to non-
stationary UFPs and variable RTs, like in in vivo recordings.

We performed the analysis for each of the three cortical mod-
ules (Fig. 5B, bottom), considering that they have different exter-
nal input (��ext), recurrent activity (w	 and c), and intermodular
connectivity. Here only one module (Fig. 5A, black circle) re-
ceived external sensory-related input (gray arrow), had high w	,
and provided excitatory synaptic input to the other two modules,
which had, respectively, strong (Fig. 5C, gray diamond) and weak
(Fig. 5D, white square) recurrent synaptic excitation.

In Figure 5C (left), when intra-modular feedback was strong,
spectral modulation was qualitatively similar to that in Figure 4D.
Before SUTs (MUA levels from light blue to green), R(�) showed
a stronger increase of power in the low-� band (LFB; �/2� � 250
Hz) than at high frequencies [high-� band (HFB); �/2� � 1
kHz], signaling the destabilization of the Down state. After SUTs
(from yellow to red levels), local spike reverberation primed a
chain reaction capable to attract selective pool activity to the high

firing Up state, which in turn damps changes of R(�) at low �.
This spectral modulation was not observed in Figure 4D, where
no changes of firing rate � in Up states was taken into account.
Here no changes in the LFB were observed going from yellow to
red MUA levels, where HFB power increased. This can be still
explained in terms of the gain function �. The reduction of
RLFB(�)/RHFB(�) across these activity levels can be interpreted as
a lowering of � slope around the fixed point corresponding to the
Up state. This led to a more stable high-firing state with increased
attractive forces (narrow energy well), making the system faster.
On the other hand, for weak self-couplings (Fig. 5D, left), R(�)
was uniformly modulated across the full frequency range. This
module would not be capable of generating SUTs on its own, and
the reaction to the SUTs that occurred in the input module did
not provoke changes in the dynamics time scales: observed SUTs
were merely the echo of the activity changes in the module shown
in Figure 5A. The absence of a strong feedback straightens the
gain function � and only one attractor is available, which is being

Figure 5. In silico spectral modulations of UFPs around SUTs depend on synaptic reverberation strength. A, Sample simulations of a cortical module. Network arrangement is as in B. Firing rates
of excitatory subpopulations with different target selectivity (red and blue) and of inhibitory neurons (dark gray), centered around stimulus onset (t � 0 ms) for 10 simulated trials. Gray area (right
axis), Increase of incoming spike rate��ext delivered to selective neurons (red) modeling target-related input. Top, Raster plot of spikes emitted by a subset of neurons in a single simulated trial from
different subpopulations. B, Simulated network (bottom) of modules (circles) showing SUTs with intramodular and intermodular synaptic connections (arrows) with different strengths (arrow
thickness). Each cortical module had 20,000 IF neurons (top). Synaptic excitatory feedback among neurons with similar selectivity had relative strength w	 (black arrow) and average connectivity
c. Gray arrows stand for ��ext. C, D, Spectral analysis of in silico UFPs extracted from two of the output modules with large and small self-excitation (white square and gray diamond in B,
respectively). Top right, Raster plots of in silico MUAs from 20 ms time windows. Symbols are as in Figure 2A. Simulated RTs are randomly generated from SUT occurrences. Bottom right, Histograms
of log(MUA) during RT epochs (first 100 ms not considered). Seven activity levels with the same size define color codes for other panels. Left, Relative power spectra R(�) in silico UFPs computed on
the same 20 ms time windows, averaged depending on activity level. Color shades are SEM of R(�). Relative spectra are estimated from simulations 10 times longer than those represented on the
right. E, Scatter plot across different simulations (n � 70 networks of 3 modules) of the SMIs (see Results) before and after SUT onsets (periods with colors labeled accordingly on the histograms).
Symbols refer to the different modules as in B (marks next to the sketched electrodes). Simulations differ only in the initial condition and the realization of the synaptic connectivity (same
connectivity c). For the upstream module in A, only average and SD (black circle and error bars, respectively) across simulations were plotted.
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shifted to higher firing rates by increasing input spike rates.
Interestingly, although similar bimodal histograms of MUAs
were observed in both neuronal pools, they did not imply a
locally generated bistability, which occurred only for modules
with high w	.

