
The Journal of Neuroscience, April 1993, 73(4): 1460-l 476 
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Short-Term Memory Task 
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Inferior temporal (IT) cortex of primates is known to play an 
important role in visual memory. Previous studies of IT neu- 
rons during performance of working memory tasks have found 
modulation of responses when a current stimulus matched 
an item in memory; however, this effect was lost if other 
stimuli intervened in the retention interval. To examine how 
IT cortex retains memories while new stimuli are activating 
the cells, we recorded from IT neurons while monkeys per- 
formed a delayed matching-to-sample task, with multiple 
intervening items between the sample and matching test 
stimulus. About half of the cells responded differently to a 
test stimulus if it matched the sample, and this difference 
was maintained following intervening stimuli. For most of the 
affected cells, the responses to matching stimuli were sup- 
pressed; however, for a few cells the opposite effect was 
seen. Temporal contiguity alone could not explain the re- 
sults, as there was no modulation of responses when a stim- 
ulus on one trial was repeated on the next trial. Thus, an 
active reset mechanism appears to restrict the memory com- 
parison to just the stimuli presented within a trial. The sup- 
pressive effects appear to be generated within or before IT 
cortex since the suppression of response to matching stimuli 
began almost immediately with the onset of the visual re- 
sponse. The memory of the sample stimulus affected not 
only the responses to matching stimuli but also those to 
nonmatching stimuli. There was suggestive evidence that 
the more similar a nonmatching stimulus to the sample, the 
more the response was suppressed. About a quarter of the 
cells showed stimulus-selective activity in the delay interval 
following the sample. However, this activity appeared to be 
eliminated by intervening stimuli. Thus, it is unlikely that 
delay-interval activity in IT contributed to the performance 
of this particular version of delayed matching to sample. 

To determine how much information about the match-non- 
match status of the stimulus was conveyed by individual 
neurons, we analyzed the responses with discriminant anal- 
ysis. The responses of an individual IT neuron could be used 
to classify a stimulus as matching or nonmatching on about 
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60% of the trials. To achieve the same performance as the 
animal would require averaging the responses of a minimum 
of 25 IT neurons. There was no evidence that mnemonic 
information was carried by temporal variations in the spike 
trains. By contrast, there was a modest amount of temporal 
variation in sensory responses to different visual stimuli. 
This variation appeared to be due to different stimuli having 
different effects on the early and late (transient and sus- 
tained) portions of the response. We propose that two pop- 
ulations of IT cells contribute to memory. One functions as 
adaptive mnemonic filters and the other provides a sensory 
referent. The difference in response between the two pop- 
ulations is a measure of the difference between the current 
stimulus and stored memory traces. A temporal “figure- 
ground” mechanism such as this could contribute to per- 
formance of a variety of mnemonic tasks, including working 
memory tasks. 

[Key words: macaque monkey, memory, inferior temporal 
cortex] 

Normal perception and memory of visual form depends on the 
neural circuitry in inferior temporal (IT) cortex (Gross, 1973; 
Mishkin, 1982). IT cortex receives information from prestriate 
visual areas, particularly area V4, and is directly or indirectly 
connected with other medial temporal and prefrontal structures 
important for memory (Van Hoesen and Pandya, 1975a,b, Ag- 
gleton et al., 1980; Desimone et al., 1980; Ungerleider and Mish- 
kin, 1982; Amaral and Price, 1984; Insausti et al., 1987a,b; 
Baizer et al., 1991; Webster et al., 199 1; Martin-Elkins and 
Horel, 1992). Congruous with its role in high-order processing 
and storage of visual information, IT cortex has neurons with 
large receptive fields and complex stimulus-selective properties 
(Desimone and Gross, 1979; Desimone et al., 1984). 

Anterior IT cortex has been implicated in both long-term and 
short-term storage of visual information (Mishkin, 1982; Horel 
et al., 1987; Murrayet al., 1989; Zola-Morgan et al., 1989, 1993; 
Meunier et al., 1990; Suzuki et al., 1991, 1993; Gaffan and 
Murray, 1992). Following deactivation of IT cortex, animals 
are impaired on short-term memory tasks, such as delayed match- 
to-sample (DMS) tasks with small stimulus sets (Fuster et al., 
1981; Horel and Pytko, 1982; Horel et al., 1987). In DMS tasks 
of this type, memory of the sample on one trial may interfere 
with performance on subsequent trials. Thus, the task involves 
memory spanning just the length of the behavioral trial. 

IT neurons have been studied during performance of DMS 
tasks, and their properties seem consistent with a role in storage 
of information. Some neurons show elevated activity during the 
retention interval on DMS tasks, as if they are actively holding 
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memory of the stimulus (Fuster and Jervey, 1981; Miyashita 
and Chang, 1988; Fuster, 1990) and some respond differently 
to the same stimulus depending on the behavioral context (sam- 
ple, match, or nonmatch) in which the stimulus appears (Gross 
et al., 1979; Mikami and Kubota, 1980; Baylis and Rolls, 1987; 
Vogels and Orban, 1990a; Miller et al., 1991b; Riches et al., 
1991; Eskandar et al., 1992). 

Behavioral tasks employed in the laboratory, though, can of- 
ten fall short of the demands of the real world. Most investi- 
gations of the role of IT neurons in memory have employed 
tasks that require the monkey to retain memories across a “blank” 
retention interval, during which no visual stimuli are presented. 
Outside the laboratory, however, memories frequently must be 
retained while new information is being processed. It is not 
understood how IT neurons can participate in memory storage 
during times when they are concurrently responding to new 
visual stimuli. One study of neurons in lateral IT cortex of 
monkeys performing a serial recognition task found that re- 
sponses were affected by stimulus recency, but this effect was 
lost if one or two other stimuli appeared in the retention interval 
(Baylis and Rolls, 1987). However, Riches et al. (1991) tested 
four cells with intervening stimuli in the anterior ventral portion 
of IT cortex and found that three of them responded differently 
to a stimulus if it had recently been seen before, even when 
more than two other stimuli intervened. 

In the present study, we tested responses of neurons in the 
anterior ventral portion of IT cortex in monkeys that were hold- 
ing a stimulus in memory while concurrently processing other 
stimuli. We describe several new experiments indicating that 
neuronal responses in this region carry mnemonic information 
that could be used in performance of a recency-memory task, 
even when several stimuli appear in the retention interval. 

Some of these findings have been reported in a preliminary 
form (Miller et al., 1991b). 

Materials and Methods 
Subjects and surgical procedures 
Two rhesus monkeys (Macaca mulatta) weighing 8-9 kg were used. 
Prior to the implantation of the recording chamber, the animals were 
placed in a plastic stereotaxic machine and scanned with magnetic res- 
onance imaging (MRI). A head restraint post, recording chamber, and 
scleral eye coil for monitoring eye position (Robinson, 1963) were im- 
planted under aseptic conditions while the animal was anesthetized with 
sodium pentobarbital. Using the coordinates derived from the MRI 
images, the recording chamber was centered on the dorsal surface of 
the skull above anterior-ventral IT and oriented in the Horsley-Clark 
stereotaxic planes. The animals received antibiotics and analgesics post- 
operatively. 

Recording techniques 
Activity was recorded using tungsten microelectrodes (Micro Probe, 
Rockville, MD). Following penetration of the dura with a guide tube, 
the electrode was advanced in the vertical plane down to the cortex on 
the ventral surface. Single-neuron activity was isolated from a multi- 
neuron signal using an online spike-sorting system (Signal Processing 
Systems, Prospect, Australia) that employs a template-matching algo- 
rithm. The spike-sorting system produced a pulse output that was stored 
as a spike event by our computer with a 1 msec time resolution. Two 
separate neurons were frequently studied simultaneously. 

While the monkey performed the task, the electrode was advanced 
through IT cortex until the activity of one or two single neurons could 
be isolated. Responsiveness of the neuron(s) was assessed through use 
of an audio monitor. I f  a neuron exhibited a visual response (a change 
in activity during presentation of one or more of the stimuli) while the 
animal performed the behavioral task, data collection was initiated. If  
no visual response was detected, the electrode was advanced farther. 

O-4 nonmatching test items 
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Figure 1. Outline of the DMS task. The matching test stimulus was 
terminated when the animal made its response, typically 350 msec after 
stimulus onset. 

Behavioral task 
The task (Fig. 1) was a modified version of delayed matching-to-sample 
(DMS), similar to one used by Maunsell et al. (199 1) in their study of 
neurons in area V4. At the start of each trial the monkey grasped a 
metal bar after which a small (0.29 fixation target appeared, which 
remained on throughout the trial. The monkey was then required to 
fixate the target for 300 msec before presentation of the first stimulus 
and to maintain fixation throughout the trial. 

The first stimulus presented on each trial was the sample, which was 
followed by one to five test stimuli. When one ofthe test stimuli matched 
the sample stimulus, the animal was required to release the bar within 
900 msec of stimulus onset to receive a drop of orange juice. Each 
stimulus was presented for 500 msec, and there was a 700 msec delay 
between the disappearance of one stimulus and the onset of the next. 
The match stimulus was the last stimulus presented on each trial, and 
it was extinguished as soon as the animal made its response, which was 
generally around 350 msec after stimulus onset. During the intertrial 
interval, there were no behavioral constraints on the animals. Each trial 
usually began with a saccade to the fixation target. 

Stimuli 
The stimulus set consisted of over 500 complex, two-dimensional, mul- 
ticolored pictures presented on a computer graphics display. The pic- 
tures were digitized from magazine photographs and objects around the 
laboratory. Some were identifiable objects, such as faces or fruit, and 
others were colored textures and patterns. This stimulus set was chosen 
because the pictures seemed easily “memorizable” to the experimenters, 
they spanned a range oftwo-dimensional and three-dimensional features 
known to be effective for producing stimulus-selective responses from 
IT neurons, and they represented the sort of objects that a person might 
actually hold in memory outside the laboratory. The stimuli ranged in 
size between 1” and 3” on a side and were presented at the center of 
gaze. For each recording session, six stimuli were chosen at random, 
and the animal was given 0.5-l hr of experience with the stimuli in the 
behavioral task before data collection began, thus ensuring that the 
stimuli were familiar. Once a stimulus was used for a session it was not 
used in another session until the entire stimulus set had been exhausted, 
typically after 2 months. Each of the six stimuli appeared as a sample 
and match on some trials and as a nonmatch on other trials. Within a 
trial, the only stimulus that was repeated was the stimulus used as a 
sample and as a match; all the nonmatching stimuli differed from each 
other and from the sample. 

