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The neocortex, hippocampus, and several other brain regions
contain populations of excitatory principal cells with recurrent
connections and strong interactions with local inhibitory inter-
neurons. To improve our understanding of the interactions
among these cell types, we modeled the dynamic behavior of
this type of network, including external inputs. A surprising
finding was that increasing the direct external inhibitory input to
the inhibitory interneurons, without directly affecting any other
part of the network, can, in some circumstances, cause the
interneurons to increase their firing rates. The main prerequisite
for this paradoxical response to external input is that the recur-
rent connections among the excitatory cells are strong enough
to make the excitatory network unstable when feedback inhi-
bition is removed. Because this requirement is met in the

neocortex and several regions of the hippocampus, these ob-
servations have important implications for understanding the
responses of interneurons to a variety of pharmacological and
electrical manipulations. The analysis can be extended to a
scenario with periodically varying external input, where it pre-
dicts a systematic relationship between the phase shift and
depth of modulation for each interneuron. This prediction was
tested by recording from interneurons in the CA1 region of the
rat hippocampus in vivo, and the results broadly confirmed the
model. These findings have further implications for the function
of inhibitory and neuromodulatory circuits, which can be tested
experimentally.
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Several regions of the mammalian brain, including the neocortex
and hippocampus, consist largely of intermixed excitatory and
inhibitory subpopulations (Jones, 1986; Amaral and Witter, 1995).
The excitatory cells are generally more numerous and project
extensively to each other, as well as to the inhibitory cells. The
inhibitory cells, which are primarily GABAergic, project strongly
to the excitatory cells; recent evidence indicates that they also
project to each other (Sik et al., 1995). In the hippocampus and
neocortex, complete blockade of inhibition with GABA antago-
nists leads to runaway activity in the excitatory cells, culminating
in an epileptic seizure (Grinvald et al., 1988; Traub and Miles,
1991). Thus, interneurons govern the activity of principal cells in
somewhat the same sense that shepherds govern the activity of
sheep.

Because this type of neural organization is so common in the
brain, it is important to have a good understanding of its dynam-
ical properties. The analysis presented here was originally moti-
vated by an observation while simulating an integrate-and-fire
model of the hippocampal theta rhythm (Tsodyks et al., 1996), a
strong, regular oscillation that dominates the hippocampal elec-
troencephalogram (EEG) of some mammals during behavioral
states of active movement, rapid eye movement sleep, or light
dissociative anesthesia (Vanderwolf, 1969). Theta oscillations are

controlled by inputs from the medial septal area and vanish from
the hippocampus if the medial septum is lesioned or inactivated.
A substantial fraction—probably more than half—of the projec-
tion from medial septum to hippocampus arises from GABAergic
cells and terminates almost exclusively on interneurons (Freund
and Antal, 1988). It is therefore generally believed that the theta
rhythmic activity of hippocampal cells is entrained by rhythmic
inhibition of inhibitory interneurons.

The model consisted of two pools of neurons, one excitatory
and the other inhibitory, and the hippocampal theta rhythm was
modeled as an external, rhythmically varying, inhibitory input to
the inhibitory neurons. When the model was simulated, we no-
ticed, to our surprise, that the excitatory and inhibitory pools both
oscillated in synchrony with the external input and, thus, in syn-
chrony with each other (Fig. 1). This seemed quite paradoxical; if
the only external input was to the inhibitory cells, a decrease in
their activity would be expected to provoke an increase in the
activity of the excitatory cells, so that the two would oscillate 180°
out of phase. In an effort to understand this phenomenon, we
constructed a simplified average-firing-rate model of the network,
the dynamics of which could be examined analytically. A straight-
forward phase plane analysis shows that a “paradoxical” response
of inhibitory neurons to external modulation is a very general
feature of this type of network and can be expected to be observ-
able in real brains. The model is abstract, but its essential features
are quite robust, and the main conclusions of the present analysis
have been verified using more realistic integrate-and-fire models.
We therefore used simultaneous recordings from interneurons
and pyramidal cells of the rat hippocampus to test some of the
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predictions of the model that relate the phase shift and depth of
modulation of interneurons.

