
The Journal of Neuroscience, July 1993, 13(7): 2739-2749 

Feature Article 

The Neurotrophic Factor Concept: A Reexamination 

Sigrun Korsching 

Max-Planck-lnstitut ftir Entwicklungsbiologie, Abteilung Physikalische Biologie, D-7400 Tijbingen, Germany 

The neurotrophic factor concept in its basic form envisages that 
innervated tissues produce a signal for the innervating neurons 
for the selective limitation of neuronal death occurring during 
development (Purves, 1986; Oppenheim, 199 1). This concept 
arose several decades ago on the basis of the observation that 
experimental manipulation of the amount of target tissue could 
modulate the size of neuronal populations. By making the sur- 
vival of neurons dependent on their target, nature would provide 
a means to match neuron and target cell populations. 

NGF, discovered in the 1950s represents the first known 
molecular realization of the neurotrophic factor concept. NGF 
was found to regulate survival, neurite growth, and neurotrans- 
mitter production of a particular neuronal type, the sympathetic 
neurons of the PNS. NGF produced by target cells is specifically 
bound and internalized by sympathetic neurons, followed by 
retrograde axonal transport of NGF to the cell soma, where 
NGF exerts its effects via the cotransported receptor molecule 
(Levi-Montalcini, 1987; Thoenen et al., 1987). Strictly speaking, 
increased neurite growth and neurotransmitter production are 
not trophic effects; however, I will use the term “neurotrophic” 
in the extended meaning of enhancing neuronal differentiation 
as well as neuronal survival. 

It was expected that these results could be generalized to a 
model of multiple, mutually independent, retrograde trophic 
messengers, which are synthesized in distinct target areas and 
act on restricted neuronal types (Fig. 1). This assumption leads 
to a conceptually simple way to arrange and maintain a variety 
of neuronal subsystems. One might call this a modular approach 
to the construction of the nervous system. The hypothesis of 
multiple retrograde signals has gained widespread experimental 
support in recent years. Originally proposed for the PNS, the 
model could be extended to the CNS, in which target neurons 
synthesize trophic factors for their afferent neurons (Ernfors et 
al., 1990b). In addition to NGF, a family of NGF-related mol- 
ecules (now commonly called neurotrophins), which are thought 
to exert retrograde trophic influences (DiStefano et al., 1992), 
has been identified. 
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However, the recent barrage of publications dealing with neu- 
rotrophic factors has pointed to some limitations of the modular 
neurotrophic factor approach. Neurons might derive trophic 
support not only from innervated cells (retrograde mechanism), 
but also from afferent neurons (anterograde influence), axon- 
ensheathing glial cells, or even themselves (autocrine mecha- 
nism) (Fig. 2). Considerable evidence for these nonclassical 
trophic interactions has accumulated in the meantime. Neu- 
rotrophic factors also interacted much less specifically than a 
modular approach would call for. A given neurotrophic factor 
affects many neuronal types, and a given neuronal type is influ- 
enced by several neurotrophic factors. Instead of clear demar- 
cations, nature has opted for a fuzzy strategy (Fig. 1). The plei- 
otropism of neurotrophic factors is equaled by their and their 
receptors’ broad tissue distribution, In view of this apparent 
lack in specificity of interactions, we may ask to what extent 
neurotrophic interactions contribute to the highly specific con- 
nectivity of the nervous system. 

Here I highlight some of the recent findings that demonstrate 
the complexity of neurotrophic factor interactions and their 
ostensible lack of specificity. I will present an integrated as- 
sessment of these observations and suggest a modified neuro- 
trophic factor theory to reconcile the new data. My examples 
will be limited to the neurotrophins, ciliary neurotrophic factor 
(CNTF), leukemia inhibitory factor (LIF), and the fibroblast 
growth factor (FGF) family. Although not complete, this list of 
molecules with neurotrophic activities is of sufficient complexity 
to present a formidable challenge. 

The neurotrophins, CNTF, LIF, the FGF family, and 
their receptors 

The neurotrophin family contains five closely related factors: 
the prototype neurotrophic factor NGF (Levi-Montalcini, 1987) 
brain-derived neurotrophic factor (BDNF), neurotrophin-3, -4, 
and -5 (NT-3, NT-4, NT-5) (Leibrock et al., 1989; Hohn et al., 
1990; Maisonpierre et al., 1990b; Berkemeier et al., 199 1; Hall- 
book et al., 199 1). The responsiveness of neurons and neuronal 
precursor cells to neurotrophins is summarized in Table 1. Two 
unrelated types of receptors have been identified for the neu- 
rotrophins. One is the low-affinity NGF receptor, also known 
as low-affinity neurotrophin receptor (LANR) (Radeke et al., 
1987; Yarden and Kelman, 199 1; Rodriguez-TCbar et al., 1992). 
The trk family of tyrosine kinases constitutes the other type of 
neurotrophin receptors and currently numbers three members, 
trkA, trkB, and trkC (Cordon-Card0 et al., 1991; Lamballe et 
al., 199 1; Soppet et al., 199 1). The relationship between trks 
and LANR is unclear, since complex formation between both 
types of receptors has not been observed (Radeke and Feinstein, 
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Modular Concept Fuzzy Strategy 

Figure 1. Schematic representation of possible interrelations between 
various neuronal types and neurotrophic factors. Different neurotrophic 
factors are represented by circles and different neuronal types by letters. 
The modular concept specifies individual neurotrophic factors for each 
neuronal type. The modified model allows for extensive overlap of 
responsiveness to different neurotrophic factors. A particular neuro- 
trophic factor maintains more than one neuronal type. Neurons may 
be responsive to a single neurotrophic factor (a) or to different com- 
binations (b, c). 

