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Synaptotagmin Interaction with SNAP-25 Governs Vesicle
Docking, Priming, and Fusion Triggering
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SNARE complex assembly constitutes a key step in exocytosis that is rendered Ca*"-dependent by interactions with synaptotagmin-1.
Two putative sites for synaptotagmin binding have recently been identified in SNAP-25 using biochemical methods: one located around
the center and another at the C-terminal end of the SNARE bundle. However, it is still unclear whether and how synaptotagmin-1 X
SNARE interactions at these sites are involved in regulating fast neurotransmitter release. Here, we have used electrophysiological
techniques with high time-resolution to directly investigate the mechanistic ramifications of proposed SNAP-25 X synaptotagmin-1
interaction in mouse chromaffin cells. We demonstrate that the postulated central binding domain surrounding layer zero covers both
SNARE motifs of SNAP-25 and is essential for vesicle docking, priming, and fast fusion-triggering. Mutation of this site caused no further
functional alterations in synaptotagmin-1-deficient cells, indicating that the central acidic patch indeed constitutes a mechanistically
relevant synaptotagmin-1 interaction site. Moreover, our data show that the C-terminal binding interface only plays a subsidiary role in
triggering but is required for the full size of the readily releasable pool. Intriguingly, we also found that mutation of synaptotagmin-1
interaction sites led to more pronounced phenotypes in the context of the adult neuronal isoform SNAP-25B than in the embryonic
isoform SNAP-25A. Further experiments demonstrated that stronger synaptotagmin-1 X SNAP-25B interactions allow for the larger
primed vesicle pool supported by SNAP-25 isoform B. Thus, synaptotagmin-1 X SNARE interactions are not only required for multiple

mechanistic steps en route to fusion but also underlie the developmental control of the releasable vesicle pool.

Introduction

Formation of SNARE complexes between vesicle and plasma
membrane is essential for exocytosis and neurotransmitter re-
lease (Siidhof and Rothman, 2009; Jahn and Fasshauer, 2012).
Ca*" sensitivity is conferred to vesicle fusion by a dedicated cal-
cium sensor, synaptotagmin-1 (syt-1) (Geppertetal., 1994; Voets
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etal.,, 2001) or a related isoform, which triggers full SNARE com-
plex assembly, membrane merger, and formation of the fusion
pore (Rizo et al., 2006; Martens et al., 2007; Chapman, 2008).

Ternary SNARE complexes (Davis et al., 1999; Gerona et al.,
2000; Littleton et al., 2001; Chicka et al., 2008) and dimeric
SNAP-25:syntaxin-1 complexes (Rickman and Davletov, 2003;
Bai et al., 2004b; Rickman et al., 2004b; Bhalla et al., 2006; Hui et
al., 2011) directly bind to syt-1. Syt-1 X SNARE association pre-
dominantly relies on electrostatic interactions (Bennett et al.,
1992; Shao et al., 1997; Rickman and Davletov, 2003; Tang et al.,
2006; Kuo et al., 2009; van den Bogaart et al., 2011), with some
binding activity being sensitive to Ca*>* and some being appar-
ently Ca*"-independent (Sollner et al., 1993; Chapman et al.,
1995; Gerona et al., 2000; Zhang et al., 2002; Rickman and Dav-
letov, 2003; Bai et al., 2004b; Rickman et al., 2004b; Pang et al.,
2006; Lynch et al., 2008). A polybasic motif (K>*¢, K**7) within
the C2B segment of syt-1 was proposed to constitute the major
interaction site for SNAREs (Rickman and Davletov, 2003; Rick-
man et al., 2004b; Dai et al., 2007; Gaffaney et al., 2008; Xue et
al.,, 2008). However, the same site was also implicated in
phosphatidylinositol-4,5-bisphosphate binding (Bai et al., 2004a;
Arac et al., 2006; Li et al., 2006; Osborne et al., 2007; van den
Bogaart et al., 2012), and an alternative mode of SNARE interac-
tion has been suggested (Choi et al., 2010).
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Several groups of negatively charged residues in SNAP-25
were postulated to function as syt-1 binding sites. The very C
terminus of SNAP-25 has long been suspected to mediate fusion
triggering because C-terminal truncation by BoNT/A shifts the
calcium dependence of release (Capogna et al., 1997; Trudeau et
al., 1998; Sakaba et al., 2005; Serensen et al., 2006). Crosslinking
and pull-down experiments implicated a group of acidic amino
acids (D72, D7, D8, D) in the C-terminal half of the sec-
ond SNARE motif in Ca**-dependent syt-1 binding (Gerona et
al., 2000; Zhang et al., 2002; Lynch et al., 2007). In contrast,
constitutive t-SNARE binding of syt-1 was suggested to involve a
group of negatively charged amino acids localized near layer 0
(D', E*2, E®°) (Rickman et al., 2006; Kim et al., 2012). Mutation
of either binding site dramatically reduced release in biochemical
PC12-cell assays (Zhang et al., 2002; Rickman et al., 2006), but
the implications of these interactions for fast neurotransmitter
release remain unclear. Notably, in some systems (chromaffin
cells, autaptic neurons), deletion of syt-1 predominantly slows
down secretion and only mildly decreases total release, which
seems inconsistent with the reported effects in PC12 cell assays.
Here, we use fast measurement techniques in combination with
rescue experiments to mechanistically evaluate the proposed in-
teraction sites for syt-1 on SNAP-25.

Materials and Methods

Virus generation and biochemistry. Mutations were introduced into
SNAP-25A/B by PCR using primers with modified sequences. PCR prod-
ucts were restricted by BamHI/BssHII and ligated into a modified Sem-
liki Forest Virus shuttle vector (pSFVI1, Invitrogen) carrying an internal
ribosome entry site sequence for bicistronic expression of EGFP. All
constructs were verified by sequencing. Replication-deficient Semliki
Forest viruses for rescue experiments were produced as previously de-
scribed (Sgrensen et al., 2002).

For protein production, cDNAs were subcloned into a pET28a expres-
sion vector using Nhel/BamHII restriction sites. His-tagged SNAP-25
constructs were expressed in Escherichia coli (BL21), and bacterial pellets
were resuspended in 500 mm NaCl, 20 mm HEPES, pH 7.3, 10 mm imi-
dazole, and protease inhibitors (Roche). Cell lysates were incubated with
nickel-NTA agarose beads (QIAGEN; 90 min, 4°C). Unbound material
was removed with one wash in 1 M NaCl, 20 mm HEPES, pH 7.3, 20 mm
imidazole, 0.1% Triton X-100, and three washes in the same buffer but
with 100 mMm NaCl. Protein was eluted with 100 mm NaCl, 20 mm HEPES,
and 150 mum imidazole, pH 7.0 (30 min, 4°C), and dialyzed into 100 mm
NaCl, 20 mm HEPES, pH 7.3. Recombinant syntaxin-1A (aa 1-261) and
VAMP-2 (aa 2-94) were prepared essentially as previously described
(Connell et al., 2007).