MATERIALS AND METHODS
Experimental procedure. The experimental data considered in this paper
were recorded using methods that have been described in detail previ-
ously (Skaggs et al., 1996). Briefly, hippocampal unit activity was recorded
using tetrodes, which consisted of four 12 mm wires twisted together. The
tetrodes were placed in or near the CA1 cell body layer of the dorsal
hippocampus. Different cells recorded from a single tetrode were distin-
guished on the basis of their spike amplitudes on the four tetrode
channels. A cell was classified as an interneuron if: (1) it had a narrow
spike waveform, less than 300 msec from peak to valley; (2) it did not fire
in complex spike bursts; and (3) it had a mean rate .5 Hz averaged across
the whole session. The hippocampal EEG was recorded from a separate
electrode positioned near the fissure separating the CA1 region from the
dentate gyrus, because this is the best location for recording large, robust
theta waves. Theta phases were calculated by digitally filtering the EEG
signal with a bandpass of 6–10 Hz and then using the peaks of the
resulting waves as reference points. The phase of an interneuron and its
depth of modulation were obtained by plotting a histogram of the firing
rate of the interneuron for different theta phases of the EEG and
comparing this with a similar histogram for the whole population of
pyramidal neurons recorded simultaneously during the same session. An
example of such a histogram for one of the interneurons is shown in
Figure 2. The depth of modulation of the firing rate obtained from this
plot was then normalized by the maximal firing rate.

The model. Consider a recurrent network model consisting of two
populations: Ne excitatory neurons and Ni inhibitory neurons. In a coarse-
grained description, detailed specification of activity in each individual
neuron can be replaced by the average activity of the corresponding

population (the fraction of neurons active within a certain time window
around t). This level of description can be justified if one is interested in
the average behavior of cells with similar response properties (e.g.,
hippocampal cells with overlapping place fields or cells with similar
receptive fields and preferred orientations in visual cortex). The time
evolution of the average excitatory activity E(t) and inhibitory activity I(t)
is governed by temporally coarse-grained equations (Wilson and Cowan,
1972):

t
dE
dt

5 2E 1 ge@Jee E 2 Jei I 1 e~t!#, (1)

t9
dI
dt

5 2I 1 g i@J ie E 2 J ii I 1 i~t!#, (2)

where ge(x) and gi(x), called the response functions, are the proportions of
cells firing in the two populations for a given level of input activity x. The
strengths of the interactions in the model are controlled by the parameters J.
For example, Jee is the product of the average number of recurrent excitatory
contacts per cell and the average postsynaptic current attributable to one
presynaptic action potential on the postsynaptic cell. It is assumed that Jee,
Jei, Jie, and Jii are all positive. The time constants of the excitatory and
inhibitory populations are t and t9, respectively; these constants describe the
time needed to bring neurons to firing as they receive subthreshold excitation
and are comparable to the membrane time constants of these neurons
(;10–20 msec; Abeles, 1991). Finally, e(t) denotes the average external
input received by the excitatory population from other brain regions, and i(t)
is the external input to the inhibitory population. A schematic diagram of the
network is shown in Figure 3.

The response functions ge(x) and gi(x) are monotonically increasing
functions of x, ranging from 0 to 1, and usually assumed to have a

