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It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and
nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single
neurons in the human medial temporal lobe, taken as subjects’ discriminated objects during multiple presentations, have shown gnostic
representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectiv-
ity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well
isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more
neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p <
0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of

objects, across multiple semantic categories.
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Introduction

A key question in neuroscience is whether neuronal representa-
tion is distributed across populations of neurons or more local-
ized to stimulus-selective neurons (Bowers, 2009). Distributed
coding (i.e., individual neurons encoding multiple stimuli;
Thorpe, 1995) may offer many advantages, such as high coding
capacity, resistance to noise, and generalization to similar stimuli
(Rolls and Treves, 1998; Rolls and Deco, 2002). In contrast, lo-
calized (or gnostic) coding (i.e., individual neurons encoding
singular stimuli unequivocally; Barlow, 1972; Thorpe, 1989) may
provide metabolic efficiency and a simple relation between single
neuron activity and different instantiations of objects (Hummel,
2000; Lennie, 2003). While the question of distributed object
representation has been thoroughly studied in nonhuman pri-
mates (Baylis et al., 1985; Rolls and Tovee, 1995; Baddeley et al.,
1997; Treves et al., 1999; Franco et al., 2007), there is less consen-
sus among the few human studies that have been performed. Due
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to clinical constraints, these studies have been largely confined to
recordings from medial temporal lobe (MTL) brain areas (i.e.,
hippocampus and amygdala).

Several studies, wherein images were shown to epilepsy pa-
tients, have revealed neural selectivity for individual objects, con-
sistent with distributed representation (Kawasaki et al., 2005;
Rutishauser et al., 2006; Viskontas et al., 2006; Steinmetz et al.,
2011). Because these experiments did not show multiple views of
each object, they are limited to explaining the neural representa-
tion of the specific exemplars shown. To date, only one series of
studies has explicitly tested object encoding by single neurons in
the human MTL (Quiroga et al., 2005; Quian Quiroga et al.,
2009). In these experiments, subjects viewed multiple views of
objects with multiple presentations of the same view, yielding
results suggesting that individual neurons in the MTL are
strongly selective for a small number of individual or related
objects.

Given the contrast between these results, an obvious question
remains: What is the neural representation of objects when mul-
tiple views are shown in one viewing session with limited presen-
tations? This distinction is critical because it is well established
that the MTL is involved in both recognition and recollection of
prior experiences (Scoville and Milner, 1957; Squire et al., 2004).
Many imaging studies reveal hemodynamic changes in the
MTL with greater memory strength specifically after stimulus
repetition (Law et al., 2005, Daselaar et al., 2006; for review,
see Gonsalves et al., 2005; Yassa and Stark, 2008); some have
even theorized that repetition contributes to increased repre-
sentational sparsity (Desimone, 1996; Wiggs and Martin,
1998).
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Thus to better understand single-neuron responses to objects
as people might encounter them naturally, and as a first step in
understanding the effects of initial and multiple viewing, we had
human epilepsy patients discriminate objects in a single session of
an oft-used visual discrimination task (Kreiman et al., 2000),
where each view of an object was presented only six times. In
contrast to findings with higher numbers of presentations, our
results reveal that object representation in the human MTL dur-
ing initial viewing is notably distributed, with the activity of many
recorded neurons predicting the presence of multiple, unrelated
objects.

Materials and Methods

Subjects. We recorded single-neuron activity from 21 patients at the Bar-
row Neurological Institute (14 female, 18 right-handed, ages 20-56,
mean age = 40). All patients had drug-resistant epilepsy and were eval-
uated for possible resection of an epileptogenic focus. Each patient
granted his/her consent to participate in the experiments per a protocol
approved by the Institutional Review Board of Saint Joseph’s Hospital
and Medical Center. Data were recorded from clinically mandated brain
areas, including the hippocampus, amygdala, ACC, and vPFC.