Modulation of R(�) would seem to reliably predict the
strength of the excitatory synaptic feedback w	. To investigate
such a relationship, we computed a spectral modulation index
(SMI), SMI � (�RHFB � �RLFB)/(�RHFB 	 �RLFB), where �RLFB

(�RHFB) is the ratio between the average values of R(�) for two
levels of activity, in the low-� (high-�) band. The two levels of
activity were chosen to be representative of the period just before
(SMIbefore) and just after (SMIafter) SUTs. We performed simula-
tions (n � 70) of our multimodular network choosing random
connectivity matrices and the same set of c and w	. In Figure 5E,
the SMIs before and after SUTs (see details in Fig. 5, C and D,
bottom right) were plotted for each module and simulation.
When recurrent excitation was strong (gray diamonds and black
circle modules), an anticorrelation between SMIs clearly
emerged, whereas for almost uncoupled modules, flat relative
spectra kept SMIs close to zero (white square). We, therefore,
generate the expectation that almost uniform spectral modula-
tion in vivo should be observed for remotely driven modules with
small self-excitation, whereas locally generated SUTs in strongly
self-excited modules typically should show the peculiar modula-
tion in Figure 5C.

Cortical modules with heterogeneous self-excitation underlie
in vivo SUTs
We tested the predictions of both the minimal and detailed mod-
els performing the same analysis on in vivo recordings. Figure 6A
displays the SMIs for the selected recordings/conditions with
SUTs described in Figure 2. At first glance, the distribution
spread without any order, but a deeper inspection allowed us to
uncover a clear organization. We marked each recording/condi-
tion with the likelihood to correctly consider the distribution of
log(MUA) during RTs as unimodal. Half of them showed a bi-
modal distribution (white circle; n � 57 of 107; Hartigan’s dip
test on log(MUA) histograms, p � 0.05; Hartigan and Hartigan,
1985), and a clear anticorrelation between their SMIbefore and
SMIafter emerged (dashed red line; r � �0.73, p � 0.001), con-
firming theoretical expectation (Fig. 5E). Like in the model, we
observed different degrees of UFP spectral modulations ranging
from the ones possibly attributable to intense self-excitation
(compare Figs. 6B, 5C) to those expected for almost uncoupled
networks (Fig. 6C, to be compared with Fig. 5D), possibly driven
by other modules with SUTs.

The other half of recordings/conditions, those with unimodal
distribution of log(MUA) in Figure 6A (black circle; n � 50 of
107; dip test, p � 0.05), displayed a positive SMI correlation
(dashed black line; r � 0.65; p � 0.001). The apparent paradox of
detecting SUTs when log(MUA) distribution did not show sepa-
rated peaks for Up and Down states can be explained recalling
that MUAs in this spectral analysis were estimated at low tempo-

Figure 6. Spectral modulations of in vivo UFPs confirm the theoretical attractor picture. A, SMIs for the selected recordings and conditions with predictive SUTs (n � 107, as in Fig. 2, D and E). SMIs
are computed as in Figure 5, with activity levels before and after SUTs as labeled on the histograms. The dashed red line indicates linear regression (r � �0.73, p � 0.001) for recordings with
bimodal activity histogram during RT (red circle; p � 0.05, Hartigan’s dip test; n � 57 of 107; see also Fig. 9A). The dashed blue line indicates linear regression (r � 0.65, p � 0.001) for
recordings/conditions with unimodal activity histograms (black circle; dip test, p � 0.05; n � 50 of 107). B–D, Spectral modulations as in Figure 5, C and D, for representative recordings/conditions
marked by arrows in A. Other conventions and symbols are as in Figures 2, 3, and 5.
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ral resolution (from sliding windows of 20 ms) without any
smoothing in time. Such noisy estimates blurred histograms of
log(MUA) that appeared bimodal at higher resolution (Figs. 2,
3). This effect turned bimodal into unimodal those distributions
with small differences �� between Up and Down firing rates
(�� � �up � �down; see Materials and Methods). In fact, histo-
grams of �� for unimodal recordings/conditions had a signifi-
cantly lower median than for bimodal ones (Wilcoxon rank sum
test, p � 0.001). The example recording/condition with uni-
modal activity distribution in Figure 6D captured another inter-
esting feature: MUAs before transitions started consistently from
a high level compared with activities after movement ends (black
diamond). This was compatible with a cortical module residing
in an Up state well before SUT occurrences, in which an Up-

to-Up shift in firing rates reflected a SUT
generated by an upstream module. Small
MUA changes underlying unimodal dis-
tributions would also explain the absence
of low-� modulation of R(�). In fact, ad-
ditional excitatory input to modeled cor-
tical modules further stabilized the Up
state by lowering � slope around upper
fixed point. As explained before, this re-
sults in a faster dynamics, hence a mild
modulation of R(�) at low-�. Compati-
bly with such a hypothesis, we found
median SMIbefore negative for bimodal
distributions and positive for unimodal
ones (Wilcoxon rank sum test, p � 0.001).
On the other hand, the histograms of
SMIafter for bimodal and unimodal distri-
butions were not statistically different
(Kolmogorov–Smirnov test, p � 0.3).
Therefore, SUTs with unimodal and bi-
modal MUAs differed in the initial state of
the cortical modules, but not in the final
Up state.

