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We investigated how the CNS learns to control movements 
in different dynamical conditions, and how this learned be- 
havior is represented. In particular, we considered the task 
of making reaching movements in the presence of externally 
imposed forces from a mechanical environment. This envi- 
ronment was a force field produced by a robot manipuland- 
urn, and the subjects made reaching movements while hold- 
ing the end-effector of this manipulandum. Since the force 
field significantly changed the dynamics of the task, sub- 
jects’ initial movements in the force field were grossly dis- 
torted compared to their movements in free space. However, 
with practice, hand trajectories in the force field converged 
to a path very similar to that observed in free space. This 
indicated that for reaching movements, there was a kine- 
matic plan independent of dynamical conditions. 

The recovery of performance within the changed me- 
chanical environment is motor adaptation. In order to inves- 
tigate the mechanism underlying this adaptation, we con- 
sidered the response to the sudden removal of the field after 
a training phase. The resulting trajectories, named aftefef- 
fects, were approximately mirror images of those that were 
observed when the subjects were initially exposed to the 
field. This suggested that the motor controller was gradually 
composing a model of the force field, a model that the ner- 
vous system used to predict and compensate for the forces 
imposed by the environment. In order to explore the structure 
of the model, we investigated whether adaptation to a force 
field, as presented in a small region, led to aftereffects in 
other regions of the workspace. We found that indeed there 
were aftereffects in workspace regions where no exposure 
to the field had taken place; that is, there was transfer be- 
yond the boundary of the training data. This observation 
rules out the hypothesis that the subject’s model of the force 
field was constructed as a narrow association between vis- 
ited states and experienced forces; that is, adaptation was 
not via composition of a look-up table. In contrast, subjects 
modeled the force field by a combination of computational 
elements whose output was broadly tuned across the motor 
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state space. These elements formed a model that extrap- 
olated to outside the training region in a coordinate system 
similar to that of the joints and muscles rather than end-point 
forces. This geometric property suggests that the elements 
of the adaptive process represent dynamics of a motor task 
in terms of the intrinsic coordinate system of the sensors 
and actuators. 

[Key words: motor learning, reaching movements, internal 
models, force fields, virtual environments, generalization, 
motor control] 

Children start to reach for objects that interest them at about 
the age of 3 months. These goal-directed movements often ac- 
company a “flailing” action of the arm. From a systems point 
of view, flailing can be seen as an attempt to excite the dynamics 
of the arm: to make a reaching movement successfully, the 
motor controller needs to find the appropriate force so that the 
skeletal system makes the desired motion. Effectively, this op- 
eration corresponds to inverting a dynamical transformation 
that relates an input force to an output motion. A controller 
may implement this “inverse transformation” via a combina- 
tion of feedback and feedforward mechanisms: usually, the feed- 
forward component provides some estimate ofthe inverse trans- 
formation-called the “inverse model” or simply the “internal 
model”-while the feedback component compensates for the 
errors of this estimation and stabilizes the system about the 
desired behavior (cf. Slotine, 1985). Therefore, the internal model 
refers to an approximation ofthe inverse dynamics ofthe system 
being controlled. In the case of the infant, the action of flailing 
may be an attempt to explore this dynamics and build an internal 
model. 

During development, bones grow and muscle mass increases, 
changing the dynamics of the arm significantly. In addition to 
such gradual variations, the arm dynamics change in a shorter 
time scale when we grasp objects and perform manipulation. 
The changing dynamics of the arm make it so that the same 
muscle forces produce a variety of motor behaviors. It follows 
that to maintain a desired performance, the controller needs to 
be “robust” to changes in the dynamics of the arm. This ro- 
bustness may be achieved through an updating, or adaptation, 
of the internal model. Indeed, humans excel in the ability to 
adapt rapidly to the variable dynamics of their arm as the hand 
interacts with the environment. Therefore, a task where the hand 
interacts with a novel mechanical environment might be a good 
candidate for studying how the CNS updates its internal model 
and learns dynamics. 

The particular task that we have considered is one where a 
subject makes a reaching movement while the hand interacts 
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with a field of forces. In a reaching movement, the problem of 
control can be seen as one of transforming information regarding 
a target position, as presented in the visual domain, into a torque 
command on the skeletal system to move the hand. This initially 
involves a set of coordinate transformations (so-called “vis- 
uomotor map”; cf. Arbib, 1976): work of Andersen et al. (1985) 
and Soechting and Flanders (1991) suggests that the target is 
transformed sequentially from a retinocentric vector into a head- 
centered and finally a shoulder-centered coordinate system. Ac- 
cording to Gordon et al. (1993), the target is finally represented 
as a vector pointing from the current hand position (or end- 
effector position, e.g., in the case that the hand is holding a long 
rod; Lacquaniti et al., 1982) to the target. At this point a plan 
is specified, describing a desired trajectory for the end-effector 
to follow: for unconstrained planar arm movements, there is 
strong evidence that this plan is a smooth hand trajectory es- 
sentially along a straight line to the target (Morasso, 198 1; Flash 
and Hogan, 1985). The controller, acting on antagonistic spring- 
like actuators (cf. Bizzi et al., 1984; Hogan, 1985; Shadmehr 
and Arbib, 1992), then attempts to move the arm along the 
planned trajectory. 

It is worth noting that for this task, adaptation may occur 
either in response to a change in the visual environment in which 
the target is presented (cf. von Helmholtz, 1925; Cunningham, 
1989; Thach et al., 1992; Wolpert et al., 1993), or in response 
to a change in the mechanical environment with which the hand 
is interacting (cf. Lacquaniti et al., 1982; Ruitenbeek, 1984; 
Flash and Gurevich, 1992). Therefore, the problem of adapta- 
tion may be experimentally approached from two directions: 
(1) we may change the visual environment so that subjects have 
to modify the perceived kinematics of movement by changing 
the mapping of the target from egocentric to a task based (e.g., 
hand-centered) coordinates, or (2) we may change the mechan- 
ical environment with which the hand interacts so that the sub- 
ject’s internal model ofthe arm has to adapt to the new dynamics 
of the system. The first approach, that is, changing the visually 
perceived kinematics, has received much attention because of 
the observations made by Held and colleagues (Held and Schlank, 
1959; Held, 1962; Held and Freedman, 1963) regarding adap- 
tation of the visuomotor system to distortions produced by 
prism glasses. It had been noted that by wearing prism glasses, 
the visual scene could be shifted, for example, by x degrees 
laterally. This caused a change in the kinematic map relating 
target position to the arm’s configuration. With the glasses on, 
initially a subject would reach to a target and miss it by x degrees, 
but after some practice, the subject would learn the appropriate 
kinematics and hit the target accurately. Predictably, when the 
glasses were removed, the subject would reach to a target and 
miss it by -x degrees, displaying the persistence of the altered 
kinematic map (cf. Jeannerod, 1988, pp 52-57). This behavior 
has been termed an uftewfict of adaptation. 

Our work is along the second approach. We investigate how 
the motor control system responds when the arm’s dynamics 
are changed. We address this issue by developing a paradigm 
where subjects make reaching movements while interacting with 
a virtual mechanical environment. From Lackner and Dizio 
(1992) it is known that aftereffects exist when one performs arm 
movements in an environment where Coriolis forces are arti- 
ficially increased. Here we show that as a subject practices arm 
movements in a force field, the controller builds an internal 
model of that field and uses this model to compensate for the 
expected forces during the movement. Our goal is to understand 

Figure 1. Sketch of the manipulandum and the experimental setup. 
Planar arm movements were made by the subject while grasping the 
handle of the manipulandum. A monitor, placed directly in front of the 
subject and above the manipulandum (not shown), displayed the lo- 
cation of the handle as well as targets of reaching movements. The 
manipulandum had two torque motors at its base that allowed for 
production of a desired force field. 

how the nervous system constructs this internal model and to 
reveal some of the properties of the motor adaptive process. 

Materials and Methods 
The purpose of our experiment was to observe how a subject adapted 
to the changed dynamics of a reaching task. A robot manipulandum 
whose handle was grasped by the subject produced these variable dy- 
namics. A mathematical model was developed to provide a framework 
for describing the process of adaptive motor control. Both the experi- 
ments and the modeling procedures are described in this section. 

Experimentalsetup. Eight right-handed subjects with no known neu- 
rological history, ranging in age from 24 to 39 years, participated in this 
study. A schematic of the measurement apparatus is shown in Figure 
1: subjects were seated on a chair that was bolted onto an adjustable 
positioning mechanism and instructed to grip the handle of a robot 
manipulandum with their right hand. Their shoulder was restrained by 
a harness belt; their right upper arm was supported in the horizontal 
plane by a rope attached to the ceiling. 

