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Encoding of Visual Motion Information and Reliability in Spiking

and Graded Potential Neurons

Juergen Haag and Alexander Borst

Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, D-72076 Tuebingen, Germany

We investigated the information about stimulus velocity inher-
ent in the membrane signals of two types of directionally se-
lective, motion-sensitive interneurons in the fly visual system.
One of the cells, the H1-cell, is a spiking neuron, whereas the
other, the HS-cell, encodes sensory information mainly by a
graded shift of its membrane potential. Using a pseudo-random
velocity waveform by which a visual grating is moving along the
horizontal axis of the eye, both cell types follow the stimulus
velocity at higher precision than in response to a step-like
velocity function. To measure how much information about the
stimulus velocity is preserved in the cellular responses, we
calculated the coherence between the stimulus and the neural
signals as a function of stimulus frequency. At frequencies up
to ~10 Hz motion information is well contained in the electrical
signals of HS- and H1-cells: For HS-cells the coherence value
amounts to ~70%, and for H1-cells this value is ~60%. Com-

paring these values with the coherence expected from a linear
encoding reveals that the fidelity of the original stimulus is
deteriorated in the neural signal partly by neural noise and
partly by the nonlinearity inherent in the process of visual
motion detection. The degree to which this nonlinearity con-
tributes to the decrease in coherence depends on the maxi-
mum velocity used in the experiments; the smaller the stimulus
amplitude, the higher the coherence and, thus, the smaller the
nonlinearity in encoding of stimulus motion. All these results are
in agreement with model simulations in which visual motion is
processed by an array of local motion detectors, the spatially
integrated output of which is considered the equivalent of the
neural signals of HS- and H1-cells.
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Deciphering the neural code nerve cells are using to signal infor-
mation within the nervous system represents a major prerequisite
for our understanding of the brain in terms of information-
processing machinery. In particular it has been questioned to what
extent information is represented in the precise time of occur-
rence of individual action potentials (de Ruyter van Steveninck
and Bialek, 1988, 1995; Softky, 1994, 1995; Mainen and Sejnowski,
1995; Gabbiani et al., 1996). This problem has been approached
by Bialek and colleagues (Bialek et al., 1991; Bialek and Rieke,
1992) and Rieke et al. (1997) using a spiking motion-sensitive
neuron of the fly, the H1-cell, as their experimental system. To
analyze the amount of information about the velocity of the
moving stimulus inherent in the spike train of the Hl-cell, these
authors developed the so-called reverse reconstruction technique.
Theunissen (1993) and Theunissen et al. (1996) extended this
analytical technique to the frequency domain and applied it to
wind-sensitive interneurons of the cricket cercal system. Briefly,
the technique consists of finding a linear temporal filter to mini-
mize the difference between the real stimulus and the recon-
structed stimulus obtained by convolving the neural response with
this filter. The degree by which the real and reconstructed stimuli
agree with each other can be regarded as a measure of the
information about the stimulus in the neural response. In
the linear case, such a filter can be calculated rigorously based on
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the average cross-correlation between repetitive stimulus presen-
tations and the response traces elicited each time.

We applied the reverse reconstruction technique to a certain
class of visual interneurons of the fly, the HS-cells, as well as to
H1-cells for comparison. As do H1-cells, HS-cells belong to the
class of so-called lobula plate tangential cells (LPTCs) of the fly
visual system. The LPTCs represent a set of ~60 fairly large
neurons per brain hemisphere, each of which can be identified
individually because of its invariant anatomy and characteristic
visual response properties (Hausen, 1981, 1982a,b, 1984; Heng-
stenberg, 1982; Eckert and Dvorak, 1983). There exists one H1-
cell and three different HS-cells per lobula plate. The three
HS-cells differ by their dendritic arborization in the lobula plate
and concomitantly by their receptive field location. With their
large dendrites all LPTCs spatially pool the signals of thousands
of local, columnar elements arranged in a retinotopic fashion
(Borst and Egelhaaf, 1990, 1992; Haag et al., 1992, Borst et al.,
1995). Thus they have large receptive fields and respond to visual
motion in a directionally selective way (Borst and Egelhaaf, 1989,
1990; Egelhaaf et al., 1989). The tangential cells connect either to
other brain areas or, via descending neurons, to thoracic motor
centers. From various lines of evidence it is concluded that these
cells are involved in the visual course control of the fly (Heisen-
berg et al., 1978; Geiger and Naissel, 1981, 1982; Hausen and
Wehrhahn, 1983, 1990; Egelhaaf and Borst, 1993). The two
LPTCs examined in this paper differ from each other in several
ways. The H1-cell produces regular action potentials to transfer
visual motion information from one lobula plate to the other and
responds preferentially to motion from the rear to the front of the
eye (Hausen, 1976, 1977; Zaagman et al., 1977; Eckert, 1980). In
contrast, HS-cells synapse onto descending neurons and respond
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to visual motion by a graded shift of their axonal membrane
potential. They are maximally excited by motion from the front to
the back in front of the eye of the fly and inhibited by motion in
the opposite direction (Hausen, 1982a,b; Borst and Haag, 1996;
Haag et al., 1997).