Data analysis 
For most analyses, responses were calculated over a 200 msec time 
interval beginning 75 msec following stimulus onset. The beginning of 
this time interval was chosen to coincide with the typical response 
latencies of IT neurons, and the end was chosen to occur before the 
animals’ behavioral responses to the match stimulus (mean reaction 
time was 350 msec). For discriminant analysis (see below), the time 
interval used was slightly longer, 225 msec, so that it could be evenly 
divided into three 75 msec subintervals for the multivariate analysis 
described below. 
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Each trial with a correct behavioral response ended with a matching 
stimulus. Thus, there was a maximum number of three intervening 
stimuli preceding a given nonmatching stimulus but a maximum of four 
preceding a matching stimulus. Therefore, for all statistical and sum- 
mary analyses of nonmatching and matching responses, the responses 
to the match stimulus on trials with four intervening stimuli were dropped 
so that the average numbers of intervening stimuli preceding matching 
and nonmatching stimuli were equal. 

Statistical analyses. Responses to stimuli presented as samples and 
as matching and nonmatching test stimuli were appraised with both 
analysis of variance (ANOVA) and t tests, evaluated at the p < 0.05 
level of significance. However, the fact that a response difference is 
statistically significant does not, in itself, indicate how potentially useful 
the difference is in discriminating among the stimuli. We were partic- 
ularly interested in how well the responses of IT neurons distinguished 
whether a test stimulus matched the sample stimulus held in memory. 
That is, how well could one classify a stimulus as either matching or 
nonmatching on each trial of the task, if the only information available 
was the response of an individual IT neuron? To answer this question 
for a given cell, one needs to know the distributions for the two classes 
of responses, that is, matching and nonmatching. Given the distribu- 
tions, one could design an optimal (Bayesian) classifier. Classification 
success depends on the amount of overlap of the two distributions of 
responses; the greater the overlap, the poorer the classification perfor- 
mance. 

Because the underlying distributions cannot be measured directly, 
they must be estimated from the data. There are several different meth- 
ods available for estimating distributions and constructing a classifier, 
each of which makes different assumptions about the distributions. In 
a previous study (Miller et al., 199 1 b), we used logistic regression. How- 
ever, discriminant analysis often does better at discriminating among 
more than two classes and thus was employed in the present study. We 
also made use of a neural network classification technique. We applied 
the methods in a number of different ways and to different sorts of data; 
the details are given in the appropriate sections of the Results. Below 
we give a brief overview of the methods. 

Discriminant analysis is typically used to classify individuals into two 
or more discrete classes based on one or more continuous or discrete 
variables. The analysis fits normal distributions to each of the different 
response classes (e.g., match and nonmatch) and estimates the proba- 
bility that the two sets of responses came from the same distribution. 
Responses are classified into groups based on a decision rule. When 
there are two groups, the decision rule is typically whether the response 
falls above or below the midpoint between the means of the two dis- 
tributions. Multivariate discriminant analysis is an extension of the 
univariate case, except that multivariate normal distributions are fit to 
the multiple response measures. In the multivariate case, the different 
response measures are weighted and combined, resulting in a “canonical 
variable” that can be used to discriminate between the groups. The 
number of canonical variables is equal to either the number of groups 
or the number of response measures, whichever is smaller. The first 
canonical variable accounts for most of the difference among the groups, 
followed by the second, third, and so on. The different canonical vari- 
ables are uncorrelated and the weightings of the underlying response 
measures are optimal for distinguishing among the groups. The dis- 
criminant analysis was performed using the SYSTAT statistical package. 

The function relating neuronal response to match versus nonmatch 
status of the stimulus was also estimated using a three-layer backpropa- 
gation neural network, which is a nonlinear optimization method. After 
“training,” the network was presented with responses from the data set, 
and the network’s prediction of class membership (matching or non- 
matching) was compared with the actual class, as a measure of classi- 
fication performance. An advantage of the neural network over con- 
ventional statistical methods is that it does not assume normally 
distributed data and can be trained to classify data from arbitrarily 
complex distributions, including ones in which class membership is a 
nonmonotonic function of the variable(s). Disadvantages are that net- 
work parameters, such as number of hidden units and rate of learning, 
are essentially empirically determined, with no assurance that any par- 
ticular set of parameters is optimal. 

When any statistical classification procedure is applied to the same 
data on which the parameters of the classification algorithm are fit, the 
classification success rate will be optimistically biased. The success of 
the classification procedure is inversely proportional to the overlap in 
the probability distributions of the response classes. The smaller the 

number of data used in estimation, the less the overlap and the more 
the classification procedure can take advantage of chance differences 
between the response classes in achieving an artificially high success 
rate. The problem is most severe when classifiers are applied to mul- 
tivariate data, in which the space over which the distribution is esti- 
mated is far larger (each variable adds a dimension to the space) and, 
therefore, the data points are sparser. 

To correct for this bias we used the cross-validation method. The 
discriminant hmctions and neural network were first estimated, or trained, 
on half of the data (chosen randomly). The functions, or network weights, 
were then fixed and the classification procedure applied to the remaining 
half of the data. This gives an unbiased estimate of how successfully a 
new set of data could be classified. 

Univariate and multivariate response measures. The univariate re- 
sponse measure was simply the firing rate in an interval beginning 75 
msec after stimulus onset and ending 300 msec after onset. We used 
two different multivariate measures. For both, we first “smoothed” the 
spike train on each trial by convolving it with a Gaussian with a standard 
deviation of 10 msec (Richmond and Optican, 1987). For one of the 
multivariate measures, we calculated the first three principal compo- 
nents (PCs) of all of the smoothed spike trains, using the SYSTAT statis- 
tical program. For matching versus nonmatching responses, there were 
only two sources of variance due to stimulus effects. Therefore, to max- 
imize the variance due to the stimuli, we calculated PCs on the spike 
trains for all six stimuli, matching and nonmatching, taken together. In 
fact, whether the components were calculated over all stimuli or just 
one seemed to make little difference in either the shape of the PCs or 
the ultimate classification success. 

As a comparison to the principal component method, we divided the 
smooth spike train into three successive time intervals of 75 msec du- 
ration beginning 75 msec after stimulus onset. The firing rates during 
these “early, ” “middle,” and “late” intervals were then used as three 
different response measures in the multivariate analyses. 

Histology 
At the conclusion of the experiments, fluorescent dyes were injected at 
the boundaries of the recording area, through a cannula inserted in place 
of the electrode. A few days later, the animals were killed with sodium 
pentobarbital and perfused transcardially with formalin. Sections were 
cut, stained with thionin, and examined for electrode tracks and the 
dyes. Because of the length of the study, most tracks could not be 
visualized, but their locations could be inferred from those of the dyes 
and other identified tracks. 

Results 
Anatomical location of penetrations 
All of the recording sites were located on the inferior temporal 
gyrus, just lateral to the rhinal sulcus and medial to the anterior 
medial temporal sulcus. Figure 2 shows the location of recording 
sites in the monkeys along with representative coronal sections. 

General properties 

A total of 146 visually responsive neurons were recorded in the 
DMS task with up to three intervening stimuli. All of the neu- 
rons sampled gave excitatory responses. The lack of inhibitory 
responses may reflect a sampling bias due to selecting neurons 
for study by assessing responsiveness with an audio monitor. 
Because the performance of the animals was better than 90% 
correct in the task, there were too few error trials to analyze. 
Consequently, all analyses were performed using data from cor- 
rectly performed trials. 

To determine whether a response to a sample stimulus was 
significant, we compared the firing rate to the sample with the 
spontaneous (prestimulus) firing rate using a paired t test. Of 
the 846 stimuli used as a sample (146 neurons x 6 stimuli each), 
75% (635) elicited a visual response. To assess the stimulus 
selectivity of each neuron, we compared the responses to the 
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Figure 2. Location of recording sites. The shaded areas on the ventral 
views indicate the recording areas in the two animals, and the vertical 
lines through the coronal sections illustrate representative penetrations. 
AMT, anterior middle temporal sulcus; CA, calcarine sulcus; IO, inferior 
occipital sulcus; LA, lateral sulcus; ORB, orbital sulcus; OT, occipito- 
temporal sulcus; RH, rhinal sulcus; ST, superior temporal sulcus. 

six sample stimuli separately for each neuron using an ANOVA. 
The ANOVA was significant (p < 0.05) for 85% of the neurons 
(124 of 146). Thus, most of the neurons were stimulus selective 
for the sample stimuli. 

Efect of context on responses to stimuli 

Many IT neurons responded differently to the same stimulus 
depending on whether it appeared as a sample, match, or non- 
match. Figure 3 shows the average response (across all inter- 
vening stimuli) to a single stimulus appearing as a sample, non- 
match, and match for one neuron. For this cell, the response 
was strongest when the stimulus appeared as a sample, inter- 
mediate when the stimulus appeared as a nonmatch, and weak- 
est when the stimulus appeared as a match. 

To study the neural information available for matching-non- 
matching classification of the test stimuli, we conducted two 
general classes of analyses. The first focused on how many cells 
distinguished among matches and nonmatches, whereas the sec- 

SAMPLE NONMATCH MATCH 

j44201 

Figure 3. Average responses to stimuli appearing as samples, non- 
matches, and matches for one IT neuron. Histograms were computed 
by summing responses across all six stimuli, in 10 msec bins. The bar 
beneath each histogram shows the time of the stimulus presentation. 
The y-axis represents the firing rate in spikes per second. 

ond focused on how much information was available in the 
response to individual stimuli. 

