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Homocysteine Elicits a DNA Damage Response in Neurons That
Promotes Apoptosis and Hypersensitivity to Excitotoxicity
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Elevated plasma levels of the sulfur-containing amino acid ho-
mocysteine increase the risk for atherosclerosis, stroke, and
possibly Alzheimer’s disease, but the underlying mechanisms are
unknown. We now report that homocysteine induces apoptosis
in rat hippocampal neurons. DNA strand breaks and associated
activation of poly-ADP-ribose polymerase (PARP) and NAD de-
pletion occur rapidly after exposure to homocysteine and pre-
cede mitochondrial dysfunction, oxidative stress, and caspase
activation. The PARP inhibitor 3-aminobenzamide (3AB) protects
neurons against homocysteine-induced NAD depletion, loss of
mitochondrial transmembrane potential, and cell death, demon-

strating a requirement for PARP activation and/or NAD depletion
in homocysteine-induced apoptosis. Caspase inhibition acceler-
ates the loss of mitochondrial potential and shifts the mode of
cell death to necrosis; inhibition of PARP with 3AB attenuates this
effect of caspase inhibition. Homocysteine markedly increases
the vulnerability of hippocampal neurons to excitotoxic and ox-
idative injury in cell culture and in vivo, suggesting a mechanism
by which homocysteine may contribute to the pathogenesis of
neurodegenerative disorders.
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The risk for coronary artery disease (Refsum et al., 1998), stroke
(Elkind and Sacco, 1998), and possibly Alzheimer’s disease
(Clarke et al., 1998; Miller, 1999) is increased in individuals with
an elevated plasma homocysteine concentration. Homocysteine is
a metabolite of the essential amino acid methionine. Methionine
plays a key role in the generation of methyl groups required for the
synthesis of DNA, and homocysteine can be either remethylated to
methionine by enzymes that require folate or cobalamin (vitamin
B12) or catabolized by cystathionine B-synthase, a pyridoxine
(vitamin B6)-dependent enzyme, to form cysteine (Finkelstein,
1990; Scott and Weir, 1998). Homocysteine levels vary considerably
among individuals, and reduced dietary intake of folate is associ-
ated with increased homocysteine levels and increased risk for
heart disease and stroke (Giles et al., 1995). In addition, folate
deficiency can cause DNA damage that may result from hypom-
ethylation. Patients with severe hyperhomocysteinemia exhibit a
wide range of clinical manifestations including neurological abnor-
malities such as mental retardation, cerebral atrophy, and seizures
(Watkins and Rosenblatt, 1989; van den Berg et al., 1995). It is not
known whether neurological damage in these patients results from
a direct action on neurons or is secondary to vascular changes.
Moreover, although studies of atherosclerosis suggest a role for
increased oxidative stress in the damage to vascular endothelial
cells by homocysteine (Wall et al., 1980; Starkebaum and Harlan,
1986; Blundell et al., 1996), the cellular and molecular mecha-
nism(s) underlying the adverse effects of homocysteine is
unknown.

Increasing data suggest that neurons may die by a form of
programmed cell death called apoptosis in a range of neurodegen-
erative conditions including Alzheimer’s disease (Su et al., 1994;
Mattson et al., 1999) and stroke (Linnik et al., 1993; Dirnagl et al.,
1999). Although a variety of initiating factors may contribute to
such cell deaths, they appear to involve a shared biochemical
cascade involving oxidative stress, overactivation of glutamate re-
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ceptors, activation of caspases, and mitochondrial dysfunction.
DNA damage has been documented in Alzheimer’s disease and
stroke patients (Love et al., 1998; Torp et al., 1998; Adamec et al.,
1999) and in experimental models of these disorders (Bozner et al.,
1997; Hou et al., 1997). DNA damage in neurons may trigger a cell
death cascade involving activation of poly-ADP-ribose polymerase
(PARP) (for review, see Pieper et al., 1999) and induction of the
tumor suppressor protein p53 (for review, see Hughes et al., 1997).
We now report that homocysteine can induce neuronal apoptosis
and can increase neuronal vulnerability to excitotoxicity by a mech-
anism involving DNA damage, PARP activation, and p53
induction.