Here, we examine the fidelity at which visual motion informa-
tion is represented in the neural signals of HS- and H1-cells. The
comparison between a graded membrane potential and a spiking
neuron should allow determination of which of the two coding
strategies is superior with respect to their reliability and precision
to represent sensory information. We also investigate to what
extent the stimulus velocity is encoded in the neural signals of
both cell types in a linear way.

MATERIALS AND METHODS

Preparation and setup. Female blowflies (Calliphora erythrocephala) were
briefly anesthetized with CO, and mounted ventral side up with wax on a
small preparation platform. The head capsule was opened from behind;
the trachea and air sacs, which normally cover the lobula plate, were
removed. To eliminate movements of the brain caused by peristaltic
contractions of the esophagus, the proboscis of the fly was cut away, and
the gut was pulled out. This allowed stable intracellular recordings of up
to 45 min. The fly was then mounted in an upright position on a heavy
recording table with the stimulus monitors in front of the fly. The fly brain
was viewed from behind through a Zeiss dissection scope.

Stimulation. A monitor (Tectronix 608) was placed in front of the fly
positioned at an angle of 45° from the frontal midline of the fly. The
position of the fly was carefully adjusted using the symmetry of the frontal
equatorial pseudo-pupils of both eyes. As seen by the fly, the display had
a horizontal angular extent of 42° and a vertical extent of 58°. The
stimulus pattern was produced by an image synthesizer (Picasso, Innisfree
Inc.) using a frame rate of 200 Hz. The intensity of the pattern was square
wave modulated along its horizontal axis. The stimulus grating had a fixed
wavelength of 14° and a contrast of 0.70. The mean luminance of the
pattern was ~25 cd/m% To identify the cells by their visual response
properties, cells were first stimulated by the pattern moving back and
forth with a square wave velocity profile at a duty cycle of 2 sec. When the
actual experiment was started, the stimulus moved at a pseudo-random
velocity with a flat spectrum up to ~20 Hz. The velocity function was
calculated using the “gasdev” function from numerical recipes (Press et
al., 1988) and was controlled by a computer via a digital-to-analog board
(Metrabyte DAS16) at 2 kHz. One stimulus sweep lasted for 40 sec, and
a variable number of sweeps (5-20) were presented to each cell during
one experiment.

Recording. For intracellular recordings electrodes were pulled on a
Brown-Flaming P-97 micropipette puller using thin-wall glass capillaries
with a diameter of 1 mm (GC100TF-10; Clark Electromedical Instru-
ments). When filled with 1 M KCl they had resistances of ~20-30 MQ. A
SEL10-amplifier (NPI Electronics) operated in the bridge mode was used
throughout the experiments. Extracellular recordings were made using
standard tungsten electrodes with a resistance of ~5 M(). Extracellular
signals were bandpass-filtered and subsequently processed by a threshold
device delivering a 100 mV pulse of 1 msec duration on each spike
detected. To ensure a direct comparison of the signals from HS- and
H1-cells, these pulses were left as if recorded intracellularly. The pseudo-
analog H1-signals can be directly translated into spike frequencies. With
the width and amplitude of the pulses used here, 1 mV corresponds to 10
Hz. For data analysis the output signal of the threshold device as well as
the stimulus function controlling the velocity of the pattern was fed to a
computer via a 12 bit analog-to-digital converter (Metrabyte DAS16) at
a sampling rate of 2 kHz and stored to a hard disk.