To determine whether a cell distinguished between matching 
and nonmatching stimuli, we performed a two-way ANOVA 
on the responses to all six test stimuli, with stimulus and match- 
ing-nonmatching status as factors. Responses were averaged 
over all the intervening stimulus presentations. Based on the 
ANOVA performed on each cell, 48% (68 of 141) of the cells 
distinguished between matching and nonmatching stimuli. 
Nearly all of these (92%, or 62 of 68) responded better to non- 
matching than matching stimuli. In the Discussion, we consider 
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Figure 4. Examples of two IT neurons that showed different match- 
nonmatch effects. Six stimuli are represented along the x-axis, ranked 
from best to worst. Dotted line shows the neuron’s baseline or spon- 
taneous firing rate. A, Cell for which the match-nonmatch effect was 
proportional to the magnitude of the response. B, Cell for which the 
effect was disproportionately large for the best stimulus. 
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Figure 5. Distribution of indices 
showing the strength of the response to 
matching stimuli relative to the re- 
sponse to the same stimulus as a non- 
match (A and C) and as a sample (B 
and II). Values below zero (arrow) in- 
dicate weaker responses when the stim- 
ulus appeared as a match. Distributions 
A and B show the indices for the stimuli 
for which there was a significant match- 
nonmatch effect, while distributions C 
and D show the indices for the entire 
population of stimuli that elicited a vi- 
sual response. 
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the role that the halfofthe cells that did not distinguish matching 
and nonmatching might play in a memory mechanism. 

Of 25 pairs of cells recorded simultaneously with the same 
electrode in IT, both cells were responsive in only 12 pairs. In 
five of the 12 pairs, both cells showed significant match-non- 
match effects, in four pairs neither cell showed significant effects, 
and in the three remaining pairs just one cell showed a significant 
effect. 

Based on the two-way ANOVA, almost all of the cells (94%, 
or 64 of 68) that exhibited a match-nonmatch difference were 
also stimulus selective (significant effect of stimulus, p < 0.05). 
For most ofthese cells (67%, or 43 of 64) there was no significant 
interaction between stimulus and matching-nonmatching fac- 
tors, that is, the magnitude of the match-nonmatch effect was 
about equal for all stimuli. Figure 4A shows the responses of 
one such neuron. The stimuli were rank ordered from “best” 
to “worst” based on the magnitude of response to the same 
stimulus appearing as a sample. The lines corresponding to the 
average match and nonmatch responses are roughly parallel, 
indicating that the magnitude of the effect is similar for all six 
stimuli. Thus, for this type of cell, the suppression of the match 
response was proportional to response magnitude. 

For the other cells that showed a match-nonmatch difference 
(33%, or 2 1 of 64), the magnitude of the difference was dispro- 
portionately larger for some stimuli (i.e, there was a significant 
interaction between matching-nonmatching and stimulus fac- 
tors). Figure 4B shows an example of such a cell. For this cell, 
there is a larger difference between match and nonmatch re- 
sponses for the best stimulus of the set compared to the other 
five stimuli. Indeed, for most of the cells that exhibited inter- 
actions between match-nonmatch and stimulus factors (7 l%, 
or 15 of 2 l), the match-nonmatch effect was disproportionately 
largest for the best stimulus of the set. 

Having determined that nearly half of the cells gave a signif- 
icantly different response to all matching and nonmatching stim- 
uli taken together, we then asked for how many stimuli was the 
effect significant. Based on a t test applied to each stimulus 
(evaluated at p < 0.05) about one-fourth (27%, 17 1 of 635) of 
the effective stimuli showed significant match-nonmatch re- 
sponse differences. The stimuli with significant effects derived 
from 99 cells, of which 68 showed significant match-nonmatch 
effects across all stimuli based on the omnibus ANOVA de- 
scribed above. (Although the per-comparison type I error rate 
is 0.05 for both the t test and the ANOVA, the cumulative per- 
cell error rate is higher with the t test; thus, 68 is the more 
conservative estimate of the number of significant cells.) 

To quantify the magnitude of the match-nonmatch effect, we 
computed an index for each stimulus by subtracting the mean 
match response from the mean nonmatch response and dividing 
the result by the sum of the two means. Figure 5A shows the 
distribution of indices for the stimuli with significant match- 
nonmatch effects. Values below zero indicate match responses 
weaker than nonmatch, which was true for 83% (142 of 17 1) of 
the stimuli. Only 17% (29 of 17 1) of stimuli showed the opposite 
effect (match greater than nonmatch), and these were largely 
from a separate population of neurons: only four cells showed 
mixed effects, that is, significant match suppression for one or 
more stimuli and match enhancement for one or more other 
stimuli. 

Figure 5B shows response indices for the same stimuli as in 
Figure 4A, but in this case the comparison was made between 
the match and sample responses. Values below zero indicate 
responses that were weaker to matching test stimuli than to 
samples. In Figure 5, C and D show the distribution of the 
match-nonmatch and match-sample indices for the entire pop- 
ulation of effective stimuli. The means of both distributions are 
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Figure 6. Responses of an IT neuron to a single stimulus appearing 
either as a sample or as a match or nonmatch item following different 
numbers of intervening stimuli. Bar beneath each histogram indicates 
when the stimulus was on. 

shifted below zero, indicating weaker responses to match stimuli 
than to either sample or nonmatching stimuli. However, the 
match-sample distribution (Fig. 5D) shows a larger negative 
shift than the match-nonmatch distribution (Fig. 5C). Thus, 
neuronal responses to samples were typically strongest, followed 
by responses to nonmatching and then to match stimuli. 

Retention of sample information across intervening stimuli. 
Not only could IT neurons detect whether a test stimulus was 
a match or a nonmatch, but they could do so even when several 
stimuli intervened in the retention interval. The responses of 
such a neuron are shown in Figure 6. Average responses of the 
population of IT neurons to samples and to test stimuli following 
intervening stimuli are shown in Figure 7. Figure 7A shows 
responses to all of the stimuli that had a significant match- 
nonmatch effect when the responses were averaged over all in- 
tervening stimuli. All responses were included in the average, 
regardless of whether the match or nonmatch responses were 
larger. The figure shows that the responses to the sample were 
largest, followed by the nonmatching and matching stimuli, re- 
spectively. Based on a paired t test on the population, there was 
a significant difference between match and nonmatch responses 
even with three intervening stimuli (t = 3.32, p = 0.00 13). For 
comparison, Figure 7B shows the average responses to sample 
and test stimuli for the entire population of effective stimuli, 
that is, regardless of whether there was a statistically significant 
match-nonmatch response difference. Even when stimuli with- 
out significant effects are included in the average, match re- 
sponses are smaller than nonmatch, and this difference is main- 
tained after two intervening stimuli (t = 8.349, p < 0.0001). 

To test further the “memory span” of the cells, an additional 
group of 18 cells in one monkey was tested with up to five 
intervening stimuli before the final matching stimulus. The an- 
imal required additional training to perform this version of the 
task. Of the cells tested, 44% showed significant overall match- 
nonmatch effects according to an ANOVA (p < 0.05). When 
each stimulus was tested for significant match-nonmatch effects 
separately with a t test, 28% showed significant effects. The 
average response to these stimuli is shown in Figure 7C. Based 
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Figure 7. Average responses across cells to the same set of stimuli 
appearing as samples and as matches and nonmatches following different 
numbers of intervening stimuli. The Small horizontal line above each 
bar indicates the SEM. A, Average responses for the population of 
stimuli that elicited a significant match-nonmatch effect. B, Average 
responses for the population of stimuli that elicited a visual response. 
C, Average responses for the population of stimuli that elicited a sig- 
nificant match-nonmatch effect and were tested with up to five inter- 
vening stimuli before the final match. 

on a paired t test of the population response, there was a sig- 
nificant difference between the match and nonmatch responses 
even with five intervening stimuli (t = 2.33, p = 0.02). Because 
there were only a few cells tested in this group, the remainder 
of the Results will be devoted to the larger group of cells tested 
with up to three intervening stimuli before the final match. 

As indicated earlier in the Results, some (17%) of the stimuli 
with significant match-nonmatch effects actually elicited larger 
matching than nonmatching responses. Figure 8 shows the av- 
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Figure 8. A, Average responses for 
stimuli for which match responses were 
weaker than nonmatch responses. B, 
Average responses for which match re- 
sponses were stronger than nonmatch 
responses. The line above each bar in- 
dicates the SEM. 
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erage sample and test stimulus responses for the same stimuli 
included in Figure 74 except that the averages are given sep- 
arately for stimuli showing nonmatch responses greater than 
match (Fig. 84 and stimuli showing the opposite effect (Fig. 
8B). For the stimuli that elicited stronger match responses (Fig. 
8B), the sample and match responses were similar and both 
were larger than the nonmatch responses; that is, nonmatch 
responses appeared to be suppressed (compared to the sample) 
rather than the match responses being enhanced. As was the 
case for stimuli with larger nonmatch responses, the match- 
nonmatch effect was maintained across all intervening stimuli 
(paired t test, p < 0.01). 

The difference in response to matching and nonmatching 
stimuli tended to decrease with increasing numbers of inter- 
vening stimuli. Furthermore, the animals’ ability to perform the 
task showed a corresponding decrease. Figure 9 shows the dif- 
ference in response to matching and nonmatching stimuli plot- 
ted along with the animals’ percentage of correct performance. 
Both the response difference and the animals’ ability to perform 
the task decreased with increasing numbers of intervening stim- 
uli. 

