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Retinoic Acid Induces Blood-Brain Barrier Development
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The blood-brain barrier (BBB) is crucial in the maintenance of a controlled environment within the brain to safeguard optimal neuronal
function. The endothelial cells (ECs) of the BBB possess specific properties that restrict the entry of cells and metabolites into the CNS. The
specialized BBB endothelial phenotype is induced during neurovascular development by surrounding cells of the CNS. However, the
molecular differentiation of the BBB endothelium remains poorly understood. Retinoic acid (RA) plays a crucial role in the brain during
embryogenesis. Because radial glial cells supply the brain with RA during the developmental cascade and associate closely with the
developing vasculature, we hypothesize that RA is important for the induction of BBB properties in brain ECs. Analysis of human
postmortem fetal brain tissue shows that the enzyme mainly responsible for RA synthesis, retinaldehyde dehydrogenase, is expressed by
radial glial cells. In addition, the most important receptor for RA-driven signaling in the CNS, RA-receptor 3 (RARp), is markedly
expressed by the developing brain vasculature. Our findings have been further corroborated by in vitro experiments showing RA- and
RARB-dependent induction of different aspects of the brain EC barrier. Finally, pharmacologic inhibition of RAR activation during the
differentiation of the murine BBB resulted in the leakage of a fluorescent tracer as well as serum proteins into the developing brain and
reduced the expression levels of important BBB determinants. Together, our results point to an important role for RA in the induction of

the BBB during human and mouse development.

Introduction

The vascular system of the CNS arises early in embryogene-
sis through the invasion of vascular plexus-forming angioblasts
into the head region (Risau and Wolburg, 1990), followed by
invasion of the CNS by vascular sprouts from the perineural vas-
cular plexus, extending toward the ventricles (Greenberg and Jin,
2005). Peripheral vascular system development has been de-
scribed in detail previously, and various signaling systems taking
part in vasculogenesis, angiogenesis, and differentiation have
been uncovered (Jain, 2003; Aird, 2007a,b). However, few reports
exist on developmental CNS-specific cues for the induction of the
specialized endothelial cell (EC) phenotype found at the blood—
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brain barrier (BBB). This specialized EC phenotype includes the
presence of interendothelial tight junctions, transporters, and ef-
flux systems, together ensuring a CNS environment that favors
proper neuronal function (Pachter et al., 2003; Abbott et al.,
2010).

CNS cells surrounding the endothelial layer are thought to
provide angiogenic ECs with the appropriate signals for BBB
maturation (Stewart and Wiley, 1981), as well as signals required
for maintenance of the mature BBB phenotype. During CNS de-
velopment, radial glial cells provide structural and trophic cues
(Chanas-Sacre et al., 2000) and differentiated astrocyte end-feet
projections provide an almost complete enveloping of the brain
microvasculature in adult vertebrates (Mathiisen et al., 2010).
The search for CNS-specific signals that affect the BBB phenotype
in brain ECs has implicated astrocytes and glial progenitors as
inducers of a specific BBB-phenotype in brain EC (Abbott et al.,
2006).

Radial glial cell-derived retinoic acid (RA) is crucial in provid-
ing the brain with the correct developmental pattern during neu-
rogenesis (Kornyei et al., 2007), and RA has complex and
pleiotropic functions during vertebrate development (for review,
see Niederreither and Dollé, 2008). However, the role of RA as a
developmental cue in the CNS vasculature has remained unin-
vestigated. RA is a retinol-derived lipophilic metabolite, synthe-
sized by retinaldehyde dehydrogenases (RALDH1-RALDH3),
and one of the first described powerful morphogens during de-
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velopment. RA signaling has been implicated in cell fate determi-
nation for a wide range of cells in developing mammals. RA
signaling can only occur when retinol, bound to retinol binding
protein (RBP), is taken up from the circulation. Uptake of RBP-
bound retinol occurs via the membrane-bound protein stimu-
lated by retinoic acid gene 6 (STRA6) (Kawaguchi et al., 2007).
Retinol is oxidized to retinaldehyde and further oxidized to reti-
naldehyde by RALDH enzymes, leading to freely diffusible RA,
mainly acting in a paracrine manner. Target cells that express the
nuclear RA receptors a, 3, or v (RARa/f/7y) and the scaffolding
retinoid X receptors «, B, or, y (RXRa/B/7) react to RA by the
heterodimerization of RAR and RXR and subsequent transcrip-
tion of genes with an upstream RA response element (RARE) (for
review, see Duester, 2008).

In the current study, we set out to investigate the role of RA in
BBB development. We provide insight in the spatiotemporal ex-
pression pattern of RALDH and RARB during human CNS de-
velopment and show that RA mediates various aspects of brain
ECs, both in vitro and in vivo.

Materials and Methods

Cell culture. The human brain EC line hCMEC/D3 (Weksler et al., 2005)
was provided by Dr. P.-O. Couraud (Institut Cochin, Université Paris
Descartes, Paris, France) and grown in endothelial cell basal medium-2
supplemented with human EGF, hydrocortisone, GA-1000, FBS, VEGF,
human fibroblast growth factor (FGF)-B, R3-IGF-1, ascorbic acid, and
2.5% fetal calf serum (Lonza). To obtain astrocyte cultures, fetal tissue
(cerebral hemispheres) was obtained at 17-23 weeks of gestation follow-
ing Canadian Institute of Health Research-approved guidelines. Astro-
cyte isolation has been described previously (Wosik et al., 2007). Human
fetal astrocytes were used between P2 and P4, and cultures were deter-
mined to be >90% pure, as determined by glial fibrillary acidic protein
(GFAP) immunostaining. Astrocyte-conditioned media (ACM) was
harvested once a week from confluent flasks of human fetal astrocyte
cultures.