199 1). It has been suggested that signal transduction by neu- 
rotrophins is achieved solely by the trk family of receptors, 
without contribution of the LANR (Klein et al., 1991; Ibaiiez 
et al., 1992). However, other experiments show the LANR as 
a necessary, though insufficient, component of signal transduc- 
tion (Wright et al., 1992). LANR is required for survival of 
sympathetic and sensory neurons in vivo, albeit not in vitro 
(Johnson et al., 1989; Weskamp and Reichardt, 1991; Lee et 
al., 1992), and hence might be involved in the retrograde axonal 
transport of the neurotrophin/receptor complex. 

Ciliary neurotrophic factor was so named for its ability to 
rescue cultured ciliary neurons (Barbin et al., 1984). As with 
NGF, FGF, and LIF, the naming proved to be premature, since 
CNTF additionally acts on a broad range of neuronal and even 
glial cells (Table 1; Anderson, 1989). The receptor for CNTF 
seems to be a heterotrimer of one membrane-linked, ligand- 
binding subunit and two transmembraneous, signal-transducing 
subunits (Davis et al., 1991; Ip et al., 1992). Avian growth- 
promoting activity (GPA), which is 50% homologous to mam- 
malian CNTF and has similar biological activities, may con- 
stitute a second member of the CNTF family (Leung et al., 
1992). 

Leukemia inhibitory factor is a pleiotropic molecule with a 
multitude of effects for neurons and non-neuronal cells (Table 
l), producing blockage or enhancement of differentiation or 
proliferation, depending on the responsive cell population (Smith 
et al., 1992). Peptide sequence and structure comparisons group 
LIF with several other cytokines and CNTF into a rather di- 
vergent family (Bazan, 199 1). Possible neurotrophic activities 
of the other cytokines have just begun to be studied (Satoh et 
al., 1988). The receptor for LIF contains a ligand-binding and 
a signal-transducing subunit, both of which belong to the gp 130 
family of cytokine receptors (Gearing et al., 199 1, 1992). 

Fibroblast growth factors have been characterized by virtue 
of their mitogenic activities for a variety of cell types of me- 
sodermal and ectodermal origin (Rifkin and Moscatelli, 1989; 
Vlodavsky et al., 199 1). Basic FGF (bFGF) enhances survival 
and differentiation of many neuronal types (Table 1). bFGF and 
acidic FGF (aFGF) turned out to belong to a family of growth 
factors that now numbers seven members (Vlodavsky et al., 
199 1). The possible neurotrophic activities of other family 
members have not been studied so far. Four high-affinity re- 
ceptors for the FGF family have been cloned, forming a family 
of transmembrane proteins with ligand-activated tyrosine ki- 

Figure 2. Schematic representation of possible sources for trophic sup- 
port. The center neuron is drawn as member of a neuronal chain, with 
glial cells ensheathing its axon. The neuron might obtain trophic sub- 
stances via anterograde transport from the afferent neuron, by means 
ofan autocrine loop, from ensheathingglia cells, or by retrograde axonal 
transport from the neuron it innervates (classic notion). Trophic influ- 
ence is shown by arrows. 

nase activity (Klagsbrun and Baird, 199 1; Yarden and Kelman, 
1991). 

These sketches of neurotrophic factors should provide suffi- 
cient background information for a detailed assessment of neu- 
rotrophic factor complexities in the following paragraphs. 

Modes of action of neurotrophic factors 

Retrograde messenger mechanism. This is the classical pathway 
for mediating neurotrophic influences (Fig. 2). It comprises 
synthesis of a neurotrophic factor in target cells of the respon- 
sive neuron, secretion as a soluble form into the extracellular 
space, receptor-mediated uptake, and retrograde axonal trans- 
port toward the soma of the responsive neuron. All components 
of this pathway have been identified in the case of NGF and 
sympathetic, sensory, and magnocellular cholinergic neurons 
(Levi-Montalcini, 1987; Thoenen et al., 1987). Deprivation of 
endogenous NGF mimics interruption of retrograde axonal 
transport; that is, NGF constitutes the endogenous retrograde 
trophic messenger for these neurons (Levi-Montalcini et al., 
1987; Vantini et al., 1989). Sensory neurons receive a trophic 
signal via their central connections in the spinal cord, which is 
not NGF, but may be BDNF (Lindsay, 1988; Maisonpierre et 
al., 1990a). Strong support for positing a role as retrograde tro- 
phic messenger is provided by retrograde axonal transport of 
the factor, which has been demonstrated for NGF, BDNF, NT- 
3, and LIF in several neuronal types (Korsching, 1986; Di- 
Stefano et al., 1992; Hendry et al., 1992). 

Do anterograde trophic messengers exist? Many neuronal types 
depend on afferent input for their survival, as shown by an- 
terograde degeneration after lesioning afferent input (Oppen- 
heim, 199 1). This widespread phenomenon implies the exis- 
tence of anterograde trophic signaling. Neurotransmitter 
molecules that are delivered anterogradely could exert trophic 
influences in addition to their function in transduction of elec- 
trical signals. Indeed, effects on neuronal survival and differ- 
entiation have been described for classical as well as peptide 
neurotransmitters (Lipton and Kater, 1989). Furthermore, neu- 
rons might exert long-range anterograde neurotrophic influences 
on their target neurons via anterograde axonal transport of mac- 
romolecular substances (Fig. 2). FGF could be a candidate an- 
terograde trophic messenger. bFGF is synthesized and released 
by retinal cells in vivo (Hageman et al., 1991) and exogenous 
bFGF is transported anterogradely in retinal ganglion cell axons 
toward the superior colliculus (Ferguson et al., 1990), which 
depends on afferent input for survival of its neurons. 