Microwire bundles and implantation. The extracellular action poten-
tials corresponding to single-neuron activity and local field potentials
were recorded from the tips of 38 wm diameter platinum-iridium mi-
crowires implanted along with a depth electrodes used to record clinical
field potentials (Dymond et al., 1972; Fried et al., 1999). Each bundle of
nine identical microwires was manufactured in the laboratory and im-
planted using previously described techniques (Thorp and Steinmetz,
2009; Wixted et al., 2014, their supplement) and typically had an imped-
ance of 450 k() at 1000 Hz. Each anatomical recording site received one
bundle of nine microwires. Given eight sites typically implanted per pa-
tient, this resulted in 72 microwires implanted in each patient. Electrodes
were placed through a skull bolt with a custom frame to align the depth
electrode along the chosen trajectory. The error in tip placement using
this technique is estimated to be =2 mm (Mehta et al., 2005). Note that
this resolution is insufficient to determine subfields within the hip-
pocampus or nuclei within the amygdala.

Amplification and digitization of microwire signals. After the patient
recovered from surgery (typically within 6 h), the microwire bundles
were connected to the headstage amplifiers, amplification, and digitiza-
tion system as previously described (Steinmetz et al., 2013; Wixted et al.,
2014, their supplement) The complete recording system has a 4.1 uV
RMS noise floor that permits recovery of single-neuron activity signals
on the order of 20 wV (Thorp and Steinmetz, 2009).

Filtering and event detection. Spike sorting was performed using meth-
ods previously described (Valdez et al., 2013). In review, possible action
potentials (events) were detected by filtering with a bandpass filter, 300—
3000 Hz, followed by a two-sided threshold detector (threshold = 2.8
times each channel’s SD) to identify event times. The signal was then
high-pass filtered (100 Hz, single-pole Butterworth) to capture wave-
form shape with the event time aligned at the ninth of 32 samples (Vis-
kontas etal., 2006; Thorp and Steinmetz, 2009). All events captured from
a particular channel were then separated into groups of similar waveform
shape (clusters) using the open-source clustering program, KlustaKwik
(klustakwik.sourceforge.net), a modified version of the Govaert—Celeux
expectation maximization algorithm (Celeux and Govaert, 1992, 1995).
The first principal component of all event shapes recorded from a chan-
nel was the waveform feature used for sorting. After sorting, each cluster
was graded as noise, multi-unit activity (MUA), or single-unit activity
(SUA) using the criteria described previously (Valdez et al., 2013, their
Table 2). Figure 1 shows an example of a cluster representing SUA. We
recorded from a total of 3239 neurons (SUA and MUA) during these
experiments (Table 1). The average number of clusters per channel of
recording was 0.55 for SUA and 1.3 for MUA. This is larger than the 0.4
SUA per channel recently reported by Misra et al. (2014). Based on our
prior work (Thorp and Steinmetz, 2009), we would expect such differ-
ences are due to different noise characteristics of the clinical recording
environment, though they could also be due to different spike sorting
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Figure 1.  Eventsin a cluster identified as SUA after sorting. Channel recorded from the left
amygdala. a, Average waveform shape of eventsin cluster. y-axis: waveform shape with dashed
linesindicating == 15D at each sample point. b, Distribution of interspike intervals (ISIs) for two
duration scales. y-axis: probability of interval; x-axis: duration of interval shown on two scales,
blue for the broader range 0—0.5 s on bottom and black for narrower range 0—0.035 s on top.
¢, Power spectral density of event times. y-axis: power spectral density in events %/Hz; x-axis:
frequency in Hz, with magenta lines indicating primary and harmonics of the power line fre-
quency (60 Hz).

Table 1. Number of recorded neurons by brain area

Brain area SUA MUA Total
Amygdala 234 578 812
Hippocampus 198 563 761

techniques, as Misra et al. (2014) used a manual spike-sorting process. In
our experience, this technique reported in Valdez et al. (2013) produces
results comparable to prior reports in other laboratories (Viskontas et al.,
2006) in terms of recorded waveform shapes, interspike intervals, and
firing rates (Wild et al., 2012; regarding variability in spike sorting de-
pending on the particular waveforms shapes being detected). While it is
important to note that these and other reports of human single-unit
recordings (Kreiman et al., 2000; Steinmetz, 2009) do not achieve the
quality of unit separation achievable in animal recordings (Hill et al.,
2011), they nonetheless represent neural activity at a much finer spatial
and temporal scale than otherwise achievable.