To determine whether the memory of stimuli from one be- 
havioral trial could carry across the intertrial interval to mod- 
ulate the responses on subsequent trials, we examined the re- 
sponses to sample stimuli when the same sample stimulus had 
been used on successive trials. We included in the task several 
instances in which one trial with a given stimulus as a sample 
and a match was followed, after a l-2 set intertrial interval, by 
another trial with the same stimulus as a sample. If close tem- 
poral contiguity was all that was important for producing the 
effect, then we would expect the responses to sample stimuli to 

be reduced when they followed a trial with the same stimulus 
as a sample. We compared the responses to sample stimuli when 
the same sample had appeared on the previous trial to the re- 
sponses when a different sample had appeared on the previous 
trial. This comparison was made for the neurons that exhibited 
a matching-nonmatching effect based on the two-way ANOVA. 
The mean response across cells to sample stimuli that were the 
same as the sample on the previous trial (32.08 spikes/set) was 
not significantly different from the mean response to sample 
stimuli that were different than the sample on the previous trial 
(32.36 spikesisec), according to a paired t test (t = 0.51, p = 
0.6 1). Thus, the match-nonmatch effect did not appear to bridge 
the l-2 set intertrial interval even though the within-trial effect 
was observed when up to 5 set elapsed between the sample and 
the matching stimulus. This rules out temporal contiguity alone 
as the explanation of the sample-match effect and, by extension, 
the match-nonmatch effect (see Discussion). 

Time course of the match-nonmatch eflect. To examine the 
time course of the match-nonmatch effect across the population 
of cells, we computed average histograms of the match and 
nonmatch responses across all stimuli that elicited a significant 
suppression of matching responses. Figure 10 shows the average 
response to matching and nonmatching stimuli as well as a plot 
of the difference between the histograms. The match and non- 
match histograms have the same shape but show a shift in 
absolute magnitude, suggesting that the mechanism underlying 
match suppression works in a sustained fashion throughout the 
response. This conclusion is further supported by an analysis 
of temporal variation in response, presented later in the Results. 

To determine how soon after the onset of the visual response 
the suppression began, each 10 msec bin of the nonmatch re- 
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Figure 9. Average difference in response to matching and nonmatching 
stimuli (bars) following different numbers of intervening stimuli com- 
pared with percentage of correct performance by the animals on cor- 
responding trials (line). 

sponse histogram was first tested against the average prestimulus 
activity using a t test. The first significant response occurred 70- 
80 msec after stimulus onset. The match and nonmatch histo- 
grams were then compared bin by bin using a paired t test, to 
determine when the two histograms became significantly dif- 
ferent. The difference was near significance in the first bin show- 
ing a significant visual response (p = 0.08), and remained highly 
significant (p < 0.0 1) for the remainder of the visual response. 
Thus, sustained suppression of the match stimulus responses 
occurred within 10 msec of the onset of the visual response, 
that is, with virtually no additional latency, suggesting that the 
suppression originates either within or before IT cortex. 

Controlfor behavioral response and expectation of reward. An 
additional 14 cells were tested on a modified version of the task 
in which the animal was only required to maintain fixation. The 
response bar was removed from the animal’s chair, and the 
animal was rewarded simply for fixating throughout the trial. 
The temporal order of the matching and nonmatching stimuli 
within the trial was also varied so that the match did not always 
appear at the end ofthe trial and thus did not predict the reward. 
Under these conditions, differential responses to match and non- 
match stimuli were still observed: 32% (2 1 of 66) of the effective 
stimuli exhibited a significant matching-nonmatching effect. 
Thus, the attenuation of the match responses was not related 
to the behavioral response (bar release) or to the fact that the 
match predicted the reward. 

Neural classification of test stimuli as matching or nonmatch- 
ing. The above analyses demonstrated that, for many stimuli, 
the responses of IT neurons differed significantly depending on 
whether the current stimulus matched the sample stimulus held 
in memory. To determine how useful this response difference 
would be in actually classifying a stimulus as match or nonmatch 
and to relate the neuronal performance to that of the monkey, 
we applied discriminant analysis to the match-nonmatch data 
(see Materials and Methods). 

The discriminant analysis was calculated for each cell and 
each stimulus separately. The analysis gave us a decision rule 
to classify each stimulus as a match or nonmatch, based on the 
strength of response to the stimulus on each trial. This predicted 

I-I Nonmalch 

40 

(lo) '100 I I I I I,,,,,,,,,,,,,,, 

-60 -20 20 60 100 140 160 260 320 

-80 -40 0 40 60 120 160 200 300 340 

time from stimulus onset (msec) 

Figure 10. Population average histograms for matching and non- 
matching stimuli. The dz@rence line plots the difference between the 
two histograms. Bin width, 10 msec. 

class could then be compared with the actual class (match or 
nonmatch) on each trial. To control for bias in the apparent 
predictive success, we tested the prediction by cross-validation; 
that is, we estimated the parameters ofthe discriminant function 
on half of the data (the training set) and applied the function to 
the other half (the test set). 

On the average, 41 match responses and 85 nonmatch re- 
sponses were available for each stimulus. Figure 11A shows the 
distribution of the classification scores for the full data set (i.e., 
without cross-validation) for the 173 stimuli for which the dis- 
criminant analysis was significant (p < 0.05). (The significant 
stimuli were virtually identical to those identified with the t test 
described earlier, as both methods evaluate significance in the 
same way.) The mean successful classification rate was 60.3%, 
with a range of 45-75.5% (compared to chance, 50%). The mean 
square root of the Mahalanobis distance between the two dis- 
tributions (analogous to d’ in signal detection theory) was 0.9. 
When the same data were split into two sets (i.e., cross-vali- 
dated), the mean classification rate on the test set was similar 
(60.10/o), which indicates that the discriminant model provided 
a good fit of the data and was not strongly biased. For com- 
parison, Figure 11 B shows the distribution of classification scores 
on the full data set for the entire population of effective stimuli 
(i.e., including stimuli that did not elicit a significant match- 
nonmatch response difference). The mean was 54.8% with a 
range of 37-76% (compared to chance, 50%). 

As a comparison to the discriminant analysis method, we also 
analyzed the data using the receiver operating characteristic 
(ROC) approach, a psychophysical method that has also been 
applied to neural data (Bradley et al., 1987; Vogels and Orban, 
1990b; Britten et al., 1992). For each stimulus that showed a 
significant match-nonmatch effect based on the t test, we plotted 
the hit and false alarm rates for several different firing rate 
criteria. We fit an ROC curve to the hit and false alarm rates 
and measured the area under the curve, which is a measure of 
the percentage of correct performance of an unbiased observer. 
The area under the curve corresponded to a mean successful 
classification rate of 64% correct, which was somewhat better 
performance than that predicted from the discriminant analysis. 
However, the ROC performance was not corrected for opti- 
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mistic bias. Although chance performance should equal 50% 
with very large sample sizes, it will tend to be better than 50% 
as the sample size is decreased. As a rough measure of bias in 
the estimate, we recomputed the ROC curve after randomizing 
the data, that is, randomly reassigning the responses to the match 
or nonmatch classes. The mean area under the curve corre- 
sponded to a classification rate of 54% correct, indicating that 
up to 4% of the success rate was due to chance variations in the 
means of the match and nonmatch distributions. Subtracting 
4% from the success rate derived from the unrandomized data 
gave a 60% successful classification rate, which was the same 
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Figure 12. Distribution of percentage of correct classification scores 
using discriminant analysis to classify the sample stimulus based on the 
response to a nonmatching test stimulus. Discriminant analysis was 
conducted separately for each cell and each nonmatching test stimulus. 
Arrow indicates the bin that corresponds to chance performance. 
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as the performance of the discriminant analysis. Again, the sim- 
ilarity of the ROC results to those from the discriminant analysis 
indicates that the discriminant model provided a good fit to the 
data. 

Effects of sample memory on nonmatch responses 
The finding that the responses of IT neurons to a current stim- 
ulus were suppressed if the stimulus matched the stimulus held 
in memory raised the question of whether all responses were 
influenced by the memory of the sample. That is, perhaps even 
the responses to the nonmatching stimuli were differentially 
affected by the different sample stimuli used on a given trial. 
To determine whether the responses to a nonmatch stimulus 
varied significantly depending on which of the five sample stim- 
uli it followed, we computed for each cell an ANOVA on the 
responses to the nonmatching stimuli using sample as the factor. 
Most of the cells (45 of 68, or 67%) that showed a significant 
match-nonmatch effect (based on the two-way ANOVA de- 
scribed previously) also showed significant modulation of the 
nonmatch responses by the sample stimulus (p < 0.05). Mod- 
ulation of nonmatch responses by sample stimuli has also been 
reported by Eskandar et al. (1992). 

We used discriminant analysis to determine how much in- 
formation about the sample was carried in the neuronal re- 
sponses to the nonmatching test stimuli. In this case, the dis- 
criminant analysis classified which of the five samples (i.e., 
excluding the one sample that matched the stimulus) appeared 
on each trial, on the basis of the average firing rate for each 
nonmatching stimulus. There were enough data to compute the 
discriminant analysis for 408 stimuli. On the average, there were 
16 responses for each test stimulus available for the analysis. 
The discriminant analysis was significant for 24% (98 of 408) 
of the stimuli, and the classification success rates for these stim- 
uli are shown in Figure 12. The mean classification rate was 
30.2% (chance = 20%). There were not enough data to divide 
them into training and test sets for cross-validation. 

Most often, responses to stimuli that matched the sample in 
memory appeared to be suppressed. Moreover, even the re- 
sponses to nonmatching stimuli were influenced by the partic- 
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ular stimulus held in memory. These two facts suggested that 
the responses to particular nonmatch stimuli were suppressed 
according to how similar they were to the sample. If so, this 
could explain the modulation of the nonmatch responses by the 
memory of the sample. Unfortunately, the stimuli used were 
complex and did not lend themselves to any objective measure 
of similarity to one another. Therefore, to test this hypothesis, 
we used the cells’ relative preferences for the stimuli as a crude 
measure of similarity. 

For each cell, we rank ordered the six stimuli from “best” to 
“worst” according to the magnitude of response to the stimuli 
appearing as samples. We assumed that similar stimuli would 
have similar rankings (i.e., produce similar responses), but this 
assumption would be invalid if similarity according to a given 
cell’s response differed from similarity according to the visual 
system as a whole. For example, red and green stimuli might 
have similar rankings based on the responses of a cell nonse- 
lective for color. With this qualification in mind, we then ex- 
amined the average response of the best, second-best, and third- 
best test stimulus for the population of cells that exhibited match- 
nonmatch effects based on the two-way ANOVA described ear- 
lier in the Results. We examined the responses to these test 
stimuli following each of the sample stimuli. Figure 13 shows 
the average responses for all comparisons. 