Local action of neurotrophic factors. Endogenous NGF exerts 
a neurotrophic effect on striatal cholinergic interneurons (Mob- 
ley et al., 1989; Vantini et al., 1989). This effect implies a local 
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Table 1. Responsiveness of neurons and neuronal precursor cells to various neurotrophic factors 

NGF’ BDNF* NT-Y NT-44 NT-S5 CNTF6 LIF’ bFGF8 

Neurons of the peripheral nervous system 

Ciliary ganglion (parasympathetic) 

Dorsal root ganglion (sensory)h 
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++ 
. ..< 
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Neurons of the central nervous system 

Cholinergic interneuron (striatum)h ++ 

GABAergic neuron (basal forebrain) 

Granule cell (cerebellum)’ 

Mesencephalic dopaminergic neuron (substantia nigra)k . - 

Magnocellular cholinergic neuron (basal forebrain)’ + + 

Motoneuronm -? 

Purkinje cell (cerebellum)” ++ 

Retinal ganglion celp -- 

Sympathetic preganghonic neuron0 

Neuronal precursor cells 

Chromaffin. precursor cells +++ 
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Effects on survival and differentiation are listed separately, in that order. For neuronal precursor cells and PC12 cells, effects on proliferation are listed in the third 
position. + indicates the presence of a biological response; i indicates a small, but significant effect; - indicates the absence of an effect; ? indicates controversial 
findings; stands for not determined. al, Eckenstein et al., 1990. a2, Maisonpierre et al., 1990b. ~3, Emfors et al., 1990a; Hohn et al., 1990; Maisonpierre et al., 
1990b. US, Berkemeier et al., 1991. ~6, Lin et al., 1990. ~7, Rao et al., 1990. a& Eckenstein et al., 1990. bl, Lindsay, 1988; Diamond et al., 1992; Ruit et al., 1992. 
62, Lindsay, 1988; Leibrock et al., 1989. b3, Maisonpierre et al., 1990b; Rosenthal et al., 1990. b4. Hallbiiijk et al., 1991. b5, Berkemeier et al., 1991. b6, Lin et al., 
1990. b7, Murphy et al., 1991. b8, Eckenstein et al., 1990. cl, ~3, Emfors et al., 1990a. dl, Katz et al., 1990; Rosenthal et al., 1990. d2. Hohn et al., 1990; Maisonpierre 
et al., 1990b. d3, Rosenthal et al., 1990. d4, Hallbijiik et al., 1991. d5. Berkemeier et al., 1991. d6, Barbin et al., 1984. el, Levi-Montalcini, 1987. e2. Squint0 et al., 
1991. e3, Rosenthal et al., 1990; Squint0 et al., 1991. e4, Klein et al., 1992. e5, Berkemeier et al., 1991. e8, Rydel and Greene, 1987.j7, Levi-Montalcini, 1987; Ruit 
et al., 1990; Campenot et al., 1991.12, Lindsay et al., 1985; Maisonpierre et al., 1990b. j3, Hohn et al., 1990; Rosenthal et aL, 1990. f4, Hall&k et al., 1991.0, 
Berkemeier et al., 1991. f6, Lin et al., 1990; Rao et al., 199O.p. Transdifferentiation from noradrenergic to cholinergic phenotype, Yamamori et al., 1989.18, Eckenstein 
et al., 1990. gl, g2, Lindsay, 1988. g3, Hohn et al., 1990. hl, Mobley et al., 1989; Vantini et al., 1989. h6, Hagg et al., 1992. h7, Martinou et al., 1992. il, Kniisel et 
al., 1991; Hagg et al., 1992. i2, Kniisel et al., 1991. i6, Hagg et al., 1992. i8, Kniisel et al., 1991. jl, Hatten et al., 1988. j2, j3, Segal et al., 1993. j8, Hatten et al., 1988. 
kl, Kniisel et al., 1991. k2, Hyman et al., 199 1. k3, Kniisel et al., 1991. !f8, Engele and Bohn, 1991. II. Koraching, 1986; Vantini et al., 1989; Fischer et al., 1991. 1.2, 
Alderson et al., 1990.13, Kniisel et al., 1991.16, Hagg et al., 1992.17, Martinou et al., 1992.18, Kniisel et al., 1991. ml, Arakawa et al., 1990. Most labs do not observe 
a differentiating effect, but see Wayne and Heaton, 1990. m2, m3, DiStefano et al., 1992; Sendtner et al., 1992. m5, Berkemeier et al., 199 1. m6, Arakawa et al., 1990; 
Gurney et al., 1992. m7, Martinou et al., 1992. m8, Arakawa et al., 1990; Gurney et al., 1992. nl. Cohen-Gory et al., 1991. 01. 02, Rodriguez-T&bar et al., 1989. 06, 
Stiickli et al., 1991. 08, Lipton et al., 1988. pl, p6, p8. Blottner et al., 1989. ql, Lillien and Claude, 1985. 48, Birren and Anderson, 1990. rl, r2, Sk&r-Blum, 1991. 
i-3, Kalcheim et al., 1992. r7, Murphy et al., 1991. r8, Kalcheim, 1989. sl, Cattaneo and McKay, 1990. ~8. Drag0 et al., 1991. 21, ~2, r3, Emsberger and Rohrer, 1988; 
Wright et al., 1992. t7, Murphy et al., 1991. t8, Stocker et al., 1991. ~1, u2, Emsberger et al., 1989a. ~6, ~8, Emsberger et al., 1989b. 