The results reported here exclude neurons from areas other than the
hippocampus and amygdala and from recording sessions where the sub-
ject did not complete sufficient trials to test for object-selective neural
responses. We focus this report on 432 clusters of SUA. Results for pri-
mary effects of object selectivity on MUA in the hippocampus and
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Figure2.  Sampleimages from our stimulus sets. Subjects viewed three colorimages of each
object. Objects were clearly visible in each image, with variation in object position and back-
ground: bird and lizard (a), Gateway Arch and Eiffel Tower (b), Bill Clinton and David Letterman
(c). Readers interested in requesting images in our sets should contact the corresponding
author.

amygdala were in all cases similar and statistically significant, though
with a smaller fraction of neurons with significant effects. This is consis-
tent with MUA comprising a mixture of the same activity reported as
SUA mixed with noise.

Experimental stimuli and task. Subjects viewed images of 11 objects
from each of three categories (animals, landmarks, and people) during
each experimental session. The objects were chosen to match those used
in Quiroga et al., 2005, with the exception of several images of laboratory
personnel for the people category. None of the images were personally
significant to the subjects, as in Viskontas et al., 2006. All images were
chosen to have approximately similar properties of illuminance and con-
trast to reduce potential confounds of these factors (Steinmetz et al.,
2011). We showed the images in random order, with each appearing
individually in the center of a computer screen (subtending ~9.5° visual
angle) for 1 s. During each session, we showed four representations (three
color pictures and the printed name) of each object six times each, for a
total of 792 trials per experimental session. Subjects who participated in
more than one session did so on different days with different stimulus
sets and any neurons recorded on the same channels during different
sessions were regarded as independent. We downloaded the pictures
from the World Wide Web (Fig. 2), and the printed words were in Eng-
lish in 30 point, Helvetica font A. A total of 33 objects were depicted in
each of two stimulus sets. The task was to press a button on a trackball
(Kensington Expert Mouse) when an image (or name) represented a
person, and a different button when an image (or name) represented
a landmark or animal. Button assignment was randomized across
experiments.

Data analysis. We initially analyzed the influence of several factors—
object identity, object luminance, and object contrast— on neuronal re-
sponses. We included the latter two factors to account for their recently
demonstrated effect on neuronal responses in the human hippocampus
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and amygdala (Steinmetz et al., 2011). We constructed a set of nested
generalized linear models for each neuron (Maindonald and Braun,
2003, their Chap. 8), with these factors as independent variables and the
firing rate of a single neuron (in a temporal window from between 200
and 1000 ms after stimulus onset) as the dependent variable. More pre-
cisely, model 1 contained only a constant term; model 2, constant +
luminance terms; model 3, constant + luminance + contrast + lumi-
nance X contrast interacting terms; and model 4, constant + luminance
+ contrast + luminance X contrast interacting + object identity terms.
There were 10 indicator variables for object identity in the model for a
single experiment. We computed the improvement of fit for each succes-
sive model using the y? statistic (Maindonald and Braun, 2003). The
comparison of model 4 to model 3 thus identifies neurons that have
responses that distinguish among the different objects presented after
accounting for differences in image luminance and contrast.

While prior studies have often restricted analysis of the effects of in-
dependent factors, such as object identity, to neurons with responses that
differ from background firing, we do not do so, because this form of
preselection can lead to erroneous conclusions (Steinmetz and Thorp,
2013). To study changes from background firing, we used two tech-
niques: multinomial logistic regression and a bootstrapped test for
changes from background firing.

Multinomial logistic regression predicted the presence of objects from
our stimulus sets, based on the firing rates of neurons compared with
their background firing rates. In logistic models, the “input” is comprised
of a set of theoretically meaningful predictors, while the “output” is a
predicted grouping (Maindonald and Braun, 2003, their Chap. 8; Dob-
son and Barnett, 2008, their Chap. 7), in our case extended to multiple
categorical outcomes (Hosmer and Lemeshow, 2006). More particularly,
the ratio of firing during presentation of images of an object relative to
background firing is used to predict the odds that each object may have
been presented by determining the closest-fitting coefficient in the logis-
tic function. A coefficient of zero implies no change in odds due to
changes in neuronal firing, whereas coefficient values other than zero
signal different odds of one object being present versus no object being
present (i.e., background neuronal activity). Statistically reliable changes
in coefficient values from zero were determined using multivariate ¢ tests
(Hosmer and Lemeshow, 2006, their Chap. 2), one for each neuron. This
approach is similar to a simplified version of the point-process frame-
work proposed by Truccolo etal. (2005). The a-level was 0.05 in all # tests
for nonzero coefficients.