MATERIALS AND METHODS

Hippocampal cell cultures and experimental treatments. Primary hippocam-
pal cell cultures were established from embryonic day 18 rat embryos by
the use of methods described previously (Mattson et al., 1989). Dissociated
cells were seeded onto polyethyleneimine-coated plastic dishes or 22 mm
glass coverslips and incubated in Neurobasal medium containing B-27
supplements, 2 mm L-glutamine, 25 ug/ml gentamycin, and 1 mm HEPES
with 0.001% gentamycin sulfate. All experiments were performed with 7-
to 9-d-old cultures, at which time the cultures contain ~90-95% neurons
and 5-10% astrocytes. The neurons in these cultures express both NMDA
and non-NMDA glutamate receptors and are vulnerable to excitotoxicity
and apoptosis induced by various insults (Mattson et al., 1989; Kruman et
al., 1997; Furukawa and Mattson, 1998). Experimental treatments were
added to cultures by dilution into the culture maintenance medium from
concentrated (200-500X) stocks. Homocysteine, glutamate, 3-aminoben-
zamide (3AB), FeSO,, and CuSO, (Sigma, St. Louis, MO) were prepared
as concentrated stocks in sterile water, pH 7.2. Concentrated stocks of
N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk; Cal-
biochem, La Jolla, CA) and 4-hydroxynonenal (Cayman Chemical, Ann
Arbor, MI) were prepared in dimethylsulfoxide.

Assessments of DNA damage, apoptosis, and necrosis. DNA damage was
assessed by the use of the “comet” assay (Trevigen) according to the
manufacturer’s protocol. The comet assay has been shown to be a sensitive
and reliable measure of DNA strand breaks (Morris et al., 1999). To
quantify apoptosis, cells were fixed in 4% paraformaldehyde and stained
with the fluorescent DNA-binding dye Hoechst 33342 as described previ-
ously (Kruman et al., 1997). Hoechst-stained cells were visualized and
photographed under epifluorescence illumination (340 nm excitation and
510 nm barrier filter) using a 40X oil immersion objective (200 cells/culture
were counted, and counts were made in at least four separate cultures/
treatment condition). Analyses were performed without knowledge of the
treatment history of the cultures. The percentage of “apoptotic” cells (cells
with condensed and fragmented nuclear chromatin were considered apo-
ptotic) in each culture was determined. Necrotic neurons were identified by
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increased plasma membrane permeability as indicated by their uptake of
the dye trypan blue, although it should be noted that cells in the late stages
of apoptosis may also exhibit membrane permeability changes that would
allow trypan blue uptake.

Measurement of PARP activity, NAD+ levels, caspase activity, and p53
levels. PARP activity levels were quantified as described previously (Hin-
shaw et al., 1999). Briefly, after experimental treatment, cells were washed
with cold PBS and then incubated in a buffer consisting of 28 mm NaCl, 28
mM KCl, 2 mm MgCl,, 0.01% digitonin, 125 nm NAD, 0.25 uCi/ml
[?H]NAD, and 56 mm HEPES, pH 7.5. After a 5 min incubation at 37°C,
ADP-ribosylated protein was precipitated with 50% trichloroacetic acid
(TCA). After washing with TCA, the protein pellet was solubilized in 2%
SDS in 0.1 m NaOH, and radioactivity was quantified by scintillation
counting. Values were normalized to the protein content. NAD+ levels
were quantified by an enzymatic cycling technique that used alcohol
dehydrogenase from Saccharomyces cerevisiae as described previously
(Bernofsky and Swan, 1973). Briefly, NAD + was extracted by adding cold
HCIO, to the cell cultures. After a 15 min incubation at 4°C, cell extracts
were neutralized by incubation for 15 min with an equal volume of a
solution containing 1 M KOH and 0.33 M KH,PO,, pH 7.5. Samples were
centrifuged at 1500 X g for 5 min. NAD+ levels in the supernatant were
estimated by the use of the NAD+ reaction mixture that consisted of 600
mM ethanol, 0.5 mm 3[4,5 dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide, 2 mM phenazine ethosulfate, 5 mm EDTA, 1 mg/ml BSA, and
120 mm bicine, pH 7.8. The reaction was initiated by addition of 0.1 ml of
alcohol dehydrogenase (0.5 mg/ml in 100 mm bicine, pH 7.8). The reaction
was stopped by adding 12 mm iodoacetate. Optical densities were measured
spectrophotometrically at 570 nm, and values were normalized to the
protein content.