Generation of recombinant hCMEC/D3 RAR3 knock-down cell lines. To
establish knockdown of RARPB, we used a vector-based shRNA tech-
nique. shRNA was purchased from Sigma. Recombinant lentiviruses
were produced by cotransfecting subconfluent human embryonic kidney
293T (HEK 293T) cells with the shRNA lentivirus expression plasmid
and packaging plasmids (pMDLg/pRRE and pRSV-Rev) using calcium
phosphate as a transfection reagent. HEK 293T cells were cultured in
DMEM supplemented with 10% FCS and 1% penicillin/streptomycin, in
a37°Cincubator with 5% CO,. The RARB-specific sShRNA sequence was
5'-CTGGGTAAATACACCACGAAT-3'; nontargeting shRNA control
vector was bought from Sigma. Infectious lentiviruses were collected 48 h
after transfection. The supernatant was centrifuged to remove cell debris
and stored at —80°C. hCMEC/D3 cells were transduced with the lentivi-
rus containing shRNA, and, after 48 h, cells stably expressing the shRNA
containing construct were selected by puromycin-containing (0.2 X
10 77g/m1) selection medium. After 48 h of selection, cells were main-
tained in normal medium.

Donor brain material. Immunohistochemistry was performed on tis-
sue sections obtained from the brain collections of the Department of
Neuropathology of the Academic Medical Center, University of Amster-
dam (Amsterdam, The Netherlands). Parental consent was obtained for
the use of brain tissue and for access to medical records for research
purposes. The tissue was obtained from spontaneous or medically in-
duced abortions, with appropriate parental written consent for brain
autopsy. We also obtained normal-appearing control cortex at autopsy
from two young cases (3 months and 7 months), without a history of
seizures or other neurological diseases. All autopsies were performed
within 12 h of death. Clinical data are presented in Table 1. Ten percent
buffered formalin-fixed, paraffin-embedded tissue blocks were sectioned
at 6 wm and mounted on organosilane-coated slides (Sigma) for immu-
nohistochemistry. Frozen tissue blocks were sectioned at 6 um and
mounted on Superfrost slides (Microm).
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Table 1. Clinical information regarding the brain tissue used in this study

Brain Postmortem  Fixation Reason for termination

Age Sex  weight  delay (h) time (weeks)  of pregnancy

10gw M ND ND 3 Spontaneous abortus
16 gw F 15¢ 7 3 Spontaneous abortus
20 gw F g 6 Frozen Heart defect

22 qw M 249 6 3 Spontaneous abortus
29gw M 131¢ 8 3 Heart defect

3months M 572¢ 7 3

7months M 962 g 9 3

ND, Not determined or available; gw, gestational week; M, male; F, female.

Animal experiments. To achieve specific disturbance of RA signaling in the
developing embryo, pregnant C57BL/6 mice (Charles River Laboratories)
were treated with validated in vivo RAR antagonist BMS493 [4-[(1E)-2-[5,6-
Dihydro-5,5-dimethyl-8-(2-phenylethynyl)-2-naphthalenyl]ethenyl]ben-
zoic acid] (Wendling et al., 2000) (5 mg/kg; Tocris Bioscience) or vehicle
(DMSO) at 1:10 in nut oil. Hereto, mice were mated overnight, and the day
of vaginal plug detection was marked as E0.5. Treatment was given by oral
gavage twice daily, in 10-12 h intervals, and started at E10.5, during 6 con-
secutive days. At gestational day 16.5, the mice were killed, and the embryos
were isolated from the uterus. To assess the permeability of the embryonic
BBB, Cadaverine—Alexa Fluor 555 (5 mg/ml; Invitrogen) was injected intra-
venously 1 h before embryo isolation. Embryos were immediately fixed in
4% paraformaldehyde for 1 h to prevent diffusion of the tracer. For quanti-
tative analysis of gene expression levels, embryonic brains were isolated and
RNA isolation was performed using Trizol (Invitrogen) according to the
protocol of the manufacturer. Downstream cDNA synthesis was performed
as described below. For immunohistochemical analysis of protein expres-
sion, whole embryos were cryoprotected with 30% sucrose in PBS, embed-
ded in 1.5% agarose, and snap frozen in liquid nitrogen. Whole embryos
were cryosectioned as described above. Immunohistochemical analysis of
tight junction protein zona occludens 1 (ZO-1), the endothelial marker
platelet/endothelial cell adhesion molecule 1 (PECAM1), mouse IgG as an
endogenous leakage marker, and neuronal nucleus marker (NeuN) are de-
scribed under immunohistochemistry. The Animal Experiments Commit-
tee of the Free University Medical Center approved all of the experiments
described in this study.

Immunohistochemistry. For single labeling of RARB in human tissue
sections, sections were deparaffinized and treated with 0.3% H,O, in
methanol for 20 min to reduce endogenous peroxidase activity. Antigen
retrieval was achieved by incubating the sections at 100°C in citrate buffer
(10 mm in PBS, pH 6.0) for 10 min. After washing with PBS, sections were
treated with 0.1% saponin in PBS, washed, and subsequently incubated
with primary antibody, polyclonal rabbit aRAR3 (Abcam), in PBS over-
night at 4°C. Slides were then washed and incubated with Envision+
Dual link reagent (Dako) for 30 min, followed by visualization with the
peroxidase substrate diaminobenzidine (Dako). After a short rinse in tap
water, sections were incubated with hematoxylin for 1 min and exten-
sively washed with tap water for 10 min. Finally, sections were dehy-
drated with ethanol, followed by xylene and mounted with Entellan
(Merck).

Fluorescent immunohistochemistry for RARS was performed using
polyclonal rabbit «RARB (Abcam) and monoclonal mouse a-PECAM1
(Dako). Tissue sections were stained as described above for single label-
ing; only peroxidase activity quenching was omitted, and all incubation
steps were performed in the presence of 1% normal serum of the second-
ary antibody host (goat or donkey). Secondary antibodies used were goat
a-mouse IgG—Alexa Fluor-488, donkey a-rabbit IgG—Alexa Fluor-555,
and streptavidin—Alexa Fluor 488 (Invitrogen). After incubation with
appropriate secondary antibodies, slides were washed and embedded in
vinol mounting medium supplemented with 0.4% 4’,6-diamidino-2-
phenylindole (Invitrogen) to stain nuclei.