mode of action, since the targets of these intemeurons are con- 
tained within the corpus striatum. The closely apposed granule 
and Purkinje cells of the cerebellum seem to constitute another 
local neurotrophic system. In vivo, granule cells depend on Pur- 
kinje cells for survival (Herrup and Sunter, 1987). Endogenous 
aFGF, int-2 of the FGF family, BDNF, and NT-3 are plausible 
candidates for mediating this interaction (Hatten et al., 1988; 
Wilkinson et al., 1989; Maisonpierre et al., 1990a; Lamballe et 
al., 199 1; Schniirch and Risau, 199 1; G6mez-Pinilla et al., 1992; 
Segal et al., 1993). 

Nerve sheath as source of neurotrophic factors. The rate of 
synthesis of NGF in ensheathing cells of peripheral nerve is high 
during development and decreases during adulthood. How- 
ever, it rises again transiently after nerve lesion (Heumann et 
al., 1987). This means that NGF is provided locally along the 
nerve (Fig. 2) while target innervation is incomplete during 
development, or before contact with the target organs is rees- 
tablished during regeneration. Nerve sheath NGF is taken up 

by regenerating axons and may enhance regeneration of injured 
neurons (Brown et al., 1991; but see Diamond et al., 1992). 

Glial cells as mediators of indirect neurotrophic eflects. Glial 
cells are known to synthesize neurotrophic factors (Hatten et 
al., 1988; Yoshida and Gage, 199 l), and in some cases mediate 
the neurotrophic action of bFGF (Engele and Bohn, 199 1). FGF 
enhances the NGF release of astrocytes (Yoshida and Gage, 
1991) and may also act via its mitogenic effect on glial cells 
(Engele and Bohn, 1991). This neurotrophic mechanism is in- 
direct but may be physiologically relevant, for example, after 
injury-induced reactive astrocytosis in the CNS. 

Neurons as origin of neurotrophic factors. Traditionally, the 
source of neurotrophic factors was thought to be the non-neu- 
ronal cells of target organs and of the nerve sheath. The synthesis 
of NGF in target organs of sympathetic and sensory neurons 
and in injured peripheral nerve confirmed this assumption 
(Korsching and Thoenen, 1983; Heumann et al., 1987). It was 
therefore surprising that a variety of neurotrophic factors are 
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produced by neurons in both the CNS and PNS. Several mem- 
bers of the FGF family are synthesized by neurons (Wilkinson 
et al., 1989; Elde et al., 1991; Schniirch and Risau, 1991). The 
synthesis of NGF and BDNF in pyramidal and granule neurons 
of the hippocampus (Emfors et al., 1990b) agrees with the pro- 
posed role as retrograde trophic messengers for their afferents, 
the magnocellular cholinergic neurons. Preliminary evidence 
indicates neuronal BDNF secretion at the cell soma or dendrites, 
but presumably not at the axon (Wetmore et al., 1991). If the 
release is restricted to particular subcellular regions, for exam- 
ple, synaptic sites, a trophic interaction could be localized es- 
sentially to an individual neuron chain. 

Autocrine mode of action. Some types of neurons not only 
synthesize neurotrophic factors but also express the cognate 
receptors and respond to their own neurotrophic factors. For 
example, coexpression of a member of the FGF family together 
with a receptor for FGF occurs in sensory neurons and moto- 
neurons (Heuer et al., 1990; Elde et al., 1991; Schntirch and 
Risau, 1991). Dorsal root ganglion neurons, sympathetic neu- 
rons, and hippocampal pyramidal neurons synthesize both 
BDNF and its receptor, trkB (Emfors et al., 1990b; Klein et al., 
1990b; Wetmore et al., 199 1; Schecterson and Bothwell, 1992). 
BDNF and its receptor may even be colocalized within single 
neuronal cells (Schecterson and Bothwell, 1992; Wright et al., 
1992). Such an autocrine mechanism obviously cannot mediate 
target-neuron interactions but may serve to maintain neurons 
until target contact is established. Also, the neurotrophic mol- 
ecules released by any one neuron are presumably accessible for 
the entire population of neurons, so that cellular properties with- 
in the neuronal type will be equalized. 

Do nonsecreted neurotrophic factors exist? The autocrine in- 
teraction described above still requires secretion of the neuro- 
trophic factor by the neuron synthesizing it. Whether some of 
the neurotrophic factors are secreted at all has been controver- 
sial. CNTF, bFGF, and aFGF all lack the N-terminal signal 
sequence, thought to be necessary for secretion (Stockli et al., 
199 1; Vlodavsky et al., 199 1). Moreover, CNTF and FGF have 
not been detected in medium conditioned by cells synthesizing 
these factors (but see Araujo and Cotman, 1992; Jackson et al., 
1992). However, several proteins missing conventional signal 
sequences are known to be extruded from intact cells (Muesch 
et al., 1990). Also, a secreted factor might escape detection by 
immobilization on either the extracellular matrix or the cell 
surface. FGF binds to proteoglycans of the extracellular matrix, 
and the widespread occurrence of bFGF in extracellular matrices 
in vivo argues for the existence of an as yet uncharacterized 
release mechanism for bFGF (Rifkin and Moscatelli, 1989; Vlo- 
davsky et al., 199 1). Another possibility would be that the neu- 
rotrophic activities of CNTF, bFGF, and aFGF mimic those of 
other family members that do possess signal sequences and are 
secreted (Rifkin and Moscatelli, 1989; Leung et al., 1992). If 
the intracellular destination of CNTF, of some forms of FGF 
(Elde et al., 199 1), and possibly of one form of BDNF (Wetmore 
et al., 199 1) are corroborated in future experiments, the question 
of the function of an intracellular neurotrophic factor will have 
to be addressed. It is conceivable that such a factor is kept in 
store to be released upon nerve lesion. However, a reduction of 
CNTF synthesis after lesion seems to argue against its function 
in nerve regeneration (Friedman et al., 1992). Another possi- 
bility is the intracrine function of a neurotrophic factor in the 
cell synthesizing it, analogous to the intracrine mitogenic effects 
of bFGF and aFGF (Ritkin and Moscatelli, 1989). 