If responses to the nonmatch stimuli were not determined by 
similarity to the sample (or if our stimulus rankings were an 
inadequate measure of similarity), the average responses to all 
nonmatching stimuli should have been the same. However, we 
found a weak tendency for responses to be smaller when a non- 
match stimulus followed samples that were more similar to it 
(i.e., closer in rank order) than when the stimuli followed sam- 
ples that were less similar to it (i.e, more distant in rank order), 
although this tendency did not reach significance based on an 
ANOVA of the population data. For example, the average re- 
sponse to the third-ranked test stimulus (Fig. 13, bottom graph) 
was weaker when it followed either the second- or the fourth- 

ranked sample than when it followed the sixth-ranked sample. 
In all comparisons, the responses to the match stimulus were 
weakest, confirming the match-suppression effect. Thus, there 
is suggestive evidence that stimulus similarity explains the effect 
of the sample on responses to the nonmatching test stimuli. The 
weakness of the effect may be due to the inadequacy of our 
ranking measure and, thus, the hypothesis should be tested using 
ordered stimulus sets, such as stimuli varying in color, orien- 
tation, or size. 

Memory versus sensory classification ability 

The suggestive evidence that the degree of modulation of re- 
sponses of IT neurons was related to the relative similarity 
between the sample and test stimuli raised the possibility that 
there was also a relationship between a neuron’s mnemonic and 
sensory abilities (e.g., between its ability to distinguish whether 
test stimulus A was preceded by sample A or sample B and its 
ability to distinguish between A and B themselves). We tested 
this relationship by computing two discriminant analyses for 
each cell: (1) a cell’s ability to distinguish the best from worst 
sample stimulus (sensory classification), and (2) the cell’s ability 
to distinguish between the best test stimulus preceded by itself 
as the sample from the same test stimulus preceded by the worst 
stimulus as a sample (memory classification). The discriminant 
analyses were performed on the 65 cells that exhibited both 
stimulus selectivity and a match-nonmatch effect based on the 
two-way ANOVA. 

Figure 14 shows a plot of each neuron’s sensory classification 
score against the memory classification score. There was no 
relationship (rz = 0.038) between the mnemonic and sensory 
abilities. This could be explained if either the mnemonic ability 
of cells is an independent random variable, or the detection of 
matching test stimuli is performed by the network in which a 
given IT neuron is embedded and not any individual cell on its 
own. 

The diagonal line in the graph of Figure 14 represents equal 
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Figure 14. Memory classification ability of IT neurons versus sensory 
classification ability. Data are from 65 neurons that were stimulus se- 
lective and had a significant match-nonmatch effect. Diagonal indicates 
equal performance. 

performance on the memory and sensory classifications. The 
population is clearly biased toward better performance on the 
sensory classification. The sensory classification scores (mean 
= 74.8% correct) were significantly better than the memory 
classification scores (mean = 62.3% correct) for the same stimuli, 
according to a paired t test (t = 6.37, p < 0.0001). Thus, the 
responses of IT neurons carry more sensory than mnemonic 
information. This conclusion was also reached by Eskandar et 
al. (1992). 

Activity in the delay intervals 

In the delay interval immediately following the sample, some 
IT neurons exhibited differential activity depending on which 
sample had appeared. We computed an ANOVA of the firing 
rate in the first delay interval following the six samples. To 
ensure that this activity was not influenced by responses to the 
offset of the sample, we used the firing rate in the last 200 msec 
of the 700 msec delay. Based on this ANOVA, 25% (37 of 146) 
of the cells exhibited differential firing rates in the delay interval 
depending on which stimulus had been used as a sample. Sam- 
ple-selective delay activity by IT neurons has been hypothesized 
to reflect retention of information about the sample stimulus 
(Fuster and Jervey, 1981; Miyashita and Chang, 1988; Fuster, 
1990). 

If neuronal activity in the delay intervals is a retention mech- 
anism for the samples, then this activity should not be unduly 
influenced by stimuli that intervene between the sample and the 
final match stimulus on each trial. To test this, we examined 
the activity in the delay interval following each nonmatching 
test stimulus. 

Figure 15 shows the average delay activity following the best 
and worst samples for the cells that showed significantly different 
delay activity according to the ANOVA. In the delay interval 
immediately following the sample stimulus, the average level 
of activity across cells following the best sample is significantly 
greater than the activity following the worst sample (t = 5.17, 
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Figure 15. Average activity in the delay intervals when the “best” 
stimulus had been used as the sample and when the “worst” stimulus 
had been used as the sample. Number of intervening stimuli refers to 
the number of intervening nonmatching stimuli that had appeared be- 
fore that delay. The averages are based on the 37 cells that showed 
significant differences in the first delay (0 intervening stimuli), depending 
on which sample had been used (ANOVA, p < 0.05). Line above each 
bar indicates the SEM. 

p < O.OOOl), confirming the results of prior studies (Fuster and 
Jervey, 198 1; Miyashita and Chang, 1988; Fuster, 1990). How- 
ever, after the first intervening (nonmatch) stimulus, this dif- 
ference is no longer significant (t = 1.48, p = 0.1482). Following 
the remaining intervening stimuli, the relationship is actually 
reversed: the average delay activity following the worst sample 
is greater than the average activity following the best sample, 
although these differences did not reach significance. Thus, in- 
troduction of the intervening nonmatching test stimuli appears 
to have eliminated any differential delay interval activity due 
to the particular sample. The reversal of the effect following two 
to four intervening stimuli can be explained if the activity in 
the delay is determined by the immediately preceding stimulus 
rather than the memory of the sample. According to our task 
design, the best stimulus could not appear as an intervening 
stimulus if it had appeared as the sample on a given trial. Con- 
sequently, the intervening nonmatch stimuli following the worst 
sample sometimes included the best stimulus. This best stimulus 
may have accounted for higher levels of activity in the delays 
following the worst sample. 

To determine the relative amount of information carried in 
the delay intervals, we computed two discriminant analyses. 
For both, the independent variable was the level of activity in 
the delay following the first intervening stimulus. We used this 
activity to predict (1) which sample stimulus had appeared at 
the start of the trial, and (2) which test stimulus had appeared 
immediately preceding that delay. We examined the percentage 
of correct classifications on the (cross-validated) test set for each 
analysis for the cells for which the ANOVA on the sample delay 
was significant. The mean classification success (21.56%) was 
above chance (16.7%) in predicting the immediately preceding 
nonmatch stimulus but at chance (16.89%) in predicting the 
sample stimulus. Thus, in our behavioral paradigm, the delay 
activity appears to carry information about the immediately 
preceding stimulus rather than about the sample throughout the 
trial. 
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Multivariate analysis of responses 

Classljication of matching and nonmatching stimuli. It was re- 
cently reported that IT neurons recorded in a DMS paradigm 
(without intervening stimuli between the sample and test stim- 
uli) distinguished between matching and nonmatching stimuli 
at least in part on the basis of a temporal code, as measured by 
the first three PCs of the spike trains (Eskandar et al., 1992). 
To test this in our task, we performed a multivariate discrim- 
inant analysis on the values of the first three PCs of the spike 
trains for matching and nonmatching stimuli. For comparison, 
we also performed a multivariate discriminant analysis on the 
average firing rate during three successive 75 msec time intervals 
beginning 75 msec following onset of the test stimulus. As in 
the univariate case, the discriminant analysis was calculated 
separately for each stimulus. To ensure that the comparisons 
were not biased toward better performance on any type of model 
(temporal or rate coding), the comparisons were made for any 
response that showed a significant effect for any discriminant 
analysis: a significant match-nonmatch effect on the univariate 
discriminant analysis or either of the two multivariate discrim- 
inant analyses. The discriminant analysis was significant for the 
responses to 172, 155, and 159 stimuli for the average firing 
rate, PCs, and three intervals, respectively, resulting in a com- 
bined pool of 201 stimuli. Thus, there was a large degree of 
overlap in which stimuli showed a significant effect based on 
the three response measures. 

The PCs of the responses to matching and nonmatching stim- 
uli resembled those described by Richmond and Optican (1987). 
The first component appeared largely to reflect the DC level, or 
average firing rate over the interval. The second component 
typically had one zero crossing, usually with an initial positive 
period followed by a negative period. The third component 
typically had two zero crossings. 

The top panels of Figure 16 show the classification scores 
based on the PCs plotted against the scores based on average 
firing rate over the entire response interval. The diagonal lines 
indicate equal performance. The top left panel shows the scores 
obtained from the entire data set. The values tended to cluster 
around the diagonal line, but more scores fall below the diagonal, 
indicating better classification (i.e., more information) from the 
PCs. Indeed, a paired t test showed that the classification scores 
based on the PCs (mean = 62.03%) were significantly better 
than the scores based on the average firing rate (mean = 59.28%, 
p < 0.0001). However, these results do not take into account 
the optimistic bias of the classification scores resulting from 
small data sets, a problem known to be more severe for multi- 
variate analyses than for univariate. The magnitude of the bias 
is suggested by a comparison of univariate and multivariate 
discriminant analysis applied to randomized data. For each 
stimulus, we randomly reassigned both the firing rates and PC 
values for matching and nonmatching stimuli. Following the 
randomization, we recomputed the discriminant analysis and 
applied it to the training data. The average classification success 
for the randomized data across the population was 56.6% for 
the PCs and 53.2% for the average firing rate, which was a 
significant difference based on a paired t test (t = 20.36, p < 
0.0001). Thus, the multivariate analysis apparently did better 
at capitalizing on random variations in the responses. Perform- 
ing the cross validation test on the randomized data completely 
eliminated the difference in performance. When the discrimi- 
nant analysis was calculated on half of the randomized data and 
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Figure 16. Performance of discriminant analysis applied to classiti- 
cation of stimuli as match or nonmatch, based on either average firing 
rate over the entire response interval, three PCs, or average firing rate 
during three subintervals of the response. Each point on each plot rep- 
resents the performance on one stimulus for one neuron. Plots on the 
kft were derived from applying the discriminant analysis to the entire 
data set for each stimulus. Plots on the right are derived from computing 
the discriminant analysis on half the data and applying it to the other 
half (test set). Diagonal line in each graph represents equal performance. 

used to classify the other half, performance for the multivariate 
PCs and the univariate firing rate was equal, at 50%. 