Immunohistochemistry on mouse embryonic sections was performed
as described above with the following antibodies: rat a-mouse 1gG
biotinylated (Vector Laboratories); rat a-PECAM-1-Alexa Fluor-647
(Dako); rabbit a-NeuN (Millipore); and rabbit a-ZO-1 (Invitrogen).
Fluorescence analysis was performed with a Leica DM6000 microscope
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equipped with Leica advanced fluorescence software. Quantification of
immunoreactivity was performed using NIH Image] software by setting a
threshold value of fluorescence above the background and calculating the
area above threshold per micrograph. At least five different micrographs
per group were used in the analysis.

For RALDH staining in the developing human cortex, cryosections
were air dried and fixed in acetone for 10 min. Sections were incubated as
described above, overnight at 4°C with primary antibodies: mouse
a-GFAP-Cy3 (Sigma); rabbit tRALDH1/RALDH2 (van de Pavert et al.,
2009) (Abcam); and mouse a-vimentin, clone V9 (Millipore). After each
incubation with a primary antibody, sections were washed and subse-
quently incubated with the appropriate secondary antibodies [donkey
a-rabbit IgG—Alexa Fluor-488 and goat a-mouse IgG—Alexa Fluor 647
(Invitrogen)], washed, and embedded as described above. Confocal flu-
orescence analysis was performed with a Leica TCS SP2 confocal micro-
scope equipped with Leica confocal software.

Immunocytochemistry. Fluorescent immunocytochemistry was per-
formed as described for fluorescent immunohistochemistry, except for
fixation method. Cultures of recombinant RARSB or scrambled shRNA
hCMEC/D3s were grown to confluence in eight-well u-slides (Ibidi),
washed with ice-cold PBS, and fixed in 4% paraformaldehyde in PBS for
10 min at 4°C. Fixed cells were shortly permeabilized with 0.1% Triton
X-100 in PBS, washed, and incubated overnight at 4°C with primary
antibodies [mouse a-VE-cadherin (BD Biosciences) and rabbit a-ZO-1
(Invitrogen)], washed, and subsequently incubated with appropriate sec-
ondary antibodies: donkey «-rabbit IgG-Alexa Fluor-488 and goat
a-mouse IgG-Alexa Fluor-647 (Invitrogen). Actin filaments were visu-
alized with rhodamine phalloidin (Invitrogen).

Electric cell-substrate impedance sensing assay. ECISTM model 1600R
(Applied BioPhysics) was used to measure the transendothelial electric
resistance (TEER) of human hCMEC/D3 cell monolayers. A measure
previously described to have a close inverse correlation with small-
molecule permeability (Santaguida et al., 2006). A total of 100,000 cells
were seeded onto each well of an 8W10+ electric cell-substrate imped-
ance sensing (ECIS) array (Ibidi) coated with collagen, and impedance
was measured at multiple frequencies in real time. Cells were either
treated with a 1:1 mixture of ACM or control medium and EGM-2 con-
taining 2.5% FCS, with or without 5 um RAR antagonists (Kagechika,
2002) LE135 (Tocris Bioscience) and LE540 (Wako Pure Chemicals)
immediately after seeding. For ECIS measurements with an RAR agonist,
cells were treated with indicated concentrations of RA (Sigma) or vehicle
(100% EtOH) directly after seeding. For specific RARPB activation, the
indicated concentrations of RARB agonist and RARa/y antagonist
BMS453 (Tocris Bioscience) or vehicle (100% DMSO) were added di-
rectly after seeding. BMS453 has confirmed activity in vitro (Germain et
al., 2004) and in vivo (Matt et al., 2003). All ECIS measurements were
furthermore subjected to a mathematical model to calculate the compo-
nent of resistance attributed to cell—cell interactions, called barrier resis-
tance (Rb), and the component derived from average membrane
capacitance of cells covering the electrode (membrane capacitance) (Gi-
aever and Keese, 1991).

Real-time quantitative PCR. Gene expression analysis was performed on
confluent monolayers of h(CMEC/D3 cells in 24-well microplates (Corning)
treated with either 5 um RA for various lengths of time or confluent mono-
layers of recombinant hCMEC/D3 cell lines expressing either RARB shRNA
or scrambled shRNA. mRNA was isolated using an mRNA capture kit
(Roche) according to the instructions of the manufacturer. cDNA was syn-
thesized with the Reverse Transcription System kit (Promega) following the
guidelines of the manufacturer, and RT-PCR was performed as described
previously (Garcia-Vallejo et al., 2004). Primer sequences used are as follows,
describing the forward and reverse sequence, respectively: human: CDH5,
TGACGTGAACGACAACTGGC and GACGCATTGAACAACCGATG;
ABCB1, GTCCCAGGAGCCCATCCT and CCCGGCTGTTGTCTCCAT
A; OCLN, CCCGTTTGGATAAAGAATTGG and TCAAACAACTTGGC
ATGAGC; VEGF-A, CATCTTCAAGCCATCCTGTGTG and GCATGGTG
ATGTTGGACTCCT; TJP-1, CCCGAAGGAGTTGAGCAGGAAATC and
CCACAGGCTTCAGGAACTTGAGG;SLC2A1,GCAGCAGCCTGTGTAT
GCCand AAGGCCGTCTTGACGATACC; RARB, GCAGAGCGTGTAAT
TACCTTGAAandGTGAGATGCTAGGACTGTGCTCT;RARA,AGATTA
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CTGACCTGCGAAGC and CCCTCTGAGTTCTCCAACATTTGC; RARG,
CCTTGTCTTTGCCTTTGCTG and CAGGTCCATGCGGTCTC; and
GAPDH, CCATGTTCGTCATGGGTGTG and GGTGCTAAGCAGTTGG
TGGTG; murine: Cdh5, CAGCAACTTCACCCTCATAAAC and TCCCGA
TTAAACTGCCCATAG; Tjp-1, AGCGAATGTCTAAACCTGGG and TC
CAACTTGAGCATACACAGG; Abcg2, GTTACCACTGTGAGCCCTA
and TCTGTCTTGTTTGCTTCATGG; Rarb, GCCTGCAGAAGTGCTTTG
AAGT and GCTCTCTGTGCATTCCTGCTTT; Gfap, CAGACTTTCTCC
AACand CTCCTGCTTCGAGTGC; Rbfox3, ATCCTTACCATCACACCATC
G and GGAGACGGTGGAAGGTTTC; Pdgfrb, AGTGATGTCTGGTCT
and TGGCATTGTAGAACT; and Pecaml, TGGTTGTCATTGGAGTGG
TC and TTCTCGCTGTTGGAGTTCAG. Expression levels of transcripts
obtained with real-time PCR were normalized to GAPDH expression levels.
All conditions investigated were measured as quadruplicates.