Figure 1. A, Spiking activity in an interconnected network of integrate-and-fire neurons studied as a model of the hippocampus during simulation of a
rat running through a linear apparatus (Tsodyks et al., 1996). The network consisted of 800 excitatory and 200 inhibitory neurons. The spike train of each
neuron, i, is plotted as ticks along a horizontal line representing the times at which spikes were emitted. Excitatory neurons (1–800) were ordered
according to the locations of their place fields such that cells with neighboring indices had overlapping fields. The spikes of every tenth neuron are shown.
The movement of the rat along the apparatus was simulated by external input to successive groups of pyramidal cells. The theta rhythm was induced in
the network by applying oscillatory input (data not shown) to the inhibitory neurons. Details of the model are described by Tsodyks et al. (1996). B,
Average activity of excitatory (solid line) and inhibitory (dashed line) populations plotted as a fraction of neurons from each population that fired within
time bins of 10 msec. The excitatory and inhibitory populations are in-phase with the driving inhibitory inputs to the inhibitory neurons.
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sigmoidal shape. To make analysis of the network simpler, we consider
first a threshold-linear function with constant slope and saturation:

g~x! 5 H 0 if x , u
b~x 2 u! if u , x , u 1 1/b
1 if x . u 1 1/b

(3)

The main conclusions of the analysis can be easily extended to the general
case in which the slope of the response function b varies with the activity
level.

Steady state solutions. Differential Equations 1 and 2 define the evolu-
tion of the activity state of the network (e.g., relaxation to a steady state),
which can be viewed as a line in the phase plane of the variables E and I.
If the external inputs e(t) and i(t) change slowly compared with the time
constants t and t9, so that the network has enough time to settle into the
steady state solution of Equations 1 and 2, then at each moment, the
activities of the two populations are given by:

E 5 b@Jee E 2 Jei I 2 u 1 e~t!# (4)

I 5 b@J ie E 2 J ii I 2 u 1 i~t!# (5)

For fixed values of the parameters and the functions e(t) and i(t), these
equations define two curves in the E, I plane, which are called the
nullclines of differential Equations 1 and 2. If the state of the network is
described by a point (E, I) lying on one of the nullclines, say the first one,
the corresponding time derivative (dE/dt in this case) is 0 and, thus, the
evolution line of the system goes parallel to the I axis. Any point at which
the nullclines intersect is a fixed point of the system of Equations 1 and
2, where both derivatives are 0 and the system is, therefore, in a steady
state.

Note that the solution of Equations 4 and 5 is only relevant if it is
locally stable; that is, if under a small perturbation the network returns
to a steady state. There are two conditions under which this is guar-
anteed to happen: first, if the strength of the recurrent excitation is
weak (namely, bJee , 1), in which case the excitatory population is
stable regardless of the other interactions; second, if the recurrent
excitation is strong (bJee . 1), but other interactions are also strong
enough.

Technically, the stability condition for the fixed point given by Equa-
tions 4 and 5 is that the matrix of the coefficients of Equations 1 and 2,
linearized around the fixed point, must have eigenvalues with a negative
real part. For our choice of response function, these eigenvalues are given

Figure 2. Histogram of firing phases
relative to the theta rhythm for one in-
terneuron recorded in the hippocampus.
The firing rate in spikes per second plot-
ted as a function of phase with bins of 8°.
The phases were calibrated so that 0°
(360°) corresponds to a maximum activ-
ity of the population of pyramidal cells
recorded simultaneously with a given
interneuron.

Figure 3. Schematic diagram of the network model. The excitatory pop-
ulation (E) is connected to itself through recurrent excitatory connections
(Jee), and the inhibitory population (I ) has recurrent inhibitory connec-
tions (Jii). The strengths of the interactions between these two populations
are given by Jei and Jie. The external inputs are e to the excitatory
population and i to the inhibitory population.
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by the expression:

l6 5
1
2Sb Jee 2 1

t
2

b J ii 1 1
t9 D

(6)

6
1
2 ÎSb Jee 2 1

t
1

b J ii 1 1
t9 D 2

2 4b2
JeiJ ie

tt9
.