Ternary SNARE reactions were performed using recombinant
syntaxin-1A (aa 1-261), VAMP-2 (aa 2-94), and indicated SNAP-25
proteins in the presence of 0.8% [B-octylglucoside with fivefold excess of
synaptobrevin to drive t-SNAREs into SNARE complexes and then ana-
lyzed by SDS-PAGE followed by Coomassie staining. Binding reactions
of t-SNAREs with GST-synaptobrevin-2 were performed as previously
described (Rickman et al., 2004a). Purification of recombinant GST-C2AB
and brain-derived syntaxin was performed as described previously (Rick-
man et al,, 2006). For GST-C2AB binding assays, brain-purified syntaxin
and bacterially produced SNAP-25 proteins were preincubated (30 min,
22°C) in 100 mm NaCl, 20 mm HEPES, pH 7.3, 1 mm EDTA, and 0.8%
octylglucoside. GST-C2AB (1 ug/reaction) was first immobilized on
glutathione-Sepharose beads, and the syntaxin/SNAP-25 preincubation mix
(3 pg/reaction) was added in a final buffer composition of 150 mm NaCl, 20
mm HEPES, pH 7.3, 1 mm EDTA, and 0.1% Triton X-100. After incubation
(90 min, 4°C) beads were washed three times, and bound protein was ana-
lyzed by SDS-PAGE followed by staining with the sensitive Sypro Ruby stain
(Invitrogen). The fluorescent signal was imaged using a ChemiDoc XRS
system (Bio-Rad) and quantified using Quantity One software (Bio-Rad).
Statistical analysis was performed using Graph Pad Prism.
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Cell culture, electrophysiological recordings, and data analysis. Mouse
chromaffin cells were isolated from adrenal glands of mouse embryos of
either sex at E18/E19 and cultured for a maximum of 3 d as described
previously (Serensen et al., 2003; Schonn et al., 2010). Animals were
handled in full compliance with the federal German and Danish animal
welfare acts and all local regulations of the University of Saarland and
University of Copenhagen. Combined capacitance measurements and
amperometric recordings were performed as reported (Mohrmann et al.,
2010). Release of catecholamines was triggered by UV flash photolysis of
a caged-calcium compound, nitrophenyl-EGTA (Synaptic Systems), in-
fused into the cell via the patch pipette. Before a UV flash was applied, the
intracellular Ca®" concentration was adjusted by brief illumination with
the monochromator to establish a comparable starting value slightly
below 1 um. Photo artifacts were generally eliminated from amperomet-
ric recordings by subtraction of a control trace recorded after removal of
the cell from the field of view. Intracellular calcium concentration was
determined using two dyes with different Ca®* affinity (fura-4F and
furaptra, Invitrogen) (Voets, 2000; Serensen et al., 2002). To prevent
flash-induced damage to fura dyes, vitamin C was added to the intracel-
lular solution. For the ratiometric determination of calcium concentra-
tion, fura dyes were alternatingly excited at 340 and 370 nm. The
intracellular solution contained the following (in mwm): 100 Cs-
gluconate, 8 NaCl, 4 CaCl,, 32 Cs-HEPES, 2 Mg-ATP, 0.3 GTP, 5
nitrophenyl-EGTA, 0.4 fura-4F, 0.4 furaptra, and 1 vitamin C, pH 7.2
(osmolarity adjusted to 290 mOsm). The extracellular solution was com-
posed of the following (in mm): 145 NaCl, 2.8 KCl, 2 CaCl,, 1 MgCl,, 10
HEPES, 11.1 glucose, pH 7.2 (osmolarity adjusted to 300 mOsm).

To obtain information about pool sizes and fusion rates, capacitance
traces were fitted with a sum of three exponential functions using custom
macros written in IGOR Pro software (Wavemetrics). The amplitudes
and time constants of two burst components, “fast burst” and “slow
burst,” were estimated together with the linear rate of the sustained com-
ponent (Mohrmann et al., 2010). If the fit resulted in a negative ampli-
tude for at least one component, or if two time constants were not
separated by a minimal factor of 2, the fitting was done with a sum of two
exponential functions (one for the burst, one for sustained component).
Time constants <50 ms were considered to be associated with secretion
from the Readily-Releasable Pool (RRP), whereas time constants in the
range of 50-500 ms represent release from the Slowly-Releasable Pool
(SRP). However, a clear distinction of both burst components by these
criteria is not always possible. Data are presented as mean = SEM. Sta-
tistical analysis was done in InStat (Graph Pad Software).

Immunocytochemistry. Chromaffin cells used for immunohistochem-
istry were cultured on coverslips coated with poly-L-lysine (Sigma,
P-1524). Cells were fixated in 4% PFA for 20 min (25°C), permeabilized
in 0.1% Triton X-100 for 10 min, and blocked for half an hour in PBS
containing 3% BSA Fraction V (Sigma). Cells were incubated with pri-
mary antibody (mouse anti-SNAP-25 71.1 at 1:500, Synaptic Systems)
for 16 h (4°C), washed, and incubated with secondary antibodies (Alexa
Fluor 546-conjugated goat anti-mouse antibody; dilution 1:400, Invitro-
gen) for 1 h (25°C). Coverslips were mounted on slides using Mowiol
4-88 (Carl Roth)-containing mounting medium. Samples were ana-
lyzed at room temperature using a confocal laser scanning microscope
(LSM 710, Carl Zeiss Microimaging). Infected cells were identified based
on EGFP fluorescence. Pictures were obtained using a 63X/1.4 oil-
objective (Zeiss Plan-Apochromat). z-stacks of ~20 confocal sections
(0.35 um) were acquired to reconstruct whole chromaffin cells (ZEN
2008 software, Carl Zeiss Microimaging). Optimal detector gain settings
were determined in preparatory experiments and kept constant for all
subsequent experiments. Sum projections of z-stacks were generated us-
ing Image]J (National Institutes of Health), and the summed fluorescence
intensity was corrected for background.

Electron microscopy of cultured chromaffin cells. Chromaffin cells from
Snap-25~"" (E18) mice were cultivated on coverslips coated with rat tail
type 1 collagen (Cellocate, Eppendorf). Infection with Semliki Forest
viruses was done on the second day of cultivation. After incubation for
6—38 h, cells were fixed for 45 min (25°C) with 2.5% glutaraldehyde in 0.1
M cacodylate buffer, pH 7.4. Cells were washed, embedded, and analyzed
as described previously (Toonen et al., 2006). Analysis was done in a
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blinded fashion for the experimental condition. Chromaffin granules
were defined as docked if there was no measurable distance between
granule and plasma membrane.

Results

Disruption of Ca>"-independent syt-1 binding

To investigate the mechanistic involvement of sytl X SNARE
interactions in fusion triggering, we have mutated and function-
ally characterized three different groups of acidic amino acids in
SNAP-25 that may act as syt-1 binding interfaces: D!, E**, and
E*’in the N-terminal SNARE motif (S1) near the zero layer, D '*°
and E'7°in the C-terminal SNARE motif (S2) near layers —1/—2,
and finally D 172 D179 D and D'° that form a charged surface
spanning the C-terminal half of S2 (Fig. 1A4).

In the first part of our analysis, we focused on the central
acidic motif (D', E*%, %), which has been suggested to mediate
Ca’"-independent syt-1 binding (Rickman et al., 2006). The
substitution of the corresponding amino acids (D’ 'K, E¥K,
E*°K) has previously been reported to not affect SNARE complex
formation, to nearly abolish syt-1 binding, and to suppress re-
lease in biochemical assays using permeabilized PC12 cells (Rick-
man et al., 2006). To avoid the charge inversion of the original
mutation, we generated an alanine-substituted variant, SNAP-
25A D>'A, E**A, E°°A (denoted “SN25A S1-3A”). As expected,
bacterially expressed SN25A S1-3A could enter SNARE com-
plexes with similar efficiency as wild-type SNAP-25A (Fig. 1B).
Coincubation of SN25A S1-3A with syntaxin-1A (aa 1-261) in
the presence of fivefold molar excess of VAMP-2 (aa 2-94) and
0.8% B-octylglucoside led to almost complete engagement of
t-SNAREs in SNARE complexes within 2 min (i.e., within the
time frame necessary for protein sample analysis) (Fig. 1Ba). The
formation of the SNARE complex was only marginally affected by
the mutation. To investigate Ca®"-independent binding of this
variant to the cytoplasmic domain of syt-1 (C2AB), we per-
formed a standard protein pull-down assay using SNAP-25:syn-
taxin dimers (Rickman et al., 2006). For this purpose, wild-type
and mutant SNAP-25 were first mixed with brain-purified syn-
taxin in the presence of 0.8% B-octylglucoside to form t-SNARE
dimers, and these complexes were consecutively incubated for 30
min with immobilized GST-C2AB, the former being in threefold
molar excess to saturate C2AB. Bound material was analyzed by
Sypro Ruby staining. We detected a moderate but significant
decrease in the fraction of retained t-SNARE complexes on GST-
C2AB for SN25A S1-3A compared with wild-type protein (n = 3;
paired t test: p < 0.05) (Fig. 1Ca,b), confirming that this mutation
interferes with syt-1 interactions without abolishing them.