Western blotting. Protein expression levels of VE-cadherin and ZO-1
were investigated in confluent monolayers of hCMEC/D3 cells grown in
six-well microplates (Corning), treated with indicated concentrations of
RA or vehicle for 48 h. Cells were washed with ice-cold PBS and lysed in
cell lysis buffer (Cell Signaling Technology) containing complete pro-
tease inhibitor cocktail (Roche) at 4°C for 30 min. Cell lysates were then
taken up in SDS sample buffer (100 mm Tris-HCI, pH 6.8), 4% SDS, 20%
glycerol, and 5% [B-mercaptoethanol) and heated to 95°C for 5 min.
Lysates were then resolved on SDS-PAGE in triplicate, blotted, and
incubated overnight with the primary antibodies mouse «-VE-
cadherin (Santa Cruz Biotechnology), rabbit a-ZO-1 (Invitrogen),
and goat a-Actin (Santa Cruz Biotechnology) in Odyssey blocking
buffer (LI-COR) diluted 1:1 in PBS, after initial blocking with block-
ing buffer for 1 h at room temperature. Primary antibodies were
detected and quantified by incubation with appropriate IRDye sec-
ondary antibodies (at room temperature for 1 h in blocking buffer)
and the Odyssey infrared imaging system (LI-COR). Actin quantifi-
cation was used to correct for total protein loading.

Promoter—reporter constructs. The lentiviral vector pRRL-cPPT-
CMV-X2-PRE-SIN (kindly provided by Dr. J. Seppen, Department of
Experimental Hepatology, Academic Medical Center, Amsterdam, The
Netherlands) was modified for use as a carrier of promoter—reporter
cassettes as described previously (Fontijn et al., 2008). The reporter plas-
mid pGL-RARE-luciferase containing trimerized RAREs in front of the
firefly luciferase gene was described previously (Weston et al., 2002).
RARE promoter—reporter cassettes were transferred from pGLRARE-
luciferase as NotI-Sall fragments containing successively a synthetic pA/
transcriptional pause site, a RARE promoter fragment, the firefly
luciferase reporter gene, and the simian virus 40 (late) polyadenylation
signal. The resulting lentiviral RARE promoter—firefly luciferase reporter
vector was then packaged, in the presence of a small amount (5% w/w) of
the herpes simplex virus thymidine kinase Renilla luciferase lentiviral
vector (Fontijn et al. 2008), using HEK 293T cells. Virus-containing
supernatants were used for transductions, and luciferase activities were
measured after at least 2 d, after 24 h of ACM exposure as described for
the ECIS experiments using the dual luciferase system (Promega). Renilla
luciferase levels were used to normalize firefly luciferase activity.

Statistical analyses. Data analysis was performed using GraphPad
Prism software (version 5.01; GraphPad Software). Results are shown as
mean * SEM, and statistical analysis was performed with either un-
paired, two-tailed Student’s # test or with one- or two-way ANOVA and
subsequent Bonferroni’s post hoc test correction. The applied test for each
calculated value is described in the figure legends.

Results

Human fetal astrocytes increase brain endothelial barrier
formation by a RA signaling pathway

To gain insight into RA production in the CNS, we first analyzed
the expression of the RA synthesizing enzyme RALDH1/2 in de-
veloping and neonatal human brain material. Immunohisto-
chemistry analysis of RALDHI1/2 showed a distinct radial
expression profile during human cortical development (Fig. 1A).
Colocalization studies with antibodies against the radial glial cell
markers vimentin and GFAP revealed ample expression of
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Figure1. Fetal astrocyte-derived RA increases the resistance of brain ECs. A, Immunohistochemical analysis in human brain showing the expression of RALDH (green), GFAP (red), and vimentin

(blue) infetal cortex at 20 weeks of gestation. Note that RALDH-positive structures mostly overlap with both GFAP and vimentin-positive cells (arrows). RALDH-positive structures negative for GFAP
and vimentin were also detected (arrowheads). Scale bar, 50 wm. B, Rb (Ohms per square centimeters) of hCMEC/D3 cells during stimulation with fetal astrocyte factors is increased over time
compared with control medium. * reflect significant differences compared with control (2-way ANOVA). ¢, Quantification of maximal Rb reached during an experiment similar to B. The addition of
RAR antagonists LE135 and LE540 (ACM RARI) decreases the barrier-enhancing effect of fetal astrocyte factors on hCMEC/D3s (ACM), whereas vehicle-treated cells (Ctrl RARi) show no significant
decrease compared with the control condition (Ctrl) (1-way ANOVA). D, Quantification of RARE-luciferase activity in hCMEC/D3 cells after ACM stimulation compared with control medium (Ctrl). The
increase in luciferase activity is blocked by addition of RAR antagonists LE135 and LE540 (ACM + RARi). Addition of RAR antagonists to control medium-treated cells (Ctrl RARi) has no effect on
luciferase activity (1-way ANOVA). *p << 0.05; ***p << 0.001; n = 4 for all experimental conditions.

RALDH1/2 in radial glial cells during development. The presence
of RALDH1/2 was not fully restricted to radial glial cells, sugges-
tive of RA-synthesizing capacity for other cell types, such as neu-
ronal precursors as well. To investigate the role of RA in the
communication between fetal astrocytes and ECs of the BBB, we
next established the effect of soluble fetal astrocyte factors on one
of the hallmark characteristics of brain ECs, the formation of a

tight barrier. For this, hCMEC/D3s were seeded at confluence,
and TEER was measured over time. Continuous exposure of the
endothelial monolayers to ACM significantly increased TEER
levels compared with unconditioned medium (maximum of
258.0 = 63.7 Q; n = 4). To investigate the different components
contributing to TEER, Rb was calculated and plotted over time.
Fetal astrocyte factors also induced a significant increase in Rb
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levels (maximum of 1.1 = 0.1 Q/cm?%n = 4; Fig. 1B), whereas cell
spreading and proliferation were unaffected (data not shown).
This indicates that the barrier-enhancing effect of fetal astrocyte
factors is mainly attributable to increased function of interendo-
thelial junctions.

