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Hands in Motion: An Upper-Limb-Selective Area in the
Occipitotemporal Cortex Shows Sensitivity to Viewed Hand
Kinematics
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Regions in the occipitotemporal cortex (OTC) show clear selectivity to static images of human body parts, and upper limbs in particular,
with respect to other object categories. Such selectivity was previously attributed to shape aspects, which presumably vary across
categories. Alternatively, it has been proposed that functional selectivity for upper limbs is driven by processing of their distinctive
motion features. In the present study we show that selectivity to static upper-limb images and motion processing go hand in hand. Using
resting-state and task-based functional MRI, we demonstrate that OTC voxels showing greater preference to static images of arms and
hands also show stronger functional connectivity with motion coding regions within the human middle temporal complex (hMT�), but
not with shape-selective midtier areas, such as hV4 or LO-1, suggesting a tight link between upper-limb selectivity and motion processing.
To test this directly, we created a set of natural arm-movement videos where kinematic patterns were parametrically manipulated, while
keeping shape information constant. Using multivariate pattern analysis, we show that the degree of (dis)similarity in arm-velocity
profiles across the video set predicts, to a significant extent, the degree of (dis)similarity in multivoxel activation patterns in both
upper-limb-selective OTC regions and the hMT�. Together, these results suggest that the functional specificity of upper-limb-selective
regions may be partially determined by their involvement in the processing of upper-limb dynamics. We propose that the selectivity to
static upper-limb images in the OTC may be a result of experience-dependent association between shape elements, which characterize
upper limbs, and upper-limb-specific motion patterns.

Introduction
The functional organization of the ventral visual pathway is char-
acterized by strong selectivity for particular object categories, in-
cluding the human body and its parts. However, the basic
properties and stimulus dimensions that determine this func-
tional specificity are still hotly debated (Op de Beeck et al., 2008;
Rajimehr et al., 2011). Some studies suggest that this selectivity
stems from differences in basic shape characteristics between ob-
ject categories (Tanaka, 1996; Kourtzi and Kanwisher, 2001). For
example, the extrastriate body area (EBA), defined by its prefer-
ence to images of the human body over other objects (Downing et
al., 2001), responds to body images in either static or moving
form (for review, see Downing and Peelen, 2011). It is also acti-
vated by point-light biological motion (Peelen et al., 2006), in
which explicit shape information is unavailable (Johansson,

1973). Peelen et al. (2006) suggested that in that case, structure-
from-motion enables the reconstruction of body shape, thereby
leading to EBA activation. On the other hand, EBA partially over-
laps with the motion-sensitive human middle temporal complex
(hMT�; Downing et al., 2001, 2007; Ferri et al., 2012). It has been
argued that EBA is directly involved in the processing of human
motion kinematics (Kable and Chatterjee, 2006; Jastorff et al.,
2009) and in the integration of body-shape elements with their
specific motion pattern (Jastorff and Orban, 2009).

If biological motion kinematics are explicitly represented
in EBA, this should be most evident in the representation of
upper limbs, which are the most articulated parts of the hu-
man body and have complex kinematics. Recently, a clear
functional distinction between representations of different
nonfacial body parts (e.g., upper limbs and torso) has been
shown both within EBA (Chan et al., 2010) and across the
occipitotemporal cortex (OTC; Op de Beeck et al., 2010; Orlov
et al., 2010). Notably, the preference for static images of upper
limbs (but not torsos) over other objects was consistently reg-
istered in the lateral OTC (Bracci et al., 2010; Orlov et al.,
2010), in close proximity to hMT� (Weiner and Grill-
Spector, 2011).

We therefore hypothesized that the functional specificity of
the upper-limb area (ULA) within the OTC can largely be attrib-
uted to its involvement in the processing of upper-limb dynam-
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ics. Static views of upper limbs are strongly associated with their
specific motion patterns through our lifetime of visual experi-
ence. We suggest that the observed selectivity to static images of
upper limbs in ULA may reflect this coupling between limb-
shape characteristics and limb-specific kinematics. Importantly,
this integrative representation will critically depend on motion
processing in hMT�. We therefore predicted that OTC voxels
showing stronger functional connectivity with hMT� would also
show greater upper-limb selectivity to static images of body parts.

Indeed, we demonstrate here that the degree of selectivity of
OTC voxels to static upper limbs is positively correlated with
their strength of functional connectivity with the motion-coding
region hMT�, but not with shape-selective regions (hV4/LO-1).
Furthermore, we show that ULA represents the velocity profile of
observed arm movements, suggesting that the functional speci-
ficity of this region is likely to reflect its involvement in the pro-
cessing of upper-limb dynamics.

Materials and Methods
Participants. Fourteen right-handed volunteers (age, 24 –30 years; mean
age, 27 years; five females) with no history of neurological, psychiatric, or
visual deficits participated in a series of functional MRI (fMRI) experi-
ments. All participants were scanned during a set of localization and
mapping fMRI paradigms (see below). Eleven of the participants took
part in the arm-motion experiment (mean age, 27 years; five females). A
further subset of 11 participants (mean age, 27 years; four females, of
which eight also took part in the arm-motion experiment) underwent
additional resting-state scans. The Helsinki Ethics Committee of Hadas-
sah Hospital, Jerusalem, Israel, approved the experimental procedure.
Written informed consent was obtained from each participant before the
procedure.

Stimuli and experimental setup. Visual stimuli were back projected via
an MR-shielded projector (Hyperion MRI Digital Projection System,
Psychology Software Tools) onto a screen located behind the partici-
pants. The screen was made visible to the participants via a tilted mirror,
positioned above the participants’ faces.

Static body-parts localizer. Static images of four different body-part
categories (faces, upper limbs, torsos, lower limbs), as well as inanimate
objects, were presented in a block-design fashion. The object images
included a large range of man-made items, such as furniture, musical
instruments, crockery, home appliances, food, etc. Each block lasted 6 s
and comprised six images (0.8 s per image with a 0.2 s interval of gray
screen). The images were selected out of a pool of 240 colored photo-
graphs, and were presented centrally, spanning 10 � 10°. Each block was
presented eight times, and the five experimental conditions were coun-
terbalanced and interleaved with “baseline” blocks comprising phase-
scrambled versions of the images, while preserving the original power
spectra of the images. Participants were instructed to fixate on a central
fixation point, and to press a button whenever the same image (either
intact or scrambled) appeared twice consecutively (a “one-back” task).
This occurred on average once per block/baseline block.

Early visual cortex mapping. We defined the early visual areas using a
polar angle mapping scan (Sereno et al., 1995; Engel et al., 1997). The
polar angle stimuli consisted of a clockwise rotating wedge composed of
monochromatic checkerboard patterns with counter-phasing flicker fre-
quency of 6 Hz. The radial size of the pattern segments was adjusted
[using log(radius)] to approximate the cortical magnification factor
(Sereno et al., 1995). Each wedge covered 45° of arc at the circumference,
and extended from fixation to 14° into the visual periphery. Each scan
comprised eight cycles of the rotating wedge of 48 s duration. Partici-
pants were instructed to fixate on a central fixation point. To ensure
fixation was maintained throughout the run, the color of the fixation
point changed for 100 ms 21 times and participants were instructed to
indicate the change with a button press.

Motion localizer. The hMT� localizer was similar to that used by Huk
et al. (2002). Participants were presented with a dot pattern that was
either moving at 8°/s [alternating direction radially inward and outward

from fixation once per second (10 s)] or stationary (10 s). Participants
were instructed to fixate on a central fixation point and covertly count the
number of fixation point blinks (presented 25 times throughout the
scan). During a motion block, 1200 white dots on a black background
were presented within a 14 � 14° aperture, centered at the fixation point.
Each dot appeared for 100 ms and was then replaced by another dot at a
randomly selected position. The moving/stationary pair of blocks was
repeated 10 times.

Resting-state fMRI. Participants were asked to lie still for 6 min. The
scan was repeated twice, once with eyes open and once with eyes closed.
The open-eye and closed-eye scans were counter-ordered across
participants.

Arm-motion experiment. Cortical sensitivity to the velocity profile of
seen arm movement was assessed using a set of arm-motion videos in an
event-related fMRI paradigm. A set of videos was designed to paramet-
rically manipulate kinematic properties while minimizing variance in
arm shape.

To create a parametric set of arm movements, a natural left-arm ex-
tension movement, performed by an actor, was filmed from a side view,
showing the full horizontal spread of the movement. The speed of the
arm extension movement was manipulated using a time-remapping
function of Adobe Premiere software (Adobe Systems) that skips or cre-
ates the necessary interpolated frames to speed up or slow down a clip,
respectively. This resulted in the generation of four arm “extension”
video clips of 4, 8, 12, and 16 frames long.