The manipulandum is a two degree of freedom, lightweight, low- 
friction robot (Faye, 1986) with a six-axis force-torque transducer (Lord 
F/T sensor) mounted on its end-effector (the handle). Two low-inertia, 
DC torque motors (PM1 Corp., model JR16M4CH), mounted on the 
base of the robot, are connected independently to each joint via a par- 
allelogram configuration. Position and velocity measurements are made 
using two optical encoders (Teledyne Gurley) and tachometers (PMI), 
respectively, mounted on the axes of the mechanical joints. The ap- 
paratus includes a video display monitor mounted directly above the 
base of the robot (approximately at eye level with the subject). This was 
used to display the position of the robot’s handle and give targets for 
reaching movements. 

Experimental procedures. Each subject participated in a preliminary 
training phase where the task was to move a cursor to a target. The 
cursor was a square of size 2 x 2 mm’ on a computer monitor and 
indicated the position of the handle of the manipulandum. Targets were 
specified by a square of size 8 x 8 mm’. The task was to move the 
manipulandum so as to bring the cursor within the target square. 

Movements took place in two regions, each of the size 15 x 15 cm’. 
The position ofthese regions is shown in Figure 2, where they are labeled 
as the “left” and “right” workspaces. In order to avoid inertial artifacts 
associated with changing the operating configuration ofthe robot, work- 
spaces were selected by moving the subject with respect to the robot. 

Starting from the center of a workspace, a target at a direction ran- 
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left workspace right workspace 

Figure2. Configurations of a model two-joint arm, representing typical 
kinematics of the human arm, at two workspace locations where reach- 
ing movements were performed. Typical shoulder and elbow angles at 
these two workspaces were 15” and 100” at right and 60” and 145” at 
left, using coordinates defined in Figure 1. 

domly chosen from the set (O”, 45”,. . ., 315”) and at a distance of 10 
cm was presented. After the subject had moved to the target, the next 
target, again chosen at a random direction and at 10 cm, was presented. 
A target set consisted of 250 such sequential reaching movements. All 
targets were kept with in the confines of the 15 x 15 cm workspace. 
The targets represented a pseudorandom walk. 

In some cases, the manipulandum was programmed to produce forces 
on the hand of the subject as the subject performed reaching movements. 
These forces, indicated by the vectorf, were computed as a function of 
the velocity of the hand: 

f= B%, (1) 

where X was the hand velocity vector, and B was a constant matrix 
representing viscosity of the imposed environment in end-point coor- 
dinates. In particular, we chose B to be 

B= 
-10.1 -11.2 
-11.2 11.1 1 N. set/m. 

Using this matrix, the forces defined by Equation 1 may be shown as 
a field over the space of hand velocities (Fig. 3A). For example, as a 
subject made reaching movements in this field, the manipulandum pro- 
duced forces shown in Figure 3B (here we have assumed that the move- 
ments are minimum jerk, as specified by Flash and Hogan, 1985, with 
a period of 0.5 set). 

Note that in the field defined by Equation 1, forces that act on the 
hand are invariant to the location ofthe workspace in which a movement 
is done; that is, the forces are identical in the left and right workspaces 
of Figure 2. Therefore, we say that the force field defined in Equation 
1 is translation invariant in end-point coordinates. 

In some cases, a different kind of a force field was produced by the 
manipulandum, one that was not translation invariant in end-point 
coordinates. This field was represented as a function of the velocity of 
the subject’s shoulder and elbow joints during the reaching movements: 

1= wq, (2) 
where 7 was the torque vector acting on the subject’s shoulder and elbow 
joints, 4 was the subject’s joint angular velocity, and W was a constant 
matrix representing viscosity of the imposed environment in joint co- 
ordinates of the subject. We say that the field described by Equation 2 
is translation invariant in joint coordinates. Indeed, note that the torque 
field in Equation 2 is equivalent to the following force field (i.e., forces 
acting on the hand): 

f= (JW-’ w  43 (3) 

where J(q) = dx/aq is the configuration-dependent Jacobian of the con- 
figuration mapping from q to x, and the superscript T indicates the 
transpose operation. Because the Jacobian changes as a function of the 
angular position of the limb,fvaries depending on the workspace where 
a reaching movement is performed. In particular, we chose W so that 
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Figure 3. An environment as described by the force field in Equation 
1. A, The force field. B, Forces acting on the hand during simulated 
center-out reaching movements. Movements are simulated as being 
minimum jerk with a period of 0.5 set and amplitude of 10 cm. 

the force field that resulted from Equation 3 at the right workspace was 
almost identical to the field produced by Equation 1. To accomplish 
this, the matrix W was calculated for each subject as 

W = J;BJo, 

where J,, is the Jacobian evaluated at the center of the right workspace. 
For a typical subject, we derived the following W matrix: 

IV= [i:zi -~:~:]N.m~sec/rad 

When the above joint-viscosity matrix was used to define an environ- 
ment, the resulting force field depended upon the position of the work- 
space where movements were being made. At the right workspace, this 
field (Eq. 3) was almost identical to that produced by Equation 1 (a 
correlation coefficient of0.99; see Appendix). However, at the left work- 
space, the forces produced by Equation 3 were substantially uncorrelated 
(nearly orthogonal) to that of Equation 1. The force field produced by 
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Figure 4. An environment described by the field in Equation 3, plotted 
as it would appear in the left workspace of Figure 2. A, The force field. 
B, Forces acting on the hand while making reaching movements in the 
left workspace of Figure 2 from the center to targets about the circum- 
ference of a circle. Movements are simulated as being minimum jerk 
with a period of 0.5 set and amplitude of 10 cm. 

Equation 3 is plotted for movements in the left workspace in Figure 
4A. Figure 4B shows the forces acting on the hand for typical reaching 
movements. 

We trained subjects with either the end-point or the joint translation- 
invariant fields at the right workspace. Subsequently, we tested them in 
the field they had not been trained on at the left workspace. Hence, we 
defined two distinct groups of subjects. Those in group 1 were exposed 
to a field that was translation invariant with respect to the position of 
the hand (Eq. 1). Subjects of group 2 were exposed to a field that was 
translation invariant with respect to the angular position of the subject’s 
joints (Eq. 3). 

Our first objective was to compare movements during conditions of 
no visual feedback before and during the initial exposure to a field. For 
48 randomly chosen members of the target set, hereafter referred to as 
the no-vision target set, the cursor position during the movement was 
blanked, removing visual feedback during the reaching period. For the 
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Figure 5. Summary ofthe experimental procedure for subjects in group 
1. The adaptation period was during target set 4 where an end-point 
viscous field was present. Subjects in group 2 underwent an identical 
procedure except that during the training period a joint-based viscous 
field was present. 

remaining members of the target set, hand position was shown contin- 
uously to the subject. Initially, we quantified the performance in a null 
field, that is, with the torque motors turned off, by presenting a target 
set in the right workspace. Upon completion, the hand was moved to 
the left workspace and another target set presented. These hand trajec- 
tories represented performance of the subjects in the null field. 

Following this, the hand was returned to the right workspace and the 
target set was again presented, except that for 24 randomly chosen 
members of the no-vision target set, the manipulandum produced the 
force field assigned to the subject’s group. For the remaining targets of 
this set a null field was present. These hand trajectories during the no- 
vision target set represented baseline performance in the force field. 

The next objective was to observe performance of the subject in 
response to continuous exposure to the force field: with the hand at the 
right workspace and with the manipulandum producing the force field, 
a target set was presented. The force field was present for all targets 
except for 24 randomly chosen members of the no-vision target set, 
where the null field was present. The purpose of these 24 targets in the 
null field was to record any aftereficts of adaptation to the force field. 
The target set was repeated four times (total of 1000 movements) while 
the manipulandum produced the field. This provided time for the sub- 
ject to adapt. 

Having completed the adaptation phase of the experiment, the sub- 
ject’s arm was moved to the left workspace with the objective of ob- 
serving any transferred aftereffects. Seventy-two targets were presented 
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sequentially and with no visual feedback. Twenty-four randomly chosen 
members of this target set were in a null field. Another 24 randomly 
chosen members of this target set were in the force field on which the 
subject had been trained. The remaining members of this target set were 
in the force field on which the subject had not been trained. In Figure 
5 the experimental procedure is summarized. 