To test our hypothesis that RA signaling is required for the
increase in endothelial barrier function induced by ACM, we
made use of the RAR antagonist combination LE135 and LE540
to block RAR activation by RA. The previously observed increase
of Rb formation by fetal astrocyte factors was partially blocked by
inhibition of the RARs in hCMEC/D3s (maximum of 37.34 *+
11.39% ofincrease; n = 4; Fig. 1C). Finally, to investigate whether
exposure to fetal astrocyte factors leads to the activation of an RA
signaling pathway in hCMEC/D3s, a RARE-luciferase reporter
construct was introduced into hCMEC/D3s before exposure. Ex-
posure to ACM resulted in an almost fivefold increase in endo-
thelial luciferase expression compared with control medium (Fig.
1D). Notably, the ACM-induced increase in RARE-driven lu-
ciferase expression could be completely abolished by LE135/
LE540, showing that exposure to fetal ACM results in RAR-
dependent RARE activation. Together, these results implicate RA
signaling in the barrier-enhancing effect of fetal astrocyte factors
on human brain ECs.

RA signaling in human brain ECs leads to increased barrier
formation and the expression of BBB-specific genes

To gain more insight into the RA-mediated induction of BBB
properties in hCMEC/D3s, we used various concentrations of
all-trans RA (RA) in our in vitro ECIS assay. Continuous RA
treatment resulted in a concentration-dependent increase of Rb
of a confluent monolayer hCMEC/D3s over time when com-
pared with vehicle-treated cells (Fig. 2A, maximal resistance (ar-
row): 0.1 uM, 9.8 £ 1.9% increase; 1 um, 15.4 * 2.4% increase; 5
UM, 21.0 = 2.5% increase; n = 4). Continuous treatment with 5
uM RA resulted in a 21% increase of the maximal Rb value
reached in vehicle-treated cells, whereas cell spreading and pro-
liferation were unaffected (data not shown).

The BBB phenotype is dependent on the expression of various
proteins that contribute to tight junctions (VE-cadherin and oc-
cludin), transendothelial transport of nutrients [glucose trans-
porter 1 (Glut-1)], and efflux pumps [P-glycoprotein (P-gp)]. To
assess whether RA signaling in hCMEC/D3s regulates BBB-
related gene expression, we investigated the gene expression
levels of P-gp, VE-cadherin, occludin, and Glut-1, after RA
treatment. Treatment of confluent cultures of hCMEC/D3s with
5 uM RA for 48 h leads to increased gene expression levels of P-gp
(318.6 £ 1.5% of control), VE-cadherin (172.2 = 24.9% of con-
trol), and occludin (162.3 = 6.5% of control) (Fig. 2B). Glut-1
gene expression was only significantly increased after 6 h of RA
stimulation (131.7 = 6.7% of control). Conversely, the gene ex-
pression level of the permeability-related factor VEGF-A is de-
creased during RA stimulation. As expected, RA treatment
increased the expression of the known RA target gene RARSB
(283.2 = 35.7% of control).

To determine protein expression of the RA-induced barrier
genes, we performed Western blot analysis of two important de-
terminants of BBB integrity, ZO-1 and VE-cadherin. ZO-1 and
VE-cadherin protein expression was significantly and concentra-
tion dependently increased after treatment with either 1 or 5 um
RA for 48 h compared with vehicle controls (ZO-1: 1 uMm RA,
218.2 £ 49.6% of control; 5 um RA, 302.4 * 42.4% of control;
VE-cadherin: 1 uM RA, 114.8 = 2.5% of control; 5 uM RA,
127.7 £ 9.7% of control; Fig. 2C). The increase in protein expres-
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sion for both VE-cadherin and ZO-1 was found to be functionally
localized to cell-cell junctions by immunocytochemical analysis
(Fig. 2D).

Together, these data show that RA is capable of inducing a
tight barrier phenotype in human brain ECs by influencing gene
and protein expression of molecules that are important for bar-
rier function.

RAR in human brain ECs is critical for barrier integrity
Because RARR is the most important receptor in CNS-specific
RA signaling (Mey, 2006; Wong et al., 2006), we used BMS453 as
a specific RARB agonist and RARa/+y antagonist in our in vitro
systems. In hCMEC/D3 cells, RARB is the most abundantly ex-
pressed RAR subtype (Fig. 3A). Treatment of hCMEC/D3 cells
with BMS453 resulted in a concentration-dependent increase in
Rb over time compared with the vehicle control (Fig. 3B, maxi-
mal resistance (arrow): 0.1 uM BMS453, 11.3 & 2.4% increase; 1
uM BMS453, 16.7 £ 2.3% increase; 5 um BMS453,27.2 = 1.7%
increase; n = 4). Moreover, RARB activation resulted in a relative
increase of the maximal Rb highly similar to comparable concen-
trations of RA (Fig. 2B). Cell spreading and proliferation were
similar between all conditions (data not shown). To further en-
hance our understanding of the function of RARB at the BBB, we
specifically knocked down its expression in hCMEC/D3s by using
a lentivirus encoding RARB-specific or a nontargeting shRNA.
Both recombinant cell lines were able to form a confluent mono-
layer under standard culture conditions. However, when com-
pared with control cells, \CMEC/D3s with reduced RAR gene
expression (33.8 = 11.3% of control; Fig. 3E) failed to form nor-
mal Rb. Whereas RA still enhanced the barrier in control cells
expressing nontargeting shRNA, RA stimulation was not able to
restore the impaired Rb formation in RARB-deficient cells (Fig.
3C). Together, the results revealed a role for constitutive RAR
activity in hCMEC/D3 barrier formation under normal culture
conditions. To investigate the molecular alterations underlying
the observed changes on Rb formation, we performed fluorescent
immunocytochemistry analysis of two important barrier deter-
mining molecules, VE-cadherin and ZO-1, on confluent mono-
layers of both cell lines. Although actin distribution and
expression was comparable between cell lines, a striking decrease
of both VE-cadherin and ZO-1 immunostaining was observed in
the cells with reduced RARP expression compared with the con-
trol cells (Fig. 3D). Furthermore, the overlapping pattern of VE-
cadherin and ZO-1 is lost in the areas in which junctional
expression of VE-cadherin or ZO-1 is preserved. The loss of a
BBB phenotype after RARS knockdown was also apparent from
gene expression analysis of barrier-related genes (Fig. 3E). RAR3
knockdown resulted in decreased gene expression levels of VE-
cadherin (25.4 = 8.1% of control), Glut-1 (42.2 * 4.2% of con-
trol), and ZO-1 (43.4 = 13.7% of control). However, P-gp
mRNA levels remained unaltered by RARB knockdown, suggest-
ing a pathway other than RARP activation in the RA-induced
upregulation of P-gp gene expression. Finally, permeability-
related factor VEGF-A was highly increased during RAR knock-
down (211.3 = 14.4% of control). These experiments show that
part of the barrier function of hCMEC/D3s is dependent on the
presence of RARP.