Next, the order of the frames in each of the four clips was reversed,
resulting in four corresponding arm flexion movements. The “exten-
sion” and “flexion” clips were then concatenated to produce four videos
of equal length (20 frames at the rate of 25 frames/s, lasting 800 ms) with
different “flexion”/”extension” speed ratios (ranging between 0.25 and 4;
see Fig. 3; Movie 1; the leftmost frames in Fig. 3 are from the first clip in
the video, etc.). The four videos were further flipped horizontally to
obtain four additional right-arm videos with the same kinematic param-
eters in the opposite direction. In total, eight speed-based morphs were
used. In each trial, a single morphed video was repeatedly presented (for
three consecutive presentations). The videos were displayed at the center
of the screen, such that the arms were moving within a window 9 � 4°,
and the middle of the movement trajectory was approximately at the
position of a fixation point, superimposed on the videos.

Each of the eight morphed videos was presented 48 times over the
course of six runs in a counter-balanced manner, using Optseq proce-
dure. The trials (2400 ms) were pseudorandomly embedded with rest
periods (a black screen with a fixation) ranging from 1600 to 7600 ms.

Movie 1. Examples of arm movements used in the arm-motion experiment. Four arm move-
ments with different extension/flexion speed ratios are shown, one after another. The move-
ments correspond to the sets of frames in Figure 3, from left to right (i.e., the first movement in
the video corresponds to the leftmost set of frames in Fig. 3, etc.). See more details in the legend
of Figure 3 and in Materials and Methods.
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Each run was 318 s long (159 volumes), beginning with a 6 s fixation
period and ending with a 10 s fixation period.

Participants were required to maintain their gaze on the fixation point.
To ensure fixation was maintained throughout the experiment, the color
of the fixation point changed for 300 ms in 25% of the trials and partic-
ipants were instructed to indicate the change with a button press. In
addition, the eye position of four (of 11) participants was tracked using
the eye-tracking device (SensoMotoric Instruments), sampling the eye
position at 50 Hz. The average shift in eye position from the fixation
during trials ranged between 0.2 and 0.6° across participants (with SD
ranging between 0.3 and 1.3°), indicating that fixation was relatively
stable.

While effort was made to keep arm-shape information consistent
across the videos, the frames across those video pairs were not identical
(with the exception of speed ratios 0.25 vs 4 and 0.67 vs 1.5, in which the
individual single frames were identical, but played in reverse). To esti-
mate shape similarity between the single frames, a shape description
algorithm was applied (Belongie et al., 2002). Shape-similarity scores
(estimated for all possible frame pairs, n � 780) were classified as
“within” or “between” the videos and then compared using a two-tailed
t test.

To assess the degree of kinematic (dis)similarity across the videos, we
ran an edge detector algorithm to sample the edges of the arm over two
frames in each video separately (showing an arm at maximally flexed and
maximally extended positions). We then extracted the edges of the fist
and elbow from each of these two frames (see Fig. 3, left, blue dots) and
determined the speed of each of the four edge points during the extension
and flexion episodes, separately. The speeds were then averaged across
the four edge points, yielding extension and flexion speed values for each
of the morphed videos.

To estimate a degree of (dis)similarity for each pair of movements, we
first calculated the difference in their contour speeds for extension and
flexion components separately. We then calculated the Euclidean dis-
tance between the speed vectors across video pairs to yield an overall
(dis)similarity estimate ( D): D � (�extension 2 � �flexion 2)ˆ 0.5.

Since human speed discrimination thresholds follow Weber’s law (De
Bruyn and Orban, 1988) and speed tuning curves of MT neurons in
monkeys are bell-shaped as a function of the logarithm of speed (Nover
et al., 2005), we added a logarithm term to the (dis)similarity measure:
D � ln[(�extension 2 � �flexion 2)ˆ 0.5].

MRI acquisition. The blood oxygenation level-dependent (BOLD)
fMRI measurements were acquired using a Siemens whole-body 3 tesla
Magnetom Trio scanner and a 32 channel head coil. The fMRI protocols
were based on multislice gradient echo-planar imaging with the follow-
ing timing parameters: TR, 2 s; TE, 30 ms; flip angle, 90°, imaging matrix,
64 � 64; FOV, 192 � 192 mm. Thirty to thirty-four slices with 3 mm slice
thickness (and 0.3 mm gap) were oriented in the axial plane, covering the
whole cortex, with partial coverage of the cerebellum. The functional
voxels thus measured 3 � 3 � 3 mm. T1-weighted anatomical images
were obtained using a magnetization-prepared rapid acquisition gradi-
ent echo sequence (160 slices; TR, 2300 ms; FOV, 256 � 256 mm; matrix
size, 256 � 256; flip angle, 9°; TE, 4.25 ms; 1 mm slice thickness).

fMRI data preprocessing. fMRI data were processed with BrainVoyager
QX software (version 2.6, Brain Innovation). Subsequent analyses were
performed using Matlab (version 7.11, The Mathworks) and SPSS (ver-
sion 16.0 for Windows, SPSS). For each run, the 2D functional data were
examined for motion and signal artifacts. Head-motion correction, high-
pass temporal filtering in the frequency domain (3 cycles/total scan
time), and slice scan time correction were applied. The slice-based func-
tional images were coregistered with the high-resolution 3D anatomical
image. The complete functional datasets were then resampled into a
standard 3D space (Talairach and Tournoux, 1988) with 3 mm isotropic
resolution. Individual participant data in the arm-motion experiment
were smoothed using a Gaussian 4 mm FWHM kernel to improve signal-
to-noise ratio in further multivoxel pattern analysis (MVPA). Other
functional data were analyzed with no spatial smoothing. The cortical
surface of each participant was reconstructed from the high-resolution
T1-weighted scan, which was transformed into the standard brain tem-

plate. The obtained mesh was corrected for topological errors and
morphed to create the inflated cortex surface.

Selection of regions of interest and OTC mask. Eleven regions of interest
(ROIs) were defined using the motion, static body-part, and retinotopic
localizers. These included low-level, retinotopic areas V1–V3; shape-
sensitive cortical regions hV4, LO-1, and lateral occipital complex
(LOC); motion-sensitive areas V3A and hMT�; and ULA, a cortical
region showing preference to upper-limb images (over other image cat-
egories). In addition, two face-selective cortical regions were defined as
control ROIs with respect to ULA [the fusiform face area (FFA) and a
region in the posterior superior temporal sulcus (STS) and adjacent me-
dial temporal gyrus (MTG), termed here STS/MTG]. All ROIs were iden-
tified as isolated clusters of voxels, defined in brain volumes on a
participant-by-participant basis, after alignment to standard space in the
Talairach coordinate system (using linear transformations as imple-
mented in Brain Voyager software). All above ROIs were used for MVPA,
and half of them (hV4, LO-1, LOC, hMT�, and V3A) served as seeds in
functional connectivity analysis.