For both eigenvalues to have a negative real part, the first term of this
expression must be negative. This condition can be solved to yield the
requirement:

~t9/t!~b Jee 2 1! 2 1
b

, J ii . (7)

This is sure to hold if bJee , 1, because Jii was assumed to be positive, but
even if not, the condition will hold if Jii is large enough. It is perhaps
surprising that Jii is the necessary factor for stability of the steady state:
the reason for this is that when Jee is large and Jii is small, the only
possible stable states are E 5 0 or E 5 1; the coefficients Jie and Jei can
only determine to which of these stable states the system converges. Note
also that there is an additional requirement for stability in this case: for
both eigenvalues given by Equation 6 to have negative real part, it is also
necessary that the product,

4b2
JeiJ ie

tt9
, (8)

be sufficiently large. That is, if the recurrent excitation is strong, then
stability exists only if both the recurrent inhibition and the excitation–
inhibition interaction are strong enough.

If these conditions are met, then the equilibrium state of the system is
given by the solution of Equations 4 and 5, namely:

E 5
b

l
~@1 1 b J ii#@e~t! 2 u# 2 b Jei@i~t! 2 u#! (9)

I 5
b

l
~b J ie@e~t! 2 u# 1 ~1 2 b Jee!@i~t! 2 u#!, (10)

where,
l 5 b2J ieJei 1 ~1 2 b Jee!~1 1 b J ii!. (11)

The stability analysis presented above is performed for a simplified choice
of the response function with the fixed slope b. As mentioned, if the response
function has a general sigmoid shape, the slope may vary with the activity

level. As a result, for a given strength of all the interactions, the steady state
may be stable for some level of external inputs and unstable for another level.
This fact will be seen in the model of g oscillations (Fig. 5).

RESULTS
Paradoxical effect of external input
The most interesting aspect of the model emerges if we examine
the consequences of increasing the external drive i(t) onto the
inhibitory neurons. Equation 9 shows that this inevitably leads to
a decrease in the equilibrium value of E—assuming that the
system remains stable—but Equation 10 shows that the effect on
I depends on the sign of the term (1 2 bJee). If this term is
negative, I moves in the opposite direction from i(t); that is, an
external input applied directly to the inhibitory cells causes the
activity of those cells to move in the opposite direction.

The reasons for this phenomenon can be clarified by a phase plane
analysis, which allows the properties of the solution to be analyzed
graphically. Equations 4 and 5 define the nullclines of differential
Equations 1 and 2, respectively. The nullclines in the I, E phase plane
are shown in Figure 4 for the two cases of weak and strong excitatory
feedback mentioned above. The arrows near the nullclines indicate
the sign of the corresponding derivative (dE/dt or dI/dt) on both sides
of the nullclines. In Figure 4B the arrows are facing away from the E
nullcline (Equation 4), which means that the excitatory population by
itself is unstable for any fixed level of inhibition: its activity either dies
off or explodes to saturation, depending on initial conditions. Nev-
ertheless, the intersection of the nullclines can still be stable, pro-
vided that the inhibitory coefficients Jii, Jie, and Jei are large enough,
as described above.

In these plots, an increase in the external input i(t) corresponds
to a downward translation of the I-nullcline. Inspection of Figure
4 shows that this shift of the I-nullcline leads to quite different
patterns of movement of the intersection point for the two con-
ditions. In the case of weak excitation, an increase in i(t) leads to
a downward–rightward shift of the intersection point, which
means that the activity of the inhibitory population increases and

Figure 4. Phase plane analysis of the dynamic population of Equations 1 and 2. The state of the network is given by a point in the E–I plane. The
nullclines are given by the steady-state Equations 4 and 5 (the second one is marked by the corresponding derivative, dI/dt). Nullclines of the state
variables are shown for the cases b Jee , 1 (A) and b Jee . 1 (B). The arrows indicate the direction of motion of the state in the vicinity of the corresponding
nullcline. A typical trajectory of the variables E and I toward the stable fixed point is shown in both cases.
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the activity of the excitatory population decreases. In this sce-
nario, which is intuitively clear, the excitatory cells are modulated
out of phase with the inhibitory cells; however, in the case of
strong excitatory feedback, an increase in the external drive to the
inhibitory population leads to a downward–leftward shift of the
intersection point, hence a decrease in the activity of both popu-
lations, as shown in Figure 4B. Thus, when the recurrent excita-
tion is strong enough, both populations will be modulated in
phase with each other and out of phase with the external drive.