As an independent test of whether neuronal firing is different from
background firing, we used the bootstrapped changes from background
test (CBT) described in detail (Steinmetz and Thorp, 2013). In brief, this
test determines whether the observed responses, grouped by object, were
likely to have arisen from the observed background firing. Together, our
analyses first determined whether responses of the neurons distinguished
between different objects presented (linear models), then determined
whether particular objects could be predicted based on neural firing
relative to background firing (multinomial logistic regression), and fi-
nally as an additional check tested whether firing in response to different
objects differed from background (CBT).

Results

The linear models applied to response counts showed that object
identity reliably affected firing rates (p < 0.05) in many MTL
neurons: 17% in the left hippocampus (LH), 25% in the right
hippocampus (RH), 24% in the left amygdala (LA), and 23% in
the right amygdala (RA). Table 2 shows the proportions of
object-selective neurons. Neither luminance nor contrast reliably
influenced firing rates (p > 0.05).

The multinomial logistic regression models were used to de-
termine whether the firing rates of single neurons could predict
the presence of particular objects. These revealed that, in many
object-selective neurons, firing rates by MTL area and side pre-
dicted the presence of more than one object (Table 3). Bilaterally,
more neurons encoded several objects versus only one object in
the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30
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Table 2. Summary of results from the linear models applied to response counts

% of neurons with
Number of significant Pvalue under
Numberof  pvalues responses to the binomial
Brain area and side  neurons <0.05 objects* distribution
Left amygdala 134 32 2 12X 10 B
Right amygdala 100 3 3 6.9 X 10 10xx
Left hippocampus 103 18 17 3.5 X 10 6%
Right hippocampus 95 24 25 3.6 X 10 Mx
*p < 0.05and **p < 0.001.

Table 3. Summary of results from the regression models used to predict the
presence of objects

% of neurons % of neurons

Mean fraction  encoding encoding

of objects only one more than
Brainareaandside  encoded (%)*  object one object Pvalue?
Left amygdala 25 19 33 2.0 X 10 7 S**
Right amygdala 28 19 30 0.007**
Left hippocampus 22 20 28 0.01*
Right hippocampus 27 17 28 0.007**

I test. *p < 0.05,**p < 0.01, and ***p < 0.001.

vs 19%, p < 0.001). For neurons coding for two or more objects
in this analysis, 49% coded for objects drawn from two or three
categories. Figures 3 and 4 illustrate the distributed response of an
object-selective neuron in the right hippocampus.

On average, the proportion of objects whose presence was
predicted by single-neuron firing rates was 22% in the LH, 27%
in the RH, 24% in the LA, and 23% in the RA. That is, the tuning
of these neurons was much broader and the sparsity of their
responses much lower (Rolls, 2007) than previously reported,
where only ~1-3% of stimuli elicited statistically reliable single-
neuron responses (Quiroga et al., 2005; Mormann et al., 2008)
though at a stricter level of statistical significance. Note that we
refer to lifetime sparsity, or the proportion of stimuli that evoke
statistically reliable neuronal responses (Bowers, 2009). Our re-
sults thus suggest that many human MTL neurons become active
during the initial session of a visual discrimination task and that
many respond to a range of stimuli from different semantic cat-
egories. A post hoc power analysis further showed that our sample
size of 432 well isolated MTL neurons provided 95% power to
detect a change of at least 5% in the fraction of objects that these
neurons encoded (Erdfelder et al., 1996), or a difference of ap-
proximately two objects, reflecting a distinct sensitivity in our
models.

While the multinomial logistic regression models show that
differences of neural firing from background reliably predict the
presence of different objects, we also separately tested whether
these responses differ reliably from background firing, to confirm
these results. Such differences can be difficult to observe when
visually comparing responses to presentation of a single object to
the immediately preceding background activity, so we used the
recently described changes from background test (Steinmetz and
Thorp, 2013), which provides a single test for each neuron.