Producing the forcefields. In order for the manipulandum to produce 
a given force field, the microcomputer collected position and velocity 
information from the manipulandum’s joints (represented by $J and 4) 
at a rate of 100 Hz. This information was needed in order to convert 
the desired end-point force field into the torques to be applied by the 
motors. To produce the force field described by Equation 1, we used 
the following expression: 

where 7R is the torque vector commanded to the motors, JR = ax/&$, 
that is, the Jacobian of the robot’s kinematics, and $J is the joint angular 
velocity vector of the manipulandum. Note that JR is a function of robot 
joint angles $J, and from its definition it follows that X = JR 4. In order 
to produce the force field described by Equation 3, the following control 
law was used: 

where J is the subject’s Jacobian matrix function. Calculation of J re- 
quired knowledge of the subject’s arm kinematics: at the beginning of 
each session, we measured the lengths of the subject’s upper arm and 
forearm as well as the location of the shoulder with respect to a fixed 
point with respect to the workspace of the manipulandum. These data 
were sufficient to provide an estimate for J at each position of the hand. 

Data analysis. We sampled hand positions and velocities at 10 msec 
intervals as the subject reached to a target. Trajectories were aligned 
using a velocity threshold at the onset of movement. 

In order to compare hand trajectories, a technique was developed 
which quantified a measure of correlation between two sampled vector 
fields (see Appendix). We represented each trajectory as a time series 
of velocity vectors (X sampled at IO msec intervals) and then compared 
the two resulting vector helds through a correlation measure. The same 
technique was also used to compare force fields. In particular, the end- 
point viscosity matrix B in Equation 1 was chosen such that when 
expressed in terms of a joint viscosity matrix W (through Eq. 3), the 
two resulting force fields were nearly identical at the right workspace 
(the correlation coefficient p = I), while maximally different at the left 
workspace (p = 0). Specifically, the two fields had a correlation coeffi- 
cient of 0.99 and 0.12 at the right and left workspaces, respectively. 

In order to plot “typical” hand trajectories for a given target, we 
computed the expected value and standard deviation of the set of mea- 
sured trajectories (each a time series of velocity vectors) for that target. 
Our procedure consisted in deriving the expected value and standard 
deviation of the set of measured velocity vectors across the trajectories 
at each instant of time. The resulting velocity field was integrated from 
the start position of the movement to produce the average -t standard 
deviation of the hand trajectories for a given target. 

Mathematical modeling. The purpose of the mathematical modeling 
was help describe the concept of an “internal model.” We used this 
approach to simulate hand trajectories for reaching movements before 
the subject had adapted to the force field, as well as the aftereffects when 
the subject had formed an internal model but the external field was 
suddenly removed. 

Let us start by considering the arm’s dynamics in generalized coor- 
dinates (cf. Spong and Vidyasagar, 1989, p 131): we indicate by q a 
point in configuration space (e.g., an array ofjoint angles) and by 4 and 
4 its first and second time derivatives. The dynamics of the motor- 
control system coupled (in parallel) with its environment can be de- 
scribed by the sum of the following terms: a time-invariant component, 
D(q, 9, 6) and E(q, 4, 41, representing the forces that depend on the 
“passive” or unmodulated system dynamics (bones, tendons, etc.) and 
forces that depend on dynamics ofthe environment, and a time-varying 
component, C(q, 4, t), representing the forces that depend on the op- 
eration of the controller. 

D(q, 4, 41 + E(a 4. 4 = CGA 4, f) (4) 

The force field represented by D is itself a sum of inertial, Coriolis, 
centripetal, and friction forces: 

D(qz 41 4 = I(q) 4 + ‘?a 4h (5) 

where I represents the system’s mass in generalized coordinates (an 
inertia matrix, which may be a function of configuration), and G rep- 
resents the rest of the position and velocity dependent forces (i.e., Cor- 
iolis, friction, etc.). 

Let us consider a control system that is capable of guiding a limb 
along a desired trajectory q*(t) in the null environment E = 0. One way 
to obtain this tracking behavior is by picking the right-hand side of 
Equation 4 to be an ideal controller specified-by I(q)-ii+(t) + G(q, 4). 
This simplifies Eauation 4 to ii = rj’*(t). from which it follows that from 
some given initial position and velocity, the system will follow the 
desired trajectory. Note that this ideal control input describes a time- 
varying force field: for a given desired acceleration, a force vector is 
assigned to each point in the state-space of the system. We name this 
ideal controller D, that is, 

Wa 43 0 = 44 ii*(t) + G(a 4). (6) 
We call this controller “ideal” because it may well be that one cannot 
implement its field using the available actuators and local controllers. 
However, one may be able to approximate its force field, resulting in 
a-n internal model ofthe system dynamics. Let us call this internal model 
D, where for the system dynamics of Equation 5, with a null environ- 
ment, our internal model may be defined by the following field: 

6 = ii*(t) + d (7) 
Note that the internal model is not a model of the dynamical system, 
but a model of the ideal controller for that dynamical system. Unfor- 
tunately, even with an exact model the system will be unstable about 
the desired trajectory: our controller will not be able to compensate for 
the slightest unexpected change in initial conditions or for any pertur- 
bation occurring during the movement. One way to overcome this is 
to define our controller C in Equation 4 (assuming a null environment 
for now) so that it combines the internal model of Equation 7 with an 
error-feedback system designed to provide stability about the desired 
trajectory: 

C(q, 4, f) = 6 - S(q - 4*(t), 4 - 4*(o), (8) 
where S is a converging force field about the desired state of the system 
at time t; that is, it has zero forces only when both of its arguments are 
zero (Slotine and Li, I99 1). This kind of representation for the controller 
is particularly well suited to the biomechanical system of the arm when 
we consider that the function S may be implemented via the stiffness 
and viscosity of antagonist muscles and their associated segmental re- 
flexes: 

C(q, 4. t) = i i*(t) + i; ~ K (q - q*(f)) - I’(4 - 4*(f)), 

where K and V are joint stiffness and viscosity matrices describing the 
behavior of the field S about the desired trajectory. 

Now let us apply an environment E z 0 and consider the problem 
of finding a new controller such that q*(t) is still the solution for the 
coupled dynamics described by Equation 4. The procedure is similar 
to the one just described: ideally, we would like to replace the right- 
hand side of Equation 4 by the field D(q, 4, t) + &(q, 4, t), where & is 
an ideal control input chosen such that the differential equation E(q, 4, 
4) = E(q, 4, t) has a solution q*(t) from a given initial position. We 
therefore express the new controller as 

C(q, 4, t) = ii*(t) + d + i - K (q - c@(f)) - v (4 - Q*(f)), (9) 

where ((4. 4, t) is our model of the environment, expressed as a first- 
order time-varying field: 

E - E(q, 4. f) (10) 

Assuming that the system was capable of producing the desired trajec- 
tory in the absence of an environment, then it is apparent that as E  ̂+ 
E, the coupled dynamics is reduced back to the form of Equation 4, of 
which the desired trajectory q*(t) was a particular solution. The idea 
then is to achieve a motor plan through a change in the dynamics of 
the system such that the new dynamics have an “attractor” at the to- 
be-learned trajectory. This formalism is very similar to the learning 
framework of Kelso, Saltzman, and coworkers (Kelso and Schoner, 
1988; Saltzman and Kelso, 1989; Schoner et al., 1992). 

We used the controller in Equation 9 coupled with the arm’s dynamics 
to simulate performance before and after adaptation (e.g., the afteref- 
fects). The skeletal dynamics of Equation 5 were simulated for each 
subject using an inertial matrix I(q) as measured by Diffrient et al. 
(1978) and given for a typical subject in Table 1 (the Coriolis and 
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Figure 6. Typical hand trajectories at the right workspace in a null 
force field during no-visual feedback conditions. Dots are 10 msec apart. 

centripetal forces that make up the G matrix can be derived from the 
inertia tensor; cf. Slotine and Li, 199 1, p 400). For example, the dif- 
ferential equation describing the dynamics of the arm and the controller 
for movements in the force field of Equation 1 were 

kd 4 + G(a 4) + JW B J(q) 4 = C(a 4. t). (11) 

where Cis defined in Equation 9. Values for joint stiffness and viscosity 
(K and IJ’) were chosen based on measurements of Mussa-Ivaldi et al. 
(1985) and Tsuji and Goto (1994). The desired trajectory q*(t) was 
assumed to be minimum jerk in hand-based coordinates lasting 0.65 
sec. Values used for these variables are summarized in Table 1. 