Overall, we argued that the above het-
erogeneity of module excitability found in
vivo resulted from the diversity of recur-
rent connectivity, determined in turn by
strength and density of local synaptic cou-
plings. Gradients in the anatomical and
functional organization of PMd are
known to exist (Johnson et al., 1996), hence
we looked for a possible topographic coun-
terpart of this heterogeneity but no ordered
spatial arrangement of the module with dif-
ferent degrees of excitability emerged.

Downward MUA transitions
complement motor plan coding
Relying on a reasonable principle of a lim-
ited global activation of cortical areas,
SUTs should likely be compensated by
transitions from Up to Down states. We
looked for such MUA changes during
RTs, finding a phenomenon that mir-
rored SUTs: SDTs were detected at the
single-trial level, reliably predicting forth-
coming movements, as shown in Figure
7A. Methods for SDT and SUT detection
and analysis were identical, with the only

exception to consider as transition times for SDTs those when
MUAs downward crossed a threshold set at 40% between �down

and �up. Within the subset of task-related recordings showing a
MUA reduction during RT (n � 110 of 267), a fraction of 42%
(n � 64 of 110) displayed SDTs in more than two-thirds of the
trials at times correlated with movement onsets (R � 0.3). Like
SUTs, SDTs were movement selective, occurring only for one
task condition in 70% of the recordings (n � 45 of 64). Even in
this case, such fraction grew to 80% (n � 51 of 64) considering as
selective those recordings with SDT detection rates significantly
different in the two conditions (Fisher’s exact test, PF � 0.05).
SDTs and SUTs were often (n � 16 of 54) observed in the same
multielectrode recording session in different electrodes. When
detected, MUA decreases displayed a stereotyped time course

Figure 7. Sharp downward transitions also code motor plans at the single-trial level. A, Raster plot of log(MUA) as in Figure 2A
from a representative extracellular recording and target position showing SDTs (circles) from Up (reddish) to Down (bluish) states
in No-stop trials. B, Average of log(MUA) across trials in A grouped by RT (inset, average RT in each group) and aligned to movement
onsets (dashed line). C, D, Histograms of the average SDT durations (C) and average time lags between SDT and RT end (D) (n � 83
recordings/conditions). E, As in Figure 3C, histograms of average latencies between SDTs and SSDs for Correct-stop (blue) and
Wrong-stop (red) trials in the same recordings/conditions (n � 83). Dashed lines show population averages. F, Correlation
between average SDT times and average RTs during No-stop trials (white diamond, n � 83) and average SDTs in the Delay trials
(gray circle, the subset n � 17 of recordings/conditions showing SDTs both in stop-signal and delayed reaching tasks). G, Raster
plot of log(MUA) aligned to Target on (brown diamonds) for Delay trials from an example recording/condition showing SDTs. Mov.
On, movement onset; Mov. End, movement end.
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independent from the RT (Fig. 7B). This is supported, at a pop-
ulation level, by the narrow distribution of SDT durations (Fig.
7C). Besides, SDT times were highly and significantly correlated
with RTs: R � 0.63 � 0.17 (mean � SD; n � 83; two conditions
for 19 recordings, and one for the remaining 45; in all cases, p �
0.001). Time lags between SDT times and movement onsets were
large (Fig. 7D; 90.6 � 3.2 ms; mean � SEM), although 20 ms
smaller than the average latency between SUTs and RTs. Finally,
we found only unimodal distributions of log(MUA) during RTs
when SDTs occurred (data not shown), suggesting that Up states
before SDTs and after SUTs could be different. As for SUTs,
unimodal distributions were caused by a small difference �� be-
tween Up and Down firing rates.