Physiological measurements were performed in Snap-25~""~
chromaffin cells that virally expressed mutant or wild-type
protein for 5-6 h (Semliki Forest virus system). Quantitative
immunostaining showed that all SNAP-25 variants studied under
these conditions were overexpressed >10-fold over endogenous
levels (Fig. 2). The high overexpression level is an intrinsic feature
of the used expression system, which should be kept in mind
when interpreting the results. However, we note that overexpres-
sion of SNAP-25A under these conditions fully reconstitutes se-
cretion in KO cells (Serensen et al., 2003) and does not change
release properties in wild-type cells (see Fig. 6Aa) (Serensen et al.,
2003), indicating that the higher expression level does not affect
secretion for the wild-type version of the protein.

Exocytosis was stimulated by calcium uncaging and was mon-
itored by parallel measurements of membrane capacitance and
amperometric recordings at the same cells. Because amperomet-
ric measurements only collect data from a small part of the cell,
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we performed the quantitative analysis only on capacitance mea-
surements. In control recordings, expression of wild-type SNAP-
25A in Snap-25~"" cells robustly reconstituted secretion: the
mean membrane capacitance change (AC,) reached 333 * 33 {F
5 s after a step-like increase in [Ca’"]; (n = 28) (Fig. 3A). In
comparison, uninfected Snap-25~"" cells only support 30—50 fF
secretion (Serensen et al., 2003; Mohrmann et al., 2010). Expres-
sion of SN25A S1-3A partly reestablished exocytosis in Snap-
257" cells (216 = 26 fF, n = 30, 65% of control, unpaired ¢ test:
p = 0.0064 compared with SNAP-25A), and resulted in a dra-
matic slowdown of secretion (Fig. 3A). The kinetic alterations
were best visible in normalized plots of the secretory burst (Fig.
3Ab). Our analysis of flash-induced membrane capacitance
changes revealed a significant increase in the time constants of
both the fast and slow component (SN25A S1-3A, 7, = 34.0 =
1.4 msand 7, = 387.7 = 34.0 ms; controls, 7, = 13.9 = 4.7 ms
and 7,,,, = 236.1 = 46.1 ms; unpaired ¢ test: p = 1.5 X 10 "> and
p = 0.0094, respectively) (Fig. 3Ac). In addition, the amplitude of
the fast burst component was strongly depressed (SN25A S1-3A,
22.7 + 6.5 fF; controls, 107.6 = 13.4 fF; unpaired ¢ test: p = 2.8 X
10~7), whereas the amplitude of the slow burst component was
increased (SN25A S1-3A, 118.3 = 19.2 {F; controls, 70.7 = 10.7
fF; unpaired ¢ test: p = 0.0381) (Fig. 3Ad). The fast and slow burst
and the underlying functional vesicle pools (RRP and SRP) are
distinguished by fitting a sum of exponential functions to the
traces. In case of substantial changes of both pool sizes and fusion
rates, the assignment of release phases can become ambiguous. It
is therefore possible that the apparent increase in SRP size results
from an overestimation of the slow burst component because of
blending with either the fast burst of release or the sustained
component, which were both changed because of this mutation.
Regardless of this, it is clear that release was considerably slower
in SN25A S1-3A-expressing cells, indicating impaired fusion trig-
gering. Further, SN25A S1-3A cells exhibited a decreased sus-
tained rate of release (SN25A S1-3A, 15.0 = 1.9 {F/s; controls,
30.9 * 4.0 fF/s; unpaired ¢ test: p = 0.0005) (Fig. 3Ad), indicating
that upstream steps in the secretory pathway might also be af-
fected by the S1-3A mutation.

If syt-1 binding to the central acidic motif in SNAP-25 is in-
volved in exocytosis triggering, the SN25A S1-3A mutation is
expected to also alter the calcium dependency of release. To in-
vestigate this notion, we monitored release while [Ca**]; was
slowly increased by repetitive brief illumination (using a mono-
chromator as light source) to simultaneously photorelease Ca*"
and measure [Ca®"], generating a calcium ramp within the cell
(Serensen etal., 2002) (Fig. 4A). We defined the secretion thresh-
old as the [Ca*" ], at the maximum of the second derivative of the
release waveform that was formed by averaging the integrated
amperometric signal with the corresponding AC , trace. Interest-
ingly, we found a near doubling of the secretion threshold in
SNAP-25A S1-3A-expressing cells, suggesting a general shift of
the Ca®" dependency of release (SN25A S1-3A, 4.28 * 0.36 uM,
n = 17; controls, 2.12 = 0.14 um, n = 21; unpaired ¢ test: p =
5.6 X 10~7) (Fig. 4Ab).

The overall slowdown of release kinetics is the predominant
defect caused by the SN25A S1-3A variant, and a similar kinetic
phenotype was induced by overexpressing the SN25A S1-3A vari-
ant in wild-type cells (WT+SN25A S1-3A, 7, = 22.2 £ 2.9 ms
and 7,,,, = 262.6 * 30.6 ms, n = 19; WT, 7, = 15.45 *+ 1.78
ms and 7y,, = 132.5 = 18.6 ms, n = 21; unpaired ¢ test: p =
0.0471 and p = 0.0006, respectively) (Fig. 4B). This observation
confirms that SN25A S1-3A is incorporated into fusion com-
plexes and competes with endogenous wild-type protein. Inter-
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Figure1.  Syt-1binding of t-SNARE dimers containing SNAP-25A/B and mutants. A, Localization of the different groups of acidic residues mutated in this study: S1-3A (SNARE helix 1D °'A, E52A,
E*°A) shown in red, S2-N2A (SNARE helix 2 D "¢A, E"7°A) in blue, and S2—C4A (D '72A, D "7°A, D "®A, D "°3A) in green. S1 of SNAP-25 is displayed in olive green, and 52 in yellow. Bottom, Crystal
structure of the SNARE complex (PDB ID: 1SFC) (Sutton etal., 1998), rendered with UCSF Chimera 1.7, highlighting the mutated residues. B, Formation of the ternary SNARE complex. SNAP25 proteins
were incubated with syntaxin-1A (stx1) and fivefold excess of VAMP-2 (syh2) for indicated times, and subsequently complex assembly was stopped by the addition of SDS. The complexes were
visualized in Coomassie-stained SDS-PAGE gels. Low levels of syntaxin dimers caused faint bands at 75 kDa in all samples at zero incubation time (0'). In the case of SN25A S1-3A (Ba), SN25A S2-N2A
(Bb), and SN25B S1-3A (Bc), SNARE complex formation did not exhibit major differences compared with the corresponding SNAP-25 wild-type (WT) isoforms. For SN25A S2—C4A (Bb), SNARE complex
exhibited markedly different physicochemical properties and ran as a “smear” just above the syntaxin band (*). When tested in a GST-syb2 pull-down assay, SN25A S2—C4A (Figure legend continues.)
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intensity (x 10° a.u.)