hMT�, ULA, LOC, FFA, and STS/MTG ROIs. To localize hMT�,
ULA, and LOC individually for each participant, we applied a conven-
tional general linear model (GLM). A predictor time course was obtained
by convolution of a condition box-car time course with a two-gamma
function (Friston et al., 1998). hMT� was defined bilaterally based on its
greater BOLD response to moving dots compared with stationary dot
patterns, as well as on anatomical landmarks that enabled dissociation
from other (lower level) motion-responsive regions. Using the static
body-parts localizer, we defined the ULA ROI bilaterally by identifying
voxels in the dorsolateral OTC that were selectively more responsive
during passive viewing of arm images, relative to other image categories
(faces, torsos, lower limbs, and man-made objects), as defined using a
single weighted contrast (significant voxels in the ventral OTC were not
included in the ROI since they were not reliably identified in all partici-
pants). LOC was defined bilaterally based on its greater BOLD response
to object images compared with their scrambled counterparts (Grill-
Spector et al., 1999). The LOC ROI comprised the voxels located in the
lateral occipital cortex (excluding voxels in the posterior fusiform gyrus;
Grill-Spector et al., 1999; Sayres and Grill-Spector, 2008). We also iden-
tified voxels showing greater responses to face images than objects to
localize FFA and the face-selective STS/MTG region (Kanwisher et al.,
1997). While the hMT�, ULA, LOC, and FFA ROIs were identified
bilaterally in all 11 subjects who participated in the arm-motion experi-
ment, the STS/MTG ROI was only identified in seven participants (in two
of them, in the right hemisphere only). Relevant voxels were defined in
brain volumes, after alignment to standard space in Talairach coordinate
system. The resulting ROIs were isolated clusters of voxels fitting a false
discovery rate (FDR) criterion to correct for multiple comparisons (Ben-
jamini and Hochberg, 1995). The threshold t values for the ROIs were set
to meet the FDR criterion of q(FDR) � 0.05. To achieve approximately
equal hMT�, ULA, and LOC ROI sizes across all participants, the statis-
tical threshold of the localizers’ GLM contrast in some participants was
elevated, such that the ROIs consisted of �100 –150 voxels with 3 mm
isotropic resolution. In total, across participants from both arm-motion
and resting-state experiments, hMT� and ULA, hMT� and LOC, and
ULA and LOC shared 13–37% (mean, 25%), 1–14% (mean, 7%), and
2–15% (mean, 7%) of their voxels in Talairach space, respectively (where
100% is the total amount of voxels in each pair of ROIs). Furthermore,
LOC shared voxels with retinotopically defined LO-1 [0 –21% (mean,
7%); Sayres and Grill-Spector, 2008]. In rare cases, some overlapping
voxels were also found between hMT�/ULA and LO-1, or between LOC
and V3. Due to these spatial overlaps, a second set of bilateral hMT�,
ULA, and LOC ROIs was constructed for each individual, excluding any
overlapping voxels (mean � SD: 64 � 15, 67 � 22, and 67 � 28 voxels
with 3 mm isotropic resolution, respectively). This assured that hMT�,
ULA, and LOC ROIs consisted of independent voxel sets. Group-mean
x-y-z Talairach center-of-mass coordinates for the ROIs in the left and
right hemispheres were the following: hMT�: 	44, 	72, 3 and 43, 	67,
2; ULA: 	50, 	70, 3 and 46, 	66, 2; LOC: 	42, 	77, 	5 and 37, 	76,
	4; FFA: 	39, 	58, 	18 and 34, 	54, 	16; STS/MTG: 	48, 	72, 11
and 44, 	66, 10, respectively.
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Visual cortex retinotopic mapping. We used a phase-encoding approach
(Sereno et al., 1995; Engel et al., 1997) to construct retinotopic maps, as
implemented by BrainVoyager QX software. The individual polar maps
(overlaid on corresponding inflated cortical surfaces of participants)
were used to manually delineate the borders of retinotopic areas (Wan-
dell et al., 2007). In each individual map, we were able to reliably identify
V1, V2, V3, hV4, V3A, and LO-1 bilaterally using cortical surface meshes
(i.e., voxel data were assigned to surface vertices using nearest neighbor
interpolation). Then the delineated areas were projected back to volume
space and the corresponding volume-based ROIs were defined. V3A was
first delineated, based on its retinotopic boundaries, and was then re-
stricted to voxels showing greater BOLD response to moving dots, com-
pared with stationary dot patterns. The threshold t values for the V3A
ROIs were set to meet a criterion of q(FDR) � 0.05. Any overlapping
voxels between the retinotopically and functionally defined ROIs (e.g.,
between LO-1 and LOC) were excluded (see above).

OTC target mask. To identify patterns of upper-limb selectivity and
functional connectivity (FC) across the OTC, an individual target mask
was created in the left and right OTC for each participant, using the static
body-parts localizer. We identified voxels that significantly responded to
any of the nonfacial body-part image categories (upper limbs, torsos,

lower limbs) or man-made objects, relative to
the scrambled versions of these images
[q(FDR) � 0.05 for all]. Voxels overlapping
with retinotopically defined V3, V3A, hV4, and
LO-1, and voxels overlapping with hMT� lo-
calizer were excluded from the participants’
masks. When the individual LOC ROIs were
used as seeds, LOC localizer voxels were ex-
cluded from the masks instead of LO-1 voxels.
Note also that all voxels shared between ULA
and hMT� were removed. For the purpose of
the FC investigation, we were interested in
comparing nonrigid, highly dynamic objects
(such as limbs) with less flexible or typically
inert objects (such as torsos and man-made ob-
jects). Since faces included both relatively rigid
(e.g., nose) and articulated features (e.g., lips),
we excluded this category from the analysis.
For each of the remaining four categories (up-
per limbs, torsos, lower limbs, and objects), we
next defined a voxelwise category selectivity in-
dex within the individual masks, using the t
value resulting from the contrast between each
category condition and the mean of the three
other conditions (as implemented in Brain-
Voyager QX GLM analysis).

Resting-state fMRI. To account for non-
neuronal noise that might bias FC analysis, we
extracted the resting-state time series of BOLD
response underlying white matter (extracted
from bilateral masks in the centrum semiovale)
and CSF (extracted from the lateral ventricles)
using the preprocessed (high-pass filtered)
resting-state individual scans (Zhang et al.,
2008). The first eigenvector was calculated for
each of these two regions, in each scan sepa-
rately (O’Reilly et al., 2010; these eigenvectors
best characterize the majority of observed sig-
nal variation across the set of voxels within the
regions; Friston et al., 1996). Time series repre-
senting scan-specific head motion (in six direc-
tions) were also extracted. In total, there were
eight confound time series for each run. The
confound time series were regressed from the
preprocessed functional data for each run sep-
arately, before the connectivity analysis. The re-
sulting time-series residuals were z-transformed
and the two resting-state scans (eyes open and
eyes closed) were concatenated for each brain

voxel, in each individual participant.
We used the individually defined hMT� (exclusively comprising

hMT� voxels, while excluding voxels overlapping with ULA and LOC)
and the hV4 seed ROIs to calculate FC maps across the OTC during rest.
To construct seed time series, the first eigenvector was calculated for the
left and right hMT� and hV4, extracted from the concatenated voxel’s
residuals. Figure 1A (inset) depicts the time series of the hMT� (blue
line) and hV4 (green line) eigenvectors in one representative participant,
superimposed on the resting-state time course of an example target voxel
of that participant (black line, after correcting for confounds as men-
tioned in the previous paragraph). Next, for each voxel in the OTC target
mask, a partial correlation score was calculated between its time series
and the first eigenvector in each of the ipsilateral seeds, while accounting
for the partial contribution of the other seed. In the same way, partial
correlation scores were calculated for the contralateral seeds. This ap-
proach has been previously shown to correctly estimate the true func-
tional connections between target voxels and multiple seeds (Smith et al.,
2011). The obtained partial correlation coefficients (after applying Fish-
er’s z-transform) represented the index of FC between each seed region
and every voxel in the bilateral OTC.

Figure 1. The relationship between OTC voxel patterns of selectivity (to specific image categories) and connectivity (with
hMT� or hV4) in an individual participant. A, Top, The resting-state time course of an example OTC voxel in one participant
showing strong selectivity to upper limbs (black line) and the primary eigenvector time series of the hMT� (blue line) and hV4
(green line) seeds in the same participant. Note that only voxels that did not overlap with ULA were included in the hMT� seed.
The (partial) correlation coefficient between each seed eigenvector and the voxel’s time course is taken as the measure of func-
tional connectivity between that voxel and the seed (i.e., connectivity index). Bottom, Color-coded maps indicate the degree of
connectivity between each voxel in the OTC target region and hMT� (left) or hV4 (right) seeds, shown on the participant’s inflated
right hemisphere (from the ventrolateral view). The location of the example voxel is marked by a white square and the locations of
the seed ROIs are indicated by white contours. B, Color-coded maps depict voxelwise selectivity to static images of upper limbs
(left) or man-made objects (right) within the OTC region. C, Scatter plots depict the difference (�) between voxel connectivity with
hMT� and hV4 (abscissa), against the selectivity of the same voxels (ordinate) to images of upper limbs (top, purple plots) and
objects (bottom, gray plots). Positive voxels’ �s (black arrow to the right) indicate stronger FC to hMT� while negative �s (the
arrow to the left) indicate stronger FC to hV4. Upper-limb selectivity (top) resulted in a positive correlation with connectivity �,
suggesting that upper-limb selectivity is positively associated with hMT� connectivity. Object selectivity (bottom) resulted in a
negative correlation with connectivity �, suggesting that object selectivity is positively associated with hV4 connectivity. The
same example voxel (out of 599 in this specific hemisphere) is indicated by a red dot in each plot. The best regression line and the
correlation coefficient for the fit are presented for each case.