Caspase-3-like protease activity was assessed in cultured neurons by the
use of a method described previously (Mattson et al., 1998) that uses
DEVD, a pseudosubstrate and inhibitor of caspase-3. At designated time
points after experimental treatment, cells were incubated for 10 min in
Locke’s buffer containing 0.01% digitonin. Cells were then incubated for
20 min in the presence of 10 ug/ml biotinylated DEVD-CHO (Calbio-
chem), washed three times with PBS (2 ml/wash), and fixed for 30 min in
a cold solution of 4% paraformaldehyde in PBS. Cells were then incubated

formed. Values are the mean and SD of
determinations made in four cultures.
*p < 0.01 and **p < 0.001 compared with
the basal value (ANOVA with Scheffe post

Time (hr) hoc tests).

for 5 min in PBS containing 0.2% Triton X-100, followed by a 30 min
incubation in PBS containing 5 pg/ml Oregon Green-Streptavidin (Mo-
lecular Probes, Eugene, OR). Cells were then washed twice with PBS, and
images of fluorescence (corresponding to conjugates of activated caspase-3
with DEV D-biotin) were acquired by the use of a confocal laser-scanning
microscope. Levels of fluorescence in neuronal cell bodies were quantified
with Imagespace software (Molecular Probes) as described previously
(Mattson et al., 1998). To measure relative levels of p53, cultures were
immunostained with a p53 antibody (1:2000 dilution of rabbit polyclonal
antibody specific for p53 phosphorylated on serine 15; New England
Biolabs, Beverly, MA) by the use of an indirect immunofluorescence
method. Confocal laser-scanning microscope images of stained cells were
acquired, and relative levels of immunoreactivity (average pixel intensity/
neuron) were quantified as described previously (Mattson et al., 1997).

Measurement of mitochondrial oxyradical levels and transmembrane po-
tential. The dye dihydrorhodamine (DHR), which enters mitochondria and
fluoresces when oxidized by reactive oxygen species (particularly peroxyni-
trite and the hydroxyl radical) to the positively charged rhodamine 123
derivative, was used to measure relative levels of mitochondrial oxyradicals
as described (Mattson et al., 1997). After experimental treatment, cells
were incubated for 30 min in the presence of 10 uM DHR and then were
washed twice in Locke’s buffer. DHR fluorescence was imaged by the use
of a confocal laser-scanning microscope with excitation at 488 nm and
emission at 510 nm, and the average pixel intensity in neuronal cell bodies
was determined with Imagespace software (Molecular Dynamics). All
images were coded and analyzed without knowledge of the experimental
treatment history of the cultures. Mitochondrial transmembrane potential
was assessed by the use of the dye 5,5',6,6'-tetrachloro-1,1',3,3'-tetraet-
hylbenzimidazolocarbocyanine iodide (JC-1) by methods similar to those
described previously (White and Reynolds, 1996). Briefly, cells were incu-
bated for 30 min in the presence of 5 um dye and washed twice with
Locke’s buffer, and fluorescence was quantified by the use of a fluores-
cence plate reader.