RAR expression is located in microvascular structures
during embryogenesis

Together, our experiments not only point out that RARS is in-
volved in RA-induced barrier function but also suggest a role for
RARR in the development of the BBB. To address this hypothesis,
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we analyzed RARP expression in human fetal brain tissue, in
various stages of development, by immunohistochemistry (Fig.
4A). As early as 10 weeks of gestation, RAR3 expression is evident
in structures with vascular morphology but can also be found in
multiple other cell types, and many structures with vascular mor-
phology are devoid of RAR expression. Vascular RAR expres-
sion becomes more pronounced at the later developmental stages
of 22 and 29 weeks of gestation when most vascular structures are
RARp positive. Moreover, its expression coincided with the BBB
markers ZO-1 and occludin. Glut-1 immunoreactivity precedes
the presence of RARB, with pronounced vascular immunoreac-

tivity from 10 weeks of gestation. Costaining with an antibody
against PECAMI1 confirms the vascular nature of RARB-positive
cells (Fig. 4B). Assessment of RARS expression in 3 (data not
shown) and 7 (Fig. 4A) months postnatal human cortical tissue
revealed no abundant vascular expression pattern. Whereas the
expression pattern of ZO-1, occludin, and Glut-1 remain present
in postnatal tissues, RAR expression is mainly restricted to neu-
rons. A similar developmental pattern can be observed by analyz-
ing RARB gene expression in whole mice brain lysates from
different developmental stages, corrected for vascular content
(PECAM1). Relative RARB expression shows a decline as the



1666 - J. Neurosci., January 23,2013 - 33(4):1660 1671

Mizee et al. ® RA Induces Blood—Brain Barrier Development

A ok B R c
— — 3-.
0.003_ 2- e N KX NN N
T
8
= e & 21
- 0.002 a c
2 S 5
© E E
'8 £ 14 _g
H 2 - Ctrl e | RARBD
@ 0.001- z =+ 0.1 uM BMS453 Z 4
2 —= 1 uM BMS453 — RA I _
- -~ 5 uM BMS453 - Ctrl Non-targeting
['4

i

RARa RARB RARy 0 10 20

D Non-targeting

VE-cad/Actin

Z0-1/Actin

Figure3.

. ,
30 40 0 10 20 30
E
250-
200-
_ Il Non-targeting
2 ] RARBKD
s
5 1504
(<]
Q
(=2
s
[
§1oo- T
[
o
*
50- * * |l‘
o_ |l|
RARS P-gp  VE-cad Gluti  ZO-1 VEGF-A

RARBis the dominant RARinvolved in barrier formation. 4, Relative abundance of RAR subtype transcriptsin hCMEC/D3 cells compared with GAPDH (1-way ANOVA). B, Rb formation of hCMEC/D3s

over time rises with increasing concentrations of RAR 3 agonist BMS453. Arrow indicates the maximal Rb value reached. ¥, #, and $ reflect significant differences compared with control for 5, 1, and 0.1 g,
respectively (2-way ANOVA). G, Rb values of hCMEC/D3 cells that lack RAR by lentiviral ShRNA knockdown fail to generate Rb over time. Rb levels of hCMEC/D3 cells transduced with nontargeting shRNA are
increased by stimulation with 5 v RA. * reflect significant differences of nontargeting + RA compared with control (2-way ANOVA). D, Immunohistochemical analysis showing anti-VE-cadherin or Z0-1 (green)
and actin fibers (red). hCMEC/D3 cells transduced with nontargeting shRNA (nontargeting) show junctional and overlapping localization of VE-cadherin and Z0-1 (arrows), as well as normal actin distribution.
hCMEC/D3 cells transduced with RAR3 shRNA (RAR3 KD) show highly decreased VE-cadherin and Z0-1 staining. Junctional localization of VE-cadherin and Z0-1 (arrows) and actin distribution is preserved,
although little to no overlap between VE-cadherin and Z0-1 is observed (arrowheads). Scale bar, 20 um. E, Barrier-related gene expression levels, as well as RAR 3 gene expression level, are decreased in RARB
shRNA-expressing hCMEC/D3 cells compared with nontargeting shRNA. However, P-gp expression level remains unaffected by the knockdown of RAR3 gene expression, whereas the gene expression level of
VEGF-Ais highly increased (2-tailed Student’s t test). *p << 0.05; **p << 0.01; ***p << 0.001; n = 4 for all experimental conditions.

brain develops and is significantly lower in adult brain compared
with all earlier stages (Fig. 4C). The presence of RARB in vascular
structures during human brain development and the simultane-
ous appearance of BBB markers ZO-1 and occludin suggest a role
for RARB in the maturation process of brain ECs during a specific
time window early in development, resulting in the loss of vascu-
lar RARP expression shortly before or after birth.