Table 4 summarizes the number of neurons in each brain area,
which had responses differing reliably from background (p <
0.05), as well as the number of those neurons that also had a
reliable response to different objects (Table 2). As shown in that
table, a substantial proportion of neurons in both the hippocam-
pus and amygdala (20-30%) responded to the presentation of
objects at a rate that differed reliably from background, and ~3/4
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of those also had responses that differed depending on the par-
ticular objects shown.

Last, to ensure that other neurons or brain areas could decode
the observed neuronal responses, we calculated the amount of
information that neuronal firing rates provided about the pre-
sented objects. This is the mutual information between firing rate
and the presented object, expressed mathematically as I(X; Y) =
H(X) — H(X]Y), where X is the object presented, Yis firing rate,
H(X) is the entropy of X, and H(X|Y) is the conditional entropy
between X and Y (Cover and Thomas, 2006, their Chap. 2). In
MTL neurons classified as object selective, firing rates contained
on average 0.16 bits of information distinguishing the presented
object, lower but generally congruent with estimates in nonhu-
man primates (e.g., 0.30 bits in monkey hippocampal neurons;
Abbott et al., 1996). Table 5 shows MI values for the MTL (values
in parentheses indicate 95% confidence intervals). Note that to
distinguish objects in our stimulus set would require 5.04 bits,
indicating that the firing rates of ~30 average MTL neurons, if
their firing is independent of one another, could provide full
information about the presence of any given object.

Discussion

The present observations cast new light on the debate regarding
distributed versus localized representation of objects by single
neurons in the human brain. In the first session of a visual dis-
crimination task with only six presentations of each image, one
that emphasizes initial object encoding, many neurons recorded
in the MTL encoded the identities of multiple objects. We also
discovered a smaller proportion of neurons that encoded only
one object, supporting the existence of distinct encoding popu-
lations— one distributed and the other gnostic—and confirming
the plausibility of long-held notions about dual representation
schemes (Konorski, 1967, his p. 200). Our results, however, differ
from prior models that sought to explicitly decode object identity
from a few invariant MTL neurons (Quiroga et al., 2008). In such
models, the number of neuronal spikes within certain time inter-
vals (300—600, 300—1000, and 300—2000 ms) per trial were used
as inputs to a decoding algorithm that predicted object identity,
given the spike distributions of excluded trials. Compared with
our statistical models—which predicted the identities of specific
stimuli among many encoded by a single neuron—the leave-one-
out decoding algorithm by Quiroga et al. (2007) would poten-
tially confuse multiple objects whenever neurons encoded more
than one stimulus, an ambiguity in prediction we acknowledge.

While the single-unit activity reported here is not as well iso-
lated as that achieved in animal recordings (Hill et al., 2011),
these techniques provide the highest spatial resolution yet achiev-
able in the conscious human brain. Even if the SUA reported here
is contaminated by noise, it is difficult to see how such contami-
nation could create the appearance of a distributed code across a
larger fraction of neurons; one would expect noise to decrease the
number of neurons with apparent responses.

We note that the gnostic neurons described here are distinct
from previously described neurons with invariant representa-
tions (Quiroga et al., 2005; Quian Quiroga et al., 2009). Although
gnostic neurons encoded information about single objects in our
linear models, these neurons failed to meet the previously applied
criteria for invariant responses that far exceed baseline to a single
object (Quiroga et al., 2005). Applying those criteria to both
single- and multi-unit activity, as combined in prior reports
(Quiroga et al., 2005; Quian Quiroga et al., 2009), we found one
cluster of multi-unit activity (from a grand total of 1573, or
0.06%) that met the criteria for invariant single-neuron represen-
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to presentation of an image of the object. Vertical lines extend from
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Modified box-plot of distribution of responses to all objects shown for the same right hippocampal neuron shown in Figure 3. For each object, the solid dot shows the median response

, (where IQRiis interquartile range, n = number of observations, and 1.58 provides the equivalent to a 95%

\
confidence interval for differences between medians; Chambers etal., 1983, their p. 62) to the data point furthest from the median, which is no more than == (1.5 * IQR) beyond the first or third quartiles. Open

circles show responses outside that range. Solid gray line shows the mean of background firing; dashed gray lines at

+ (158 # IQR)
\(n)

of the background firing (n = mean number of presentations of

anobject), representing a 95% confidence interval for the median of background firing. Thus median values above this line show strong responses relative to background firing for that specific object.