It is possible to derive another important result from this phase
plane analysis. The relative amplitude of modulation of the two
populations, in response to a change in external input to the
inhibitory neurons, is given by the slope of the E nullcline:

DE
DI

5
bJei

bJee 2 1
. (12)

Thus, the relative depth of modulation of the two populations pro-
vides an estimate of the relative strength of recurrent inhibition and
excitation in the network. Note that, in the critical situation where
bJee is exactly equal to 1, any external input to the inhibitory popu-
lation is transmitted directly to the excitatory population without
causing any change at all in the firing rates of the inhibitory neurons.

Relation between phase shifts and depth of
modulation of interneurons
This analysis concerns the fixed points of Equations 1 and 2 and
hence is strictly valid only in the limit of infinitely slow changes in the
external inputs. In practice, these inputs have finite time constants
(e.g., ;125 msec, the period of the theta rhythm in the hippocam-
pus), so dynamic effects need to be considered. When there are
oscillations in the external inputs, the most prominent effects are
phase shifts of the population activities relative to the input. Under
some conditions, such as those shown here, these phase shifts can be
substantial, even for inputs varying slowly compared with the time
constants t and t9. Suppose the input i(t) in Equation 2 is given by:

i~t! 5 i0 1 i1 cos~2pft!, (13)

where i1 is the amplitude and f 5 1/T is the period of the input.
With our choice of response functions (Equation 3), standard
techniques for analyzing linear differential equations (Braun,
1986) can be applied to Equations 1, 2, and 13. In the case where
only the inhibitory inputs are oscillating, the analysis predicts that
the phase shifts of the network activity relative to the inhibitory
input should have two components: The first component, which is
common to both excitatory and inhibitory populations, is on the
order of min(t, t9)/T. Because this component is the same for both
populations, it cannot be detected by recordings exclusively from
within the network. An additional component, exhibited only by
the inhibitory population, is given by:

f 5 H 1808 1 arctan@2pft/~1 2 bJee!# if bJee , 1
2 arctan@2pft/~bJee 2 1!# if bJee . 1 (14)

Therefore, a phase shift is expected because of the finite period of
the oscillations for both strong and weak recurrent excitation;
however, this shift is generally small, on the order of t/T, unless
the network operates near the transition point between the two
regimes: bJee ; 1. In this transition region, the amplitude of
modulation for the inhibitory population becomes small, as is seen
from Equation 12. This is a consequence of the fact that, in this
region, the E nullcline is nearly vertical, so that varying the
external input to the inhibitory population has only a small effect

on its activity but produces substantial changes the activity of the
excitatory population.

Note that the analysis presented above was performed for
threshold-linear response functions. In the case of general sig-
moid functions, the results can still be considered as qualitatively
accurate if the modulation of neuronal activity is such that the
slope of the sigmoid remains roughly the same.

Limit cycle and fast oscillations
There are a few other features of this model worthy of notice. If the
excitatory–inhibitory interaction term given by Equation 8 is suffi-
ciently large, then the eigenvalues given by Equation 6 will be
complex valued, causing any perturbation from the fixed point, or
any change in the external input, to result in a series of damped
oscillations (as shown in Fig. 4B). This phenomenon may be related
to the so-called g or “40 Hz” oscillations seen in many parts of the
brain (Bragin et al., 1995). There is, however, another closely related
mechanism that may also be involved. As mentioned above, the
interaction between inhibitory interneurons, Jii, determines the max-
imal strength of recurrent excitation compatible with the stability of
the steady state. If recurrent excitation is even stronger, the stable
solution of Equations 1 and 2 is a limit cycle, i.e., fast oscillations with
the period on the order of t and t9 (Wilson and Cowan, 1972; Leung,
1982). An example of these oscillations is shown in Figure 5. The
sharp peaks would be associated with the timing of spikes in the
population. In this condition, the excitatory and inhibitory popula-
tions have almost identical phases relative to the theta wave; a slight
positive phase shift of the inhibitory population can be seen in Figure
5. A different model for gamma rhythm generation, which is based on
synchronization of an interneuron population, has been proposed
(Traub et al., 1995; Whittington et al., 1995) and also predicts a zero
phase lag between pyramidal cell and interneuron firing during
40 Hz.