RA signaling is necessary for BBB formation in the

developing mouse brain

To investigate the relevance of RA signaling in BBB development
in vivo, we treated pregnant mice with the RAR antagonist
BMS493, from gestational age 10.5 to 16.5. By starting at 10.5 d of
gestation, we can exclude disturbance of normal brain develop-

ment until the nervous vascular plexus starts to invade the CNS
parenchyma (Walls et al., 2008). BMS493 treatment resulted in a
distinct embryonic appearance, including smaller size, incom-
plete eye development and pigmentation, and an edematous for-
mation in the neck, corresponding with that found in RA-
deficient animals (Quadro et al., 2005). The permeability of the
embryonic cerebral vessels (PECAMI1 positive) was assessed by
immunohistochemical detection of endogenous IgG and the ac-
cumulation of circulating Cadaverine-Alexa Fluor-555. In the
CNS of embryos from vehicle-treated pregnant mice, IgG immu-
noreactivity was exclusively located within the vasculature,
whereas Cadaverine—Alexa Fluor-555 was not detected. How-
ever, the CNS of embryos from BMS493-treated pregnant mice
displayed a distinct extravascular presence of both IgG and Ca-
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daverine—Alexa Fluor-555 in cells surrounding the PECAMI-
positive vasculature. Double-labeling experiments with the
neuronal nuclear antigen NeuN showed that both the IgG and
Cadaverine-Alexa Fluor-555-positive cells are neurons (Fig. 5A).
The average amount of IgG immunoreactivity and Cadaverine—
Alexa Fluor-555 fluorescence per micrograph was found to be
significantly higher in BMS493-treated embryonic brain sections
compared with DMSO-treated embryos (I1gG, 357.8 * 103.5% of
control, p = 0.037; Cadaverine—Alexa Fluor-555, 1650 = 554.5%
of control; p = 0.025, two-tailed Student’s t test). To analyze the
BBB-related gene expression, the embryonic brains were isolated
to study CNS gene expression levels only. BMS493-treated em-
bryonic brains showed a significant decrease in gene expression
levels of the major RA target gene RARS compared with vehicle-
treated controls (—57.0 * 10.9% of control; Fig. 5B). This con-
firms BMS493 efficacy to reduce RAR activation in the brain.

Importantly, BMS493 treatment did not affect the density of
brain capillaries or PECAM1 gene expression levels, nor did it
affect the expression of other brain cell-specific genes for astro-
cytes (GFAP), neurons (NeuN), and pericytes (PDGFRB) (data
not shown). The expression levels of BBB-related genes ZO-1
(—32.2 = 8.6% of control), VE-cadherin (—40.1 * 14.2% of
control), and the ABC transporter gene breast cancer resistance
protein (BCRP; —34.9 * 14.2% of control) were significantly
reduced in BMS493-treated embryos compared with vehicle-
treated embryos (Fig. 5B). Fluorescent immunohistochemical
analysis of ZO-1 protein expression in BMS493-treated embryos
revealed that ZO-1 is localized to PECAM1-positive structures
but clearly showed a reduced immunoreactivity when compared
with vehicle-treated embryo brain (Fig. 5C). BMS493 treatment
did not significantly affect claudin-5 and occludin gene expres-
sion levels. Together, these data show that RA and RARs are
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implicated in the development of the murine BBB and that a
reduction of RAR activity in the CNS leads to structural BBB
impairment.

Discussion

To date, this is the first investigation of RA signaling focusing on
the development of the BBB. The present study shows that RA
signaling is involved in the induction of BBB development. Dur-
ing fetal brain development, RA is synthesized by RALDH1/2-
positive radial glial cells, and its corresponding receptor, RARR, is
markedly expressed in developing human brain microvascula-
ture. Moreover, in vitro analyses revealed that RA increases the
formation of a tight barrier and mediates the expression of BBB-
related genes, including VE-cadherin, P-gp, and ZO-1, and con-
versely downregulated the permeability factor VEGE-A. Specific
activation and knockdown studies identified RARS as the major

RAR responsible for its barrier-enhancing effect in human brain
ECs. Finally, treatment with an RAR antagonist caused a reduc-
tion in RAR activation during BBB development in mice and a
decrease of BBB-related gene expression, functionally illustrated
by the permeability to circulating IgG and exogenous tracer Ca-
daverine—Alexa Fluor-555.

RA is best known as a neuronal differentiation factor in the
developing CNS. Interestingly, the developmental window in
which the vasculature invades the CNS and matures into the BBB
overlaps with the induction and patterning of neuronal differen-
tiation and outgrowth (Tam and Watts, 2010), and both systems
share certain guidance cues and differentiation-inducing signal-
ing events during their development (Larrivée et al., 2009). Our
findings point to RA as one of these common denominators of
neuronal and vascular development.
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Specific differentiation of BBB ECs is crucial in safeguarding
the CNS environment and normal neuronal function. We here
report that the astrocyte precursors, radial glial cells, which are in
close proximity to the developing CNS vasculature, are capable of
RA production through the expression of RALDH. The current
view on BBB development relies heavily on signals from the res-
ident CNS cells, such as astrocytes, microglia (Abbott et al.,
2010), and, more recently, pericytes (Armulik et al., 2010; Dane-
man et al., 2010). However, underlying mechanisms are just now
beginning to emerge in the form of CNS-specific Wnt/B-catenin
signaling (Liebner et al., 2008; Stenman et al., 2008; Daneman et
al., 2009), Sonic hedgehog (Shh) signaling (Alvarez et al., 2011),
and intracellular stabilization signals mediated by VE-cadherin
(Rudini et al., 2008; Taddei et al., 2008). We propose that RA
signaling acts in concert with the signaling profile of CNS-specific
Wnt and Shh pathways during maturation of the BBB. Besides
directly acting on the ECs of the developing BBB, RA has been
described to act as a regulator of Shh and Wnt pathways in the
developing CNS (Halilagic et al., 2007), thereby linking the three
pathways and possibly providing a time window of action for
each separate pathway. Furthermore, a recent report describes a
regulatory role for RA on the major developmental pathways of
FGF and Notch signaling during spinal cord development (Pas-
chaki et al., 2012), of which the Notch pathway has already been
linked to BBB development and integrity (Li et al., 2011).