Orlov et al. • Upper-Limb Representation in the Ventral Visual Pathway J. Neurosci., April 2, 2014 • 34(14):4882– 4895 • 4885



We then examined the relationship between category selectivity of
individual OTC voxels and their functional connectivity with the four
seed regions. First, for each target OTC voxel, we assessed a connectivity
preference index (by calculating difference between its hMT� and hV4
connectivity indices), for ipsilateral and contralateral seed pairs sepa-
rately. This index represented whether a given voxel is more connected to
hMT� or hV4, yielding ipsilateral and contralateral FC preference maps
for each hemisphere, in each participant. We then calculated a Pearson’s
correlation coefficient between each of the FC preference maps and each
of the categorical selectivity maps. The obtained correlation coefficients
(after applying Fisher’s z-transform) were averaged, first across hemi-
spheres (per ipsilateral and contralateral seeds, separately) and then
across participants. The significance of the group-mean correlations was
assessed by two-tailed paired t tests (using Šidák correction for multiple
comparisons). Furthermore, to verify that these correlations are signifi-
cantly higher than expected by chance, we ran a permutation analysis
where the identity of the four category conditions in the static body-parts
localizer (i.e., “upper limbs,” “torsos,” “lower limbs,” and “objects”)
were randomly reassigned (the “scrambled” intervals and “face” condi-
tion were not changed). We repeated this procedure 1000 times, and
calculated a “chance” category preference for each voxel in each permu-
tation. We then performed the correlation analysis between each of the
functional connectivity maps and the permuted category indices, result-
ing in a distribution of expected group-mean correlations merely due to
noise.

The above FC analyses were repeated with LO-1, LOC, and V3A as
seeds (see Results). We also repeated the analyses with hMT� and hV4
seeds, while excluding all ULA voxels from the target OTC mask (not
only those that overlap with hMT�).

In an additional control analysis, we applied the same approach as
above, but this time only the highest connectivity value across the hMT�
and hV4 seeds (the maximal connectivity index) was chosen to represent
the connectivity between the OTC voxel and the seeds. For each OTC
voxel, we first identified a voxel in each of the four seed ROIs (i.e.,
ipsilateral and contralateral hMT� and hV4), which maximally corre-
lated with it (as assessed by Pearson’s correlation). Next, partial correla-
tion scores were calculated for the ipsilateral hMT� and hV4 voxels
(accounting for the partial contribution of the other seed voxel), as well
as for the contralateral ones.

ROI-based MVPA. Data from the six event-related runs in the arm-
motion experiment were analyzed using a split-half analysis (Haxby et
al., 2001). However, rather than splitting the data once into odd and even
runs, we iterated this process through 10 different splits of the six runs
(Chan et al., 2010). For each half of the data in each split, a standard GLM
procedure was used. The magnitude of response (� weights) was calcu-
lated for each of the eight task conditions (i.e., four movies with different
“extension”/”flexion” speed ratios for left and right arms). The calcula-
tion was performed in individual voxels within each of the 11 ROIs (i.e.,
V1, V2, V3, V3A, LO-1, hV4, hMT�, ULA, LOC, FFA, and STS/MTG),
for the left and right hemisphere separately. These � weights were then
normalized (by subtracting the voxel’s mean activation level across con-
ditions) and cross-correlated against their corresponding halves within
each ROI separately. The obtained correlation coefficient values were
normalized (using Fisher’s z-transform) and averaged across the 10 dif-
ferent splits. Then 16 correlations for each arm (from 64 correlations in
total) were further averaged across the left and right arm movements
with identical extension/flexion speed ratios, resulting in a 4 � 4 corre-
lation matrix. The normalized correlation coefficients for each matrix
cell were averaged across hemispheres for each participant. Cells corre-
sponding to same or different arm-motion videos (see Fig. 6B, inset)
were averaged for each individual participant within each ROI resulting
in Same and Different correlations. Finally, the correlations were aver-
aged across participants; the means were subtracted and divided by the
pooled SD to obtain Cohen’s d values (see Fig. 6C).

The ability to discriminate between the videos was assessed using two-
tailed paired t tests (and Šidák correction for multiple comparisons). In
addition, we used a permutation analysis to test whether the Cohen’s d
values in the ROIs are significantly higher than expected by mere chance
(e.g., had there been no discrimination between the videos). The matrix

correlation coefficients were randomly assigned to each entry in the cor-
relation matrix for each arm in each participant. This procedure was
repeated 1000 times, and the same analysis as described in the previous
paragraph was repeated, resulting in a chance distribution of Cohen’s d
values for each ROI. Given this chance distribution, we could assess the
significance of d identified in the ROIs.

To estimate the role of movement kinematics in modulating multi-
voxel activation patterns, we applied an ordinary least-squares regression
on the correlation coefficient in the 4 � 4 matrix described above (after
applying Fisher’s z-transform). We used a parametric predictor based on
the degree of kinematic (dis)similarity across the videos (i.e., the Euclid-
ean distances between speed vectors of video pairs; see above). We there-
fore assigned a corresponding predictor value (see Fig. 6D, inset) to each
correlation entry in the 4 � 4 correlation matrix for each participant. We
then concatenated individual correlation matrices and calculated r 2 val-
ues (across participants) for each ROI to estimate how much variance in
the matrix is explained by the kinematic (dis)similarity predictor. An F
test was used to determine whether the observed r 2 is statistically reliable.

Finally, we probed the degree to which the identity of the moving arm
(left vs right) can be decoded from the multivoxel activation patterns. To
that end, in each participant we separately averaged all (normalized)
correlation coefficients that corresponded to the same arm identity, and
the ones with different arm identity, regardless of their kinematics, re-
sulting in a 2 � 2 correlation matrix. Cells corresponding to the same or
different arm identity were further averaged across hemispheres for each
participant within each ROI. Finally, the correlations were averaged
across participants. The ability to discriminate between left and right arm
movements was assessed using two-tailed paired t tests (and Šidák cor-
rection for multiple comparisons).

Whole-brain searchlight MVPA. To test sensitivity across the entire
brain to the kinematics of arm movement, we applied a volume-based
searchlight analysis (Kriegeskorte et al., 2006). For this purpose the data
from six runs were divided according to the 10-split procedure described
above in every voxel in Talairach space. For each participant, we itera-
tively searched through the brain with a search window defined as a
sphere of radius 6 and 9 mm (i.e., two and three voxels, as in Kriegeskorte
et al., 2006), resulting in an ROI of 33 and 123 isotropic voxels of 3 � 3 �
3 mm, respectively. On each iteration the window was centered on a new
Talairach voxel, and multivoxel correlation analysis was performed as
described for the ROI-based MVPA. To create a group searchlight map,
individual correlation values for Same and Different comparisons were
z-transformed and averaged across participants (for each search window
separately). Clusterwise t tests were used to identify search windows
showing significant difference between Same and Different correlations
[FDR corrected, q(FDR) � 0.001]. We then compared the obtained
group searchlight map with ULA and EBA groupwise localizers (defined
using random effects GLM analysis; the functional datasets for the
groupwise localizers were spatially smoothed using a Gaussian 4 mm
FWHM kernel). To localize ULA at the group level, we applied the same
contrast as for individual ULA localizers, while EBA was defined by con-
trasting the body categories (upper limbs, lower limbs, and torsos)
versus the objects category ( p � 0.001 for all, cluster size corrected at
p � 0.05; this was calculated taking into account the probability of a false
detection for any given activation cluster and accomplished by Monte
Carlo simulation incorporated in BrainVoyager QX).

To create individual searchlight maps, the difference between Same
and Different correlations (�) was calculated for each search cluster
(defined as a sphere with a 9 mm radius) in each participant’s brain. To
eliminate false-positive search clusters that may result from spurious,
noisy BOLD responses, we first applied a signal-to-noise test, thereby
pruning the least-reliable search clusters (Mitchell et al., 2004). To that
end, for each voxel in each participant’s brain, we calculated a t value of
the voxel’s BOLD response to each of the eight task conditions (estimated
relative to rest periods). Brain voxels were ranked according to this t
value for each condition separately. A search cluster was chosen for the
analysis if �1 voxel in the cluster had a high t value rank (i.e., it was
within 5000 “best” voxels for �1 task condition). This resulted in �1.2 �
10 4 search clusters for each participant. To infer statistical significance
on a single participant level, a further permutation analysis was per-
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formed (Stelzer et al., 2013): for each search window, the specific 4 � 4
matrix correlation coefficients were randomly assigned to each matrix
entry for each arm. This procedure was repeated 1000 times, and the
same analysis as described in the previous paragraph for the ROI-based
MVPA was performed, resulting in a chance distribution of �s between
Same and Different correlations, for each individual searchlight cluster.
Given this chance distribution, we could assess the significance of each
search cluster in its ability to discriminate between same and different
arm-movement videos. The resulting maps were corrected for multiple
comparisons by applying permutation testing (Monte Carlo simulations
implemented in BrainVoyager QX) to estimate the cluster-size threshold
corresponding to the error probability of p � 0.05.