Results 

Reaching movements were made while the hand interacted with 
a mechanical environment. This environment was a program- 
mable force field implemented by a light-weight robot mani- 
pulandum whose end-effector the subject grasped while making 
reaching movements. When the manipulandum was producing 
a force field, there were forces that acted on the hand as it made 
a movement, changing the dynamics of the arm. When the 
manipulandum’s motors were turned off, we say that the hand 
was moving in a “null field.” 

Hand trajectories before adaptation 

Our first objective was to determine how an unanticipated ve- 
locity-dependent field affected the execution of reaching move- 
ments. The forces in the field (e.g., Eq. 1, as shown in Fig. 3.4) 
vanished when the hand was at rest, that is, at the beginning 
and at the end of the movement. However, as shown in Figure 
4B, a significant force was exerted midway, when the hand 
velocity was near maximum. How would this force influence 
the execution of a movement? Would subjects follow a pre- 
planned trajectory that was scarcely influenced by this pertur- 
bation or would they modify the movement and the final po- 
sition in response to the perturbing force? To answer this question, 
we compared reaching movements in the null field with those 
in a force field. Trajectories in the null field are shown in Figure 
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Figure 7. Performance during initial exposure to a force field. Shown 
are hand trajectories to targets at the right workspace while moving in 
the force field shown in Figure 3. Movements originate at the center. 
All trajectories shown are under no-visual feedback condition. Dots are 
10 msec apart. 

6. As observed in previous reports (Morasso, 1981; Flash and 
Hogan, 1985), the hand path was essentially along a straight 
line to the target. The velocity profile (see Fig. 1OA) had one 
peak, with approximately equal times spent to accelerate and 
decelerate the hand. 

Once our subjects were familiar with the task of reaching 
within the null field, we began to introduce a force field in 
random trials. Note that subjects could not anticipate the pres- 
ence of the field before the onset of the movement because the 
force field was not effective when the hand was at rest and no 
other clues were available. Furthermore, during the movement, 
the cursor indicating hand position was blanked, eliminating 
visual feedback. Figure 7 shows the hand trajectories ofa typical 
subject when the movements were executed under the influence 
of the field shown in Figure 3A (Fig. 10B shows the tangential 
velocity of hand trajectories in this field). This field was designed 
to have opposing effects along two directions. At approximately 
30” and 210” the field produced resisting forces that opposed 
movement as a viscous fluid would do. At approximately 120” 
and 300” the forces assisted the movement, thus producing a 
destabilizing effect. 

Note that the effect of the field on the hand trajectory was 
quite significant and may be divided into two parts. In the first 
part, the hand was driven off course by the field and forced 
toward the unstable direction of the field. Movements to targets 
at o”, 225”, 270”, and 3 15” are pulled toward the unstable region 
at 300”, while movements to the remaining targets are pulled 
toward the unstable region at 120”. At the end of this first part, 
the field had caused the hand to veer off the direction of the 
target and the hand decelerated and stopped before making a 
second movement to the target. The pictorial effect of these two 
parts of the hand trajectory appeared as a “hook” that was 
oriented either clockwise or counterclockwise. The orientation 
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Table 1. Mechanical parameters of the simulated human arm 

Upper arm 
Mass 
Center of mass 
Inertia 
Length 

Forearm 
Mass 
Center of mass 
Inertia 
Jxnath 

Viscosity 

1.93 kg 
0.165 m 
0.0141 kg.m2 
0.33 m 

1.52 kg 
0.19 m 
0.0188 kg.m2 
0.34 m 

-15 -6 
-6 -16 

N. m/rad 

-2.3 
-0.9 

N. m se&ad 

and the overall appearance of this hook were found to depend 
upon the position of the target and the pattern of forces in the 
field, and were very similar among the eight subjects. 

One may interpret the hooks shown in Figure 7 as “corrective 
movements:’ that are generated to compensate for the errors 
caused by the unexpected field. In light of the fact that no visual 
feedback was available to the subjects during the movements 
shown. in Figure 7, this correction might imply some explicit 
reprogramming of the movement based on proprioceptive in- 
formation detecting the error in the hand trajectory. Altema- 
tively, this feature of the trajectory might be a byproduct of a 
“robust” control system implementing a single program: in this 
case, the program would be to simply move the hand along a 
desired trajectory to the target. The corrective movements might 
result because of the natural interaction between the mechanical 
properties of the arm, as imposed from the controller, and the 
force field produced by the manipulandum. To explore this 
scenario, we simulated the operation of a controller acting on 
the arm’s skeletal system via antagonistic muscles within the 
force field. The controller, which is detailed in Materials and 
Methods (Eq. 9), was designed based on the assumption that 
the goal was to move the limb along a smooth, straight-line 
trajectory to the target. We further assumed that the controller 
had, through years of practice, composed an accurate internal 
model of the skeletal dynamics. However, recognizing that there 
might be errors in this internal model, the controller used the 
viscoelastic properties of the muscles to make the system stable 
about this desired trajectory; that is, the system resisted per- 
turbations (whether external or due to model errors) as it moved 
along the planned trajectory. In our simulation, we initially 
assumed that the controller had no knowledge of the forces in 
the environment, that is, c = 0. Then we calculated the desired 
joint trajectories, q*(f), 4*(t), q*(t), corresponding to straight- 
line movements of the hand toward the eight targets. Finally, 
given the parameters in Table 1, we integrated Equation 4 for 
producing the motion of the hand in the force field. 

The results of this simulation are shown in Figure 8. We found 
that there was a striking resemblance between the result of the 
modeled control system (Fig. 8) and those measured in our 
subjects (Fig. 7). In particular, the presence of the “hooks” as 
well as their orientation is accurately accounted for by the mod- 
eled controller. The quantitative differences between model and 
data are likely a consequence of errors and simplifications in 
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Figure 8. Simulation of hand trajectories in the fofce field of Figure 
3 before having formed an internal model, that is, E = 0 in Equation 
8. Dots are 10 msec apart. 

estimating mechanical parameters of the arm of each subject; 
for example, in Equation 9, we assumed a constant stiffness K 
for the arm. This is true when the arm is near the desired 
position, that is, when q - q* is small. However, it is known 
that K becomes progressively and significantly smaller as the 
distance between the actual and desired hand positions increases 
(Shadmehr et al., 1993). The simulations also suffer from the 
fact that our dynamical model neglects the small but nonzero 
forces due to the inertia of the manipulandum. 

The observed corrective movements or hooks in Figure 7 are 
consistent with the operation of a controller that is attempting 
to move the limb along a desired trajectory and bring it to a 
specified target position. Because this controller uses muscle 
viscoelastic properties to define an attractor region about the 
desired trajectory, the hand is eventually brought back to near 
the target position. The hooks result from the interaction of the 
viscoelastic properties of the muscles and the force field that 
perturbs the system from its desired trajectory. Indeed, the re- 
sults of the model suggests that the subjects may be executing 
a single program, that is, that of moving the hand along a spec- 
ified plan. 

Adaptation to the forcejeld 

After measuring the movements of the arm in the null field as 
well as the initial responses to the unanticipated force field, we 
asked our subjects to keep executing reaching movements in the 
force field. We wish to stress that we did not give any instructions 
regarding the trajectory with which the targets should have been 
reached. Nevertheless, as the subjects practiced in the force field, 
the “hooks” shown in Figure 7 eventually vanished and the 
hand trajectories became increasingly similar to those observed 
in the null field (Fig. 6). The progression of hand position traces 
as measured under conditions of no visual feedback and in the 
presence of the force field during the training period are shown 
in Figure 9. Although the force field initially caused a significant 
divergence from the trajectory that was normally observed for 
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a reaching movement, with practice the subjects tended to con- 
verge upon this straight-line trajectory. This recovery of the 
original unperturbed response constitutes a clear example of an 
adaptive behavior. 

Further evidence of motor adaptation is offered by the sig- 
nificant change that occurred in the hand velocity profile at the 
onset of exposure to the force field, and after completion of the 
practice trials. Figure 10A shows the hand tangential velocity 
traces obtained when the hand was moving in a null field (cor- 
responding to the hand position traces of Fig. 6). Consistent 
with previous studies (cf. Flash and Hogan, 1985) these velocity 
traces are approximately along straight lines and symmetric in 
time. The hand velocity traces at the initial stage of practice in 
the force field (corresponding to the hand position traces of Fig. 
7) are shown in Figure 1 OB. In Figure 1 OC we have the velocity 
traces near the end of the practice trials (corresponding to the 
hand position traces of Fig. 9D). Although the average velocity 
of the hand trajectory is now larger (as compared to Fig. lOA), 
the velocity trace for each target has essentially the same pattern 
as that observed for movements in a null field. 

practiced in the force field. This comparison was made through 
computation of a correlation coefficient between pairs of tra- 
jectories (see Appendix). We found that the average correlation 
between a trajectory in the null field and one in the force field 
increased with the amount of practice movements performed 
by the subject in the force field. The computed correlation co- 
efficients for trajectories performed by all subjects are shown in 
Figure 11. Remarkably, all the subjects displayed a strictly 
monotonic evolution of the correlation coefficient. 