Figure2.  Analysis ofvirally driven SNAP-25 expression. A, Example microphotographs of chromaffin cells stained against SNAP-25. To test expression levels, Snap-25 " cells were infected with
Semliki Forest viruses and stained 5— 6 h after infection. Displayed images represent single confocal slices acquired near the midline of the cell body in z-dimension. Endogenous SNAP-25 expression
in wild-type control cells (leftmost column) was on average 15 times lower than virally expressed levels; the image of the wild-type cells was accordingly scaled to demonstrate the native distribution
pattern of SNAP-25. Scale bar, 5 um. B, Quantification of total SNAP-25 immunofluorescence intensity (per cell). Intensity throughout all confocal slices was summed up in a region of interest
enclosing the whole-cell body. Total intensity was corrected for background fluorescence using an identically shaped, blank region as reference. Immunofluorescence in wild-type cells and infected
cells was compared using ANOVA and Dunnett test, yielding p << 0.01 for all comparisons, except wild-type versus SN25B S2-C4A, which resulted in p << 0.05. The number of analyzed cells is

indicated above each bar. Error bars indicate SEM. *p << 0.05. **p << 0.01.

estingly, the kinetic phenotype of SN25A S1-3A-expressing cells
is reminiscent of the functional alterations observed in syt-1~/~
chromaffin cells (Voets et al., 2001; Nagy et al., 2006), which
exhibit strongly depressed or absent fast burst release (Fig. 4B).
To test whether the SN25A S1-3A phenotype is indeed caused by
the elimination of a SNAP-25 X syt-1 interaction, we overex-
pressed the mutant variant in syt-1""" cells. If SN25A S1-3A-
induced release defects were unrelated to a loss of syt-1, a
composite secretion phenotype would be expected. Strikingly, we
did not detect any significant release changes upon overexpres-
sion of SNAP-25A S1-3A in syt-1~"~ cells (SN25A S1-3A, 7, =
25.7 = 2.9 ms and 7,,, = 471.3 = 118.6 ms, n = 22; sytl ko,
Tase = 26.5 = 3.6 ms and 7y, = 652.1 * 145.2 ms, n = 22;
unpaired f test: p = 0.8696 and p = 0.3405, respectively) (Fig.
4C), which confirms that the observed deficits are the result of the
abolishment of syt-1 X SNARE interactions.

Thus, our findings indicate that the central acidic motif in the
S1 domain of SNAP-25 is intimately involved in fusion triggering
and thata SNAP-25 X syt-1 interaction, most likely in the form of
direct physical binding, is necessary for fast vesicle fusion.

The syt-1 interaction site extends to S2

According to the crystal structure of the SNARE complex (Sutton
etal., 1998), two acidic residues in the S2 domain (D '*° and E'7°)
are located in the vicinity of the syt-1 interaction site in SI, as
described above (Fig. 1A). In the crystal, polar residues of this
central region coordinate enclosed divalent Sr>™" ions (Fasshauer
et al., 1998; Sutton et al., 1998), and the possibility has been
entertained that these residues might bind either Ca*" or acces-

<«

(Figure legend continued.)  supported syntaxin-dependent complex formation as well as the
wild-type SNAP-25A protein (Bd). C, Normalized mutant and wild-type SNAP-25 protein (Ca;
loading control in top) was incubated with brain-purified syntaxin-1A to allow for formation of
t-SNARE dimers, which were then incubated in a threefold molar excess with Sepharose-
immobilized GST-syt-1C2AB for 30 min. Bound protein was analyzed by SDS-PAGE followed by
Sypro Ruby quantitative protein staining (Ca; bottom). Cb, Quantification by densitometry.
There is a pronounced binding of SNAP-25B-containing dimers to GST-syt-1C2AB. Binding data
are shown as a percentage of maximum binding relative to wild-type SNAP-25A. Error bars
indicate SEM (n = 3 each). Pairwise comparisons (Student's  test, paired, two-tailed) were
made between wild-type SNAP-25A and SNAP-25B, or between the wild-type protein and its
corresponding mutants. *p << 0.05.

sory factors (Serensen et al., 2002). As a later study was unable to
detect Ca®"-binding to SNAREs (Chen et al., 2005), we have
investigated here whether D '°® and E'7° contribute to the central
syt-1 binding interface in SNAP-25.

Like the SN25A S1-3A, SNAP-25A D'*°A, E'7°A (denoted
“SN25A S2-N2A”) only marginally affected SNARE complex for-
mation (Fig. 1Bb, left part of the gel), and pull-down experiments
showed that this variant decreased Ca**-independent binding to
t-SNARE dimers to a similar degree as the SN25A S1-3A muta-
tion (n = 3; paired t test: p < 0.05) (Fig. 1Ca,b). Hence, we
analyzed the release properties of Snap-25~"" cells expressing
SN25A $2-N2A. In Ca’" -uncaging experiments, SN25A S2-N2A
expression only reconstituted total AC,, to 39% of controls
(SN25A S2-N2A, 162.1 = 27.9 {F, n = 25; controls, 411.2 * 49.4
fF, n = 28; unpaired t test: p = 8.9 X 10 °) (Fig. 3B). A detailed
kinetic analysis demonstrated a complete loss of the RRP compo-
nent upon SN25A S2-N2A expression (Fig. 3Bd). Moreover, we
observed a significant increase in the time constant for the re-
maining SRP (SN25A S2-N2A, 354.7 * 54.8 ms; controls,
127.2 * 14.6 ms; unpaired ¢ test p = 3.9 X 10 ~°) (Fig. 3Bc,d). In
addition, the sustained rate was significantly decreased (SN25A
S2-N2A, 19.6 = 3.2 {F/s; controls, 36.3 = 3.6 fF/s; unpaired ¢ test:
p = 0.0013) (Fig. 3Bd). Having demonstrated a shift in the
threshold for release in SN25A S1-3A-expressing cells, we also
performed calcium ramp experiments in SN25A S2-N2A-
expressing cells and indeed found a significant increase in the
threshold calcium concentration (SN25A S2-N2A, 2.75 + 0.29
uM, 1 = 19; control, 2.06 = 0.13 um, n = 27; unpaired ¢ test: p =
0.0204). This increase is smaller than in SN25A S1-3A-expressing
cells, which is probably the result of the smaller overall amount of
secretion that is only about twice that found in SNAP-25 KO cells.
With small release amplitudes, the maximum point of accelera-
tion tends to get buried in the noise of the recording. In addition,
the threshold might partly depend on release not driven by
SNAP-25 (SNAP-25 KO release), but by other available Q,-
SNARE:s (e.g., SNAP-23, which has been reported to participate
in release at lower calcium concentrations; [Chieregatti et al.,
2004]).

In summary, substitution of D '*® and E'”° by alanine residues
caused a release phenotype that is reminiscent of the functional
deficits caused by the SN25A S1-3A variant (Fig. 3A) and corre-
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Figure3. Comparative functional characterization of secretion properties in cells expressing SN25A S1-3A, SN25A S2-N2A, or SN25A S2-C4A. A, Electrophysiological measurement of secretion
in Snap-25 /"~ chromaffin cells expressing SN25A S1-3A. Aa, Averaged traces of [Ca ", (top), capacitance measurements (middle), and amperometric recordings (bottom) in Snap-25—"" cells
expressing either wild-type protein (gray; n = 28) or SN25A $1-3A (red; n = 30). Uncaging flash was applied at 0.5 s (arrow). Ab, Averaged capacitance changes (bold lines) and amperometric
charge traces (thin lines) were normalized to their respective values 1 s after the uncaging flash to compare the kinetics of burst release. Ac, Ad, For the burst release component, mean values for
release amplitudes A, and A, as well as the corresponding time constants 7, and 7y,,, are shown. Further, the mean release rate for the linear, sustained component of secretion is shown
(lower right). B, Characterization of secretion in Snap-25 " chromaffin cells expressing SN25A S2-N2A (blue, n = 25; control: gray, n = 28). Panel organization as in A. (Figure legend continues.)
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lates with biochemical data showing a decreased binding between
syt-1 and t-SNARE dimers. We therefore suggest that D '°® and
E'7° contribute to a critical negative charge density in the central
region of the SNARE complex, which allows syt-1 to interact with
SNAP-25 to mediate fusion triggering. However, we cannot ex-
clude a secondary function of these residues that could explain
the stronger secretion phenotype compared with SN25A S1-3A.