Pleiotropy and redundancy of neurotrophic factors 

A single neurotrophicfactor exerts a diversity of eflects on a single 
neuronal type. For example, in sensory neurons NGF enhances 
survival (Lindsay, 1988), and also stimulates neurite initiation, 
branching, and elongation (Diamond et al., 1992), neurofila- 
ment synthesis (Katz et al., 1990) and synthesis of several neu- 
ropeptides (Levi-Montalcini, 1987). NGF is a chemotactic at- 
tractant of growth cones of sensory neurons (Levi-Montalcini, 
1987), although no use is made of this property in establishing 
initial target contact (Vogel and Davies, 199 1). This diversity 
of effects seems to be generated by coupling the initial NGF 
signal to different intracellular signaling pathways (Greene et 
al., 1990) and by localizing some responses to the growth cone 
and others to the soma (Campenot et al., 199 1; Meiri and Bur- 
dick, 199 1). 

A single neurotrophic factor influences a diversity of neuronal 
types. Each column of Table 1 presents the neuronal types re- 
sponsive to a particular neurotrophic factor. All neurotrophic 
factors listed there affect several neuronal types and most affect 
additional neuronal types not included in Table 1. Responsive- 
ness to any particular factor does not follow a recognizable 
pattern: it is correlated with neither transmitter phenotype nor 
cell lineage. Adrenergic, cholinergic, and peptidergic neurons 
may all respond to the same neurotrophic factor, as may pla- 
code-derived as well as neural crest-derived neurons and pe- 
ripheral as well as central neurons (Table 1). Thus, several neu- 
ronal types may share a common source, and so compete, for 
the same endogenous neurotrophic factor (Korsching and Thoe- 
nen, 1985). Such competition might serve to regulate the relative 
abundance of different neuronal types. 

A single neurotrophicfactor influences neuronal and non-neu- 
ronal cells. NGF enhances the proliferation and blocks differ- 
entiation of some neuronal precursor cells (Table 1). BDNF and 
NT-3 exhibit differentiation-enhancing and mitogenic activity 
for neuronal precursor cells (Table 1). Several non-neuronal cell 
types, including some of the immune system, respond to NGF 
in vitro (Pearce and Thompson, 1986; Otten et al., 1989; Saad 
et al., 1991; Yaar et al., 1991). If these observations can be 
substantiated by in vivo experiments, NGF would not be a purely 
neuronal factor, but a mixed-function molecule like FGF and 
LIF. In addition to their manifold effects on non-neuronal cells 
(R&in and Moscatelli, 1989; Vlodavsky et al., 199 1; Smith et 
al., 1992), FGF and LIF enhance survival and differentiation 
of several neurons and neuronal precursor cells (Table 1). Fur- 
thermore, FGF enhances proliferation of some neural precursor 
cells and glial cells (Table 1) (Engele and Bohn, 199 1). Besides 
its effects on a variety of neuronal types, CNTF affects both 
neuronal precursor cells and glial cells (Table 1; Anderson, 1989; 
Emsberger et al., 1989b). These results imply that the distinction 
between neuron-specific and non-neuronal trophic factors is 
vanishing. All neurotrophic molecules additionally possess mi- 
togenic or differentiation activities for neuronal precursor cells, 
and some also influence proliferation and differentiation of glial 
cells and multiple non-neural cell types. 

Direrent neurotrophic factors show overlapping, yet distinct 
patterns of activities. Table 1 details this statement for the neu- 
rotrophins. In the FGF family, aFGF has similar, but not iden- 
tical, neurotrophic activities to bFGF (Lipton et al., 1988). Con- 
siderable overlap of activities is observed even between different 
neurotrophic families. Dorsal root ganglion neurons, for ex- 
ample, are responsive to all neurotrophic factors listed in Table 
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1. The overlapping activities are reflected in the convergence of 
intracellular signal transduction pathways (Chao, 1992). Fur- 
thermore, neurotrophins cause proliferation rather than neu- 
ronal differentiation in non-neuronal cells transfected with their 
cognate receptor genes (Cordon-Card0 et al., 199 1; Klein et al., 
199 1; Lamballe et al., 199 1). It seems that neurons adapt com- 
mon signaling mechanisms for their particular differentiation, 
instead of depending on unique signal transduction pathways. 