The dependence of neural progenitors on radial glial cell-
derived RA has been described previously (Kornyei et al., 2007;
Kane etal., 2008; Wang et al., 2011). Moreover, the main receptor
for RBP-bound retinol, STRAS®, is expressed in the developing
bovine CNS by a subset of large blood vessels and astrocytes
surrounding the mainly STRA6-negative microvasculature
(Kawaguchi et al., 2007). This implies that the ECs of the CNS
microcirculation rely on RA synthesis by proximal radial glia.
Another source of RA synthesis during CNS development was
described in the form of neural progenitor cells (Engberg et al.,
2010). This suggests that the role of RA synthesis might shift from
one cell type to another as CNS development progresses. This is
further strengthened by the finding that postnatal and adult rat
astrocytes retain their capacity for RA synthesis, inducible by
specific conditions (Shearer et al., 2012).

Invitro studies using a human brain endothelial barrier model
revealed a potential working mechanism for RA at the developing
BBB. Cultured fetal astrocytes induced an RA-dependent signal
in brain ECs that lead to the modulation of different BBB aspects,
including the formation of a tight barrier and the expression of
BBB-specific proteins. The maturation of angiogenic vasculature
into a functional BBB requires the formation of high paracellular
resistance. We show that RA leads to increased expression of
VE-cadherin, occludin, and ZO-1, three molecules described to
play a critical role in barrier integrity (Abbott et al., 2010). More-
over, the endothelial BBB phenotype encompasses the polarized
expression of specific transport and efflux proteins, forming the
metabolic barrier. RA highly increases the gene expression of
P-gp and to alesser extent the expression of Glut-1, showing that
RA regulates various aspects of the brain endothelial barrier. Pre-
vious reports on RA-induced gene expression in brain ECs are in
line with our findings, showing increased expression of P-gp (El
Hafny et al., 1997) and the detoxifying enzyme y-glutamyl trans-
peptidase (Lechardeur et al., 1995).

The induction of BBB aspects in cultured brain ECs by RA was
dependent on the expression of RAR, which shows high relative
abundance compared with the two other RAR subtypes and was
mimicked by specific RARB activation. Moreover, the antagonis-
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tic effect of BMS453 on RARa and RARy did not result in adverse
effects on Rb value, showing that a functional barrier increase is
not dependent on the activation of RAR« or RARYy. The knock-
down of RAR expression resulted in loss of endothelial barrier
function and reduced expression of BBB markers. P-gp expres-
sion was unaffected by RARB knockdown, indicating that part of
the metabolic barrier function might be regulated by RARa/vy/
RXR heterodimers or other nuclear receptors. Furthermore, pre-
vious reports have shown RAR-mediated repression of gene
transcription in the absence of RA as a ligand (for review, see
Niederreither and Doll¢, 2008), which may underlie the observed
changes in endothelial gene expression. The importance of RARB
at the BBB was further supported by expression analysis of the
developing human brain. During fetal development of the CNS,
RARR is expressed in the ECs of the developing vasculature. This
suggests their responsiveness to the local release of RA, and RAR
expression is furthermore a clear indication of RA-dependent
gene transcription (Liao et al., 2005). Vascular RARS expression
seems to be conserved between mice and humans, because RAR3
gene expression decreases during mouse brain development
when corrected for vascular content.

To translate our findings to in vivo BBB development, we
pharmacologically blocked the activation of RARs in utero. A
major drawback in animal models in which RA production is
fully ablated is that exogenous RA is needed to ensure successful
conception and embryonic CNS development. Moreover, ani-
mals with an RAR-subtype deficiency often show redundancy
effects, limiting the usefulness of the phenotypical observations
(Ghyselinck et al., 1997), with additional complications arising
from the loss of normal transcriptional repression by RARs in the
absence of RA. Because BBB development starts from E10, with
the ingrowth of ECs from the neural vascular plexus (Walls et al.,
2008), this time point was chosen to start BMS493 treatment.
Analysis of the accumulation of an injected tracer, Cadaverine, as
well as of endogenous IgG in embryonic brains at E16.5 revealed
a distinct extravascular staining pattern in BMS493-treated ani-
mals. This was not observed in control embryos, suggestive of
serum leakage across a structurally impaired BBB. Intensely
stained extravascular IgG deposits and Cadaverine-positive nu-
clei were found in NeuN-positive cells surrounding the CNS mi-
crovasculature, suggesting neuronal uptake of extravasated IgG
and Cadaverine. For IgG, the finding is in line with a study de-
scribing BBB damage in a model for temporal lobe epilepsy
(Rigau etal., 2007), in which IgG-positive neurons were observed
in the hippocampus after BBB damage, coinciding with a de-
crease of vascular ZO-1 expression. Comparable findings were
described in an animal model for amyotrophic lateral sclerosis
(ALS) (Alexianu et al., 2001), as well as in ALS patients (Engel-
hardt and Appel, 1990). The accumulation of Cadaverine—Alexa
Fluor-555 in neurons has been described in mice after BBB dys-
function as a result of a lack of pericytes (Armulik et al., 2010) and
apolipoprotein E4 deficiency (Bell et al., 2012). Accompanying
the observed permeability to serum proteins, we found decreased
expression levels of ZO-1, VE-cadherin, and BCRP, whereas the
total number of PECAM 1-positive vascular structures was unal-
tered. Furthermore, ZO-1 immunoreactivity on the microvascu-
lature as well as a clear junctional localization was reduced in
BMS493-treated embryonic brains. Considering the regulatory
role for RA in BBB-associated pathways like Shh- and Wnt-
signaling, indirect effects of RAR-inhibition via these pathways
might be considered. However, our in vitro studies describe a
direct effect of RA on brain ECs and RAR expression is located
at the developing BBB in the human fetal CNS. Together, these
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findings suggest a direct role for RA on endothelial maturation in
the developing BBB.

The search for developmental cues involved in BBB formation
has implications for neurodegenerative disorders in which BBB
disruption is paramount. Many reports show the association of
BBB breakdown with pathology of CNS disorders, such as mul-
tiple sclerosis (van Horssen et al., 2007; Kooij et al., 2010, 2011;
Neuwelt et al., 2011), in which restoring BBB function may pro-
vide new ways to counteract these disorders. Developmental
pathways activated by RA that induce BBB function could prove
to be important targets to boost the self-regenerative capacity of
the adult brain.
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