Negative charges in the C-terminal half of S2 stabilize

the RRP

Zhang et al. (2002) proposed that a quartet of acidic amino acids
(D72, D'°, D'*, D'??) in S2 may interact with the C2A domain
of syt-1ina Ca*"-dependent fashion. Using SNAP-25 isoform B,
whose expression is developmentally upregulated in postnatal
brain (Bark et al., 1995), the authors showed that mutation of this
acidic motif reduced release in PCI12 cells. To investigate the
involvement of these residues in fast exocytosis, we generated
and functionally characterized an alanine substitution mutant
(D'72A, D'°A, D'%¢A, D'’°A) in Snap—25_/_ chromaffin cells.
We introduced this mutation in SNAP-25 isoform A (denoted
“SN25A S2-C4A”) (Fig. 1A), as this splice variant constitutes the
endogenous isoform in chromaffin cells (Bark et al., 1995). The
SN25A S2-C4A produced aberrant SNARE complexes, which in
the presence of SDS ran as a smear above and possibly intermixed
with the syntaxin-1 band (Fig. 1Bb, right part of gel, asterisk). To
demonstrate that SN25A S2-C4A nevertheless forms a ternary
SNARE complex, we performed a pull-down experiment with
GST-synaptobrevin-2. Indeed, SN25A S2-C4A formed a com-
plex with synaptobrevin-2 in the presence but not in the absence
of syntaxin-1 (Fig. 1Bd). Thus, SN25A S2-C4A forms a SNARE
complex, which is less SDS-resistant because of a change in phys-
icochemical properties (Fig. 1Bb). In pull-down experiments, ac-
ceptor complexes containing SN25A S2-C4A showed strong
Ca**-independent association with GST-C2AB (Fig. 1C), sug-
gesting that constitutive syt-1 X t-SNARE interactions persists
with this mutant.

Upon expression in Snap-25~"" chromaffin cells, SN25A S2-
C4A considerably reconstituted secretion, resulting in a total
AC,, of 284 = 37 fF (n = 26; controls, 382 * 45 {F, n = 32) (Fig.
3C). A kinetic analysis yielded unchanged time constants indicat-
ing that fusion triggering is largely unaffected by the mutation
(SN25A S2-C4A, 7, = 18.5 = 1.4 msand 7y, = 148.0 = 24.1
ms; controls, 7, = 17.6 £ 1.7 ms and 7., = 128.7 = 14.8 ms;
unpaired Student’s ¢ test: p = 0.7129 and p = 0.4871) (Fig. 3Cc).
However, we found a significant drop in the size of the RRP
(SN25A S2-C4A, 66.9 £ 12.5 {F; controls, 125.2 = 20.7 fF; un-
paired Student’s ¢ test: p = 0.0267), whereas the SRP remained
unaffected (SN25 S2-C4A, 87.7 + 15.3 {F; controls, 102.7 * 18.9
fF; p = 0.5526) (Fig. 3Cd). The sustained rate was unchanged
(SN25 S2-C4A, 26.0 = 3.6 fF/s; controls, 30.9 * 3.5 fF/s; un-
paired ¢ test: p = 0.3314) (Fig. 3Cd). These data show that the
quartet of acidic amino acids is not critically required for
triggering of release but may rather be involved in stabilizing
RRP vesicles.

<«

(Figure legend continued.) ~ There is a more prominent decrease in burst release compared
with SN25A S1-3A. €, Secretion properties of Snap-25""" cells expressing either wild-type
protein (gray; n = 32) or SN25A S2-C4A (green; n = 26). Panel organization as in A. No
alterations in time constants could be observed, but the fast burst component was significantly
reduced. Error bars indicate SEM. Statistical comparisons were done using Student’s  test (un-
paired, two-tailed). *p < 0.05. **p << 0.01. ***p < 0.001. n.d., not detectable.
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Isoform-dependent effects of disrupting syt-1 X

SNARE interactions

The minor release deficits in SN25A S2-C4A-expressing cells
were unexpected given that previous data from PC12 cells indi-
cated a crucial requirement for a C-terminal SNAP-25 X syt-1
interaction in fusion triggering (Zhang et al., 2002). In the case of
the SN25A S1-3A variant, despite a dramatic effect on fusion
kinetics, total AC,,, was reduced by only 35%, much less than
expected from previous PC12 cell experiments (Rickman et al.,
2006). These inconsistencies might be partially explained by dif-
ferent time scales of release measurements in PC12 and chromaf-
fin cells. However, we also realized that the two putative syt-1
interaction sites were originally identified in isoform B of
SNAP-25 (Zhang et al., 2002; Rickman et al., 2006), which differs
by nine amino acid substitutions from isoform A (Bark and Wil-
son, 1994). In chromaffin cells, SNAP-25B was reported to sup-
port 2-3 times more secretion than SNAP-25A without causing
any kinetic changes (Serensen et al., 2003), which indicated an
isoform-dependent control of the size of the primed vesicle pool
through interaction with a yet unknown factor (Nagy et al.,
2005). To investigate whether the phenotypic deviations ob-
served in this study were caused by isoform-dependent func-
tional differences, we also characterized the release properties of
the mutations in isoform B.

Indeed, the S1-3A mutation caused a much stronger release
defect when tested in the background of isoform B (Fig. 54; com-
pare Fig. 3A). Expression of wild-type SNAP-25B allowed for a
total AC,, of 490 * 75 {F (n = 32), in agreement with previous
data showing that SNAP-25B supports a larger secretory burst
(Serensen et al., 2003; Nagy et al., 2005). In contrast, SN25B
S1-3A only reconstituted release to an overall AC_, of 73 == 17 {F
(n = 30; 15% of control amplitude; unpaired ¢ test: p = 1.7 X
10 ~°), barely exceeding the secretion level of uninfected knock-
out cells (Sgrensen et al., 2003; Mohrmann et al., 2010). Thus,
total release of the SN25B S1-3A was much more reduced than in
cells expressing the corresponding SN25A mutant (SN25A S1-
3A, 216 *+ 26 fF, n = 30; unpaired ¢ test: p = 1.9 X 10 ~>) despite
the higher secretion level normally supported by isoform B. This
effect was not caused by a difference in viral SNAP-25 expression,
as all SNAP-25 variants were expressed at comparable levels in
infected cells (ANOVA: p = 0.56) (Fig. 2).

A kinetic analysis revealed that both pools of primed vesicles
were basically empty in the case of the SN25B S1-3A mutant
(SN25B S1-3A, fast burst not detectable, Ay, = 20.4 * 6.1 fF;
control, A, = 225.0 £ 35.0 fF, A, = 153.9 * 32.3 {F; unpaired
t test: p = 0.0002) (Fig. 5Ad). Thus, the SNAP-25B mutation
results in a significant reduction of the slow burst, which was not
seen in the SN25A S1-3A (Fig. 3Ad). The strong phenotype of
SN25B S1-3A might be attributed to a difference in vesicle prim-
ing and/or unpriming. Alternatively, it might reflect a depletion
of release-ready vesicles resulting from increased spontaneous
fusion. To investigate this point, we recorded spontaneous re-
lease in resting chromaffin cells by amperometry. The average
frequency of spontaneous events was not significantly different in
cells expressing wild-type SNAP-25B (SNAP-25B, 0.082 * 0.026
Hz, n = 39) or SN25B S1-3A (SN25B S1-3A, 0.043 = 0.009 Hz,
n = 39), or in cells expressing wild-type SNAP-25A (SNAP-25A,
0.103 = 0.020 Hz, n = 39; ANOVA: p = 0.106). These experi-
ments argue against a depletion of vesicle pools in SN25B S1-3A-
expressing cells but point to a difference in the priming process as
main causative.