Results
Functional connectivity of OTC voxels with hMT�, but not
hV4/LO-1, reflects upper-limb selectivity patterns
Since the sources of feedforward information into OTC (e.g., hV4
and hMT�) are somewhat specialized for processing different
aspects of visual stimuli (Ungerleider and Mishkin, 1982; Van
Essen et al., 1992; Nassi and Callaway, 2009), their degree of
connectivity with OTC voxels may affect the voxels’ preference to
particular object categories. If selectivity to static upper limbs in
the OTC is driven by shape information, then voxels showing
greater selectivity to upper limbs should also show increased con-
nectivity to hV4. However, if OTC representation of upper limbs
is driven by their ability to move, then this selectivity should be
associated with increased connectivity to hMT�. We therefore
studied the relationship between FC patterns of OTC voxels with
hMT� and hV4, and their selectivity in representing certain ob-
ject categories.

To address this working hypothesis, for each participant we
generated FC maps across the OTC with two bilateral seed
regions: hV4 and hMT� (any voxels in the hMT� seed that
were shared with ULA were excluded from the analysis). To
estimate the degree of FC between each voxel in the target
OTC mask (see Materials and Methods) and the seeds, we cal-
culated the partial correlation between each voxel’s time series
and the first eigenvector of each seed (Fig. 1A, top). This ap-
proach was designed to parcel out common source components
and measure the unique (and potentially even direct; Smith et al.,
2011) temporal relationship between the target voxels and the
seeds. This analysis was carried separately for each seed, resulting
in a connectivity index (i.e., a partial correlation coefficient) for
each target voxel within each seed FC map. Figure 1A (bottom)
shows a map of voxelwise connectivity indices in the OTC of a
representative participant with each of the designated seed ROIs
(hMT� and hV4: left and right maps, respectively; the corre-
sponding seeds are shown in white contours).

In addition, each target OTC voxel was assigned an index of its
category selectivity (for each category separately: upper limbs,
torsos, lower limbs, or objects), by calculating a t value for the
difference between the BOLD activation level to one specific cat-
egory, and the mean activation estimate for the other three cate-
gories. The example maps in Figure 1B show the distribution of
selectivity indices to upper limbs (left) and objects (right) within
the OTC voxels of the representative participant.

To quantify the relationship between the patterns of selectivity
and FC, we calculated for each OTC voxel the difference (�)
between its connectivity to hMT� and hV4 (for ipsilateral and
contralateral seed pairs, separately), yielding a voxel’s connectiv-
ity preference measure. The scatter plots in Figure 1C depict the
connectivity preference index of each of the OTC voxels, plotted
against their selectivity to upper-limb and object images, in the
representative participant. Positive and negative �s in Figure 1C

indicate relatively stronger functional connections to hMT� and
hV4, respectively. Significant correlation between the voxels’ �s
and their selectivity to a particular image category would indicate
a relationship between image categorical selectivity within the
OTC and FC patterns. Zero or near-zero correlation would point
to the absence of a relationship between the voxels’ categorical
and connectivity preferences. For the representative participant
in Figure 1C, stronger coupling with hMT� coincided with in-
creased selectivity to upper limbs (r � 0.67) while stronger cou-
pling with hV4 was associated with the voxels’ preference for
objects (r � 	0.64).

This pattern of results was replicated across participants, as
indicated in Figure 2A. Colored bars show group mean Pearson’s
correlation coefficients (averaged across hemispheres) between
OTC voxels’ selectivity for a particular image category and their
connectivity preference index. We first considered connectivity
patterns between the OTC region and each of the ipsilateral seeds
(Fig. 2A, top). The degree of target voxels’ FC preference toward
hMT� was significantly associated with their selectivity to upper
limbs (p � 0.001; the significance levels were calculated using a
permutation test; see Materials and Methods). Selectivity to
lower limbs and torsos varied independently from FC preference
(p � 0.20 and p � 0.25, respectively). Conversely, voxels showing
stronger FC with hV4 also showed higher selectivity to objects
(p � 0.001). A similar pattern of correlations was evident when
the connectivity preference index was calculated for hMT� and
hV4 seeds in the contralateral hemisphere (p � 0.001, p � 0.24,
p � 0.32, and p � 0.001, respectively; Fig. 2A, bottom).

The positive association between OTC voxels’ selectivity to
upper-limb images and their degree of connectivity to hMT�
could potentially be due to the greater spatial proximity of ULA
to hMT�, compared with its proximity to hV4 (see Materials and
Methods for details about the degree of spatial overlap between
these ROIs). To rule out this possibility, we repeated our FC
analyses with a set of other shape-selective and motion-selective
areas, namely LO-1, LOC, and V3A.

LO-1 is a retinotopically defined shape-sensitive region that is
anatomically closer to ULA than hV4, yet comparable to hV4 in
terms of its position in the putative visual hierarchy (Larsson and
Heeger, 2006; Sayres and Grill-Spector, 2008). On the other
hand, LOC serves as an ideal control to test the possible con-
founding proximity factor, because it is more shape-selective
than hV4 or LO-1 (Grill-Spector et al., 1999; Larsson and Heeger,
2006; Amano et al., 2009) and also overlaps with hMT� and ULA
(as well as with EBA; Downing et al., 2007). The patterns of
results associated with these new seed ROIs were very similar to
our original observations with hV4: OTC voxels showing greater
preference to static images of upper limbs showed stronger func-
tional connectivity with hMT�, even when this was compared
with their connectivity with LO-1 or LOC [Figure 2B,C; LO-1:
ipsilateral seeds: p � 0.001, p � 0.16, p � 0.29, and p � 0.001 for
upper limbs, lower limbs, torsos, and objects, respectively; con-
tralateral seeds: p � 0.01, p � 0.15, p � 0.32, and p � 0.001
respectively; LOC: ipsilateral seeds: p � 0.001, p � 0.15, p � 0.15,
and p � 0.05; contralateral seeds: p � 0.01, p � 0.20, p � 0.23,
and p � 0.05, respectively]. Thus, cortical distance, per se, cannot
explain the selectivity– connectivity relationship we observed.

To finally rule out the confounding distance factor (and to
exclude possible influence of spatial blurring of the BOLD signal
due to vascular drainage or partial volume effect), we repeated
the FC analysis of OTC with the seed areas hMT� and hV4, after
excluding all ULA voxels from the target OTC region (in addition
to those that overlap with hMT�). If cortical proximity between
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ULA and hMT� is responsible for the tight relationship between
the voxels’ selectivity to images of upper limbs and their connec-
tivity with hMT�, one may expect that excluding ULA voxels
(which are adjacent to hMT�) may abolish this relationship.
However, the overall picture remained the same: voxels within
the rest of the OTC that had greater selectivity to upper limbs also
demonstrated stronger connectivity to hMT� than to hV4 (ipsi-
lateral seeds: p � 0.01, p � 0.14, p � 0.39, and p � 0.01 for upper
limbs, lower limbs, torsos, and objects, respectively; contralateral
seeds: p � 0.01, p � 0.23, p � 0.54, and p � 0.001, respectively).

We also repeated the original FC analysis comparing hV4 and
V3A, another cortical area sensitive to visual motion. Although
both hMT� and V3A participate in the processing of motion
patterns (Huk and Heeger, 2002), hMT�, unlike V3A, has been
shown to be involved in the learning and recognition of complex,
articulated motion patterns (Jastorff et al., 2009; for review, see
Pitzalis et al., 2012). Thus, V3A is probably less relevant for the
processing of articulated upper-limb movements, and mediating
upper-limb form–motion interactions. Indeed, the FC prefer-
ence of OTC target voxels toward V3A (compared with hV4) was
only marginally associated with their selectivity to upper limbs
(p � 0.054 and p � 0.08 for ipsilateral and contralateral seeds,
respectively). Yet the voxels’ FC preference toward hV4 was sig-
nificantly coupled with their selectivity to more rigid torsos, for
both ipsilateral and contralateral seeds (p � 0.05 for both). This
suggests that, unlike connectivity of voxels in the OTC to hMT�,
connectivity of voxels in the OTC to V3A only weakly reflects
their selectivity to articulated body parts.

To sum up, in OTC, the voxels’ greater selectivity to articu-
lated body parts (upper and lower limbs) was associated with
their stronger connectivity with hMT�. In contrast, selectivity to
more rigid or typically inert objects (torsos and man-made ob-
jects) was associated with increased FC with hV4, LO-1, or LOC.