Table 4. Summary of results of (BT

Pvalue under the  Number of neurons with responses % of neurons with responses different

Number of p values % of neurons with responses  binomial distri- ~ to objects and different from back- ~ from background with significant
Brain area and side  Number of neurons  <<0.05 different from background ~ bution ground responses to objects
Left amygdala 134 44 33 32X107% 28 64
Rightamygdala 100 28 28 53107 N 75
Left hippocampus 103 20 19 17 X107 15 75
Right hippocampus 95 30 32 18X10°% 23 77

Table 5. Average mutual information (encoded per neuron) by brain area

Brain area

Mean Ml in bits

Amygdala
Hippocampus

0.17 (0.03-0.64)
0.15(0.02-0.83)

tations; whereas these same prior reports found 5% of neurons
with invariant representations (Quiroga et al., 2005; Quian
Quiroga et al., 2009). What is the cause of this 78-fold difference
in the frequency of single-neuron invariant representations?
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One idea would be that there were a greater number of sepa-
rate objects shown in the screening session in prior work, 71-114
(mean = 93.9, Quiroga et al., 2005), compared with the 33 ob-
jects shown in our single-session design here. Assuming, how-
ever, that the objects for which recorded neurons are selective
would be drawn randomly from a set of possible objects with
which the subject is familiar, this hypothesis accounts for only a
factor of 93.9/33 = 3. An additional factor of 26 remains.

While there are several possible technical and experimental
factors that could explain this remaining difference (among them
a higher percentage of faces in prior experiments [Mormann et
al., 2011 Jor differences in the fraction of principal cells recorded
at different medical centers [Ison et al., 2011]), one intriguing
hypothesis is that it may reflect differences in how many times
objects were recently viewed. The present study involved recently
unseen views of objects (i.e., initial encoding during six presen-
tations of each image), whereas prior human experiments in-
cluded higher presentations counts in several sessions (Quiroga
et al., 2005; Quian Quiroga et al., 2009; at least 12 presenta-
tions— 6 in screening and 6 in test—and often up to 50 presen-
tations when the same stimuli were used in other experiments in
the same subjects) that may have enhanced a more sustained
neuronal selectivity for frequently viewed images (i.e., visual
learning; Logothetis et al., 1995; Freedman et al., 2006). In similar
fashion, the observed image selectivity in MTL neurons likely also
reflects contributions from recognition memory, as each new
incarnation of a previously seen “concept” (e.g., different photo-
graphs of the same person) will likely evoke both familiarity,
which has been documented in previous single-unit recording
studies (Rutishauser et al., 2006; Jutras and Buffalo, 2010), and
episodic memory (Wixted et al., 2014). Thus, the divergent re-
sults may reflect different stages of episodic representation, of
when and where an object was viewed, an assumed primary cod-
ing function of the MTL (Squire et al., 2004). Given that repeti-
tion has been reported to suppress neural responses in the
amygdala (Pedreira et al., 2010), this hypothesis clearly requires
further testing in experiments designed to observe changes in
neural responses, and the sharpening of neural representation in
particular, as objects are presented an increasing number of
times.

Finally, our results broadly agree with those of nonhuman
primate studies, wherein a substantial body of work suggests that
neurons, or groups of neurons, with diverse response profiles
form the substrate of object representation (e.g., in monkey tem-
poral cortex;Baylis et al., 1985; Rolls and Tovee, 1995; Baddeley et
al., 1997; Treves et al., 1999; Franco et al., 2007). Some research-
ers have postulated that when such distributed responses reach a
sufficient level of independence, there may be an exponential
increase in representational capacity (Rolls, 2007), making it pos-
sible for a comparatively meager fraction of neurons to encode a
large number of diverse stimuli. Although our findings in the
hippocampus differ from those of other animal studies, e.g.,
those in which rat hippocampal place cells show a greater degree
of sparsity during spatial encoding (O’Keefe, 1976; Wilson and
McNaughton, 1993; Moser et al., 2008), our results overall sup-
port an initial object coding scheme in the human MTL, which is
broadly selective and which reflects a lesser degree of sparsity.
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