Apparent and true redundancy of neurotrophicfactors. In cases 
where redundancy of neurotrophic factors is observed, it may 
turn out to be apparent only. For example, both FGF and CNTF 
increase survival of motoneurons (Arakawa et al., 1990). How- 
ever, FGF rescues a different subpopulation of motoneurons 
than does CNTF, as can be inferred from the additivity of their 
effects. Another case in point is the survival of dorsal root gan- 
glion neurons elicited by both BDNF and NGF (Leibrock et al., 
1989). Each factor by itself rescues only a subpopulation of 
neurons, and only the combined presence of both factors achieves 
complete survival. In contrast, of the triple combination NGF, 
BDNF, and NT-3, one member is truly redundant with respect 
to survival since NT-3 also improves survival of dorsal root 
ganglion neurons. Similarly, BDNF and NT-3 are redundant 
with respect to survival of neurons of the trigeminal mesence- 
phalic nucleus, since all neurons can be rescued by NT-3 alone 
(Hohn et al., 1990). True redundancy so far has been observed 
only in vitro. It remains to be seen whether this phenomenon 
also can be detected in vivo, where the expression pattern of 
neurotrophic factor receptors and signal transduction compo- 
nents may be different. 

D&erent neurotrophic factors share receptors and their sub- 
units. NGF, BDNF, NT-3, and NT-4 all bind to LANR (Table 
2). The trkA and trkB receptors of the trk family bind more 
than one neurotrophin, and NT-3 and NT-5 bind to more than 
one type of trk receptor (Table 2). The much higher specificity 
of high-affinity binding to responsive neurons (Rodriguez-Tebar 
et al., 1992) might be achieved by a, so far speculative, inter- 
action of trk receptors with LANR. Any particular FGF receptor 
binds more than one member of the FGF family with similar 
high affinity (Klagsbrun and Baird, 199 1; Yarden and Kelman, 
199 1; Vainikka et al., 1992). Ligand-induced receptor dimeri- 
zation is typical for tyrosine kinase receptors, and has been 
described for FGF/receptor complexes (Yarden and Kelman, 
1991). The formation of a heterodimer receptor (Bellot et al., 
199 1) increases the complexity of possible FGF-receptor inter- 
actions. The signal-transducing component of the LIF and CNTF 
receptors is identical, and furthermore present in other cytokine 
receptors (Yarden and Kelman, 1991; Gearing et al., 1992; Ip 
et al., 1992). All subunits of the, presumably trimeric, CNTF 
and LIF receptors belong to cytokine receptor families (Davis 
et al., 199 1; Gearing et al., 199 1, 1992; Ip et al., 1992). Despite 
common signaling pathways, specificity of interactions still may 
be achieved by restricted expression of some receptor compo- 
nents (Davis et al., 199 1). 

Complexity of neurotrophic factors and their 
interactions 

Spatial distribution pattern. Different neurotrophic factors and 
their receptors regulate their spatial distribution patterns dif- 
ferently. Most of them exhibit a distinct, although broad, tissue 
distribution (Heuer et al., 1990; Maisonpierre et al., 1990a; 
Stijckli et al., 1991; Gomez-Pinilla et al., 1992). Despite the 
broad distributions, the overlap between the expression pattern 

Table 2. Receptor specificity of the neurotrophin family 

trkA trkB trkC LANR 

NGF + - - + 

BDNF - + - + 

NT-3 < + + + 

NT-4 - + - + 

NT-5 + + 

+ indicates specific binding or a biological response via the receptor; < indicates 
a small but significant specific interaction; - indicates the absence of an inter- 
action; and stands for not determined. Data are taken from Berkemeier et al., 
1991; Cordon-Cardo et al., 1991; Hallbijijk et al., 1991; Klein et al., 1991; Lam- 
balle et al., 1991; Soppet et al., 1991; Squint0 et al., 1991; Klein et al., 1992; 
Rodriguez-Ttbar et al., 1992. 

of a neurotrophic factor and its receptors could be limited. A 
receptor binding more than one neurotrophic factor will be de 
facto specific for the particular neurotrophic factor endoge- 
nously expressed in that region. For example, the restricted 
expression of NT-3 and NT-4 in the adult animal (Maisonpierre 
et al., 1990a; Hallbook et al., 1991) could entail increased de 
facto specificity of the multifunctional trk family of receptors 
(Table 2). An unexplainably broad distribution of a particular 
neurotrophic factor or receptor may indicate a hitherto un- 
known responsive cell population. For example, LANR has been 
detected on a variety of neurons, glial cells, and even non-neural 
cells, in fact, on many more cell types than those known to be 
responsive to NGF or another neurotrophin (Wheeler and Both- 
well, 1992). 

Temporal pattern of expression. This pattern is distinct for 
various neurotrophic factors and different tissues. Develop- 
mental regulation of synthesis varies for different neurotrophins 
(Maisonpierre et al., 1990a). Increases or decreases toward adult 
levels have been observed in different tissues for a particular 
neurotrophin or neurotrophin receptor (Heumann et al., 1987; 
Mobley et al., 1989; Heuer et al., 1990; Maisonpierre et al., 
1990a). This specific spatiotemporal regulation of expression 
could ensure very restricted interactions of individual neuro- 
trophins with neuronal types or even subtypes, although any 
given neurotrophin has a broad spectrum of responsive neurons. 
Temporal restriction of response has been observed for NGF 
(Lindsay, 1988) BDNF (Rodriguez-T&bar et al., 1989; Vogel 
and Davies, 1991), NT-3 (Wright et al., 1992), CNTF (Barbin 
et al., 1984) and FGF (Heuer et al., 1990). Many FGF-respon- 
sive neuronal types seem not to respond to aFGF or bFGF 
during the cell death period (Oppenheim et al., 1992). 