The results described above were based on the first eigenvec-
tor of each seed (capturing the largest amount of explained vari-
ance across the seed voxels). However, if across the seed voxels,
the resting-state response is not entirely homogenous, the first

eigenvector may underestimate a portion of the seed, mediating
relevant information to the target. Indeed, the resting-state time
courses of 11.0 � 1.0% of the OTC voxels (mean across partici-
pants � SD) negatively correlated with the principal eigenvectors
of the seeds, suggesting that subpopulations in the seeds may not
be represented in the previous connectivity analysis. To further
corroborate our results, we calculated voxelwise connectivity in
the OTC with every single voxel in ipsilateral and contralateral
hMT� and hV4 ROI seeds, choosing the maximal connectivity
index for each target voxel (across seed voxels) to represent its
functional connectivity with the seed. Note that now, due to the
choice of maximal connectivity indices per seed, 
99% of the
OTC voxels have a positive connectivity index with both hMT�
and hV4 seed regions. However, the selectivity of those voxels to
upper-limb images was still positively associated with their con-
nectivity preference toward hMT� (but not hV4, p � 0.01, for
both ipsilateral and contralateral seeds). This result, as well as the
relationship between FC and selectivity to other image categories,
corroborates the results of the previous analysis.

Cortical sensitivity to the velocity profile of seen
extension/flexion arm movements
Based on the tight coupling between connectivity to hMT� and
selectivity to static images of upper limbs across the OTC, we
predicted that OTC voxels selective to static upper limbs might be
involved in the processing of upper-limb dynamics. To test this
prediction, we examined which cortical regions of the human
brain carry information about the velocity profile of visually pre-
sented natural arm movements, and the extent to which ULA is
sensitive to this motion kinematic parameter.

For this purpose, participants viewed videos of arm move-
ments (extension and flexion) while performing a fixation task.
The speed of both the extension and flexion components was
manipulated parametrically across four videos, such that the ex-
tension/flexion speed ratios ranged between 0.25 and 4 (Fig. 3;
Movie 1; the leftmost frames in Fig. 3 are from the first clip in the
movie, etc.). The videos were designed to vary arm kinematics

Figure 2. Selectivity of OTC voxels to static images of upper limbs is positively associated with their level of connectivity with hMT�. A, Colored bars show the group-mean correlations between
the OTC voxels’ selectivity for a particular image category (purple, upper limbs; dark blue, lower limbs; dark gray, torsos; light gray, objects) and their connectivity preference index calculated for the
ipsilateral (top) and contralateral (bottom) hMT� and hV4 seeds. Positive correlation (black arrow to the right) indicates that selectivity to a particular image category is positively associated with
hMT� connectivity. Negative correlation (arrow to the left) indicates that the selectivity is positively associated with hV4 connectivity. B, C, The same functional connectivity analysis was repeated
for hMT� and two other shape-selective regions, LO-1 (B) and LOC (C). The error bars indicate SEM. Dashed lines, Significance level for the correlations at p � 0.05, as obtained using permutation
analysis. Asterisks denote significant differences when comparing the group-mean correlation coefficients for upper limbs with either objects or torsos (or for lower limbs with either objects or
torsos) using a two-tailed t test. The levels of significance are indicated as follows: *p � 0.05; **p � 0.01; ***p � 0.001.
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across the video set while minimizing differences in arm shape.
Accordingly, the individual frames in video pairs with extension/
flexion speed ratios 0.25 versus 4 and 0.67 versus 1.5 were iden-
tical (but played in reverse). However, while very similar, the
frames across the other video pairs were not identical. To account
for potential dissimilarity in arm shape, shape similarity between
single frames (both within and between videos) was assessed for
all possible frame pairs (using a shape description algorithm;
Belongie et al., 2002). There was no statistically significant differ-
ence between estimates for “within” and “between” frame pairs (t
test, t(778) � 0.8, p � 0.42): the videos showed similar levels of arm
contour similarity with other videos as within themselves. This
ensured that shape information was constant across the videos.
Furthermore, since arm movements spanned the same regions in
the visual field (i.e., local motion signals were pooled across the
same space), they mostly differed in their velocity profile. We
used both left and right arm movements: the four original (left
arm) videos were further flipped horizontally to obtain four ad-
ditional (right arm) videos with the same kinematic parameters.

Since neurons in motion-sensitive cortical areas (such as MT)
show distinct speed and direction tuning functions (Albright et
al., 1984; Liu and Newsome, 2003), we hypothesized that four
different videos for each arm (comprising motion within the
same visual space but at different speeds in each direction) would
activate different populations of these neurons. Different multi-
voxel activity patterns in these areas would therefore represent
the (dis)similarity in arm-motion kinematics, rather than arm
contours. Moreover, since elementary motion detectors in early
visual cortical areas have access to a very limited portion of the
visual space, and therefore do not recover the true 2D motion
velocity (Movshon et al., 1985), we predicted that low-level visual
ROIs should show limited speed-ratio discrimination. Only
higher-order motion processing areas that integrate local motion
information, such as hMT�, should show sensitivity to veridical
arm velocity (Huk and Heeger, 2002; Serences and Boynton,
2007). In addition, we expected that both low-level and high-level

visual areas would differentiate between left and right arm videos
either due to their retinotopic organization (as these videos acti-
vated different regions within the visual field; Wandell et al.,
2007; Sayres and Grill-Spector, 2008; Kravitz et al., 2010), or due
to (retinotopically independent) encoding of arm identity in
these areas (DiCarlo and Cox, 2007).

Whole-brain MVPA
To explore the potential scope of cortical areas that may be sen-
sitive to seen arm- movement kinematics, we applied a volume-
based searchlight MVPA (Kriegeskorte et al., 2006). Sensitivity to
both low-level arm-motion aspects and global motion kinemat-
ics should be reflected in a stronger correlation between two mul-
tivoxel activity patterns (across two halves of the dataset; see
Materials and Methods) evoked by the same motion video (Same
correlation), compared with the correlation calculated for two
different motion videos (Different correlation). For each partic-
ipant, we used search windows of different sizes to search
throughout the brain for voxel clusters whose activation patterns
allow discrimination between same and different arm movement
videos. Figure 4 depicts the groupwise statistical maps with voxels
showing significant difference between Same and Different cor-
relations (indicated by the blue patches in the maps). Thus, the
searchlight voxel cluster, centered on each of those highlighted
voxels, could significantly discriminate between same and differ-
ent arm movement, at the group level. A large groupwise cluster
with maximal sensitivity to difference in motion kinematics was
observed in the right lateral OTC (x-y-z Talairach center-of-mass
coordinates: 45, 	64, 1), regardless of the search window size
(Fig. 4B,D). Importantly, this cluster substantially overlapped
with the groupwise localizer of ULA in the right hemisphere (in-
dicated by the red contours, respectively). In addition, small clus-
ters were found in the left lateral OTC (	48, 	72, 3), right STS
(46, 	40, 9), right anterior parietal cortex (26, 	47, 56), and left
central sulcus (	28, 	33, 56), as well as in the parieto-occipital
junction bilaterally (	21, 	86, 26, and 22, 	87, 36, respectively).

Figure 3. Velocity profile of an arm movement. Four movement videos (frames partially superimposed; Movie 1) were constructed from the same motion element [extension of the arm (Ext)].
First, the speed of the original Ext clip was changed parametrically resulting in four new video clips of 4 –16 frames. Second, the order of the frames in the clips was reversed, thus creating four
corresponding flexion (Flex) movements. Finally, the obtained Ext and Flex were paired together to produce four videos of equal length (20 frames, 800 ms) with different Ext/Flex speed ratios. The
mean speed of the moving arm contour was calculated for Flex and Ext episodes separately (using edge points of the contour when the arm was maximally flexed or extended; left, blue dots). The
mean speed of the contour ranged from 6 to 24°/s for Flex (from left to right) and Ext (from right to left), respectively. Yellow arrows, Ext and Flex velocity in each movie clip; black vertical arrow, time
in seconds; black horizontal line, space in degrees; dashed red lines, the position of fixation point during clip presentation; dashed green line, color of the fixation point, which was changed
periodically.
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This whole-brain analysis at the group
level suggests that ULA, as well as low-
level visual areas (e.g., V1–V3), may en-
code information about kinematics of the
arm movements, independent of arm
shape.

However, ULA and hMT� shared 13–
37% of their voxels (mean, 25%) in Ta-
lairach space, as estimated at the single
participant level (see Materials and Meth-
ods). The sensitivity of ULA to arm kine-
matics may therefore be merely due to this
partial overlap. To address this issue, we
created individual searchlight maps. Fig-
ure 5 presents examples of these maps
with voxels showing a significant differ-
ence between Same and Different correla-
tions (indicated by the blue patches in the
maps). A permutation test was performed
to infer statistical significance of the dif-
ference at the single participant level (see
Materials and Methods). The maps in Fig-
ure 5 are superimposed on the corre-
sponding individual’s localizers for
hMT� and ULA (the white and red
patches, respectively). Importantly, sig-
nificant voxel clusters in the lateral OTC
of the participants overlap with both
hMT� and ULA voxels, which are not
part of hMT�, in both hemispheres. This
whole-brain analysis at the individual
level suggests that ULA voxels are sensi-
tive to arm-motion kinematics, even if
they are beyond hMT�.