Our subjects did not seem to be aware of the process of ad- 
aptation and of the change in their performance. The only sub- 
jective indication that some adaptive change had occurred was 
given by a reduction in the sense of effort associated with the 
task: during the first batch of 250 movements within the force 
field, some subjects reported an intense sense of effort. Para- 
doxically, this sense of effort diminished drastically after about 
500 movements. At the end of the training period many com- 
mented that they were “not feeling” the field anymore. 

Aftereffects 

In order to quantify the time course of adaptation, we studied One way-although by no means the only way-for the subjects 
how the hand trajectories evolved as compared to those ob- to recover the initial motor performance (what we have called 
served in the null field. For each subject, we compared the the desired trajectory) after the exposure to the test field was by 
trajectories in the null field to those obtained as the subject developing an internal model of this field. This internal model 
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0.5 set 

Figure 10. Tangential hand velocities before and after adaptation to 
the force field shown in Figure 3. Traces are, from top to bottom, for 
targets at o”, 45”,. ., 315”. A, Hand velocities in a null field before 
exposure to the force field (corresponding to position traces in Fig. 6). 
B, Hand velocities upon initial exposure to the force field (corresponding 
to position traces in Fig. 7). C, Hand velocities after 1000 reaching 
movements in the field (corresponding to position traces in Fig. 9D). 

is the term i in the expression of our model controller (Eq. 9). 
Indeed, if after the development of an internal model the test 
field is removed, then one expects to see a change in the resulting 
trajectory. This change is called an “aftereffect” of the adapta- 
tion. 

We simulated the aftereffect by setting < = B x*(t) in our 
controller model (Eq. 9) and E = 0 in our dynamics model (Eq. 
4). This simulation corresponds to the assumption that subjects 
developed an approximation of the force field and that this 
approximation led to aftereffects as the null field was presented. 
Again, the commanded joint trajectories corresponded to 
straight-line, minimum jerk movements of the hand toward the 
eight targets. The results of this simulation are shown in Figure 
12. Qualitatively, one can see that the aftereffects are “opposite” 
to the initial perturbations induced by the field and shown in 
Figure 8. In particular, (1) the hooks are oriented in opposite 
directions and (2) the metrics of the movements are reversed: 
long movements in Figure 8 correspond to short movements in 
Figure 12 and vice versa. These two features can be regarded 
as a strong property, almost like a “signature,” of an internal 
model of the imposed force field. 

Experimentally, we tested the hypothesis that adaptation in 
the subjects involved development of an internal model by re- 
moving the force field at the onset of movement and recording 
the aftereffect. We found that the magnitude of the aftereffects 
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Figure I I. The average correlation coefficient for movements in a test 
force field as compared to movements in a null field, as a function of 
practice trials in the force field. Each line represents a subject. 

grew with the length of exposure to the force field; Figure 13 
illustrates the temporal progression of aftereffects, as measured 
under conditions of no visual feedback and in the null field, 
during the training period. The size ofthe aftereffect, as indicated 
by the deviation of the hand trajectory from a straight line, grew 
with practice in the force field. By the final target set (Fig. 130), 
the hand trajectory in the null field was significantly skewed. 
Remarkably, the observed aftereffects at the end of the adap- 
tation period had the same qualitative features as those pre- 
dicted by our simulation of an internal model within the null 
field (Fig. 12). In particular, by comparing Figure 9 with Figure 
130, one can see that (1) all the hooks had reversed directions 
and (2) the metrics of movement have changed as in the sim- 
ulation. 

This finding is consistent with the hypothesis that subjects 
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Figure 12. Simulated aftereffect trajectories: hand trajectories for the 
skeletal dynamics of Equation 11 in a null force field with the controller 
of Equation 12, assuming that the controller had formed an internal 
model of the force field shown in Figure 3. 
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Figure 13. Aftereffects of adaptation to the force field shown in Figure 3 at the right workspace. Shown are averages f SD of the hand trajectories 
while moving in a null field during the training period for the first, second, third, and final 250 targets (A-D, respectively). All trajectories shown 
are under no-visual feedback condition. 

adapted to the force field by creating an internal model that 
approximated the dynamics of the environment. In addition, 
the data shown in Figure 13 indicate that most of the devel- 
opment of this internal model took place early in the training 
period. From this observation one would expect that perfor- 
mances ofthe subjects in the force field should have shown most 
of its improvement rather early in the training. This is in agree- 
ment with the correlation curves shown in Figure 11: in general, 
for all subjects the correlation coefficient increased most rapidly 
at the early stage of exposure to the field, indicating that the 
subjects had composed a fairly accurate internal model of the 
imposed force field by the midpoint of the training session. 

Transferred aftereflects 

Our results indicate that adaptation occurred through devel- 
opment of an internal model of the applied field. What is the 
structure of this model and how is it represented in the nervous 
system? A priori, there are several hypotheses. This internal 
model can be regarded as a mapping between the state of the 
arm (position and velocity) and the corresponding force exerted 
by the environment. In an artificial system, one may implement 
such a mapping as a look-up table by storing away in memory 
the forces encountered at each state visited during the period 
of adaptation (cf. Raibert, 1978; Atkeson and Reinkensmeyer, 
1989). This type of local mapping has also been proposed in 
biological models, such as the one formulated by Albus (1975) 
for the cerebellum. In psychophysics, this kind of model is called 
a “specific exemplar model” and has been used to explain the 
process of motor learning (cf. Chamberlin and Magill, 1992). 
Of course, if the internal model were a look-up table, adaptation 

would occur only at (or in the neighborhood of) the visited states. 
As a consequence, no aftereffect should be detectable if, after 
the adaptation, the null field was presented at some location 
outside the neighborhood visited during the training period. 

To test this hypothesis regarding the representation of the 
internal model as a local association between states and forces, 
we asked our subjects to make reaching movements in the null 
field at the left workspace before and after having been exposed 
to the test field at the right workspace (workspaces are shown 
in Fig. 2). Figure 14A shows a set of trajectories in the null field 
at the left workspace. These trajectories were obtained before 
the subject practiced movements in the force field at the right 
workspace. Figure 14B shows the average trajectories obtained 
from the same subject, in the same left workspace and with the 
same null field, but after the subject had adapted to the field in 
the right workspace. Clearly, there were substantial aftereffects 
in the left workspace resulting from adaptation in the right work- 
space. This finding is not compatible with the hypothesis that 
subjects developed an internal model by building a look-up 
table, that is, a local association between visited states and ex- 
perienced forces. On the contrary, the internal model appeared 
to extend and “generalize” quite broadly outside the portion of 
workspace explored during the period of adaptation. This pat- 
tern of generalization, as evidenced by the transferred afteref- 
fects, was similar in all subjects, regardless of whether they had 
trained at the right workspace in an end-point translation-in- 
variant field (Eq. 1) or a joint translation-invariant field (Eq. 3). 

Once we had established that the internal model was not 
merely a local association between states and forces, a question 
that remained was how the internal model extrapolated outside 
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Figure 14. Transferred aftereffects: averages f SD of hand trajectories 
while moving in a null field at the left workspace. A, Before the subject 
practiced movements in the field of Figure 3 at the right workspace. B, 
After the subject practiced movements in the field of Figure 3 at the 
right workspace. 

the region where the subject had trained. We consider two broad 
classes of generalizations. In one class, the generalization is the 
outcome of an inference about the mechanical properties of the 
environment. For example, ifwe are stirring a can of paint, from 
physics we know that we should experience the same forces on 
our hand (for a given hand trajectory) regardless of the location 
of the paint can in the workspace of our arm. In this sense, we 
would expect the viscous field representing the mechanical prop- 
erties of the paint to be translation invariant in end-point co- 
ordinates. This expectation would be reflected in the geometric 
structure of our internal model: the internal model would be a 
map between motion and forces in extrinsic coordinates. Con- 
sistent with the properties of the environment, it would predict 
identical forces acting on the hand when movements are done 
in the novel region ofthe workspace (as compared to movements 
in the region where we trained). As a consequence, the adap- 
tation to a velocity-dependent field in the right workspace would 
also imply the adaptation to the same force field in the left 
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Figure 15. Averages + SD of hand trajectories during initial exposure 
to a field at the left workspace immediately after the subject practiced 
movements in the field shown in Figure 3 at the right workspace. A, 
Performance at the left workspace in the field of Figure 4. B, Performance 
at the left workspace in the field of Figure 3. 

workspace. In order to achieve this type of generalization, it is 
necessary to postulate existence of computations that transform 
predicted end-point forces (output of the internal model) into 
muscle torques. 