As for SUTs, fast downward transitions were observed also
in the absence of overt movements. In Stop trials, SDTs were
detected also when animals successfully withheld movement.
In Figure 7E, average latencies of SDTs, with respect to SSDs,
had the same distribution pattern reported for SUTs: transi-
tions in Wrong-stop trials occurred before Stops, whereas in
Correct-stop trials, SDTs where later detected. Coherently
with the picture of sharp transitions (STs) underlying motor
plan maturation and not a merely motor-related activity, we
found SDTs also during preparatory periods of Delay trials
(n � 23 recordings/conditions; as for SUTs, the adopted cri-
terion was to have SDTs in at least two-thirds of the trials
without considering the correlation with the RTs). In the re-
cording subset showing SDTs also in No-stop trials (n � 17 of
23), a wider distribution of times was found for the instructed
delay task (Fig. 7F; Levene’s test for equality of variances, p �
0.05). As for SUTs, average SDT times in Delay trials occurred
later than SDTs in No-stop trials of the same recording/con-
dition (Wilcoxon rank sum test, p � 0.001).

Robustness of UFP spectral modulation as
self-excitation indicator
The existence of both SUTs and SDTs in PMd raised a question
on the reliability of the relationship between SMI anticorrelation
and self-excitation strength of cortical modules (Fig. 5E). Indeed,
recorded UFPs could, in principle, sample mixed activities of
neuronal pools showing SUTs and SDTs. Assuming the mixture
is such as to observe a SUT anyway, for this “blended” UFP we
asked: Are SMIs around SUTs still predictive of local synaptic
strength? To answer this question, we devised three-module net-
work simulations (as in Fig. 5) in which one of the downstream
modules displayed SDTs driven by inhibitory projections from
the upstream module (Fig. 8A; see Materials and Methods). In
Figure 8B, we tested two multimodular networks with different
SDT modules: (1) one with strong self-excitation (top left, as in
Fig. 5C) and (2) another with weak self-excitation (top right, as in
Fig. 5D). Increasing the proportion of SUT versus SDT neurons
in the composition of UFP (white to dark gray shadings, respec-
tively), anticorrelation between SMIs was still apparent in both net-
work configurations. Although this allowed us to exclude possible
false negatives (strongly self-excited module ending up with small
SMIs), SMIs moved toward large values when the fraction of SDT
neurons was increased in the UFP composition, giving rise to possi-
ble false positives. To rule out such a hypothesis, we realized that
such SMI shift was mainly because of the reduction of the gap �� in
the firing rate between Up and Down state (see above). Indeed, the
smaller ��, the smaller R(�) changes, and hence the denominator in
the SMI definition, which means higher absolute values of SMIs.

To test such possibility in the experimental data, first we defined
�SMI�, the distance from the circle projections on the linear regres-

sion and the axis origin, and we checked that �SMI� and measured ��
were not correlated (�pearson � 0.01, p � 0.95) for the recording/
conditions with SUTs and bimodal activity distribution. For the sim-
ulations in Figure 8, we set the maximum fraction of SDT neurons in
the mixed UFP at 30%, the one for which the relative reduction of
��, with respect to the pure SUT case, equals the coefficient of vari-
ation of the �� distribution in the data. Such changes in UFP com-
position produced only a limited spread of SMIs (Fig. 8B), which
cannot explain the whole range of in vivo SMIs (Fig. 6A). This further
ruled out the possibility that �� underlay SMI anticorrelation, con-
firming that it was a robust indicator for the self-excitation strength
in modules with SUTs and bimodal activity distribution.

Motor plans as an avalanche of orderly sharp transitions
As we found that, on average, SUTs occurred earlier than SDTs
with respect to movement onsets, an orderly sequence of upward
and downward transitions could be hypothesized. Besides, from
the theoretical framework we introduced, a tight relationship
between module excitability and SUT timing had to be expected.
Given that bistable in vivo cortical modules (Fig. 6A, red circle)
with larger self-excitation were those with larger SMI values, we
predicted a gradient of time gaps between SUTs and RTs along
the linear regression (Fig. 6A, red dashed) line. Accordingly, in
Figure 9A, the same subset of recordings/conditions displayed
small time gaps (bluish circle) around SMI � 0, whereas larger
latencies (green to red circle) could be found only for large SMI
values. Here we grouped together recordings from experimental
sessions with different RTs. To test more precisely such time–
excitability relationships, we compared ST times occurring in
simultaneous recordings from the seven-electrode array for the