Next, we tested the S2-N2A mutation in the context of the
SNAP-25B isoform. Again, we found that total release was more
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suppressed in cells expressing the mutant
variant of isoform B (Fig. 5B; compare
Fig. 3B), with AC,, reaching only 90 = 16
fF (n = 27; p = 0.0263 compared with
SN25A S2-N2A, unpaired t test), 19% of
the control value (461 *= 68 fF, n = 21;
unpaired ¢ test: p = 3.6 X 10 7). How-
ever, in other respects, the phenotype of
SN25B S2-N2A mirrored the results
found for the corresponding SNAP-25A
variant, including a pronounced drop in
RRP and SRP size (SN25B S2-N2A, Afast =
6.4+ 3.0fF, A, = 32.6 * 6.AfF,n=
controls, Ag,, = 274.9 = 50.4 {F, Aslow =
109.3 ® 17.4 fF, n = 21; unpaired ¢ test:
p =2.5% 1077 and p = 0.0004, respec-
tively) (Fig. 5Bd) and increases in the time
constants of release components (SN25B
S2-N2A, 7y = 29.0 = 4.3 ms, Ty, =
323.3 £ 62.2 ms; controls, T, = 13.4 =
1.3 ms, Ty, = 113.1 = 16.2 ms; unpaired
ttest p = 7.4 X 107 and p = 0.016,
respectively) (Fig. 5Bc).

We also characterized the S2-C4A mu-
tation in the context of the B isoform and
again found isoform-specific phenotypic
changes, although the overall reduction
of release was similar to SN25A S2-C4A
(75% of control) (Fig. 5C; compare Fig. 3C).
Like for the mutant SNAP-25A variant, the
size of the RRP was significantly reduced
(SN25B S2-C4A, A, = 60.8 + 17.5fF, n =
31; controls, A, = 119.0 £ 20.1 fF, n = 27;
unpaired f test: p = 0.0323), whereas the
SRP and sustained component were unaf-
fected (SN25B S2-C4A, A, = 117.5 +
27.2 fF, Ry, = 24.4 = 8.7 fF/s; controls,
Ayy, = 1524 + 303 fF, R, = 30.9 = 3.9
fF/s; unpaired ¢ test: p = 0.394 and p =
0.522, respectively) (Fig. 5Cd). However,
the kinetic analysis demonstrated a slight,
but significant, slowdown of both time con-
stants for vesicle release (SN25B S2-C4A,
Tase = 40.0 = 5.9 ms and 7, = 295.2 *
48.8 ms; controls, T, = 24.0 = 3.3 ms and

Tgow = 162.1 = 24.2 ms; unpaired t test: p =
0.015 and p = 0.016, respectively) (Fig.
5Cc), which would indicate moderately de-
layed fusion triggering in cells expressing
SN25B S2-C4A.

Our data demonstrate that amino acid
changes interfering with syt-1 binding
generally cause more severe phenotypes in
the context of SNAP-25B, which suggests
that the two isoforms engage syt-1 to a
different degree. In support of this idea,
our biochemical experiments showed that
immobilized GST-C2AB bound SNAP-
25B:syntaxin-1 complexes with almost
doubled efficiency compared with assem-
blies containing isoform A (n = 3; paired ¢
test: p < 0.05) (Fig. 1Ca,b). Furthermore,
SN25B S1-3A displayed a stronger relative
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Extended functional characterization of SNAP-25 S1-3A variants. Aa, Expression of SN25A S1-3A increased the
2*_threshold of release. A prolonged train of weak light flashes was applied to cells loaded with a calcium cage, generating a
; (top). Release was studied by capacitance measurements and amperometric recordings to determine the
threshold Ca®™ level that induces a steep increase in secretion (middle, bottom). Ab, Quantification of Ca Z+-ramp experiments
(ko+SNAP-25A,n = 21; ko+SN25A S1-3A, n = 17). B, Overexpression of SN25A S1-3A in wild-type cells slows down secretion.
Ba, Averaged traces of [Ca" ], (top), capacitance measurements (middle), and amperometric recordings (bottom) in uninfected
wild-type cells (black, n = 20) or wild-type cells expressing additional SN25A S1-3A (red; n = 21). Bb, B¢, Quantitative analysis
demonstrates functional alterations similar to the rescue phenotype (compare Fig. 34), albeit without a reduction in total release.
€, Analysis of the secretion properties of syt-7~"" cells overexpressing SN25A S1-3A (red, n = 22) compared with uninfected
* elevation (top), the average capacitance change (middle), and
amperometry (bottom). b, Cc, Kinetic analysis confirmed the absence of kinetic changes upon SN25A S1-3A overexpres-
sion. Error bars indicate SEM. Statistical comparisons were done using Student’s t test (unpaired, two-tailed). *p << 0.05.
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Figure5.  Isoform-specific alterations of phenotypes in the context of the SNAP-25B isoform. 4, Electrophysiological characterization of secretion in Snap-25 /" chromaffin cells expressing SN25B S1-3A.
Aa, Averaged traces of [Ca > ];(top), capacitance measurements (middle), and amperometricrecordings (bottom) in Snap-25 ~/~ cells expressing eitherwild-type protein (black;n = 32) orSN25B S1-3A (dark
red, n = 30).Ab, Averaged capacitance changes (bold lines) and amperometric charge traces (thin lines) were normalized to their respective values at 1s after the flash for a kinetic comparison of burst release.
Ac, Ad, Kinetic analysis presenting the mean amplitudes and time constants, as well as the average rate of sustained release. There is a dramatic loss of total release compared with the moderate phenotype of
the SN25A S1-3A variant. B, Electrophysiological characterization of secretion in Snap-25 " cells expressing SN25B S2-N2A (dark blue, n = 27; control: black, n = 21). Panel organization as in A. This mutant
variantlargely exhibited the same phenotypic features as SN25A S2-N2A. €, Analysis of secretion in SN25B S2-C4A-expressing cells (dark green, n = 31; control: black, n = 27). Panel organization asin A. There
is a significant slowdown of secretion indicated by the increase of both time constants and a decrease in Ay, which suggest an isoform-specific effect on fusion triggering. Error bars indicate SEM. Statistical
comparisons were done using Student’s t test (unpaired, two-tailed). *p << 0.05. **p < 0.01. ***p << 0.001. n.s., Not significant; n.d., not detectable.
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Figureé.

Syt-Tinteractions are essential for maintenance of an expanded primed vesicle pool in SNAP-25B-expressing cells. A, Functional analysis of secretion in uninfected wild-type cells (black,

n = 14) and cells overexpressing SNAP-25A (yellow, n = 13) or SNAP-25B (orange, n = 14). Aa, Averaged traces of [Ca*]; (top), capacitance traces (middle), amperometric currents, and
cumulative charge (bottom) after uncaging flash (arrow). Ab, Secretion measured 0—1ss after uncaging (burst) and 1-5 s after uncaging (sustained) was quantified and compared. Only SNAP-25B
overexpression caused an increase in burst release. B, Analysis of the effects of SNAP-25A (purple, n = 17) and SNAP-25B (blue, n = 18) overexpressioninsyt-1~/~ cells (uninfected, red, n = 18).
Isoform-specific alterations of secretion were abolished, but burst size was slightly increased. €, Characterization of secretionin syt-1~/~;syt-7 /"~ chromaffin cells (uninfected, red, n = 23) either
overexpressing SNAP-25A (purple, n = 23) or SNAP-25B (blue, n = 24). Error bars indicate SEM. Statistical comparisons were done using Student’s  test (unpaired, two-tailed). *p < 0.05.

**p < 0.01. n.s., not significant.

reduction in binding than SN25A S1-3A (Fig. 1Ca,b), which cor-
relates well with the stronger physiological effect of the S1-3A
mutation in the context of isoform B.

Isoform-dependent SNAP-25 X syt-1 interactions determine
primed vesicle pool size

SNAP-25B developmentally succeeds SNAP-25A as the predom-
inant Q,.-SNARE in neurons (Bark et al., 1995), which results
in a developmental reshaping of synaptic release properties
(Delgado-Martinez et al., 2007; Scullin et al., 2012). As men-
tioned above, SNAP-25B expression increases the size of the
primed vesicle pool in chromaffin cells (Serensen et al., 2003).
Having demonstrated that syt-1 binding to SNAP-25B is en-
hanced in biochemical assays and that mutations interfering with
syt-1 interactions exhibit exacerbated phenotypes in the context
of isoform B, we hypothesized that stronger or altered syt-1 X
SNAP-25B interactions could potentially account for the in-
creased size of the primed vesicle pools.