Alternatively, adaptation may be through composition of an 
internal model that does not require further coordinate trans- 
formations; it simply represents the environment in terms of a 
map between motion and forces in the coordinate system of its 
sensors and actuators. This model would be implemented by a 
controller that, during execution of the task, effectively changes 
the dynamical behavior of the muscles (in this case, their ap- 
parent viscosity) to approximate and compensate for the force 
field during adaptation. Indeed, these changes in the apparent 
muscle behavior are bound to have a geometrically distinct effect 
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beyond the region in which the subject was trained. According 
to this scenario, the internal model is translation invariant in 
an intrinsic coordinate system, and generalization is a side effect 
of biomechanics. 

Our experimental results clearly favor this second scenario 
where the forces in the environment are generalized in terms of 
an intrinsic coordinate system, that is, in terms of torques on 
joints. The aftereffects observed at the left workspace (Fig. 14B) 
were significantly different than those observed at the right (Fig. 
130). For example, compare movements to targets at 45”, 135”, 
225”, and 3 15” in each figure. These differences suggested that 
based on the internal model formed after practice in the right 
workspace, the subjects expected to interact with very different 
forces at the left workspace. We tested this hypotheses directly 
by having subjects that practiced in the field shown in Figure 
3A at the right workspace, make movements without visual 
feedback in the field shown in Figure 4A at the left workspace. 
The results are shown for a typical subject in Figure 15A. This 
subject belonged to group 1, that is, trained at the right work- 
space on the end-point translation-invariant field described by 
Equation 1. Although forces in Figures 3A and 4A are nearly 
orthogonal, the subject performed near perfectly (p = 0.91) at 
the left workspace in the field of Figure 4A. The same subject’s 
performance in the left workspace was poor (p = 0.62) in the 
field of Figure 3A (shown in Fig. 15B). This indicated that the 
subject generalized the force field in terms of an intrinsic co- 
ordinate system. 

The performance of all subjects in the two force fields at the 
left workspace was quantified by computing the correlation co- 
efficient between the trajectories in each force field and the tra- 
jectory in the null field. These coefficients are shown in Figure 
16. The results consistently indicated that subjects retained the 
kinematic features of the adapted behavior when the environ- 
ment was translated to the novel region of the workspace in 
joint coordinates, and not when this translation was in end- 
point coordinates. This rejected the hypothesis that the internal 
model attributed a hand-based invariance to the environmental 
field. 

Discussion 

We used the paradigm of a programmable mechanical environ- 
ment in order to study how the motor control system adapts to 
a change in the dynamics of a well-rehearsed task. The task that 
we considered was a reaching movement where the hand inter- 
acted with a force field produced by a robot manipulandum. 
We chose a force field that significantly changed the dynamics 
of the task, resulting in a large change in the trajectory that the 
hand took in making a reaching movement (as compared to 
moving in a null field). The objective was to observe how the 
subjects responded to this change in the system dynamics. 

We tested the hypothesis that in programming a reaching 
movement, the CNS initially specifies a desired trajectory of the 
hand and then uses an internal model of the limb’s dynamics 
to produce torques appropriate for moving the hand along this 
desired trajectory. When the limb’s dynamics were changed (by 
imposing a force field on the hand), the internal model was no 
longer accurate, resulting in the hand moving along a trajectory 
that deviated from the desired behavior. This error led to grad- 
ual updating of the internal model so that it eventually approx- 
imated the new dynamics of the limb. We found evidence for 
the existence ofa desired trajectory and that the motor controller 
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Figure 16. Summary of performance in the left workspace after train- 
ing at the right workspace. Subjects in Group I trained on the field given 
by Equation 1, while subjects in Group 2 trained in field given by 
Equation 3. The two fields were essentially identical in the right work- 
space but orthogonal at the left. Shown are average correlation coeffi- 
cients for movements in the left workspace in a force field as compared 
to movements in a null field for the same subject. Light bars are for 
movements in field given by Equation 3 while dark bars are for move- 
ments in field given by Equation 1. Performance was significantly better 
in both groups when the force field was transferred to the left workspace 
in terms of joint torques rather than end-point forces. 

achieved this desired performance via an explicit composition 
of an internal model. 

Evidence for a desired trajectory 

The task of moving the hand to a target position is ill-posed in 
the sense that the subject may choose from an infinite set of 
trajectories to achieve the goal. Yet, for two-dimensional move- 
ments with moderate accuracy requirements (such as our task), 
it has been demonstrated that subjects tend to move their hand 
smoothly and along a straight line (Morasso, 1981; Soechting 
and Lacquaniti, 198 1; Flash and Hogan, 1985). Reaching move- 
ments are characterized by fairly constant duration, whatever 
their direction or extent, and by a bell-shaped curve of the 
tangential hand velocity versus time (Morasso, 198 1). Here we 
confirmed this observation as subjects performed the task in a 
null field (Figs. 6, 10A). In addition, we found that when the 
dynamics of the task were changed by imposing a force field 
onto the hand, the result was hand trajectories that deviated 
significantly from this smooth, straight-line path, as is shown 
in the position traces of Figure 7 and velocity traces of Figure 
10B. Nevertheless, through practice, the subjects’ hand trajec- 
tories converged to the trajectory observed during null field 
conditions (Figs. 9, 11). This convergence was gradual but 
monotonic in all subjects, consistent with an adaptive process 
whose goal was to compensate for the forces imposed by the 
field and return the hand’s trajectory to that produced before 
the perturbation. This finding suggests that the kinematics ob- 
served in reaching movements are not merely a consequence of 
arm dynamics but reflect the presence ofa plan, that is, a desired 
trajectory. 

Properties of the desired trajectory 

The desired performance of a controlled system is usually es- 
tablished by a criterion, or optimization principle, expressed in 
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a particular coordinate system (e.g., the coordinate system of 
the task; cf. Flash and Hogan, 1985; Jordan and Rumelhard, 
1992; Jordan, 1994). For skilled movements of the arm, this 
criterion appears to be one of smoothness. Specifically, in the 
context of reaching movements in the horizontal plane, Flash 
and Hogan (1985) have noted that the hand’s trajectory is well 
described by a function that maximizes a measure of smooth- 
ness. In a similar work, Stein et al. (1988) have shown that in 
the single-joint case, the optimal fit to joint velocity is a Gauss- 
ian function, which is also consistent with an optimization of 
smoothness (Poggio and Girosi, 1990). Even in more compli- 
cated tasks such as reaching around obstacles, there is evidence 
that with practice, the trajectory of the hand becomes progres- 
sively smoother (Abend et al., 1982; Schneider and Zernicke, 
1989). Therefore, this optimization of smoothness in terms of 
the trajectory of the hand serves as a possible computational 
principle that the CNS might be using to describe the desired 
performance during a reaching movement. 

A characteristic of the above hypothesis is that the desired 
behavior ofthe arm is achieved via a purely kinematic principle, 
that is, smoothness of the change in the position of the hand. 
This is appealing as it would imply a separation between the 
planning and the execution stages of the motor task: as long as 
the task is to move the hand to a target position, the desired 
trajectory remains a smooth, straight-line path (in task coor- 
dinates), regardless of whether a force field is present. As Bem- 
stein (1967) noted, this kind of separation of planning from 
execution is inherent to a hierarchical structure where a change 
in the dynamics of the controlled system does not affect the 
definition of the desired behavior. 

Alternatively, one can postulate other computational prin- 
ciples that the CNS might be using to define a desired trajectory 
where the stage of planning is highly dependent on the stage of 
execution. For example, consider that the CNS could specify a 
desired trajectory for the hand such that the target is reached 
the most “effortlessly,” where an effort is defined as a measure 
of energy, based on the physical cost of the movement (Nelson, 
1983) or based on changes in the forces or torques on the joints 
(Uno et al., 1989). In fact, it has been shown that the smoothness 
and straight-line properties of the hand trajectory may be a by- 
product ofa minimum torque-change criterion (Uno et al., 1989). 
However, in contrast to the previous approach, based on this 
scenario the desired trajectory would change as a function of 
the dynamics of the task, closely linking the process of planning 
to that of execution. 