ROI-based MVPA
To study in more detail the relationship of various functionally
defined visual areas, including ULA, to arm-velocity representa-
tion, we used a ROI-based MVPA. For this purpose, 10 bilateral
ROIs (V1, V2, V3, V3A, hV4, LO-1, LOC, hMT�, ULA, and FFA)
were identified for each of 11 participants, based on independent
localizers. In addition, face-selective STS/MTG ROIs were iden-
tified in seven participants (in two of them, in the right hemi-
sphere only). To exclude the potential influence of hMT� on
arm kinematics representation in adjacent ULA and LOC (due to
their partial overlap; see Materials and Methods and Fig. 5), the
hMT�, ULA, and LOC ROIs were restricted to nonoverlapping
voxels across the localizers (Fig. 5, white, red, and green patches,
respectively). Overlapping voxels between LOC and LO-1 were
also excluded.

Correlations between multivoxel activation patterns evoked
by the viewed movements were calculated separately for each arm
and in the left and right hemispheres. We first tested whether the
MVPA in the various ROIs makes it possible to distinguish be-
tween the two viewed arms, regardless of their motion profile. To
that end, in each participant we separately averaged all correla-
tions that corresponded to the same arm identity, and the ones
with different arm identity. The difference between the group-
averaged correlations for same and different arm views was sig-
nificant in all ROIs except STS/MTG and FFA (paired t test, t(10)

ranged from 4.6 to 8.1, p � 0.001 for V1–V3, V3A, LO-1, and
hMT�, p � 0.01 for LOC and ULA, and p � 0.05 for hV4). This

indicates that information about arm identity is present in the
multivoxel patterns throughout the ventral visual stream.

To quantify the ROIs’ sensitivity to kinematics of arm move-
ments, we averaged the correlations within each participant
across the two arm views. Figure 6A shows the group-average
correlations in hMT� and ULA. X and Y axes indicate four dif-
ferent conditions (i.e., four extension/flexion speed ratios) in two
halves of the dataset. To estimate the overall discrimination abil-
ity for each ROI, the correlation coefficients were averaged across
same videos (i.e., the main diagonal of the matrices) and different
videos (other correlations in the matrices; Fig. 6B). In general, the
correlations were higher in V1–V3 and V3A than hMT�, prob-
ably due to a better reproducibility of multivoxel activation pat-
terns in these fine-scale retinotopic regions. Nevertheless, the
difference between correlations for same (red) and different
(gray) videos was only moderately significant in these early visual
areas (paired t test, t(10) ranged from 3.7 to 4.3, p � 0.05 for all),
whereas hMT� showed strong discrimination between the vid-
eos (t(10) � 8.5, p � 0.001). This pattern of correlations was
replicated when studying the right and left hemispheres sepa-
rately (right hMT�: t(10) � 5.9, p � 0.01; left hMT�: t(10) � 4.3,
p � 0.05; right V1–V3 and V3A: t(10) � 2.4, 3.0, 3.6, and 3.4; p �
0.33, p � 0.16, p � 0.06, and p � 0.08, respectively; left V1–V3
and V3A: t(10) � 3.7, 3.6, 4.1, and 3.7; p � 0.05 for all). The
difference between the left and right hMT� in their ability to
discriminate between the videos was not significant (t(10) � 0.7,
p � 0.49). Importantly, we identified similar discrimination be-
tween same and different arm-motion videos in the ULA ROI
(t(10) � 5.6, p � 0.01), while this discrimination in LO-1 was less

Figure 4. Sensitivity to kinematic differences between arm movements in the whole brain. A–C, Group searchlight statistical t
map is shown on the cortical surface of a representative participant from the left (A) and right (B) posterior lateral and top (C) views
(the analysis was performed in volume space, and its results were projected on the mesh surface for presentation purposes only).
A search window was defined as a sphere of radius 9 mm that included 123 isotropic voxels of 3 � 3 � 3 mm. The map indicates
where in the brain (in a specific standard voxel and its neighborhood) the group-mean difference between Same and Different
correlations is significant across participants. Red and black contours, Borders of the group ULA and EBA regions, respectively ( p �
0.001, cluster size corrected). EBA was defined by contrasting the body categories (upper limbs, lower limbs, and torsos) versus the
object category. D, An analogous t map is obtained with a smaller search window (radius 6 mm, 33 isotropic voxels). The map
shows similar overlap between voxels showing significant differences between Same and Different correlations and the group ULA
region, regardless of the search window size.
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prominent (t(10) � 4.5, p � 0.05). Other higher-order ROIs
within the ventral visual pathway (i.e., LOC, hV4, face-selective
STS/MTG, and FFA) did not show significant effects (p 
 0.15
for all). Figure 6C shows effect sizes (Cohen’s d) of motion dis-
crimination within each of the 11 ROIs. A permutation test con-
firmed that discrimination of arm-motion videos within hMT�
and ULA (d(10) � 1.52 and 0.88, respectively) is significantly
higher than expected in these ROIs by chance ( p � 0.01 for
both). These results suggest that ULA may code information
relating to upper-limb dynamics, above and beyond its selec-
tivity to shape.

To explore the relationship between
same/different movement discrimination
ability and movement kinematics pro-
cessing, we created a parametric predic-
tor, based on the kinematic (dis)similarity
between arm movements in the different
videos. For each pair of videos, we as-
sessed the difference between the arm
contour speeds for extension and flexion
components separately, and then calcu-
lated the Euclidean distance between the
speed vectors across video pairs (Fig. 6D,
inset; Materials and Methods). We pre-
dicted that regions specifically coding ve-
locity profile of an arm movement would
show significant model fits to the degree
of (dis)similarity across the multivoxel
patterns. As Figure 6D demonstrates, the
(dis)similarity predictor accounts for a
significant amount of variance in the MVPA
correlation matrices in both hMT� and
ULA (r2 � 0.15 and 0.11; F(1,174) � 31.7 and
20.6, respectively, p�0.001 for both). Using
the same procedure, the explained variance
in V2, V3, V3A, LO-1, and LOC was �2
times smaller than in ULA and �3 times
smaller than in hMT� (r2 ranged from
0.047 to 0.064, F(1,174) � 9.9, 9.7, 11.9, 9.3,
and 8.7, respectively, p � 0.01 for V3A, and
p � 0.05 for all other ROIs), whereas V1,
hV4, STS/MTG, and FFA did not show sig-
nificant effects (p 
 0.4 for all). This pattern
of results is akin to that shown in Figure 6C,
suggesting that the discriminative pattern of
MVPA may be attributed to velocity-profile
sensitivity in hMT� and ULA.

Discussion
Body-selective areas within the OTC
(e.g., EBA) are traditionally thought to
be a part of the shape-selective ventral
visual stream (for review, see Op de
Beeck et al., 2008; Downing and Peelen,
2011; Taylor and Downing, 2011). Con-
trary to this view, we show that within
OTC voxels, the selectivity to static im-
ages of arms and hands is positively cor-
related with their strength of functional
connectivity with hMT� but not with
midlevel shape-selective regions (hV4
or LO-1; Figs. 1, 2). In contrast, no such
positive relationship is found between
the connectivity to hMT� and the vox-

els’ selectivity to torsos or inert man-made objects. Thus, in-
creased selectivity of OTC voxels to images of articulated,
highly dynamic upper limbs (but not more rigid or completely
inert objects) coincides with their increased connectivity with
hMT�. This suggests that upper-limb-selective visual pro-
cessing in OTC might be tightly coupled with upper-limb ar-
ticulation. Indeed, we demonstrate that upper-limb-selective
voxels show discriminative patterns for viewed arm move-
ments with different kinematics, although these movements
contain similar shape elements and span the same regions in

Figure 5. Examples of searchlight statistical maps and their overlap with classical visual areas in individual participants.
Searchlight statistical maps of three participants (using a search window of 9 mm radius) are shown on an inflated cortical surface
of the right and left hemispheres, from a posterior lateral view. The analysis was performed in volume space, and its results were
projected on the mesh surface for presentation purposes only. The blue clusters indicate voxels (i.e., search window centers) in
which significant differences between Same and Different correlations were found (using a permutation test, p � 0.01, cluster-
size corrected). The enlarged maps around each hemisphere show locations of the different ROIs used in Figures 2 and 6. White lines
indicate the boundaries of retinotopically defined V1–V3, V3A, hV4, and LO-1. Functionally defined hMT�, ULA, and LOC are
indicated by white, red, and green patches, respectively. Note that these ROIs were restricted to exclude all overlapping voxels that
are shared by the hMT�, ULA, LOC, and LO-1 localizers (some voxels shared by V3 and LOC in a few participants were also
excluded). The leftmost and rightmost maps demonstrate the degree of overlap between the searchlight results showing sensi-
tivity to arm-motion kinematics (blue) and the defined ROIs in each individual.
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the visual field (Figs. 4 – 6A–C). Moreover, we show that
upper-limb-selective areas carry information about the dy-
namic profile of a seen natural arm movement, much like the
classical motion area hMT� (Fig. 6D). We therefore suggest
that the functional specificity for upper-limb representation
in the OTC may be determined by articulated visual motion,
beyond mere selectivity to shape.