Figure 8. Robustness of relationship between SMI anticorrelation and synaptic self-
excitation in silico. A, Single-trial simulation of a three-module network with strong self-
excitations. Upstream and downstream modules are as in Figure 5, A and C, respectively. One of
two downstream modules (black) was set in the Up state injecting an additional external cur-
rent. Its inhibitory synaptic input from an upstream module determined SDT whenever a pre-
synaptic SUT occurs. Raster plots show spikes emitted by a subset of excitatory neurons in the
two downstream modules (dark and light gray, respectively). Solid curves indicate firing rates of
the two whole pools. B, SMIs for different configurations of in silico UFPs and network compo-
sition. UFPs were reconstructed using different fractions of SUT and SDT neurons from down-
stream modules (represented by different gray shadings). Two network configurations were
tested in which the SDT module had strong (top left, diamond) and weak (top right, circle)
synaptic self-excitation (parameters as in Fig. 5, C and D, respectively). Symbols indicate aver-
age across 10 simulations with randomly extracted synaptic connectivity. Vertical and horizon-
tal (not visible) bars show SDs.
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same experimental condition. We labeled each in vivo module in
Figure 9A with its level of self-excitation measured as the �SMI�
(see above). In Figure 9B, the �SMI� of each cortical module was
plotted with the average time lag between SUTs it performed and
those simultaneously detected in the other electrodes. A clear
anticorrelation resulted (r � �0.35; Pearson one-tailed test, p �
0.01), such that modules with higher self-excitation (high �SMI�)
had SUTs earlier, whereas late transitions followed in less excit-
able modules (low �SMI�). In other words, as shown in Figure 9B
(inset), the former drove the latter. The same analysis comparing
SUT and SDT timing (this time �SMI� of modules with SUTs were
plotted against average latency with SDT times simultaneously
detected) showed an even stronger anticorrelation correlation
(Fig. 9C; r � �0.60; Pearson one-tailed test, p � 0.001). This
indicated that SDTs occurred at intermediate time lags compared
with those of SUTs in low and high �SMI� modules (Fig. 9C, inset).

Discussion
Half of our task-related recordings (n � 132 of 267) displayed
either SUTs or SDTs of MUAs before the end of the RT of a
reaching movement. This widespread phenomenon in PMd

underpinned the motor plan development. STs reflected the col-
lective dynamics of spatially confined cortical modules, as con-
firmed by the fact that MUAs, the pooled activity of thousands of
neurons nearby the electrode tips (Buzsáki, 2004), displayed dif-
ferent modulations even when sampled from close recording
electrodes. The subset of these modules showing SUTs and two
preferred high- and low-firing states during RTs was also charac-
terized by a heterogeneous degree of self-excitability (Fig. 9A).
Their excitability level was determined by the amount of spectral
modulation of UFPs during MUA transitions within RTs, consis-
tently with models of neuronal networks in which the strength of
recurrent synaptic couplings determines the nonlinearity of the
module response. More excitable modules, likely so because of
stronger synaptic self-excitation, were those capable to produce
autonomously SUTs as stimulus-triggered transitions from
Down to Up local attractor states (Fig. 6B). These state switches
were facilitated by endogenous noise in the firing dynamics,
which in turn determined the variability of SUT occurrences, as
suggested by models of other cognitive functions (Okamoto and
Fukai, 2001; Wang, 2002; Kitano et al., 2003; Mongillo et al.,

Figure 9. Motor programs mature as sequences of MUA STs in PMd. A, Correlation plot between SMIs as in Figure 6A for recordings/conditions with only bimodal distribution of MUA during RTs
(dip test, p � 0.05; n � 57 of 107). Circle colors indicate average time lags between RTs and SUT times (see color bar). B, Average latency between SUT times in each recording/condition in A and
SUTs simultaneously detected in other channels of the multielectrode array used (n �52 of 57; those with SUTs in at least two electrodes and two outliers not shown). The dashed line indicates linear
regression ( y ��74 x 	 20 ms, p � 0.01). Inset, Cortical modules with larger �SMI�, and hence larger self-excitation, are likely activated earlier. C, As in B, the average latency between SUT times
and SDTs simultaneously detected (n �36 of 57). The dashed line indicates linear regression ( y ��109x 	23 ms, p �0.001). Inset, Graph depicting a possible ordered inhibitory chain of cortical
modules in which SUTs in modules with larger �SMI� prime SDTs and then SUTs in other modules. D, A possible scenario of motor plan maturation. Before target onset, PMd stays in a stable state with
active (1) and inactive (0) cortical modules. After a random delay, some modules with strong self-excitation have SUTs priming a chain reaction of STs in other modules and ending in a different stable
multimodular activity pattern, the motor plan.
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2003; Martí et al., 2008). Other cortical modules had SUTs exog-
enously driven by sudden changes in the synaptic input, possibly
attributable to either an insufficient excitability (Fig. 6C) or a
highly stable state trapping the module activity (Fig. 6D).