Data evaluation. The signals were evaluated off-line by a program
written in Turbo-Pascal (Borland) using several routines from numerical
recipes (Press et al., 1988). Each continuous 40 sec stretch of the stimulus,
s(t), and response function, r(f), was cut into time segments of 4 sec
duration [s;(f)and r;(¢), respectively]. Each of these segments, s;(f) and
ri(t), was Fourier-transformed to S;(f) and R;(f), and the cross-
correlations and autocorrelations were calculated as the products of the
complex functions. To calculate the forward filter, Gy,4, the average
cross-correlation was divided by the average autocorrelation of the stim-
ulus (with () denoting the average and * the complex conjugate):
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Si* () - Ri(f»
Gua(f) = 7o rm ~ o () - M
S - S$i* (N
The reverse filter was calculated as the ratio of the average cross-
correlation and the average autocorrelation of the response:

(R; * (f) ° Sl(f)>
Gewlf) =757 55/ - 2
D= ®ip) - R () @
Using this filter, the estimated stimulus, Sest;( f), was calculated as the
product between R(f) and G,..(f):

SeSti(f) :Rl(f) ‘ Grev(f)' (3)

The final filter, G( f), between S;( f) and Sest;( f) then was calculated by
replacing the response segments, R;(f) in Equation 1 by the estimated
stimulus segments, Sest;( f):

(S; * (f) + Sest;(f))
S - SERy )

Combining Equations 3 and 4, it can be readily seen that G( f) is equal to
the coherence function, y*:

2 _<Si*(f)'Ri(f)>‘<Ri*(f)'Si(f)>
YOS s RO RGO

Throughout this paper, we used Equation 5 to calculate the coherence from
all available response and stimulus segments within one experiment. As a
control, we additionally divided several experiments in two halves, used the
first half to calculate the reverse filter, and calculated the final filter or
coherence by applying Equation 4 to the second half of the experiment. This
led to identical results (data not shown). In the figures, only amplitude
spectra of the complex functions will be shown, i.e., the square root of the
sum of the squared real and imaginary parts. We will loosely refer to these
amplitude spectra by the same names as the complex functions.

In a perfectly linear, noise-free system, the coherence is expected to
equal 1 for all frequencies. To see how the introduction of noise affects
the coherence in a linear system, we considered a case in which noise is
added to the response after the stimulus is fed through the forward filter.
This is expressed in the following equation:

Ri(f) = Ggwa * Si(f) + Ni(f). (6)

Combining Equations 5 and 6 reveals how the coherence function v*( f)
depends on the ratio of the signal and noise amplitude spectra, snr( f):

o snr?(f)
v (f) =)+ 1 (7

G(f) =

We measured the signal and noise spectra in the following way. From the
neural signals obtained in response to repeated stimulus presentations, we
first calculated the mean response, R(f). To calculate the noise within each
stimulus period, we subtracted the mean response from each individual
response. We then Fourier transformed the mean response and all individual
noise traces to obtain the mean response and noise spectra. As explained
above, both HS and HI signals are represented in the same way and,
therefore, were treated identically in our evaluation programs. Having de-
termined the ratio of signal and noise spectra, we then used Equation 7 to
estimate an expected coherence for a purely linear coding scheme given the
signal-to-noise ratio determined experimentally in the way just described. A
comparison between the real coherence and the expected one should allow
estimation of what extent nonlinear encoding deteriorates the performance.