The top right panel of Figure 16 shows the results of the cross- 
validation test of the discriminant analysis applied to actual 
(nonrandomized) PC and average firing rate values. The dis- 
criminant analysis was calculated on half of the data (randomly 
selected) and used to classify the other half. The mean classi- 
fication success based on PCs (58.5%) was no different from 
that based on the average firing rate (58.8%), according to a 
paired t test (p = 0.6314). 

For comparison, we also calculated the multivariate discrim- 
inant analysis on the three firing rate intervals. The bottom 
panels of Figure 16 show the comparison between the multi- 
variate spike rate classifications and the classifications based on 
PCs. The classifications based on multivariate spike rates on 
the entire data set (mean = 62.73%) were slightly, but signifi- 
cantly, better than the PC classification scores (mean = 62.03%) 
according to a paired t test (p = 0.0013). On the test set, the 
multivariate spike rate scores (mean = 59.64%) were slightly, 
but significantly, better than the scores based on the PCs (mean 
= 58.5%) based on a paired t test (p = 0.0286). 

Although the discriminant analysis did not find additional 
information conveyed by the PCs compared to the average firing 
rate, it was possible that the discriminant analysis was missing 
important information in the data. The discriminant model 
assumes normal distributions of responses and, furthermore, 
that the probability of membership in a given class increases 
monotonically with the magnitude of the response variable. 
However, it is possible that the relation is actually not mono- 
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Figure 17. Performance of discriminant analysis applied to classifi- 
cation of the six sample stimuli. The data points show the classification 
scores for the cross-validated test set. For conventions, see Figure 16. 

tonic and might even be discontinuous. For example, a matching 
stimulus might sometimes cause a large response and sometimes 
a small response but never an intermediate response, whereas 
the opposite might be true of the nonmatching stimulus. That 
is, the two distributions might be nonoverlapping but have iden- 
tical means, which would result in poor classification by the 
discriminant analysis. The same could be true of discriminant 
analysis applied to PC values. To control for these possibilities, 
we used a three-layer neural network, trained by backpropa- 
gation, to classify the responses as matching or nonmatching 
based on the response rate in the three time intervals or PCs. 
Such a network should, in principle, find any nonlinear mapping 
of the stimulus to response. 

For classifying stimuli based on firing rate in the three inter- 
vals, the network had three input units, three hidden units, and 
one output unit. For classifying stimuli based on three PCs, the 
network had six input units, three for positive PC values and 
three for negative PC values, five hidden units, and one output 
unit. 

The classification scores from both networks were similar to 
each other and also to the scores obtained from the discriminant 
analysis. Because the neural network provides no test of statis- 

tical significance, we examined the mean classification scores 
(with cross-validation) for the pool of 201 stimuli that showed 
significance effects on any discriminant analysis. The mean suc- 
cess rates of the neural network for the PCs and multivariate 
spike rates were 58.0% and 57.9%, respectively, which was about 
the same as those from the discriminant analysis. The absence 
of any significant temporal variation in response due to match- 
nonmatch status is consistent with our earlier analysis of the 
population histogram, which showed a sustained suppression 
of the match response. 

Classification of sample stimuli. The fact that we found no 
evidence for temporal coding in the mnemonic domain in our 
paradigm raised the question of whether there was any evidence 
for temporal coding in the sensory domain. To investigate this, 
we applied discriminant analysis to the classification of the six 
different sample stimuli used for each cell. In this case, the 
discriminant analysis was used to classify each response into 
one of six stimulus classes rather than two. 

The average firing rate and PCs were calculated in the same 
manner as in the match-nonmatch analysis. Based on the three 
PCs, the multivariate discriminant analysis was significant for 
128 of the cells, which was almost the same result we found 
based on the ANOVA of the firing rates described earlier in the 
Results (124 cells). The percentage of cells showing significant 
stimulus selectivity is therefore about the same whether one 
considers temporal variation in the response or just the average 
firing rate. 

On the full data set before cross-validation, the PCs did sig- 
nificantly better (mean of 3 1.68% correct) than the average firing 
rate (mean of 26.95% correct) in classifying the sample stimuli, 
which was expected (paired t test, t = 26.95, p < 0.0001). How- 
ever, unlike in the case of the match-nonmatch response data, 
an advantage was also maintained in the test set data. The mean 
classification success based on PCs was 27.17% correct, com- 
pared to 24.63% correct with average firing rate, which was a 
significant difference according to a paired t test (t = 4.60, p < 
0.000 1). The relative performance of the two methods is plotted 
in Figure 17A. Considering that chance performance was 16.6%, 
another way of looking at this difference is that classifying the 
stimuli based on firing rate resulted in an 8% improvement over 
chance, whereas classifying them based on the three PCs resulted 
in a 10.5% improvement over chance, which was about 30% 
better performance compared to average firing rate. We checked 
these results with a neural network trained to classify the stimuli 
using the PCs and found no improvement in classification suc- 
cess of the neural network over the discriminant analysis. Thus, 
in using the neuronal response to distinguish among the samples, 
taking temporal variation into account results in a modest im- 
provement in discriminability. 

Because there were six sample stimuli, there were five different 
misclassification errors possible for each sample. If the errors 
are not random, they might themselves carry information, which 
is taken into account by the information measure used by Op- 
tican and Richmond (1987). To test the possibility that the error 
distribution based on PCs contained more information than that 
based on firing rate, we calculated the information contained in 
the entire confusion matrix (six samples by six response classes) 
produced by the discriminant analysis for each cell, using the 
same transmitted information measure as Optican and Rich- 
mond (1987). We found the mean information in the matrix to 
be the same for both PCs and average firing rate, namely, 0.35 
bits per stimulus. 
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We next explored the nature of the different temporal vari- 
ations in responses that gave the PCs an advantage in classifying 
the stimuli. Did the PCs extract a complex temporal code from 
the spike trains, or would a simpler measure of temporal vari- 
ation do as well in distinguishing among the stimuli? To help 
answer this, we compared the performance of the discriminant 
analysis based on PCs with that of an analysis based on the 
same three firing rate intervals (early, middle, and late response) 
used to study match-nonmatch differences. Figure 1lB shows 
the classification success scores based on three firing rate inter- 
vals compared with those based on the PCs. The classification 
success rate using the three rate intervals on the entire data set 
(mean = 3 1.68%) were slightly, but significantly, better than the 
success rates using the PCs (mean = 3 1.28%; t  = 2.56, p = 
0.0 11). On the test set, the scores were not significantly different: 
the means for the three rate intervals and the PCs were 27.25% 
and 27.17%, respectively ( t  = 0.02, p = 0.9352). Thus, simply 
breaking up the response interval into early, middle, and late 
components seems to capture all of the temporal information 
available from the three PCs. 

We next returned to the analysis of the three firing rate in- 
tervals, to see if the canonical variables arrived at by the dis- 
criminant analysis gave any insight into the temporal variation 
in response caused by the stimuli. The discriminant analysis for 
each cell produced three uncorrelated canonical variables, each 
of which had a different set of loadings on the three response 
intervals. The relative loadings are a measure of how much each 
interval contributed to a discrimination. For 40°h (50 of 125) 
of the stimulus-selective cells, only the first canonical variable 
was significant; that is, only a single set of weights applied to 
the three intervals was needed. This group included, for ex- 
ample, cells that simply had transient responses to all stimuli. 
For such cells, weighting the early part of the response more 
than the later part improved the discriminability of the stimuli 
over that based on average firing rate over the entire interval. 

histograms showing the responses to the 
six sample stimuli. Histograms were 
smoothed by convolving the spike trains 

“middle’ 

Intervals two significant canonical variables. 

For the remainder of the cells (75 of 125), the second canonical 
variable was also significant; that is, for these cells it was nec- 
essary to apply two independent sets of weights to the three 
intervals to achieve the best discriminability. The third canon- 
ical variable was significant for only a few cells (5 of 125, or 
4%). 

To determine whether there were characteristic patterns to 
the relative weightings of the three response intervals, we per- 
formed a cluster analysis on weights for the first canonical vari- 
able across all cells. All cells fell into one of two clusters. In the 
first, which consisted of over half of the cells (75 of 125, or 
60%), the early, or transient, parts of the response were weighted 
the most. The average weights for the three response intervals 
were 0.619, 0.583, and 0.264, respectively. We also examined 
the average weights for the second canonical variable for this 
group and found the opposite trend. Thus, for this group, the 
early and late portions of the response appeared to carry in- 
dependent information about the sample stimuli, with the early 
portion the most important. An example of a cell from this 
cluster is shown in Figure 18A. For this cell, differences in latency 
to the peak response, a property that was noted for other cells 
as well, accounted for some of the early variation in response 
to the different stimuli. 

The second cluster of cells (50 of 125, or 40%) showed the 
opposite trend, that is, the late portions of the response were 
weighted the most in the discrimination. The average weights 
on the response intervals for the first canonical variable were 
0.350,0.464, and 0.738, respectively, and the second canonical 
variable tended to show the opposite trend. An example of such 
a cell is shown in Figure 18B. Thus, as for the first group of 
cells, the early and late portions of the response tended to carry 
independent information about the samples but, unlike the first 
group, the late portion was more important. These early and 
late components roughly correspond to a difference between 
transient and sustained responses. 
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Discussion 

The responses of many IT neurons to a current stimulus are 
influenced by the traces of stimuli held in memory. When the 
current stimulus matches a stimulus held in memory, the re- 
sponse appears to be suppressed. Thus, a substantial portion of 
IT neurons may function as adaptive mnemonic “filters” that 
give their strongest response to stimuli with the appropriate 
visual features, but which are unexpected or not recently seen. 
We reached this conclusion in an earlier report (Miller et al., 
199 1 b), but the analyses of the present study allow us to expand 
upon the previous one. We now have evidence for the exact 
time course of the suppressive effects, the role of stimulus sim- 
ilarity in the suppressive phenomenon, the existence of cells 
that show the opposite behavior, the relationship between mne- 
monic and sensory discriminability, the relationship between 
the magnitude of suppression and the animal’s performance in 
the task, the role of delay activity, the presence of an active 
reset mechanism between trials, and the role of temporal re- 
sponse variation in both mnemonic and sensory discrimina- 
bility. 