Predictions
The forgoing analysis of the network model leads to three main
predictions. First, changes in external input to inhibitory interneu-
rons can cause their activity to be modulated in the direction
opposite to the change in the input if the intrinsic excitatory
connections are sufficiently strong. Second, for oscillatory inputs,
the phase difference between the excitatory and inhibitory popu-
lations may vary depending on the strengths of internal interac-
tions. Finally, for oscillatory inputs, the depth of modulation of
the inhibitory population should be largest when its phase shift
relative to the excitatory population is close to 0 or 180°.

Comparison with experimental data
A previous study (Skaggs et al., 1996) found that pyramidal cells
oscillated in synchrony with each other over the CA1 region of the
hippocampus when a theta rhythm was present while rats ran for
food reward. At the same time, inhibitory interneurons had a
broad distribution of phase relations to the pyramidal cell popu-
lation. According to our model, this suggests that the strength of
recurrent excitation was in the transitional region; the variability
in the phase shift would then reflect variations in the strength of
recurrent excitation in different groups of excitatory cells.

The prediction derived from the present analysis—that interneu-
rons with phase shifts far from 0 or 180° would show relatively weak
theta modulation—was tested using a sample of 46 interneurons
recorded in or near the CA1 cell body layer of the rat hippocampus.
These cells were recorded simultaneously with groups of 50–150
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CA1 pyramidal cells, using ensemble recording methods as described
by Skaggs et al. (1996).

The depth of modulation for each interneuron and its phase
relative to the excitatory population were obtained as explained in
the methods. In Figure 6A we plot the normalized depth of modu-
lation for the sample of 46 interneurons against the deviation from
their phases from either 0 or 180°, whichever is less. The correlation
coefficient between the coordinates is 20.55 and is significantly

different from 0 ( p 5 0.0002, two-sided correlation test). To dem-
onstrate that observed variability in phase shifts of interneurons
could indeed result from inhomogeneity in the synaptic strengths, we
simulated a network consisting of 50 excitatory and 50 inhibitory
subpopulations with a random set of connections between them. The
results of the simulations, presented in Figure 6B, display the same
trend as seen in Figure 6A. The results of the recordings are,
therefore, broadly consistent with the predictions of the model.

Figure 5. Solution of Equations 1 and 2 with the periodic input to the inhibitory population given by Equation 13 in the parameter regime corresponding
to strong excitation [E(t), solid line; I(t), dashed line]. The response function was g(x) 5 tanh(x). Parameters were t 5 20 msec, t9 5 10 msec, Jee 5 40,
Jei 5 25, Jie 5 30, Jii 5 15, e 5 0.1, i0 5 0, and i1 5 0.1. Because the slope of the response function is not constant, the condition for the stability of a
fixed point is violated in part of a theta cycle, giving rise to oscillations in the g range.