Compartmentalization via molecular heterogeneity. The neu- 
rotrophins, LIF, several members of the FGF family, and some 
of their receptors are each encoded in several different kinds of 
mRNA, which may differ in their tissue distribution and func- 
tion (Selby et al., 1987; Yarden and Kelman, 199 1; Miki et al., 
1992). The different mRNAs are generated by the initiation of 
transcription at different promoters and alternative mRNA 
splicing. The two forms of LIF possess different signal sequences; 
one form is targeted to the extracellular matrix, whereas the 
other is soluble (Smith et al., 1992). In several members of the 
FGF family, initiation of translation at different codons causes 
either cytoplasmic, nuclear, or extracellular translocation of the 
protein (Acland et al., 1990). This segregation could serve to 
compartmentalize very disparate functions of the same type of 
neurotrophic molecule: neuronal precursor cells within germinal 
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Spatial expression Q keurotrophic factor targeting 
pattern of receptors (secretory, cytosolic, nuclear) 

Figure3. Multidimensionality ofneurotrophic factor interactions. The 
neuron is schematically represented in the center of the figure. Each 
radius represents a different dimension of the multidimensional “neu- 
rotrophic state space” of the nervous system. Each dimension corre- 
sponds to a different variable, which can have continuous (e.g., space, 
time) or discrete (e.g., family of molecules) values. A particular neuronal 
type is characterized by a point in this neurotrophic state space. Any 
single value of a variable (e.g., expression of LANR) may be common 
to many neuronal types. However, the combination of values for all 
variables (e.g., expression of full-length LANR together with a truncated 
fragment of trkB, but not trkA; BDNF, but not NT-3 synthesis, etc.) is 
presumably unique for a particular neuronal type or even subtype. In 
this way, very specific interactions can take place despite the pleiotropic 
nature of neurotrophic factors. To test this hypothesis, an integrated 
assessment of the above set of variables for particular neuronal types 
will be necessary. 

zones may interact predominantly with trophic factors depos- 
ited into the adjacent extracellular matrix. Truncated fragments 
ofthe neurotrophin receptors LANR, trkB, and the LIF receptor 
(Klein et al., 1990a; Gearing et al., 199 1) could act either as 
agonist or antagonist when binding the ligand or upon associ- 
ation with a full-length receptor subunit (Yarden and Kelman, 
1991). Therefore, in all such cases it will be necessary to elu- 
cidate the function and distribution pattern of the truncated 
fragments separately from that of the full-length receptor. Thus, 
alternative promoter usage, differential splicing, and alternative 
initiation of translation generate variations in tissue distribu- 
tion, subcellular localization, mobility, and function of neuro- 
trophic factors. This molecular heterogeneity is not usually taken 
into account when discussing the pattern of synthesis of a neu- 
rotrophic factor, in part because the functional consequence and 
physiological importance of most modifications is unknown. 
However, molecular heterogeneity seems to be spatiotemporally 

regulated, and compartmentalization of different subforms may 
serve to achieve higher specificity in the interactions of a single 
neurotrophic factor or receptor. 

Sequences of differentiation or prohferation events involving 
two neurotrophic factors. The mitogenic response of neuronal 
precursor cells to NGF in cultures of striatal primordium re- 
quires previous exposure to FGF (Cattaneo and McKay, 1990). 
Neuroepithelial precursor cells require insulin-like growth factor 
I for survival in order to react to FGF with proliferation (Drag0 
et al., 1991). FGF differentiates chromaffin precursor cells to 
sympathetic neurons, which become dependent on NGF upon 
this transition (Birren and Anderson, 1990). The transition of 
neural crest cells from proliferation to differentiation is antag- 
onistically influenced by two neurotrophins (Sieber-Blum, 199 1; 
Kalcheim et al., 1992). These multifactor interactions add an- 
other level of complexity to the network of neurotrophic inter- 
actions. 

Neuronal activity and neurotrophic factors regulate neuro- 
trophic factors and their receptors. Synthesis of LIF and NGF 
is regulated by various other growth factors, including FGF, 
transforming growth factor, and interleukin- 1 (Matsuoka et al., 
1991; Smith et al., 1992). Sympathetic neurons synthesize in- 
terleukin- 1, possibly to provide for their NGF supply (Freidin 
et al., 1992). Within the CNS, interleukin-1 could be involved 
in a positive feedback loop, since its synthesis is stimulated by 
NGF in astrocytes. A single factor can have opposite effects on 
NGF synthesis in different cell types (Matsuoka et al., 1991). 
Depolarization stimulates neuronal synthesis of NGF and BDNF, 
but not of NT-3 in the mature CNS or of trkA in a neural 
precursor cell line (Birren et al., 1992; Dugich-Djordjevic et al., 
1992). Since the depolarization signal is only delivered at syn- 
aptic sites, this could represent a highly localized interaction 
(Cast&n et al., 1992). Ligand-induced stimulation of receptor 
synthesis has been observed for NGF and LANR, and for NGF 
and trkA (Miller et al., 1991; Yaar et al., 1991; Holtzman et 
al., 1992). This kind of positive feedback reduces the threshold 
for subsequent stimulation by the ligand, thereby in effect fa- 
cilitating the response. 