Behavioral studies in both normal and brain-damaged hu- 
mans and animals have identified many different types of mem- 
ory, both long and short term (Mishkin, 1978; Squire, 1982; 
Malamut et al., 1984; Zola-Morgan and Squire, 1984, 1985; 
Overman et al., 1990). Some studies distinguish declarative 
(explicit) memory from procedural (habit) memory as well as 
from the types of memory that underlie priming and simple 
forms of learning such as behavioral habituation. Evidence from 
lesion and cooling studies suggests that IT cortex participates 
in most or all of these different memory systems. Likewise, the 
ability of IT neurons to compare the current stimulus to stored 
memory traces might contribute to any or all of the memory 
systems defined in behavioral studies, depending on how the 
memory system is implemented neurally. In the present study, 
the memory traces were actively changed from trial to trial, 
suggesting a role of IT neurons in working memory. Because 
the neuronal response to a repeated stimulus was smaller, there 
is a suggestive link to behavioral habituation. In other contexts, 
the memory traces might be long-term ones. Indeed, when we 
tested IT neurons with novel stimuli that were repeatedly pre- 
sented until they became familiar, we found that many cells 
developed stimulus-specific suppression lasting long periods 
(Miller et al., 199 1 b). Such a mechanism could play a role in 
long-term recognition memory or, perhaps, priming. 

Relationship to prior studies. A number of recent studies in- 
dicate that the anterior-ventral portion of IT cortex is partic- 
ularly important for memory. Lesions or reversible cooling of 
the cortex in the vicinity of the rhinal sulcus cause a devastating 
impairment in a variety of memory tasks, which may be even 
more severe than those caused by lesions of the remainder of 
IT cortex (Horel et al., 1987; Murray et al., 1989; Zola-Morgan 
et al., 1989; Meunier et al., 1990; Suzuki et al., 1991, 1993; 
Gaffan and Murray, 1992; Murray, 1992; Zola-Morgan et al., 
1993). Behavioral studies that have failed to find long-lasting 
impairments on DMS tasks following IT lesions have spared 
the anterior-ventral portion (Dean, 1974; Gaffan and Weis- 
krantz, 1980). Likewise, anatomical studies have found differ- 
ences in connections of the anterior-ventral region compared to 
the remainder of IT cortex (Insausti et al., 1987a,b; Martin- 
Elkins and Horel, 1992). On the basis of cytoarchitecture and 
anatomical connections, some studies have labeled a portion of 

the cortex between the anterior middle temporal and rhinal sulci 
as area 36 (Amaral et al., 1987; Suzuki et al., 1993), a portion 
of which is included in our recording area. In the future, it will 
be important to compare the mnemonic information commu- 
nicated by individual cells in this region to that communicated 
by cells in the remainder of IT cortex as well as that by cells in 
adjacent areas such as area 35 in the rhinal sulcus, areas TF/ 
TH in the parahippocampal gyrus, and the temporal pole. 

Modulation of responses in IT cortex during memory-related 
tasks has been reported in several prior studies (Gross et al., 
1979; Mikami and Kubota, 1980; Fuster and Jervey, 1981; 
Baylis and Rolls, 1987; Miyashita and Chang, 1988; Fuster, 
1990; Vogels and Orban, 1990a; Miller et al., 199 lb; Riches et 
al., 1991; Eskandar et al., 1992). Consistent with the present 
study, the two studies reporting match-nonmatch differences 
found, on the average, smaller responses to matching stimuli 
for those cells showing a significant match-nonmatch effect 
(Baylis and Rolls, 1987; Eskandar et al., 1992). Further, both 
Miller et al. (1991b) and Riches et al. (1991) found that IT 
neurons typically give smaller responses to recently seen stimuli. 
Thus, there is additional support for the adaptive memory filter 
idea. Suppression of responses to stimuli that match memory 
traces is also consistent with some neural network architectures 
for memory storage (Carpenter and Grossberg, 1987; Kohonen, 
1988) as well as with the results of a recent positron emission 
tomography study of cortical activation in humans. In the latter 
study, subjects performing a visual word-stem completion task 
showed less activation of temporal cortex when they had re- 
cently seen the same words than when the words had not been 
seen (Squire et al., 1992). 

The only other study of the effect of several intervening stimuli 
on IT responses in a memory task was by Baylis and Rolls 
(1987). In a running recognition task, they found that for most 
cells the match-nonmatch effect was eliminated by even a single 
intervening stimulus, and for all cells it was gone entirely fol- 
lowing two intervening stimuli. On this basis, they suggested 
that IT cortex was involved in memory lasting only a second 
or so, that is, primary memory. By contrast, we found effects 
in IT cortex that bridged at least five intervening stimuli. Fur- 
ther, we have previously found modulation of responses by 
stimulus familiarity in IT cortex that bridges more than a hun- 
dred stimuli (Miller et al., 1991b). The results suggest that the 
“memory span” of IT neurons may be equivalent to those of 
the monkey. 

There are at least three important differences between the 
Baylis and Rolls study and ours. First, the stimuli in their study 
were all initially novel and were presented only twice in a ses- 
sion, whereas the stimuli we used were familiar to the monkeys 
and were used repeatedly. Second, the monkeys in their study 
were performing a serial recognition task, in which they were 
required to remember all of the stimuli in a trial, whereas ours 
needed to remember only the sample. These differences in either 
the stimuli or the task might account for the different results. 
The most likely explanation, however, is that their recordings 
in IT cortex did not include the anterior-ventral region included 
in the present study, supporting the notion that this part of IT 
cortex is especially important for longer-lasting memories. 

Several previous studies have found stimulus-selective activ- 
ity in IT cortex during the delay interval of DMS tasks, sug- 
gesting that this maintained activity mediates the memory of 
the sample stimulus (Fuster and Jervey, 198 1; Miyashita and 
Chang, 1988; Fuster, 1990). About a quarter of the cells we 
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recorded showed stimulus-selective activity in the delay interval 
following the sample, supporting the findings of these studies. 
However, because this activity was eliminated by intervening 
stimuli, it seems unlikely that delay-interval activity in IT cortex 
contributed to the performance of this particular version of 
delayed matching to sample. 

Responses of neurons in area V4, which provides a major 
input to IT, are also modulated by the memory of a sample 
stimulus (Haenny et al., 1988; Maunsell et al., 1991). Using a 
task similar to ours but with a fixed set of four oriented gratings 
as stimuli, Maunsell et al. (1991) found that a given sample 
stimulus affected the responses to all subsequent test stimuli in 
a trial, that is, that the responses to test stimuli were “tuned” 
to the sample. There was no tendency for the responses to match- 
ing stimuli to be either enhanced or suppressed. Further, the 
modulation of responses did not appear to be related to any 
interaction between particular test stimulus representations and 
the sample memory trace; rather, a given sample caused a non- 
specific suppression or enhancement of all test stimuli responses 
on that trial. Although these V4 effects might be caused by 
feedback from IT, they are so different from those in IT that 
they may be independent, for example, reflecting mechanisms 
that come into play only after extensive training on a small set 
of stimuli. 

Active or passive processes in memory. The suppression to 
matching test stimuli might have been caused, in principle, by 
either a strictly passive (or automatic) mechanism sensitive to 
stimulus recency or repetition, or an active (or voluntary) mech- 
anism that restricted the comparison of the test stimulus to just 
the actively held memory of the sample, or by some combi- 
nation of active and passive processes. Stimulus repetition alone 
cannot explain our results in the DMS task, because sample 
responses were not suppressed when a sample on one trial was 
identical to the final (matching) stimulus on the previous trial. 
However, in a different control condition, we did observe sup- 
pressive effects that appeared to be caused just by stimulus 
repetition. In this condition, a test stimulus matching the sample 
was simply presented within a trial while the monkey was main- 
taining fixation, and the response to this match stimulus was 
suppressed. 

Taking the results of these two conditions together, it seems 
likely that both a passive process related to stimulus recency 
and an active process related to the memory trace of the sample 
play a role in the mnemonic modulation of IT responses. In the 
absence of the active process, stimulus repetition alone probably 
leads to response suppression. This view is consistent with re- 
cent results of Miller et al. (199 1 a), who found suppressed re- 
sponses of IT neurons to repeated stimuli in both anesthetized 
animals and passively fixating animals, and of Riches et al. 
(199 l), who also found such effects in a passive viewing con- 
dition. The fact that IT cells differentiate between matching and 
nonmatching stimuli within 10 msec of response onset, that is, 
practically on the first action potential, suggests that the passive 
recency mechanism could not be mediated by feedback to IT 
cortex during the time of the match stimulus presentation. Rath- 
er, the mechanism that causes the suppression must be located 
within or before IT cortex. 

In addition to any passive recency mechanism, the failure of 
the suppressive effects to carry across trials in the DMS task 
indicates that an active process either “clears out” or “resets” 
the memory traces of stimuli from one trial to the next (to avoid 
cross-trial interference) or “primes” IT cells with the memory 

of the sample so that they are prepared to detect its reoccurrence. 
Such a reset signal might arise from prefrontal cortex, since 
behavioral evidence suggests that prefrontal cortex is critical for 
working memory tasks with short delays (Mishkin and Manning, 
1978; Bachevalier and Mishkin, 1986) and Fuster et al. (1985) 
has described interactions between prefrontal and IT cortex dur- 
ing short-term memory tasks. 