Uncovering compelling evidence of local attractor dynamics in
vivo is one of our main findings. Evidence of a variability decrease of
neural representations, likely resulting from the convergence toward
stable activity patterns, has been reported previously (Abeles et al.,
1995; Churchland et al., 2006a; Balaguer-Ballester et al., 2011). Nev-
ertheless, we know of no attempts in vivo to tell a local origin of such
nonlinear dynamics from the possibility that variability decline is
attributable to fluctuation dampening in the received input, as it
happens throughout the cortex after stimulation (Churchland et al.,
2010a). Yet, even when bimodal distributions of discharge rates re-
sult from single-unit recordings (Zipser et al., 1993; Okamoto et al.,
2007), the locality issue remains unsolved. In fact, as shown in Fig-
ures 5 and 6, both modules with high and low excitability levels
display bimodal MUA distributions.

Heterogeneity in module excitability seems to be a key ingre-
dient in the maturation process of macroscopic activity patterns
across PMd. Indeed, action plans developed as a chain reaction
(Fig. 9D) primed by SUTs in more excitable modules, eliciting, in
turn, SUTs and SDTs in other cortical modules. In about 100 ms,
such hierarchically cascade ended, and a new stereotyped con-
figuration of active and inactive cortical modules emerged.
Like steps of a staircase, ordered STs were allowed to climb the
slopes of an effective energy landscape of the whole network by
changing a few bits at a time of binary “words,” which repre-
sents a large part of the task-related activity patterns found in
PMd. Such fine structure of global transitions between one
macroscopic state preceding the target onset and another cor-
responding to a mature motor program highlights an effective
strategy in the coordination of multimodular networks to go
over reliable pathways linking different state space regions.
This picture extends the standard views contrasting reservoir
computing with attractor-based neural computation (Rabi-
novich et al., 2008; Buonomano and Maass, 2009). If neural
computation is the result of the itinerant dynamics between
metastable patterns of distributed cortical activities (Tsuda,
2001; Durstewitz and Deco, 2008), our findings provide an
alternative implementation of such itinerancy that is neither
the result of generic chaotic dynamics of a high-dimensional
dynamical system (Skarda and Freeman, 1987; Tsuda, 2001)
nor the stochastic hopping between global and stable attractor
states (Okamoto and Fukai, 2001; Mongillo et al., 2003; Durst-
ewitz and Deco, 2008; Martí et al., 2008; Miller and Katz,
2010). Here a heterogeneous reservoir of “flip-flops” (Abeles
et al., 1995; Shu et al., 2003) allows to compose specific trajec-
tories that tightly constrain the cortical dynamics of PMd once
suited pivotal modules are primed by an exogenous stimula-
tion. Such trajectories are stereotyped also because each ST
composing the sequence of module flips has well reproducible
MUA time courses across trials (Figs. 2B, 7B). As a result, a
reduction in the variability of cortical activity across trials
during motor planning is expected, similarly to the compel-
ling evidence recently found in SUA from the same motor area
during action planning (Churchland et al., 2006a).

Together, these results depict a rather general “cortical pro-
cessor” that exploits a multimodular and heterogeneous ar-
chitecture extending implementations of motor plans as
associative maps in premotor cortex (Kalaska and Crammond,
1992; Houk and Wise, 1995; Nakayama et al., 2008). Indeed,
the long-standing theory of associative networks (Amari,

1972; Hopfield, 1982; Amit, 1989) here is further extended by
linking metastable states through constrained sequences of
mesoscopic events, suggesting an effective combination of
attractor- and trajectory-based computation. Because of such
generality, a reasonable expectation is that premotor cortex is
not the unique area to implement this computational strategy.
Best candidates should be those cortices involved in functions
like cognitive control, which, through the development of in-
ner representations of goals and plans, allows them to flexibly
guide thoughts and actions (Miller and Cohen, 2001; Badre
and D’Esposito, 2009). Implementation of such functions
would benefit from a versatile nonlinear dynamical system
capable to hold information as metastable states and to inte-
grate multiple sources of inputs as stimulus-driven state
transitions (Tanji and Hoshi, 2001; Rigotti et al., 2010). Con-
sistently with this hypothesis, sudden changes in multitrial
spike densities promoted by stimuli, but not temporally
locked to them, have been found in temporal (Naya et al.,
2001), parietal (Maimon and Assad, 2006), and frontal (Seide-
mann et al., 1996) [but see Figs. 6 and 7 of Brody et al. (2003)]
cortex of monkeys performing tasks that rely on working
memory and planning.