RESULTS

In a first series of experiments H1- and HS-cells were stimulated
by a velocity step in their preferred direction as well as by
pseudo-random velocity function moving the pattern in both pre-
ferred and null directions with a gaussian white noise spectrum
between 0.1 and 10 Hz. The results are shown in Figure 1 in a
color-coded way for the HS-cell (Fig. 1a,c¢) and as a raster plot for
the spiking H1-cell (Fig. 16,d). In contrast to a step-like velocity
profile, both cell types displayed a strikingly reliable response
when confronted with the pseudo-random motion stimulus each
repeated 20 times. HS-cells show virtually identical membrane
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Figure 2. Reverse reconstruction tech-
nique exemplified on a recording from
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potential fluctuations in response to the pseudo-random stimulus
(Fig. 1a). In contrast, the response to the step-like velocity func-
tion contains much more variability than described above (Fig.
1c¢). Here, the response initially reaches higher levels and de-
creases to some extent with ongoing stimulation. Thus, in sum-
mary, the graded responses of HS-cells to randomly fluctuating
stimuli reveal a striking reliability compared with the responses to
a pattern moving continuously at a constant velocity. The same
holds true for the occurrence of action potentials in the H1-cell in
response to a random stimulus velocity (Fig. 1) compared with a
step-like velocity profile (Fig. 1d).

To assess this amount of reliability quantitatively, we applied
the reverse reconstruction method (see Materials and Methods).
Figure 2a shows a 600 msec stretch of the velocity function

time [ms]

400 600 ' 1 10 100

frequency [Hz]

together with the membrane potential of an HS-cell. Obviously,
both signals correlate only vaguely and with a considerable delay
between them. In particular, fast deflections of the stimulus func-
tions are not followed by the membrane potential of the cell.
Figure 2b shows the amplitude spectra of the stimulus and the
response, respectively. The forward gain, i.e., the cross-correlation
between stimulus and response normalized by the stimulus power
as calculated from this experiment, is shown in Figure 2¢ together
with the reverse gain. In Figure 2d, the impulse responses of the
forward and reverse filters are shown as a function of time. The
forward filter resembles a low pass. The reverse filter is reversed
in time; i.e., it leads to a backward shift of the convolved signal
compared with the original one and seems to have band pass
characteristics. This can also be seen in the spectrum of the
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Figure 3. a, Comparison between the coherence functions of HS- and
H1-cells. The data are derived from experiments on 16 different HS-cells
and 10 different H1-cells. The graphs show the mean values = SEM. b,
Mean reverse filter for HS-cells as calculated from the same data set as in
a. ¢, Mean reverse filter for Hl-cells as calculated from the same data set
as in a.

reverse gain in Figure 2¢, which boosts frequencies above 5 Hz.
Applying this filter to the membrane response results in a striking
improvement of the similarity between stimulus and response
(Fig. 2e). Now, the signal as estimated from the response, the
so-called estimated stimulus (Sest), follows almost every deflec-
tion of the stimulus. Apart from very fast deflections, the esti-
mated stimulus seems to have a high degree of correlation with
the original stimulus. This is quantified in the coherence function
shown in Figure 2f. Up to 10 Hz, the coherence reaches a value of
>().7. Only at frequencies higher than 30 Hz does the reverse gain
become <0.2 and soon approximates 0. Thus, by using a simple
linear filter, the information about the pattern velocity can be
recruited from the membrane potential of the HS-cell with high
precision over a wide frequency range.

The coherence function as described above was determined in
a subsequent set of experiments on 16 HS-cells and 10 H1-cells,
all recorded in different flies. Figure 3a shows the result as mean
coherence functions for HS- and H1-cells, respectively, together
with the reverse filter calculated for both cell types (Fig. 3b,c). For
HS-cells, the coherence reaches values of ~0.6-0.7 in the fre-
quency range between 0.2 and 10 Hz. Then, it falls off rather
steeply. The respective values for H1-cells are in general lower by
~10-20% in the low frequency range and asymptotic to the ones
of HS-cells at high frequencies. Thus, motion information is
retained in the spike frequency signals of H1-cells with less accu-
racy than in the graded membrane response of HS-cells. This fact
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can be explained by the low spontaneous firing frequency of ~20
Hz found in H1-cells. With a maximum firing rate of up to 250 Hz,
this cell offers a wide dynamic range for visual patterns moving
along the preferred direction of the cell. However, for pattern
motion in the anti-preferred or null direction of the cell, this
dynamic range is compressed into only 20 Hz. Thus, Hl-cells
cannot reliably encode the velocity information for pattern mo-
tion in the null direction. Because we used velocity signals that
were statistically distributed around a mean level of zero, it is not
surprising to find less motion information in the spike train of
H1-cells compared with the graded membrane response of HS-
cells, which can be shifted in both the depolarizing and hyperpo-
larizing direction without leading to any immediate ceiling effects.
Nevertheless, the reverse filter is strikingly similar for both cell
types (compare Fig. 3b,c).