Figure 6. A, Depth of modulation of theta oscillations for a sample of 46 inhibitory interneurons, recorded from six rats running for food reward. The
horizontal axis is the deviation of their phases from either 0 or 180°, whichever is less. B, Results of simulations presented in the same format. A network
representing 50 excitatory and 50 inhibitory subpopulations was simulated. Each of the subpopulations was connected with a random choice of 10 other
subpopulations of each type. The strength of all of the connections was randomly chosen from a uniform distribution from zero to twice the average value.
The response function was the same as in Figure 5. Parameters were t 5 20 msec, t9 5 10 msec, Jee 5 0.2, Jei 5 0.23, Jie 5 0.22, Jii 5 0.21, e 5 0.2,
i0 5 0.2, and i1 5 0.1 (these are the average values for each of the existing connections).
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DISCUSSION
At a general level, perhaps the most important outcome of the
analysis presented here is the finding that networks with strong
recurrent excitation stabilized by feedback inhibition have some
counterintuitive properties; in particular, the responses of the
interneurons to direct manipulation can be completely reversed
by the context in which they are embedded. Because networks of
this type are very common in the brain, our findings are likely to
be widely applicable.

Another point that has perhaps not been appreciated is that in
this type of network, inhibitory–inhibitory connections are critical
for stability. It is interesting to note that GABAergic neurons in
most areas of the brain have numerous GABAergic terminals
synapsing on their dendrites. These have often been treated as a
mystery and omitted from models; our analysis indicates that they
are actually essential to the stability of the network.

There are a number of existing experimental findings that are
consistent with the model. In awake, moving animals, when a
theta rhythm is present, most hippocampal interneurons fire in-
phase with the excitatory population, as reported by Skaggs et al.
(1996). It has also been reported that, under urethane anesthesia,
most interneurons fire out-of-phase with the excitatory population
(Fox et al., 1986). On the basis of our analysis, a shift of this sort
could easily be produced by a general reduction in the effective-
ness of excitatory synapses caused by anesthesia (Moroni et al.,
1981), i.e., a reduction in the effective values of Jee and Jie.

In the model, the source of variability in the phase shift among
different interneurons was hypothesized to derive from differences
in recurrent connectivity among the populations of pyramidal cells
to which they were connected. It is worth noting that a somewhat
different explanation is also possible. Several lines of evidence
indicate that hippocampal interneurons fall into a number of
distinct classes, with different patterns of connectivity. A straight-
forward extension of the present analysis indicates that, at a fixed
point of the network, each type of interneuron must obey an
equation similar to Equation 10; however, the “effective” values of
the Jee, Jie, and Jei coefficients can be different for different types.
This suggests that different types of interneurons can “see” dif-
ferent effective values for the recurrent connectivity of the re-
mainder of the network. A full analysis of this situation, however,
taking into account the possibility of differential external modu-
lation of multiple interneuron types, would be quite difficult to
perform in complete generality.

In addition to the evidence presented here in favor of the pre-
dicted relationship between the phase shift and depth of modulation
for each interneuron, the model makes several other predictions that
could be further investigated. First, the hippocampal theta rhythm is
implemented largely via GABAergic projections from the medial
septal area that terminate on inhibitory interneurons (Freund and
Antal, 1988). We predict that many interneurons driven by this input
will fire in-phase with pyramidal cells, and that this will be even more
the case in CA3 than in CA1. Second, serotonergic inputs to the
hippocampus are known to terminate largely on inhibitory interneu-
rons, and their synaptic effects are thought to be inhibitory (Freund
et al., 1990). We predict that when these inputs are activated, the
firing rates of many of the interneurons will increase rather than
decrease. Finally, certain anatomical types of GABAergic interneu-

rons in the hippocampus are thought to project specifically to other
types of interneurons. We predict that when these cells are activated,
their targets may show increases rather than decreases in firing rate.

More specific predictions from this type of model will only be
possible when more detailed data on the connectivity and phar-
macological properties of hippocampal neurons are available.
Regardless of the details, though, it is very likely that the para-
doxical responses described here will be seen at some locations in
the hippocampal system. The same analysis could also be applied
to the neocortex, which has a more complex structure than the
hippocampus but is also dominated by strong recurrent excitation
and feedback from local inhibitory interneurons. Blockade of
inhibition in the neocortex leads to runaway activity of the exci-
tatory cells, culminating in an epileptic seizure, which suggests
that the neocortex may also operate near the edge of instability
when there are strong rhythms.
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Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G (1995)
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