Measurement of intracellular Ca** levels. Intracellular free Ca>" levels
were quantified by fluorescence ratio imaging of the calcium indicator dye
fura-2 using methods described previously (Cheng et al., 1994). Briefly,
cells were loaded with the acetoxymethyl ester form of fura-2 (30 min
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incubation in the presence of 10 uM fura-2) and imaged using a Zeiss
AttoFluor system with a 40X oil objective. The average [Ca®"]; in indi-
vidual neuronal cell bodies was determined from the ratio of the fluores-
cence emissions obtained with two different excitation wavelengths (334
and 380 nm). The system was calibrated with solutions containing either no
Ca?" or a saturating level of Ca®" (1 mm) by the use of the formula:
[Caz+]i = Kd[(R - Rmin)/(Rmax - R)](FO/Fs)

In vivo studies. Experiments were performed in 3-month-old male
C57BL/6 mice (25-30 gm body weight) obtained from the National Cancer
Institute. Mice were divided into five groups (6-8 mice/group): saline
control, kainate (0.2 ug) alone, high-dose homocysteine (4.3 ng) alone,
kainate plus low-dose homocysteine (0.43 ng), and kainate plus high-dose
homocysteine. Kainate and homocysteine were administered via stereo-
taxic injection into the dorsal hippocampus by the use of methods de-
scribed previously (Bruce et al., 1996). Briefly, kainate and homocysteine
(1 wl volume) were injected unilaterally into the dorsal hippocampus
(dorsoventral, —1.8; mediolateral, +2.4; and anteroposterior, —2.0 from
bregma) of mice anesthetized with chloral hydrate (350 mg/kg) and
xylazine (4 mg/kg). Twenty-four hours later mice were anesthetized with
halothane and perfused transcardially with saline followed by cold
phosphate-buffered 4% paraformaldehyde. Coronal brain sections were
cut on a freezing microtome and stained with cresyl violet. Nissl-positive
undamaged neurons were counted in three 40X fields in region CA3 of
both the ipsilateral and contralateral hippocampus of each mouse. Counts
were made in five coronal brain sections per mouse (sections were chosen
by unbiased sampling), and the mean number of cells per section were
determined such that the value obtained for each mouse represents an
average total number of neurons counted per section (i.e., sum of six 40X
fields for each hippocampal region). Comparisons of numbers of undam-
aged neurons in hippocampal regions among treatment groups were made
with ANOVA followed by Scheffe tests for pairwise comparisons.

RESULTS

Because the hippocampus is a brain region that can be selectively
damaged in disorders associated with increased homocysteine lev-
els (stroke, epileptic seizures, and Alzheimer’s disease) (Squire
and Zola, 1996; Morrison and Hof, 1997, Houser, 1999), we per-
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formed a series of experiments aimed at establishing whether and
how homocysteine might damage hippocampal neurons. Exposure
of primary hippocampal neurons to homocysteine resulted in ap-
optosis, the time course of which was inversely related to homo-
cysteine concentration (Fig. 1a,b). Whereas 250 um homocysteine
induced apoptosis in nearly all neurons within 28 hr, exposure to
0.5 u™m resulted in delayed apoptosis that became apparent at 4 d
and progressed through 6 d. DNA strand breaks, detected by comet
assay, occurred very rapidly in neurons exposed to homocysteine,
with numerous comet-positive neurons being observed within 1 hr
of exposure to 250 um homocysteine (Fig. 1c,d). Neurons appear
selectively vulnerable to homocysteine-induced apoptosis because
astrocytes and cultured vascular endothelial cells were not killed
during 3-6 d exposures to millimolar concentrations of homocys-
teine (data not shown).

Poly-ADP-ribose polymerase is a DNA repair enzyme selec-
tively activated by DNA strand breaks that catalyzes the addition of
long branched chains of poly-ADP-ribose from its substrate
NAD+ to a variety of nuclear proteins (Pieper et al., 1999). High
levels of PARP activity can decrease NAD+ levels and thereby
deplete ATP resulting in cell death. Homocysteine induced a rapid
twofold increase in PARP activity that occurred within 1-2 hr of
exposure and then subsequently decreased during the next 2 hr
(Fig. 2a). NAD+ levels were significantly decreased within 6 hr of
exposure of neurons to homocysteine and continued to decrease
through 8 hr (Fig. 2b). The PARP inhibitor 3AB completely pre-
vented NAD+ depletion after exposure to homocysteine (Fig. 2c).
By inactivating PARP, cleavage of PARP by cysteine proteases of
the caspase family is believed to play an important role in promot-
ing apoptosis and preventing necrosis (Lazebnik et al., 1994). We