This shortcoming of Hl-cells as neural monitors of image
velocity has already been realized by Bialek and colleagues in
their seminal work on neural coding (Bialek et al., 1991). To
overcome this problem, the authors repeated the original stimulus
in a mirror-symmetrical way, again recorded the spike train of H1,
and combined both signals into a single spike train with positive
and negative spikes (“composite signal”). We also applied this
technique, and the results of these experiments are shown in
Figure 4. In Figure 4a, the stimulus is displayed at the fop.
Beneath that, two scatter plots are shown, one for the original
stimulus and another one for the mirrored stimulus. In can be
readily seen that all gaps left by the spike trains in response to the
original signal are filled by spikes caused by the mirror signal.
When we combined these signals into one containing upward and
downward deflections of unitary amplitude and applied the same
data evaluation as before, the coherence function as shown in
Figure 4b was obtained. For comparison, the coherence function
as obtained from single H1-cells is also plotted (same data as in
Fig. 3). The coherence function using the composite signal is
substantially elevated compared with the one from single H1
signals and becomes as high as the one of HS-cells. Thus, when
the stimulus range is limited to motion along the preferred direc-
tion of the cells, the spiking H1-cell encodes motion information
with about the same accuracy as does the graded membrane
response of HS-cells.

Despite the high levels of coherence found between the stim-
ulus velocity and the neural signals in HS- and H1-cells, there still
remains a gap of at least 20% even in the low frequency range. In
principle, any deviation from a 100% level can be caused by two
different facts: noise and nonlinear encoding. To decide which of
these is the prime reason for the failure to reach a 100% coher-
ence, we calculated the signal (i.e., the mean response) and the
noise spectra in response to repeated stimulus presentations in an
independent set of experiments. These are shown in Figure 5, a
and b, for HS- and H1-cells, respectively, together with the signal
and noise distributions (Fig. 5¢,d). As explained in Materials and
Methods, one can calculate from the signal-to-noise spectra a
coherence function as expected from linear encoding principles.
In other words, given a completely linear system, these are the
expected coherence functions given the particular signal-to-noise
ratios. The expected coherence functions are shown in Figure 5, e
and f. From the same experimental data set in which the signal
and noise spectra were derived, we again calculated the real
coherence functions in the way described before. These functions
are also plotted in the graphs of Figure 5, e and f. As one can see,
noise alone cannot fully account for difference of the measured
coherences and a 100% level. Although the coherence functions
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Figure 4. a, Stimulus waveform and scatter plot of the spike responses of

an Hl-cell to the original (fop 10 lines) and mirror-symmetrical stimulus
(bottom 10 lines). Note complete absence of spikes during those stimulus
periods when the pattern moves into the null direction of the Hl-cell.
These gaps are precisely filled when the direction of the stimulus is
reversed. b, Coherence functions for single Hl-cells and twin pairs of
H1-cells in which the response consists of positive and negative spikes
derived from the original and reversed stimulus periods, respectively. Note
the increased coherence for the composite response. Data represent the
mean * SEM derived from experiments on 10 different H1-cells.

expected from a linear encoding are settled at ~0.9 for frequen-
cies <10 Hz, the neural coherence functions reach only ~0.7,
similar to what has been found in the experiments described
above. The consequence of this finding is that about one-third of
the missing accuracy can be accounted for by the statistical fluc-
tuations inherent in the neural signals, whereas the remaining
two-thirds have to be attributable to nonlinear encoding. This is
true for HS- as well as H1-cells.