Figure-ground in space and time. Many cells at all levels of 
the visual system respond best to contrast of some sort. In the 
retina, contrast is created by luminance differences, whereas in 
the neocortex some cells can detect differences in orientation, 
color, spatial frequency, and direction of motion between stim- 
uli within their classically defined receptive field and stimuli in 
broad surrounding regions. For these cells, the greater the sim- 
ilarity between the stimulus in the surround and the stimulus 
in the receptive field, the more the response to the receptive 
field stimulus is suppressed. As one advances through the visual 
system, the stimulus features that are contrasted may become 
more sophisticated and the spatial areas over which the inter- 
actions occur may become larger. Based on these properties, it 
has been conjectured that one of the functions of the visual 
system is to separate figures from background (Allman et al., 
1985; Desimone et al., 1985). 

The properties of IT neurons suggest that figure-ground sep- 
aration occurs in the temporal as well as in the spatial domain. 
Many IT neurons respond best to stimuli that are dissimilar to 
those that have been seen in the recent past. Thus, the past may 
function as the surround, which is compared with the current 
stimulus in the receptive field. 

If the analogy with spatial receptive fields is valid, IT cortex 
should not be unique in its temporal properties. Figure-ground 
separation in the spatial domain appears to build incrementally 
as one moves through the visual system, and there may be a 
comparable buildup of temporal processing in the visual system 
as well. Nelson (1991), for example, found that cells in striate 
cortex of the cat show orientation-specific suppression lasting a 
few hundred milliseconds. As described above, orientation-spe- 
cific temporal interactions have also been found in area V4 
(Haenny et al., 1988; Maunsell et al., 1991) although these 
interactions did not appear to be suppressive. Presumably, the 
temporal interval over which stimuli are compared is much 
smaller (and less able to span intervening stimuli) in earlier 
visual areas, and the features that are compared are less complex 
than in IT cortex. 

Pooling of IT responses. Because no individual IT neuron 
distinguished between matching and nonmatching stimuli as 
well as the animal as a whole, the responses of multiple IT 
neurons would have to be pooled to support the behavioral level 
of performance. Our discriminant analysis of neuronal perfor- 
mance assumes that the neural circuitry that interprets the out- 
put of IT cortex “knows” the magnitude and variances of the 
match and nonmatch responses for a given IT neuron. Perfor- 
mance of the decision network in this case is limited by the 
distance between the means of the response distributions. This 
distance can be used to estimate, in principle, how many IT 
cells the decision network would need to sample to achieve a 
given level of behavioral performance. The square root of the 
Mahalanobis distance (Dz) is the distance between the means 
of the distributions measured in units of the SD of the distri- 
butions (equivalent to d’ in signal detection theory). For an 
unbiased criterion, the average error in classification is given 
by the area to the left of -D/2 under the standard normal curve. 
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Figure 19. Model of how sensory cells and adaptive mnemonic filter 
cells in IT cortex contribute to the match-nonmatch decision. Plus and 
minus indicate that the outputs of the adaptive and sensory cells work 
in opposition, and are not meant to imply excitation or inhibition. 

For stimuli that elicited a significant match-nonmatch dif- 
ference, we found the estimated mean D to be 0.94. This esti- 
mate is probably overly optimistic, however, as a distance of 
0.94 should have resulted in a neural classification success of 
68% correct, whereas the measured success rate was only 60% 
correct on average. Small discrepancies between the predicted 
and actual classification success rates can result from response 
distributions that are not strictly normal. Based on the measured 
classification success, a more conservative estimate of D would 
be 0.5. By contrast, a behavioral performance of 90% correct 
corresponds to a D of 2.56, which is five times larger than that 
achieved by the average IT neuron. To achieve a five-fold im- 
provement in D would require a comparable reduction in the 
SD ofthe response classes, which could be achieved by averaging 
the responses of 25 IT neurons that exhibit a match-nonmatch 
effect whose responses are independent, or uncorrelated. If re- 
sponses were correlated, this would increase the minimum size 
of the pool (B&ten et al., 1992). 

However, it seems unlikely that the neural circuitry that in- 
terprets the output of IT cortex would have prior knowledge of 
the distributions of match and nonmatch responses, especially 
since absolute response magnitude might fluctuate depending 
on extraneous factors such as arousal or the relative effectiveness 
of the stimuli. A more robust mechanism would be one that 
compared inputs from two opposing classes of IT cells, an 
“adaptive mnemonic filter” class and a “sensory” class (Fig. 
19). The response of the sensory class to the current stimulus 
would provide a referent, not affected by past experience, against 
which to compare the responses of the adaptive cells. The av- 
erage difference in response between the two classes of cells 
would be a measure of similarity between the current stimulus 
and a stimulus held in memory. According to this model, the 

sensory class of IT cells would play as important a role as the 
adaptive class in the DMS tasks. In fact, from an efficiency 
standpoint, it would be best if the two classes were equal in 
number, which fits our findings in IT. We do not yet know if 
the two populations are anatomically distinguishable, but our 
data from a few simultaneously recorded pairs of IT neurons 
suggest that there may be clustering of the two classes. 

Such a differencing model would be analogous to one used 
by Britten et al. (1992) to compare the behavioral performance 
of monkeys performing direction of motion discriminations to 
the performance of MT neurons in the same task. In their model, 
a decision network compares the outputs of MT cells tuned to 
opposite directions of motion. In IT, where there is no real 
opposite to the adaptive cells, the comparable comparison would 
be to the sensory cells that are unaffected by memory. Casting 
the few adaptive cells that showed relative match enhancement 
as “sensory” cells would enhance the difference between the 
memory and sensory classes. 

The exact size of the IT neuronal pool necessary to achieve 
a given level of behavioral performance probably has more 
statistical than biological meaning, yet the surprisingly small 
size of the estimated numbers suggests that information equiv- 
alent to that held by the animal as a whole is distributed down 
to the level of small neuronal populations. The same conclusion 
was reached by Britten et al. (1992) based on a study of direction 
of motion in area MT. An important question is how this in- 
formation is extracted from just the relevant cells in order to 
guide behavior. 

Temporal coding versus rate coding. Based on both discrim- 
inant and neural network analyses of match and nonmatch re- 
sponses, we found no evidence for significant temporal coding. 
Rather, cells differentiated between matching and nonmatching 
stimuli practically by the first action potential, and the sup- 
pression of the match response appeared to be sustained 
throughout the response interval. These results stand in appar- 
ent contrast to the conclusions of Eskandar et al. (1992) that 
mnemonic information is communicated, at least in part, by 
temporal coding in IT cortex. 

There are at least four possible reasons for the different find- 
ings of the two studies, namely, differences in the stimulus sets, 
the recording areas in IT cortex, the methods used to compare 
temporal and rate coding, and the use of intervening stimuli in 
the DMS task. Of these, we believe the most important differ- 
ence is the fact that we used multiple intervening stimuli be- 
tween the sample and matching test stimulus in our task, where- 
as Eskandar et al. (1992) did not. The delay interval in their 
study was only 500 msec, and we have sometimes observed 
either postresponse suppression or rebound activity lasting for 
that amount of time. Thus, the response to one stimulus may 
interact, temporally, with the response to a subsequent one, but 
these effects may not persist for many seconds and across several 
intervening stimuli. The only long-lasting effect we found in our 
data was a sustained suppression of the match stimulus re- 

Unlike the case with the matching-nonmatching data, we did 
find some evidence for temporal variation in response elicited 
by the sample stimuli. Using the first three PCs of the spike 
train, we found a modest improvement (27.17% vs. 24.63% 
classification success) in the ability to classify the samples over 
that achieved by using just the average firing rate, confirming 
the findings of Richmond et al. (1987) that stimuli elicit tem- 
poral variation in responses of IT neurons, as well as changes 
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in the mean firing rate. From the ratio of the logs of the error 
rates using the two methods, one can calculate the relative num- 
ber of neurons that would be needed to classify the stimulus, 
assuming a maximum-likelihood detector (Optican and Rich- 
mond, 1987). The probabilities of classification error using PCs 
and average firing rate were 0.728 and 0.754, respectively, and 
log(O.728)/log(O.754) = 1.12. Thus, it would take about 12% 
more neurons to classify a stimulus using firing rate than using 
three PCs. The magnitude of the difference was smaller than 
that found by Optican and Richmond (1987) and Eskandar et 
al. (1992), which might be due to differences in either the stim- 
ulus sets, recording sites, or methods of analysis. Other recent 
studies have investigated the role of temporal coding in the 
response of IT neurons to faces and have concluded that most 
of the information is transmitted in the early phase of the re- 
sponse (Oram and Perrett, 1992; Rolls et al., 1992), with only 
modest opportunity for improvement by temporal coding (Rolls 
et al., 1992). 

The PCs are optimal linear features for representing variance 
and, in principle, might have captured complex patterns in the 
spike trains. In fact, we have found the shapes of the PCs to be 
arbitrary, in the sense that they depend strongly on the interval 
over which they were calculated (E. K. Miller, L. Li, and R. 
Desimone, unpublished observations). Further, we achieved al- 
most precisely the same classification success from using three 
relatively large, successive time intervals of the response, that 
is, early, middle, and late response. Thus, the underlying tem- 
poral variation in response appears to be relatively coarse. 

Our analysis of this underlying variation showed that, for 
some cells, one portion of the response, either the transient or 
the sustained portion, appeared to carry most of the information 
while the other portion appeared to add noise. For other cells, 
the transient and sustained portions were differentially affected 
by different stimuli. For example, two stimuli might elicit a 
smaller mean response but one might cause greater activity in 
the early phase of the response and the other might cause greater 
activity in the late phase. Different stimuli appeared to shift the 
balance somewhat between the transient and sustained portions 
of the response. The question is whether such temporal varia- 
tions are simply a reflection of activity in dynamic neural net- 
works, changing state over time, or whether they are evidence 
that neurons send and decode temporally coded messages about 
specific visual stimuli. In either case, a full accounting of neural 
properties requires that these temporal variations be explained. 
To determine whether they represent a “code” might require 
that they be tested for invariance over temporal variations in 
the stimulus (e.g., flicker or motion) or that they be purposely 
manipulated through, for example, electrical stimulation. 
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