In motor and premotor cortical areas, local field potentials
(LFPs) are modulated in the frequency domain during both
movement execution and planning (Sanes and Donoghue,
1993; Rickert et al., 2005; O’Leary and Hatsopoulos, 2006;
Mattia et al., 2010). The physiological mechanisms underlying
such modulations are still debated, although synaptic inhibi-
tion appears to play a key role in generating LFP power spectra
resonances in neuronal networks and, more in general, in ex-
citatory–inhibitory loops (Wang, 2010). Although we embod-
ied synaptic inhibition in our modeling framework, we cannot
exclude additional contributions to UFP spectral modulation
during SUTs, like those that might emerge from the interac-
tions between PMd and other cortical areas. Notice, however,
that resonances and amplitude modulations of LFP-relative
spectra in motor areas have been observed only at frequencies
below 65 Hz (Rickert et al., 2005; O’Leary and Hatsopoulos,
2006). This should be contrasted with the focus of our spectral
analysis on the high-� components of UFPs (�/2� � 50 Hz
and up to the kilohertz range), which favors our hypothesis of
a major role played by changes in the energy landscape. On the
other hand, the shape of the energy landscape is determined by
the gain function �, and physiological mechanisms not in-
cluded in our model might contribute, in principle, to shape
�. For instance, dopaminergic neuromodulation has been ar-
gued to affect robustness of attractor states modeling working
memory (Durstewitz et al., 2000; Brunel and Wang, 2001), and
in vitro, dopamine modulates the input– output response
properties of pyramidal neurons (Thurley et al., 2008). The
widespread diffusion of dopamine across neocortex (Robbins
and Arnsten, 2009) poses some limits on this alternative hy-
pothesis, making it difficult to reconcile with the heterogene-
ity of module self-excitability we observed on the short spatial
scale of our multielectrode recordings. Nevertheless, to con-
firm the critical role of synaptic self-excitation in shaping �,
more focused experiments are needed.

Although rapid SUA changes are expected to underlie STs
of MUA, more general SUA patterns could be associated with
fast onsets of metastable activity patterns. In fact, trial-by-trial
variability in transition times may underlie smooth time
courses of average spike densities (Okamoto and Fukai, 2001;
Mongillo et al., 2003; Miller and Wang, 2006; Okamoto et al.,
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2007; Martí et al., 2008). Pooled spike trains showing jittered
STs across trials may compose decaying or raising ramps of
average firing rates [for example, Fig. 5B of Mirabella et al.
(2011)], similar to those found to be also associated with ac-
tion planning in motor areas (Tanji and Evarts, 1976; Georgo-
poulos et al., 1989; Riehle and Requin, 1989; Bastian et al.,
2003). This could reconcile our observation of abrupt matu-
rations of motor programs with the hypothesis that slow
changes of firing rates underlie preparatory activity, eventu-
ally determining action executions when a threshold value is
reached (Hanes and Schall, 1996; Erlhagen and Schöner,
2002).

However, STs in Delay trials are not correlated to RTs (data
not shown), and hence movement preparation and execution are,
in general, two independent processes. This supports the view
that motor plans are metastable states of premotor cortex estab-
lishing the initial conditions of the dynamical system that, when
requested, will instruct other areas to implement planned actions
(Churchland et al., 2010b).

On the other hand, completion of the motor plan is a nec-
essary condition for the movement execution, and this ac-
counts for the strong correlation between STs and RTs
observed in No-stop trials. Only when a plan in premotor
cortex has matured can the above “dynamical machine” guide
the execution of a well formed movement. Under this hypoth-
esis, PMd should be monitored by other brain structures [e.g.,
basal ganglia (Houk and Wise, 1995] to evaluate whether a
cascade of STs is ending or not, thereby informing whether a
motor program is available. Hence, the occurrence time of
such transient dynamics may act as a trigger for movement
initiation, eventually controlling RTs and other behavioral
outputs. In PMd, we showed that the plan development is
initiated by more excitable cortical modules, for which SUT
times are governed by the stability of the low-firing Down state
(Okamoto and Fukai, 2001; Miller and Wang, 2006; Martí et
al., 2008) modulated, in our case, by an external input (Fig. 4).
Local and global factors affecting Down-state stability, like
synaptic self-excitation and neuromodulation (Durstewitz et
al., 2000), make intrinsic activity fluctuations more or less
effective in eliciting SUTs (Fig. 4C) and modulate their time
scales. Depending on task demands, Down-state stability of
pivotal modules may be adjusted to advance or delay the onset
of ST chain reaction, without changing the resulting final
metastable state. This could explain why in No-stop trials sim-
ilar STs of the same cortical modules occur systematically ear-
lier than in Delay trials (Figs. 3F, 7F ). Indeed, RTs in the
stop-signal task have to be adapted to SSDs (Logan and
Cowan, 1984; Mirabella et al., 2011), a constrain absent in
delayed reaching tasks.
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Hernández A, Nácher V, Luna R, Zainos A, Lemus L, Alvarez M, Vázquez Y,
Camarillo L, Romo R (2010) Decoding a perceptual decision process
across cortex. Neuron 66:300 –314. CrossRef Medline