The high coherence value found in motion-sensitive neurons
studied here is at first glance amazing, because directionally
selective motion detection is known to be an inherently nonlinear
process (Reichardt, 1961, 1987; Poggio and Reichardt, 1973;
Zaagman et al., 1978; Borst and Egelhaaf, 1989, 1993). In general,
the signals delivered by a motion detector are unlike a speedom-
eter and do not exhibit a linear dependence on stimulus velocity.
Under steady-state conditions, the detector response, R, depends
on the stimulus conditions in the following way:

R = AI® - sin[—0(w)] - sin(2mAg/A). (8)
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This function is shown Figure 6, together with a sketch of the
detector model. The motion detector consists of two subunits, the
output signals of which become subtracted to form the final
response. Within each subunit, the local luminance value is low-
pass-filtered and multiplied with the instantaneous value mea-
sured at a neighboring location. In Equation 8, the variable
denotes the circular frequency, i.e., 27 times the ratio of the
pattern velocity and the spatial pattern wavelength, Al the con-
trast, ®(w) the phase response of the filter, Ap the sampling base
of the motion detector, and A the spatial pattern wavelength.
Using a first-order low-pass filter with a time constant, 7, of 50
msec, the response is maximum for a temporal frequency of
1/(2w7) =~ 3 Hz (Borst and Bahde, 1986), which corresponds to a
pattern velocity of 128°/sec for a pattern with a spatial wavelength
A of 16°. As predicted from correlation type motion detectors, the
steady-state velocity dependence of fly LPTCs as well as of the fly
optomotor response exhibits a maximum at a temporal frequency
between 1 and 10 Hz and declines toward zero for lower and
higher velocities (Gotz, 1972; Hausen, 1982a; Buchner, 1984).

Considering this velocity dependence, it becomes obvious that
for small velocity amplitudes the function can well be linearized
around zero. Thus, it is to be expected that for small stimulus
amplitudes, a fairly linear response behavior can be assumed, and,
as a consequence, high coherence values are to be expected,
mainly limited by the noise of the system. To examine this point,
we studied the velocity encoding in H1-cells again using pseudo-
random stimuli but with various maximum pattern velocities. The
expected coherence functions are shown in Figure 7a. For all
maximum pattern velocities tested, these functions are similar to
each other. This is attributable to a similar signal-to-noise level
found under the various stimulus conditions. The measured co-
herence functions are shown in Figure 7b. These differ from each
other significantly. Highest coherence values are found at the
smallest maximum stimulus velocity. Here, the coherence function
comes closest to the optimal coherence, as expected from the
signal-to-noise ratios, measured in the same experiment. With
higher stimulus velocities, the coherence becomes smaller. Under
these stimulus conditions, the missing coherence must be largely
attributed to nonlinear encoding. Thus, as expected from a direc-
tionally selective motion detection system, the nonlinearity in the
system increases with increasing stimulus amplitudes and leads to
a decreased coherence.

The main conclusion from the experiments described above is
that for small maximum velocities, the motion detection system
reacts in a rather linear way, and therefore, the coherence be-
tween stimulus and response is deteriorated substantially by noise.
Using higher stimulus amplitudes, the nonlinearities of the mo-
tion detection process play an increasingly major role. To study
the response properties of the motion detection process indepen-
dently, we performed a model study in which we simulated an
artificial motion detection system and mimicked the different
experimental conditions as closely as possible. The simulation
consisted of a sine grating (spatial wavelength, 16° 80% contrast)
that was moved using various stimulus waveforms including
pseudo-random stimuli as well as pure sinusoids. Pattern motion
was detected by an array of 32 elementary motion detectors of the
correlation type (sampling base Ap = 1° time constant 7 = 50
msec). Each motion detector was simulated as shown in Figure 6,
inset. The output signals of all 32 motion detectors were spatially
averaged and contaminated by a variable amount of noise. Stim-
ulus and response functions were evaluated using exactly the same
routines that were used for data analysis. Each simulation run
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lasted 4096 msec. Twenty runs were used to calculate the reverse
filter. In the next 20 runs, the estimated stimulus was calculated
from each stimulus. We then determined the gain between the
real and estimated stimuli, which is equivalent to the coherence
function (see Materials and Methods).