Making sense of neurotrophic interactions 

Our analysis so far has shown that neurotrophic interactions are 
both more complex and less specific than previously thought. 
Information transfer by neurotrophic molecules seems not to 
be restricted to the retrograde messenger mode, but may include 
local trophic interactions, autocrine signaling, and anterograde 
trophic signals. Successions of several neurotrophic interactions 
may be necessary for normal development of neuronal types. 
Both neurotrophic factors and their corresponding receptors can 
be grouped into families with overlapping as well as distinct 
activities. Particular neurotrophic factors exist in several forms, 
which can have different subcellular, extracellular, or tissue lo- 
calization, and may perform different functions. A given neu- 
rotrophic factor may affect a variety of neuronal and non-neu- 
ronal cell populations, and can influence both differentiation 
and proliferation, depending on the targeted cell. This plethora 
of effects is mediated via receptor molecules, which are coupled 
to more than one intracellular signaling pathway. In several 
cases, the receptor is a multimer, and a particular subunit may 
be shared by different receptor complexes. Truncated receptor 
fragments may act as agonists or antagonists of neurotrophic 
factors. 
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How can the nervous system develop and maintain a 
precise connectivity using pleiotropic factors with 
overlapping activities? 

The actual specificity of neurotrophic interactions may be much 
higher than suggested at first sight by this survey if one takes 
into account the possibility of a detailed regulation of the spatial 
and temporal expression pattern for all modifications of neu- 
rotrophic factors, receptors, and intracellular signaling com- 
ponents. The neurotrophic factors accessible to a particular neu- 
ronal type at a distinct spatiotemporal location will elicit effects 
according to the repertoire of receptors and intracellular sig- 
naling cascades expressed by that cell population. Furthermore, 
the interaction of several neurotrophic signals may lead to an 
unique influence for a particular neuronal type. It is now tech- 
nically feasible to generate animals that lack certain neurotro- 
phic factors or synthesize particular neurotrophic factors with 
an artificially altered pattern of spatiotemporal expression. This 
means that the hypothesis proposed here is amenable to exper- 
imental analysis in vivo. 

Are there simplifying principles recognizable in the 
multicomponent system of neurons and neurotrophic factors? 

Early attempts to categorize neuronal types according to their 
neurotrophic factor requirements have always been invalidated 
by the next round of experimental results. For example, re- 
sponsiveness to NGF is not correlated with function, cell lineage, 
or transmitter phenotype: NGF-responsive neurons belong to 
afferent and efferent systems, to neural tube and neural crest 
derivatives, to cholinergic, adrenergic, and peptidergic neuronal 
types (Table 1). It is not even evident that a mapping of neu- 
rotrophic requirements onto neuronal type should be possible. 
The evolutionary process could have changed early-existing cor- 
relations beyond recognition. On the other hand, we might as- 
sume that the developmental mechanisms responsible for spec- 
ifying a particular neuronal type, that is, a particular gene 
expression pattern, would also be involved in specifying the 
neurotrophic factor requirements of that neuronal type. Such a 
correlation has not been found by single factor analysis as de- 
scribed above, but it may be possible in the future to reveal a 
hidden pattern by an integrated assessment of the available data. 

The interaction of a neuron with neurotrophic factors consists 
of several molecular components: particular neurotrophic fac- 
tor(s), receptor(s) for neurotrophic factors, intracellular trans- 
port mechanism, and intracellular signal transduction pathways. 
As shown above, molecular heterogeneity has been observed 
for several neurotrophic factors and receptors. All of these com- 
ponents can be thought of as a set of variables, which together 
define a multidimensional “neurotrophic state space” for neu- 
rons (Fig. 3). A particular neuronal type will have particular 
coordinates in this state space, which correspond to the set of 
conditions experienced by that neuronal type. Modem methods 
of statistical analysis could detect whether related neuronal types 
are clustered in this state space or are distributed randomly. 
Unfortunately, the present state of knowledge is too anecdotal 
to sustain a valid mathematical treatment of this problem. The 
amount of information still lacking is evident from the many 
missing entries in Table 1. Also, much of the available infor- 
mation has been obtained in vitro, where expression patterns 
may deviate considerably from the in vivo situation. The absence 
of a biological effect, as important as its presence for such a 
theoretical analysis, is not usually examined with the same de- 
gree of persistence. 

Conclusions 

Neurotrophic factors were once thought of as specialized, target- 
derived molecules, each mediating survival and enhancing dif- 
ferentiation of well-defined and distinct neuronal types. With 
the increasingly detailed examination of neurotrophic interac- 
tions and the wealth of experimental data accumulated in the 
meantime, it becomes clear that this concept has to be modified. 
Neurotrophic factor interactions are less specific and more com- 
plex than has been assumed. Characteristic features are a high 
degree of pleiotropism and, accordingly, a considerable overlap 
in biological activities. Signaling by neurotrophic molecules 
seems not to be restricted to the retrograde messenger mode but 
may include local trophic interactions, autocrine signaling, and 
anterograde trophic signals. Molecular heterogeneity is observed 
for most constituents of the neurotrophic interaction. All these 
properties can be thought of as variables in a multidimensional 
neurotrophic state space in which each neuronal type is char- 
acterized by a combination of values for these variables, as 
schematically depicted in Figure 3. A high degree of specificity 
can be achieved by detailed regulation of the spatial and tem- 
poral expression pattern for all modifications of neurotrophic 
factors, receptors, and intracellular signaling components. The 
neurotrophic factors accessible to a particular neuronal type at 
a distinct spatiotemporal location will be effective according to 
the repertoire of receptors and intracellular signaling cascades 
available to that cell population. Previous attempts to find a 
correlation between neurotrophic factor requirement and neu- 
ronal type have been unsuccessful. The state space model of 
neurotrophic factor interactions will allow to search for multi- 
factorial correlations between phenotypically or lineage-wise re- 
lated neuronal types and their respective neurotrophic require- 
ments, that is, their coordinates in the state space. 
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