The field that we imposed on the hand during a reaching 
movement changed the dynamics of the arm drastically (see Fig. 
7). Nevertheless, through practice, the subjects’ hand trajectories 
converged upon the trajectory observed during unperturbed 
conditions. The only major difference was an increase in peak 
velocity (on average, an increase of 19% with respect to move- 
ments in a null field; see Fig. 1 OC), a phenomenon that has been 
linked to repetition of a motor task by other investigators (Kerr, 
1992). This observed convergence to the unperturbed trajectory 
argues for an explicit description of a desired trajectory whose 
kinematics are essentially independent of the dynamics of the 
task, in line with the notion of a separation of the planning from 
an execution stage. 

Recent results from Flash and Gurevich (1992) have provided 
evidence suggesting that there is an invariant kinematic plan 
for reaching when a static load is placed on the hand. Similarly, 
Lacquaniti et al. (1982) found that subjects who were asked to 

move a 2.5 kg weight did so, after some practice trials, along 
essentially the same trajectory as when moving without the 
weight. Our work has shown that even when the change in the 
dynamics of the limb is severe, the response is a convergence 
to the trajectory observed before the change, albeit this con- 
vergence may take place over a fairly long practice period (500- 
1000 movements, as shown in Fig. 11). This is similar to the 
conclusion reached for single degree of freedom movements by 
Ruitenbeek (1984) who found that when a subject interacted 
with a manipulandum with variable dynamics, practice led to 
a trajectory that was invariant with respect to the dynamics of 
the manipulandum. These results are not compatible with the 
idea that the process of planning is mainly influenced by the 
dynamics of the task (Uno et al., 1989), as one would expect 
different planned trajectories for different environments since a 
change in the environment causes a change in the system’s dy- 
namics. Indeed, invariance of the plan with respect to the dy- 
namics suggests that there may be specific elements in the motor 
control hierarchy that are concerned with the description of the 
task in terms of pure kinematics. 

Adaptation through composition of an internal model 

Convergence of the hand trajectories while interacting with the 
novel force field is an indication of the adaptation of the motor 
controller. We hypothesized that this adaptation was via com- 
position of an internal model of the imposed force field. In this 
scenario, the internal model is a mechanism by which the ner- 
vous system predicts the forces that would be acting on the hand 
as it performs the task. 

The force field that was imposed on the hand had the property 
of being dependent on the velocity of the hand, resulting in a 
situation where the subject did not know whether the field was 
“on” or “off’ until the movement was actually initiated. How- 
ever, during the training period, in 91% of the movements the 
field was on, presumably facilitating formation of a model of 
the force field that the CNS might use as a part of a control 
system to move the hand along the desired trajectory (for the 
remaining movements the field was off in order to measure any 
aftereffects of adaptation). We suggested that this control system 
may be represented as the sum of three components: an internal 
model describing the dynamics of the skeletal system of the arm 
when moving in a null field, an internal model describing the 
dynamics of the force field imposed on the hand, and a viscoe- 
lastic or feedback system intended to stabilize the arm about 
the desired trajectory in case of errors in these models. 

Initially, the subject had not formed a model of the force field, 
resulting in a discrepancy between the expected dynamics of the 
arm and the dynamics actually present. This “model error” led 
to trajectories (Fig. 7) that were significantly different than de- 
sired. Indeed, we found excellent correspondence between tra- 
jectories produced by the simulation (Fig. 8) and those observed 
in the movements of the subjects (Fig. 7). In particular, we 
observed that the responses to the sudden presentation of the 
field were characterized by a sharply curved trajectory that we 
described as a “hook.” A possible interpretation for this hook 
would be that the hand starts the movement along a wrong 
direction and that the resulting error is corrected by a second 
movement. However, there is a simpler interpretation that does 
not make appeal to an explicit correction process. According to 
this, the corrective movement is a by-product of the interaction 
between the mechanical properties of the arm (stiffness and 
viscosity in Eq. 9) and the force field imposed on the hand. 
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Presence of the hook as well as the initial error in movement 
direction is systematically predicted by our simulations, which 
follow this later line of reasoning. We favor this hypothesis only 
because of its computational simplicity as compared to the hy- 
potheses that require an explicit correction process. 

We argued that, if the adaptive process was via composition 
ofan internal model ofthe imposed force field, then by removing 
the field, once again there should be a discrepancy between 
expected and actual dynamics of the system. Our simulations 
suggested that there would be aftereficts of adaptation (Fig. 12). 
We found that when the field was unexpectedly removed, the 
subjects produced trajectories similar to those predicted by the 
simulation. The “magnitude” of the observed aftereffects in- 
creased gradually with the practice period (Fig. 13). This pro- 
gressive buildup of aftereffects was further evidence that the 
CNS improved performance via an explicit composition of an 
internal model. 

Of course, one may envision a system whose performance in 
response to a perturbation improves not because of an internal 
model, but because of an increase in the stiffness of the system 
about the desired trajectory. This alternative strategy may be 
achieved by an increase in the coactivation of the muscles. As 
a consequence, movements would become more insensitive to 
changes in the external forces. It is easy to show that modest 
increases in arm stiffness (about threefold with respect to the 
values measured in posture) lead to almost perfect performance 
in the force field. However, if this strategy is chosen as the mode 
of adaptation, then exposure to a force field would not cause an 
aftereffect in a null field. The fact that practice does cause pro- 
gressively larger aftereffects (Fig. 13) is strong evidence against 
the hypothesis that the convergence of trajectories is due to a 
mechanism such as global coactivation of muscles. This is in 
agreement with measurements of van Emmerik (199 1) and Mil- 
ner and Cloutier (1993) who showed that during learning of a 
novel movement the stiffness of the limb generally decreases 
with practice. In particular, Milner and Cloutier (1993) have 
shown that adaptation to an unstable viscous load is accom- 
panied by a reduction in co-activation of antagonist muscles. 
This, along with the gradual increase in the aftereffects, favors 
the idea that improvement in performance was due to formation 
of an internal model of the imposed field rather than an increase 
in stiffness of the arm. 

Transfer properties of the internal model 

The description of a biological learning task can often be rep- 
resented as approximation ofa sensorimotor map. In the present 
experiment, the information contained in the internal model 
can be thought of as a map whose input is the state of the arm 
and whose output is a force. This output is the force, predicted 
by the internal model, that should be imposed by the environ- 
ment as the arm passes through a given state. Therefore, the 
internal model is a sensorimotor map that approximates the 
force field imposed by the mechanical environment. The task 
for the subject is to learn to perform this approximation from 
a set ofexamples, where the examples are provided as the subject 
makes movements in the force field. How does the nervous 
system compose this sensorimotor map that represents the in- 
ternal model? 

From a computational point of view, a sensorimotor map 
may be implemented by a distributed technique inspired by the 
architecture of the nervous system: in this approach, the map- 
ping is formed via interaction of a set of nonlinear computa- 

tional elements that represent neuron-like structures (cf. Barto, 
1989; Poggio, 1990). For example, for the task of motor learning, 
combinations of nonlinear basis functions have been used to 
implement an internal model that represents the inverse dy- 
namics of a multijoint limb (Raibert and Wimberly, 1984; Ka- 
wato, 1989; Jordan, 1990, 1994; Shadmehr, 1990; Kawato and 
Gomi, 1992), mapping from states ofthe limb to an output force 
(e.g., Eq. 6). These results have provided an algorithm by which 
an internal model may be constructed. However, little has been 
learned regarding the properties of the computational elements 
with which the nervous system might be performing this adap- 
tive process. 

Consider that a property of the computational elements (e.g., 
basis functions or “neurons” in a neural network) used in learn- 
ing such a sensorimotor map is their spatial bandwidth, that is, 
the size of their support or “receptive field” in the input space 
(the support is that region of the function’s domain where the 
output value is different from zero). This receptive field would 
indicate the region of the sensory space to which the element 
responds to. Because computation emerges from the superpo- 
sition of the receptive fields of the activated elements, the size 
and location of the receptive fields greatly influence how the 
learning system interpolates between states that it has visited 
during training, and whether it can generalize to regions beyond 
the boundary of its training data (Poggio and Girosi, 1990). 
Simply said, during the learning of the task, only the “weights” 
of those elements that are activated by the input are changed, 
and if these elements respond to only a narrow region of the 
sensory space, then the system cannot generalize to a region 
outside the training data. In fact, research in visual perception 
has used the notion of generalization to make an inference re- 
garding the receptive fields of the computational elements used 
by the visual system to learn a map: in a hyperacuity task, Poggio 
et al. (1992) have shown that if the computational elements 
have narrow receptive fields similar to those found in compo- 
nents of early vision, a subject should not be able to generalize 
to tasks that are slightly different than those on which the subject 
had been trained-a prediction that agrees with results of ex- 
periments (Poggio et al., 1992). The implication is that for some 
visual recognition tasks, the nervous system learns a map by 
encoding information through the “low-level” elements that 
have fairly narrow receptive fields (akin to cells in a look-up 
table), and that this property of the computational elements 
leads to the inability of the composed map to generalize beyond 
the training region. 