Figure 8 summarizes the results obtained from such a simula-
tion using a maximum stimulus velocity of 80°, which corresponds
to a maximum temporal luminance modulation at the input of 5
Hz. In Figure 8a, an example segment of the stimulus and the
response is shown. The response can be seen to follow the stim-
ulus only poorly. Most importantly, the response does not follow
at all fast deflections in the stimulus and, thus, seems to represent
a low-pass-filtered version of the stimulus. In Figure 85, stimulus,
response, and noise amplitude spectra are displayed. The stimulus

cells and 10 H1-cells.

has a flat spectrum and declines at >20 Hz. The response spec-
trum, in accordance with the visual inspection of Figure 8a,
declines at lower frequencies. The noise spectrum used in this
example is rather flat and amounts to 5% of the response ampli-
tude. It should be noted that the response amplitude was deter-
mined after subtraction of the noise. In Figure 8¢, the forward and
reverse gains are shown (see Materials and Methods for more
details). The forward gain represents the spectrum of a low-pass
filter, whereas the reverse filter reveals bandpass characteristics
amplifying the frequency band between 10 and 50 Hz. The im-
pulse responses of the forward and reverse filters are shown in
Figure 8d. Note the simple exponential decay of the forward filter
and the on-off shape of the reverse filter, both properties as
expected from the respective spectra. In Figure 8e, the same
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Figure 6. Nonlinear steady-state velocity dependence of a correlation
type of motion detector. The detector model is shown in the inset and
consists of two mirror-symmetrical subunits, the outputs of which are
subtracted to give the final response. In each subunit, the local luminance
value is low-pass-filtered (t) and multiplied (M) with the instantaneous
value measured at a neighboring location. The response is maximum for a
grating moving at a velocity that results in a temporal modulation of the
input channels of 1/(27r7). Here, the spatial pattern wavelength amounts to
16° and the time constant 7 of the detector is 50 msec.

stimulus segment that was shown in Figure 8a is shown again but
this time together with the estimated stimulus instead of the
original response. The coherence between the stimulus and re-
sponse is shown in Figure 8f, together with the coherence ex-
pected to form a linear system given the signal-to-noise spectrum
used here.

Using this simulation design, we varied the maximum stimulus
velocity from 80 to 640°sec in exponential steps of two and
determined the coherence functions, again using a noise level of
5% of the response amplitude (Fig. 9). The highest coherence is
found for v = 80°/sec, i.e., the smallest velocity. In this case, the
coherence function is almost identical to the coherence function
expected from a linear system. For higher maximum velocities, the
coherence function decreases to values of roughly 60%. This is
similar to what was observed in the experiments (compare with
Fig. 7).

DISCUSSION

In this paper, we investigated the amount of information about
the stimulus velocity inherent in the neural signals of two types of
motion-sensitive interneurons of the fly visual system, the HS-cell
and the Hl-cell. When the cells were stimulated by a dynamic
instead of a step-like velocity profile, we found an amazing reli-
ability in the neural responses (Fig. 1) strongly reminiscent of
what has been described for cortical cells in response to current
injection (Mainen and Sejnowski, 1995) or sensory stimulation
(Bair and Koch, 1996). Calculating the coherence between stim-
ulus and response, we found that HS-cells represent the motion
information with a higher fidelity than do H1-cells. This fact can
be explained by the low spontaneous firing frequency of H1-cells,
which offers only a limited dynamic range for encoding stimulus
motion that inhibits the Hl-cell. When this limitation of the
Hl-cell is compensated for by combining the responses to pre-
ferred and null direction stimuli, both cell types perform in an
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Figure 7. a, Expected coherence functions as determined from the signal
and noise spectra measured in response to four different stimulus spectra
(VI-V4) with the following mean amplitudes in the frequency range
between 0.25 and 30 Hz: V1, 4.4°/sec; V2, 8.7°/sec; V3, 11.2%sec; and V4
14.3°/sec. b, Measured coherence functions as determined from the same
experiments as used in a. Data represent the mean results derived from
experiments on five different H1-cells. The signals of H1-cells consisted of
positive and negative spikes derived from the original and reversed stim-
ulus periods, respectively. Note that in a, expected coherence functions are
virtually identical because of the rather invariable signal-to-noise ratios,
whereas in b, measured coherences decrease substantially with increasing
maximum pattern velocity. The signals of H1-cells consisted of positive
and negative spikes derived from the original and reversed stimulus
periods, respectively.

incredibly similar way. Both HS- and H1-cells reveal an astonish-
ingly high degree of precision by which they encode stimulus
velocity. This surprising finding is explained by the quasi-linear
input—output relationship of the motion-detecting system when
small stimulus amplitudes are used. Accordingly, when using
larger stimulus velocities, the coherence function decreases in
both cell types.