This study was motivated by the fact that EBA, an area
showing preference to static images of body parts (and limbs
in particular) above other objects, is in close proximity to
hMT� (Downing et al., 2001, 2007; Weiner and Grill-Spector,
2011; Ferri et al., 2012). Such proximity suggests a possible
link between the perception of body form and the processing
of its kinematics (Beauchamp et al., 2002; Kable and Chatter-
jee, 2006; Jastorff and Orban, 2009; Thompson and Baccus,
2012). For example, specific regions within the lateral OTC,
including EBA, have been shown to selectively respond to
body/hand motion versus object motion (Beauchamp et al.,
2002; Heitger et al., 2012), to intact versus scrambled point-
light biological motion (Peelen et al., 2006; Jastorff et al., 2009;
for review, see Downing and Peelen, 2011), and to realistic
versus artificial patterns of point-light biological motion (Jas-
torff and Orban, 2009). However, in these studies, differences
between the global motion patterns of the compared stimuli
were associated with differences in their shape. Using MVPA

we provide direct evidence that motion information in ULA
(rather than in adjacent LOC or face-selective STS/MTG) is
related to velocity profiles of arm movements, while shape
cues were maintained constant. Conversely, arm identity (i.e.,
left-arm vs right-arm movements regardless of their kinemat-
ics) could be discriminated in ULA, as well as in other ventral
stream visual areas (hV4, LO-1, and LOC). This may stem
from retinotopically independent encoding of viewed arm
identity (DiCarlo and Cox, 2007), but is most likely due to
differences in the retinal representation of the two moving-
arm contours (Sayres and Grill-Spector, 2008; Kravitz et al.,
2010). Together with the FC results, our findings indicate that
OTC regions showing categorical preference to static images
of upper limbs carry information about arm motion above and
beyond information about arm shape.

Although in humans the computation of global direction and
speed of motion can occur in both hMT� and V3A (Huk and
Heeger, 2002), we found much weaker sensitivity to the kinemat-
ics of an arm movement in V3A (Fig. 6D). Furthermore, upper-
limb selectivity in OTC voxels strongly coincided with their
connectivity preference toward hMT� (relative to a range of
shape-selective areas), but not toward V3A. Based on a growing
body of evidence about functional differences between these two
motion-sensitive areas (Serences and Boynton, 2007; Jastorff et
al., 2009; Aflalo and Graziano, 2011; Fischer et al., 2012; Seymour

Figure 6. The degree of (dis)similarity across multivoxel activation patterns in hMT� and ULA is predicted by the degree of movement kinematics (dis)similarity. A, Group averaged correlations
matrices in hMT� (left) and ULA (right). X and Y axes indicate four movement conditions in the two dataset halves. Color bar, Level of correlation between multivoxel activity patterns evoked by the
videos corresponding to the conditions in the two dataset halves. B, Red and gray bars indicate averaged correlations for the same videos (i.e., the main diagonal of the matrices in A and different
videos (other correlations in the matrices), respectively. The error bars indicate SEM. C, Effect size (Cohen’s d) of the difference between correlations for same and different videos across 11 ROIs. Note
that the hMT�, ULA, LOC, and LO-1 ROIs were restricted to voxels that are not shared between the ROIs. The significance level for d was obtained using permutation analysis. D, The amount of
variance explained by the kinematic (dis)similarity predictor (as calculated across video pairs; inset on the right) in the correlation matrices, for each ROI. Asterisks denote levels of significance as
follows: *p � 0.05; **p � 0.01; ***p � 0.001.
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and Clifford, 2012; Pitzalis et al., 2012), we propose that the dif-
ference in their sensitivity to arm-motion kinematics may be re-
lated to the different challenges associated with the processing of
rigid versus articulated objects: since all the surface points of a
rigid object have a similar speed vector, integration of local mo-
tion signals is relatively straightforward. In contrast, arm motion
with its multiple joints makes the pooling of local velocities much
more complicated (Neri et al., 1998). Thus, while V3A may be
sufficient for vector pooling of rigid motion, the involvement of
hMT� may be critical to cope with the pooling of nonrigid
motion.

It has previously been suggested that functional specificity
of upper-limb-selective regions in the vicinity of hMT� can
be partly attributed to their recruitment in the processing of
body-part dynamics (Orlov et al., 2010): Upper limbs, which
are the most articulated parts of the human body, have been
estimated to contain 40° of freedom (MacKenzie and Iberall,
1994), and the processing of their motion is unique in its
importance for the interpretation of observed actions. If so,
the selectivity to static upper limbs in ULA may be related to
the fact that shape cues that characterize upper limbs are nat-
urally associated through lifetime experience with arm-
specific motion patterns. Indeed, OTC responses to different
image categories have been thought to reflect both acquired
past experience and current input (Barlow, 2001; Hasson et
al., 2002; Chan et al., 2010; Zhang and Kourtzi, 2010). For
example, shape selectivity can emerge in single neurons within
classical MT following associative learning between the direc-
tion of motion and a static shape (Schlack and Albright, 2007),
while implied motion (i.e., motion inferred from still images)
has been thought to activate the same direction-selective and
speed-tuned mechanisms as real motion (Shiffrar and Freyd,
1993; Kourtzi and Kanwisher, 2000; Winawer et al., 2008).
According to this framework, the spatial vicinity of ULA to
hMT� is not coincidental: it could function as a local neural
network that incorporates both static and dynamic aspects of
upper limbs, thus minimizing wiring cost and maximizing the
behavioral value of the network function (Bullmore and
Sporns, 2012). Such a specialized mechanism for facilitating
motion perception by form signals and vice versa, may be
critical for successful action execution in a complex, dynamic
environment (Giese and Poggio, 2003; Kourtzi et al., 2008).
For example, integrating both static views of human body and
corresponding motion signals has been thought to allow an
earlier anticipation of emerging actions (Gervais et al., 2010).
The tight link that we report between representation of static
upper limbs and motion processing may shed light on the
existence of such a mechanism in the OTC.

To what extent is this putative integrative network, which
accumulates dorsal and ventral upper-limb information, spe-
cific for upper limbs? Our study was not designed to provide a
conclusive answer to this question: while demonstrating sen-
sitivity of ULA to upper-limb kinematics, our study does not
include control conditions to show that the sensitivity was
specific to arm movements. For example, based on our previ-
ous findings, demonstrating high responsiveness to lower-
limb images in ULA (Orlov et al., 2010), it seems reasonable to
assume that ULA may be also sensitive to kinematics of lower
limbs to some degree. Indeed, in the present study we find that
OTC voxel’s connectivity with hMT� is positively correlated
with their selectivity to the images of lower limbs but not
torsos or rigid objects (see Fig. 2). Thus, our results may sug-
gest that this integrative network represents a generalized vi-

sual mechanism supporting form–motion interactions for
articulated body parts, beyond upper limbs. Notably, in the
lateral OTC, some regions show selectivity to moving human
bodies while others prefer rigid, unarticulated objects (Beau-
champ et al., 2002). Thus, the sensitivity of ULA to the velocity
profile of arm movements is unlikely to generalize to other
object categories, (e.g., rigid objects) even when presented in
motion with similar velocity profiles, as in the arm videos used
in our study. Nevertheless, the hand-selective region in the left
lateral OTC defined by a previous study (which is in partial
overlap to ULA) does show similarity between the multivoxel
response patterns to hands and to tools, and in particular, for
tools that serve as an extension of the hand (Bracci and Peelen,
2013). We therefore speculate that ULA might respond to tool
motion when the tool extends the hands’ reach.

In conclusion, we demonstrate that the strong category
specificity that exists in the OTC for highly articulated upper
limbs versus less flexible or completely rigid objects can be
explained, to some degree, by the patterns of functional con-
nectivity of OTC voxels with hMT� and hV4/LO-1. The OTC
representations of rigid, typically inert objects are likely to
obey the classical hierarchy in the ventral visual stream, where
V4 (or LO-1) is the main source of information for the higher
level visual areas (Van Essen et al., 1992). Conversely, the
functional specificity of ULA may be determined by its strong
functional connections with hMT� and its involvement in the
processing of arm-motion kinematics.
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