To test this idea, we changed the prevalent SNAP-25 isoform
insyt-1""" cells, syt-1~"";syt-7~/~ cells, or wild-type chromaffin
cells by virally overexpressing SNAP-25B. In line with earlier
findings (Serensen et al., 2003), expression of SNAP-25B signif-
icantly increased burst size, whereas overexpression of SNAP-
25A was without effect (WT, 225.0 = 25.3 {F, n 14;
WT+SNAP-25A, 225.6 = 44.7 {fF, n = 13; p = 0.9905 vs WT;
WT+SNAP-25B, 390.9 * 50.2 fF, n = 14; p = 0.0066 vs WT;
unpaired ¢ test) (Fig. 6A). Strikingly, however, both isoforms
supported indistinguishable levels of secretion when overex-

pressed in syt-1~"" cells (Fig. 6B); burst size was only slightly
increased regardless of the expressed isoform type (syt-lko,
130.3 £ 12.9 fF, n = 18; syt-1ko+SNAP-25A, 191.9 = 21.4 fF,
n = 17; syt-lko+SNAP-25B, 195.8 = 32.3 fF, n = 18; unpaired ¢
test: p = 0.0166 and p = 0.0119, respectively). Because syt-7 has
been shown to mediate slow burst release in syt-1~/~ chromaffin
cells (Schonn et al., 2008; Segovia et al., 2010), we also investi-
gated its role in regulating pool size. In syt-1"""; syt-7 '~ (syt-1/
syt-7dko) cells, neither SNAP-25A nor SNAP-25B changed
residual burst release (syt-1/syt-7dko, 52.8 = 5.9 fF, n = 23;
syt-1/syt-7dko+SNAP-25B, 52.5 + 8.3 fF, n = 24; p = 0.9728 vs
dko; syt-1/syt-7dko+SNAP-25A, 45.2 = 42 {F, n = 23; p =
04464 vs SNAP-25B; unpaired ¢ test) (Fig. 6C). However, the
sustained rate was significantly increased by expression of SNAP-
25A for yet unknown reasons (syt-1/syt-7dko, 14.0 = 2.1 fF/s,
n = 23; syt-1/syt-7dko+SNAP-25A, 27.6 + 4.4 fF/s,n = 23; p =
0.0075 vs dko; syt-1/syt-7dko+SNAP-25B, 12.7 = 2.3 {F/s, n =
24; p = 0.004 vs SNAP-25B; unpaired ¢ test).

In summary, our results show that syt-1 is essential for the
SNAP-25B-mediated expansion of RRP and SRP. Removing
both calcium sensors for catecholamine secretion abolished
the effects of SNAP-25B overexpression on burst release. Tak-
ing our biochemical findings into account, these data suggest
that modulation of syt-1 X SNARE interactions by usage of
different SNAP-25 splice isoforms constitutes a physiologi-
cally important mechanism to developmentally regulate release
properties.
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Loss of acidic surface charges causes defects in vesicle docking
We recently showed that syt-1 mediates docking of chromaffin
granules via SNAP-25 interaction, likely by associating with the
t-SNARE acceptor complex (de Wit et al., 2009). Accordingly,
one might expect that docking should mainly rely on calcium-
independent SNAP-25 X syt-1 interactions. Indeed, we reported
that expression of the charge-reversal SNAP-25A D>'K, E*’K,
E**K mutation in muncl8-1 null cells could not facilitate dock-
ing, in contrast to wild-type SNAP-25A under the same condi-
tions (de Wit et al., 2009). To more directly investigate the role of
the negative surface charges in docking, we expressed SN25A
S1-3A, S2-C4A, S2-N2A, and SNAP-25B S1-3A in Snap-25~"~
cells and analyzed vesicle distributions by electron microscopy.
In line with earlier work, uninfected Snap-25~"" cells exhibited a
strongly reduced density of chromaffin granules near the plasma
membrane (Fig. 7A—C). This defect could be fully rescued by viral
expression of wild-type SNAP-25A and SNAP-25B. Although
vesicle docking was unaffected by the type of expressed SNAP-25
isoform (Fig. 7C), all three mutant variants were unable to fully
reconstitute docking in Snap-25~"" cells. Cells expressing the
SN25A S1-3A variants displayed very prominent docking defects
that were indistinguishable from the deficits observed in Snap-
2577 cells (SN25A S1-3A, 7.8 *+ 0.7 vesicles/section, n = 20;
SN25B S1-3A, 11.0 = 1.3 vesicles/section, n = 20; ko, 5.8 *= 1.1,
n = 12; ANOVA/Tukey-Kramer test: p[SN25A S1-3A vs ko] =
0.996; p[SN25B S1-3A vs ko] = 0.652) (Fig. 7C). Our analysis
also showed severe docking defects in SN25A S2-C4A- and
SN25A S2-N2A-expressing Snap-25~"" cells (Fig. 7C), but the
reconstituted level of docking was on average significantly higher
than in cells expressing SN25A S1-3A (SN25A S2-C4A, 19.0 =
1.8 vesicles/section, n = 20; SN25A S2-N2A, 17.0 * 2.2 vesicles/
section, n = 20; p[SN25A S1-3A vs SN25A S2-C4A] = 0.001;
PI[SN25A S1-3A vs SN25A S2-N2A] = 0.015). Thus, all three
groups of acidic surface charges play a role in the vesicle docking
mechanism. Because vesicles that fuse upon physiological stimuli
only amount to a fraction of the docked pool, a strict correlation
between morphological and functional deficits cannot be ex-
pected. Nevertheless, the absence of isoform-dependent mor-
phological differences (both between native and mutated
proteins) confirms that deviating release deficits reflect down-
stream differences in priming and fusion.

Discussion
Syt-1 interaction sites in SNAP-25
We used rescue experiments and fast measurement techniques to
evaluate the mechanistic role of putative syt-1 interaction sites in
SNAP-25. This approach is instrumental in verifying whether
elimination of possible interaction sites results in the expected
secretion phenotype in living cells (i.e., a slowdown of release),
which mimics and occludes the effect of removing syt-1. Our
experiments provided evidence that a central group of acidic
amino acids (D®', E®*, E®®) in SNAP-25A is essential for syt-1-
mediated fusion triggering. This conclusion is supported by sev-
eral findings: (1) GST-pull-down experiments indicated less
binding of the syt-1 C2AB-domain to t-SNARE complexes har-
boring the central layer mutations; (2) rescue experiments with
the mutant protein profoundly decreased release rates for burst
secretion phenocopying a syt-1 deficiency and (3) increased the
threshold for Ca®"-dependent release; and (4) overexpression of
SN25A S1-3A in syt-1~ 7~ cells did not exacerbate the secretion
phenotype.

Our results are in agreement with work by Rickman et al.
(2006) who used lysine substitutions to disable the same motif.
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Here, we used alanine substitutions to avoid unspecific effects of
alocal charge inversion. Pull-down experiments with the SN25A
S1-3A variant demonstrated a significant reduction of retained
t-SNARE dimers on immobilized C2AB-domains, albeit to a
lesser extent than for the corresponding lysine substitutions. Ob-
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viously, cooperativity effects might contribute to the observed
clear-cut secretion phenotype, or a fraction of syntaxin:SN25A
S1-3A dimers might engage in mechanistically unproductive
syt-1 binding in vitro. Finally, it should be noted that, although
SNARE complex assembly with these mutants was almost normal
invitro (Fig. 1Ba), SNARE complex assembly in vivo occurs in the
presence of Munc18-1, Munc13/CAPS, and complexins, which
could involve other interactions with the central charged region.