Hopfield JJ (1982) Neural networks and physical systems with emergent collec-
tive computational abilities. Proc Natl Acad Sci U S A 79:2554–2558.
CrossRef Medline

Hoshi E, Tanji J (2000) Integration of target and body-part information in
the premotor cortex when planning action. Nature 408:466 – 470.
CrossRef Medline

Hoshi E, Shima K, Tanji J (1998) Task-dependent selectivity of movement-
related neuronal activity in the primate prefrontal cortex. J Neurophysiol
80:3392–3397. Medline

Houk JC, Wise SP (1995) Distributed modular architectures linking basal
ganglia, cerebellum, and cerebral cortex: their role in planning and con-
trolling action. Cereb Cortex 5:95–110. CrossRef Medline

Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for
visual reaching: physiological and anatomical organization of frontal and
parietal lobe arm regions. Cereb Cortex 6:102–119. CrossRef Medline

Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching
movements. Science 255:1517–1523. CrossRef Medline

Kitano K, Okamoto H, Fukai T (2003) Time representing cortical activities: two
models inspired by prefrontal persistent activity. Biol Cybern 88:387–394.
CrossRef Medline

Lebedev MA, O’Doherty JE, Nicolelis MA (2008) Decoding of temporal in-
tervals from cortical ensemble activity. J Neurophysiol 99:166 –186.
Medline

Linaro D, Storace M, Mattia M (2011) Inferring network dynamics and neuron
properties from population recordings. Front Comput Neurosci 5:43.
CrossRef Medline

Logan GD, Cowan WB (1984) On the ability to inhibit thought and action:
a theory of an act of control. Psychol Rev 91:295–327. CrossRef

Maimon G, Assad JA (2006) A cognitive signal for the proactive timing of
action in macaque LIP. Nat Neurosci 9:948 –955. CrossRef Medline

Martí D, Deco G, Mattia M, Gigante G, Del Giudice P (2008) A fluctuation-
driven mechanism for slow decision processes in reverberant networks.
PloS One 3:e2534. CrossRef Medline

Martinez J, Pedreira C, Ison MJ, Quian Quiroga R (2009) Realistic simula-
tion of extracellular recordings. J Neurosci Methods 184:285–293.
CrossRef Medline

Mascaro M, Amit DJ (1999) Effective neural response function for collective
population states. Network 10:351–373. CrossRef Medline

Mattia M, Del Giudice P (2002) Population dynamics of interacting spiking
neurons. Phys Rev E 66:051917. CrossRef Medline

Mattia M, Ferraina S, Del Giudice P (2010) Dissociated multi-unit activity
and local field potentials: a theory inspired analysis of a motor decision
task. Neuroimage 52:812– 823. CrossRef Medline

Mattia M, Spadacenta S, Pavone L, Quarato P, Esposito V, Sparano A, Sebas-
tiano F, Di Gennaro G, Morace R, Cantore G, Mirabella G (2012) Stop-
event-related potentials from intracranial electrodes reveal a key role of
premotor and motor cortices in stopping ongoing movements. Front
Neuroeng 5:12. CrossRef Medline

Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex func-
tion. Annu Rev Neurosci 24:167–202. CrossRef Medline

Miller KJ, Sorensen LB, Ojemann JG, den Nijs M (2009) Power-law scaling
in the brain surface electric potential. PLoS Comput Biol 5:e1000609.
CrossRef Medline

Miller P, Katz DB (2010) Stochastic transitions between neural states in
taste processing and decision-making. J Neurosci 30:2559 –2570.
CrossRef Medline

Miller P, Wang XJ (2006) Stability of discrete memory states to stochastic
fluctuations in neuronal systems. Chaos 16:026109. CrossRef Medline
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