In our motor learning task, from the measured aftereffects at 
the novel region we can state that the internal model generalized 
to well beyond the training region, leading to the suggestion that 
the elements with which the nervous system formed a model 
of the environmental forces had wide receptive fields. In other 
words, these elements produced a significant response for a re- 
gion of the workspace that was outside the neighborhood where 
training data were provided. This property of the adaptive con- 
troller is inconsistent with the approach where motor learning 
takes place via construction of a look-up table in which local 
association is made between visited states (address of the mem- 
ory cells in the table) and experienced forces (contents of the 
cells). On the contrary, adaptation is via computational elements 
that give the property of generalization to the internal model. 

The aftereffects at the left workspace suggest that the internal 
model generalized the environmental forces to a specific pattern. 
Interestingly, from the trajectory of aftereffects (Fig. 14B), it was 
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apparent that the expected force field at the novel region of the 
workspace was very different than the one on which the subject 
had been trained. We hypothesized that this difference could be 
accounted for if the field was generalized not in terms of forces 
on the hand, but in terms of torques on the joints. The idea was 
that perhaps the relative position of the computational elements 
in the motor control hierarchy dictated the coordinate system 
in which information about the environment was generalized: 
if these elements resided near the plan stage of the task, where 
a desired hand trajectory is specified, then they might encode 
the environmental dynamics as a mapping between the state of 
the arm and imposed forces in an extrinsic frame of reference. 
Assuming that these elements broadly encoded the input space, 
then local adaptation might produce an internal model that 
generalized to similar end-point forces for similar end-point 
trajectories. Alternatively, the computational elements might 
reside at a lower stage, perhaps near the effecters, where infor- 
mation is received in a coordinate system defined by the affer- 
ents and the muscles. Here the internal model would be a map- 
ping between observed states of the arm and the imposed forces 
in an intrinsic frame of reference. As opposed to the high-level 
model, local adaptation here might produce a map that gener- 
alizes to similar joint torques for similar joint trajectories. 

We tested the merits of these alternatives by a direct exper- 
iment. After practicing in a field at the right workspace, the 
subjects were asked to make movements at the left workspace. 
The field presented at the novel region (left workspace) was one 
of two kinds. In some trials, this field was a translation of the 
training field in end-point coordinates, while in the other trials 
the field presented was a translation of the training field in joint 
coordinates. We found that the performance of the subjects was 
near optimum when the field was translated in joint coordinates 
(Figs. 15A, 16). This finding is in sharp contrast with the hy- 
pothesis that subjects adapted to the imposed field by building 
a model in end-point coordinates. On the contrary, our finding 
suggests that the subjects represented the imposed force field as 
a map between motion and forces in the intrinsic coordinate 
system of the afferents and actuators. 

Candidates for these low-level elements in the motor learning 
task are muscles and their associated spinal (Bizzi et al., 199 1) 
and supraspinal (Berthier et al., 1993) neural control pathways. 
For example, one of us (Mussa-Ivaldi, 1992; Mussa-Ivaldi and 
Giszter, 1992) has suggested that the behavior of spinal circuits 
may be categorized as computational elements in an approxi- 
mation task. This idea is based on the observations of Giszter 
et al. (1993) who quantified to some extent the input-output 
response of the neural circuits and the associated muscles in a 
frog’s spinal cord: each circuit is a collection of interneurons 
connected to a group of motor units. When a circuit is activated 
through microstimulation, the muscles generate a time-varying 
force. This force depends on the configuration of the limb and 
may be represented as a force field, for example, an end-point 
force as a function of the position of the tip of the limb. There- 
fore, computationally the behavior of the low-level elements in 
the motor control hierarchy is to produce an output force as a 
function of the input activation to the spinal neural circuitry 
and the position ofthe limb and time (Mussa-Ivaldi et al., 1990). 

In a general framework, it seems more plausible to assume 
that the pattern of forces generated by such a spinal controller 
depends upon velocity of the limb as well as its position. The 
resulting time-varying force field is essentially a wave expressing 
the input-output behavior of a motor computational element 

within the CNS. In theory, a collection of these computational 
elements can be used in a motor learning task: a finding of the 
spinal microstimulation experiments (Bizzi et al., 199 1; Giszter 
et al., 1983) has been that the output ofthe motor computational 
elements add when two are activated. Simultaneous stimulation 
of two separate sites resulted in the summation of the fields 
obtained from the separate stimulation of each site. Based on 
this property of superposition, a simple framework for motor 
learning in terms of these computational elements can be con- 
structed (in relation to other theories in motor learning, each 
computational element can be thought of as a primitive move- 
ment, or motor schema; cf. Arbib, 1985). Indeed, these low- 
level computational elements appear as reasonable candidates 
for the task of forming the sensorimotor map representing the 
internal model. 

In conclusion, during adaptation to a force field that signifi- 
cantly changes the dynamics of a reaching movement, the CNS 
forms an internal model of the added dynamics. This internal 
model has the power to generalize well beyond the training 
region. The geometric property of this generalization is consis- 
tent with a representation of information in an intrinsic rather 
than extrinsic frame of reference. This choice of the coordinate 
system for the internal model suggests that the planning and 
control of a reaching movement are undertaken by fundamen- 
tally different computational elements in the nervous system: 
while the planned trajectory for the arm is in an extrinsic frame 
of reference, the model for the dynamics of the task (i.e., the 
internal model) is in an intrinsic frame. What results is a scenario 
in which learning a motor task, say hitting a golf ball, entails 
both formation of an appropriate kinematic plan, that is, golf 
club trajectory, and composition of a model of the task’s dy- 
namics so that the plan may be executed, that is, forming an 
internal model of the club’s dynamics. Here we have reported 
on some of the properties of the computational elements with 
which the nervous system forms the internal model for a task’s 
dynamics. It remains to be seen whether computational ele- 
ments that are involved in learning kinematics of a task produce 
a model that has a different geometric property than that which 
results when learning dynamics. Perhaps elements involved in 
learning kinematics and dynamics can eventually form a kind 
of alphabet for the language of movement. 

Appendix 

Correlation of two trajectories 
In order to compare hand trajectories, a technique was devel- 
oped that measured the correlation between two sampled vector 
fields. We represented each trajectory as a time series of velocity 
vectors (a sampled at 10 msec intervals) and then compared 
the two resulting vector fields through a correlation measure. 
The same technique was also used to compare force fields. This 
technique was based on the notion of inner product of two 
sampled vector fields (Mussa-Ivaldi and Gandolfo, 1993). 

Empirically, a time series of vectors, as well as a vector field, 
may be regarded as a finite ordered set of vectors, sampled at 
subsequent instance oftime, or in a given arrangement of spatial 
locations. A finite ordered set of vectors, U, is a mapping that 
assigns to each element, i, of the index set, (1, . . , , n) E N, a 
vector u,. Then the expected value of U, denoted by e(U), is a 
mapping from the same index set to the set of vectors {v,}, where 

v,=“=’ 2 u,. n ,=, 
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According to this definition, the expected value of U is a constant 
set (v, = v, , Vi, j). It follows that E(C( U)) = c( u>. Now consider 
the task of comparing two sets U and Y, where Y = (y,, y,, . , 
Y,~). Let us define the inner product of U and Y as the scalar 

(U Y) = 2 W’Y,, 
,=I 

where the symbol . on the right side indicates the dot product 
operation between two vectors. We define the expected value 
of this inner product as 

c((U, Y)) = $4 Y). 

Then, we may use the above expressions for defining the co- 
variance of two vectorial sets: 

Cov(U, Y) = t((U - c(U), Y - t(Y),) 

= t((U, Y)) - (t(U), c(Y)) 

Furthermore, the correlation coefficient between two sets, p( U, 
Y), is given by the ratio of the covariance of the time series and 
the product of their standard deviations: 

P(U, Y) = 
Cov(U, Y) 

dwJ(Y) ’ 

where standard deviation of an ordered set of vectors is the 
scalar 

u(U) = 4 u - 4v)IIY”> 

and 11 UII = ((U, U))l’*. It follows that - 1 5 p(U, Y) I + 1. 
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