Our data indicate that the central syt-1 interface also extends
to S2 of SNAP-25, specifically to residues D '°® and E'7°, which
are located close to layer 0. In support of this notion, mutation of
D'%® and E'7° resulted in the following: (1) a weakened binding
of t-SNARE dimers to syt-1 in pull-down experiments, (2) loss of
the fast burst of secretion, (3) an increased Ca>" threshold for
secretion, and (4) an isoform-dependent effect, with a stronger
phenotype in the context of SNAP-25 isoform B. However, as
with the S1-3A mutation, we cannot exclude that the acidic res-
idues might mediate additional syt-1-independent functions.
The comparably strong decrease in total primed pool size in
SN25A S2-N2A-expressing cells may indicate such a further role.
Indeed, Chen et al. (2005) proposed that E'7° is required for
normal core complex assembly by interacting with Q'7* in the
polar layer 0, and interference with assembly of layer 0 is known
to compromise vesicle priming (Sgrensen et al., 2006). Neverthe-
less, we found almost normal SNARE complex formation with
the SN25A N2A mutant (Fig. 1Bb). Although other cellular fac-
tors may also functionally interact with the acidic motif, the ex-
istence of a larger central syt-1 binding interface formed by
residues in S1 and S2 would be in accord with recent single mol-
ecule FRET measurements (Choi et al., 2010).

Alanine substitutions of acidic residues in the C-terminal mo-
tif (D'72, D'7%, D%, D'%?) of SNAP-25A did not significantly
delay fusion triggering. Rather, the SNAP-25A mutation caused a
moderate reduction of RRP size, which would be attributed to a
defective SRP-to-RRP conversion (Serensen, 2004). This might
in principle be caused by a defective syt-1 interaction, but the
mutation did not compromise syt-1 binding in C2AB pull-down
reactions (Fig. 1C). However, the different properties of the
SNARE complex containing this variant (Fig. 1Bb) might cause
association with C2AB or other cellular factors in an abnormal
configuration. When introduced into SNAP-25 isoform B, the
quadruple mutation caused mild kinetic deficits in addition to
a RRP reduction. Overall, our data suggest that the C-terminal
acidic residues only serve a subsidiary role in the triggering
mechanism.

SNAP-25 X syt-1 interactions depend on isoform type and
determine priming stability
The two putative syt-1 interaction sites were first identified in
SNAP-25 isoform B (Zhang et al., 2002; Rickman et al., 2006),
which prompted us to test the effects of the mutations in both
isoforms. Surprisingly, we found that, although SNAP-25B sup-
ports a larger secretory burst than SNAP-25A, the mutations in-
vert the potency rank order, so that the SNAP-25B mutations
support even less and/or slower secretion than mutant SNAP-
25A. Thus, we also investigated the effect of overexpressing
SNAP-25B in sytI /" cells. Strikingly, we found that the larger
secretion amplitude supported by SNAP-25B is confined to syt-
1-expressing cells and that SNAP-25B interacts stronger with
syt-1 in pull-down experiments, indicating that SNAP-25B owes
its larger secretion amplitude to syt-1 interactions.

How can SNAP-25B X syt-1 interactions mechanistically reg-
ulate the size of the primed vesicle pool? The loss of RRP and SRP
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in cells expressing SN25B S1-3A indicates that central syt-1 X
SNARE interactions are crucial for the control of pool size. As the
SN25B S1-3A phenotype is not caused by chronic pool depletion,
the defect likely reflects the loss of a syt-1 X SNAP-25B-
dependent stabilizing effect on primed vesicles. Moreover, both
SNAP-25 isoforms support a similar sustained rate of release (Fig.
6A), indicating similar forward priming rates (at high [Ca®"],).
Therefore, the difference likely is in the unpriming rate, which
must be higher for SNAP-25A. This aligns with the increased
syt-1 X SNAP-25B association seen in biochemical experiments,
indicating that syt-1 X SNAP-25 interactions play a decisive role
for determining priming stability and thereby the size of the
primed vesicle pool. The reason for the stronger syt-1 X SNAP-
25B interaction might either be an additional interaction of syt-1
with the side chains of the SNAP-25B-specific residues or a
slightly higher intrinsic stability of SNAP-25B-containing
SNARE complexes (Nagy et al., 2005), which could stabilize the
interaction surface. These options need to be addressed in future
studies.

Syt-1 X SNAP-25 interactions in vesicle docking
All mutants exhibited a general inability to rescue vesicle docking.
The S1-3A mutation caused the most severe docking phenotype
and was unable to reconstitute docking over the level found in
Snap—25_/ ~ cells, whereas SN25A S2-N2A and SN25A S2-C4A
restored docking at intermediate levels. Previous experi-
ments have demonstrated that SNAP-25-mediated docking (in
Munci8-1""" cells) is impaired by mutations in the central hy-
drophobiclayers or deletion of the C-terminal 26 amino acids (de
Witetal., 2009). Thus, docking deficits are more widespread than
effects on fusion triggering. Indeed, the relationship between
docking and functional priming is complicated: some “dead-
end” docked vesicles are unable to prime and fuse (Verhage and
Serensen, 2008), whereas other vesicles fuse without traversing
through a detectable docked state (Kishimoto et al., 2005; Degt-
yar et al., 2007). In general, however, docking represents a mech-
anistic step preceding fusion, and a ternary complex consisting of
syntaxin, SNAP-25, and syt-1 seems to be required for docking in
chromaffin cells (Toonen et al., 2006; de Wit et al., 2009).
Because mutation of all three groups of negative charges com-
promised docking, it might be concluded that syt-1 X SNARE
interactions during docking are less strictly defined than those in
later mechanistic steps and even involve weak interactions not
detectable in pull-down assays. If docking is mostly based on
electrostatic interaction, overall charge density of the t-SNARE
complex might be a critical determinant for syt-1 interactions.
This would suggest a model where initial transient and promis-
cuous interactions between relatively large numbers of SNAREs
and synaptotagmins govern attachment to the plasma membrane
(Knowles et al., 2010), leading gradually to more specific interac-
tion modes, and concluding in a highly defined primed vesicle
state, which might involve only a few ternary SNARE complexes
(Mohrmann and Serensen, 2012). This idea of dynamic interac-
tions is supported by single-molecule FRET data and electron
paramagnetic resonance experiments, which showed multiple in-
teraction modes between syt-1 and SNAREs (Choi et al., 2010;
Vrljic et al., 2010; Lai et al., 2011).

The secretion mechanism: how to couple a calcium sensor
onto SNAREs

A comparison of mutations in the inner layers of the SNARE
complex (Serensen et al., 2006; Walter et al., 2010) to mutations
of acidic surface motifs allows inferences about the mechanism of
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calcium coupling. Generally, mutating the inner layers in the
N-terminal part or the middle of the SNARE complex only affects
vesicle priming, but not triggering. However, mutations of neg-
ative surface charges around the middle of the complex delay
fusion kinetics (this study), much like mutations within the last
couple of C-terminal layers (Sorensen et al., 2006; Walter et al.,
2010). This pattern of effects is consistent with a mechanism, in
which the N-terminal part of the SNARE complex forms a rela-
tively stiff rod during priming. Triggering would involve the in-
teraction of syt-1 with this structure to allow for subsequent
C-terminal assembly. This is in agreement with the notion that
syt-1 and complexin arrest the SNARE complex in a configura-
tion that is incompatible with C-terminal assembly (Giraudo et
al., 2009; Maximov et al., 2009; Kaeser-Woo et al., 2012). The
clamp will be lifted by Ca**-binding to syt-1, allowing for
C-terminal SNARE complex assembly. During this process, syt-1
might dissociate from the SNARE complex or, alternatively, it
might stay bound, producing a quaternary complex (Dai et al.,
2007), wherein syt-1 and SNAREs cooperate to fuse the
membranes.
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