A close look at the forward and reverse filters found by respec-
tive correlations reveals that the best linear filters describing the
transformation from the stimulus into the response and vice versa
are low-pass and bandpass filters, respectively. The forward filter
has been determined previously for Hl-cells in a different way.
Using a brief motion pulse to stimulate the cells, Srinivasan (1983)
and de Ruyter van Steveninck and Bialek (1995) measured the
impulse response of the cell directly. These results agree well with
our findings that a simple low-pass filter represents the best linear
description of the transformation of the stimulus into the cellular
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response. In a noise-free system, the reverse filter should simply
compensate the effect of the forward filter completely and, thus,
be equivalent to a deconvolution. However, because at high stim-
ulus frequencies noise contributes in a significant amount to the
response amplitudes, the reverse filter cuts off this frequency
range and thus turns into a bandpass filter. The reverse filters
found here for HS- and H1-cells are almost identical to each other
(Fig. 3b,¢).

Calculating the optimal filter leading from the stimulus to the
estimated stimulus results in a mathematical expression that is the
product of the Fourier transforms of the forward and reverse
filters and, thus, is identical to the coherence function between
stimulus and response. This coherence equals 1 only for a com-
pletely linear system and under noise-free circumstances. Using

response.

single scalar values of stimulus and response instead of functional
values as is the case here, the coherence can be regarded as
measure of how much all the value pairs x; and y; scatter around
a linear regression line (Theunissen, 1993). The coherence can be
smaller than 1 for two, not mutually exclusive, reasons. First, the
coherence value can be deteriorated by noise, and second, it can
be decreased by a nonlinear coding of the stimulus in the re-
sponse. We have derived an expected coherence for a given
signal-to-noise ratio under the assumption that the noise is addi-
tive to the response and completely independent of stimulus and
response. We found that in both cell types under study, the
suboptimal performance can be attributed in part to the noise and
in part to nonlinear encoding. Which of the two sources domi-
nates depends on the maximum stimulus velocity.
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Figure 9. Expected coherence (exp. from snr) together with the measured
coherence obtained from simulations using four different stimulus spectra
(VI-V4) with the following mean amplitudes in the frequency range
between 0.25 and 30 Hz: V1, 9.1%sec; V2, 18.4%sec; V3, 35.7°/sec; and V4,
72.6°/sec. All other parameters are identical to the ones used for the
simulation shown in Figure 8.

The assumption of additive noise can be critically tested by
measuring the noise with and without stimulation. Here, prelim-
inary experiments revealed that, in accordance with our assump-
tion, the noise spectra are almost identical when the neurons are
stimulated by a moving visual pattern or when the pattern is at rest
(J. Haag and A. Borst, unpublished observations). This is in
partial agreement with measurements on the H1-cell, in which the
noise was found to increase slightly with increasing overall activity
(Warzecha, 1994). In the same study, the reliability of HS- and
H1-cells was compared, too. However, significant differences with
respect to the stimulation and analysis techniques do not allow for
a comparison with the results presented here.

Despite their response characteristic of being graded potential
neurons, HS-cells house various voltage- and ion-gated currents in
their membranes (Borst and Haag, 1996, Haag et al., 1997).
Under certain circumstances, these currents can lead to the gen-
eration of action potentials of variable amplitude in these cells
and have been shown to amplify the neural responses to high-
frequency synaptic input signals (Haag and Borst, 1996). By
additional manipulation of the resting membrane potential via
injection of hyperpolarizing currents of various amounts, these
cells can be turned from the normal mixed response mode into
almost purely spiking cells or, by strong hyperpolarizations, into
purely graded cells. Comparing the information content under
these various conditions, thus, allows us to ask to what degree
these fast membrane processes contribute to more accurate en-
coding compared with a purely spiking or a purely graded re-
sponse mode. Thus, our future work is directed toward the con-
nection between biophysics and coding performance, which
ultimately should lead to a functional understanding of distinct
membrane parameters found in these cells.
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