200 .. 140

180 120

100
160

140
120
100

80

80

(% of control)

PARP activity
of control)

40

20

Relative NAD+ Level

(%

140

120

100

of control)
@
g

NAD+ Level
(%
k]

[} 1 2 ] 4 5 6 o 2

Time of exposure to Hom (hr)

Control Hom Hom+3AB

Time (hr)

509

-fluorescence
>
&

20

Caspase Activity

(DEVD

m
8
.
Apoptotic or Necrotic Neurons (%) ®

20

1
Hom

Time (hr)

Figure 2.

f

W Apoptotic 60
@ Necrotic

" amunoreactivity

p53

0 2 4 6

HomszVAD R
Hom+ 345 [0
®

Time (hr)

Hoem+zVAD+3AB {8

Involvement of PARP and caspase activation in the neuronal death induced by homocysteine. a, PARP activity levels were measured in

hippocampal cells at the indicated time points after exposure to 250 uM homocysteine. *p < 0.05 and **p < 0.01 compared with the basal value. b, Levels
of NAD+ were measured at the indicated time points after exposure to 250 uM homocysteine. *p < 0.05 and **p < 0.01 compared with the basal value.
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comparisons used ANOVA with Scheffe post hoc tests.
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found that levels of caspase-3-like protease activity increased sig-
nificantly within 4 hr of exposure of neurons to homocysteine (Fig.
2d). Treatment of cultures with the broad-spectrum caspase inhib-
itor zZVAD-fmk significantly decreased the percentage of neurons
undergoing apoptosis after exposure to homocysteine (Fig. 2e).
However, zZVAD-fmk significantly increased the percentage of neu-
rons that underwent necrosis, consistent with a role for PARP
cleavage in suppressing necrosis and promoting apoptosis. Treat-
ment of cultures with 3AB protected neurons exposed to homo-
cysteine against both apoptotic and necrotic cell death (Fig. 2e),
demonstrating a pivotal role for PARP activation in the cell death
process. Treatment of neurons with 4-amino-1,8-naphtalimide, an-
other PARP inhibitor, also significantly reduced neuronal death
induced by homocysteine (data not shown).

The tumor suppressor protein p53 has been associated with
apoptosis induced by DNA damage and in paradigms of neuronal
apoptosis in which PARP is also involved (Cregan et al., 1999;
Johnson et al., 1999). In addition, recent studies have linked in-
creased p53 levels to neuronal degeneration in several disorders
including Alzheimer’s and Parkinson’s diseases and amyotrophic
lateral sclerosis (de la Monte et al., 1998). Exposure of hippocam-
pal neurons to homocysteine resulted in a significant increase in the
levels of activated p53 (detected by the use of an antibody that
binds selectively to p53 phosphorylated on serine residue 15) that
occurred within 3-5 hr (Fig. 2f), a time course consistent with a
response to the DNA damage that was evident within 1-3 hr of
exposure to homocysteine (Fig. 1d). The increase in p53 activation
was significantly attenuated in neurons cotreated with 3AB. Levels
of p53 immunoreactivity (average pixel intensity per neuron) 6 hr
after experimental treatment were as follows: control, 19 * 7; 250
uM homocysteine, 43 = 7; 5 mMm 3AB plus 250 um homocysteine,
16 = 4 (p < 0.001 compared with the value for neurons exposed to
homocysteine alone); and 5 mm 3AB, 23 *+ 6 (values are the mean
and SD of determinations made in four separate cultures, with
20-30 neurons assessed per culture). These data demonstrate an
important role for PARP in homocysteine-induced p53 activation.

Mitochondrial dysfunction and oxidative stress appear to be
common convergence points in the neuronal death process induced
by many different insults including trophic factor withdrawal, over-
activation of glutamate receptors, ischemia, and exposure to amy-
loid B-peptide (Nicotera et al., 1997; Keller et al., 1998; Dirnagl et
al., 1999; Guo et al., 1999). Levels of mitochondrial oxyradicals,
measured with the probe dihydrorhodamine, increased within 5 hr
of exposure to homocysteine and remained elevated thereafter
(Fig. 3a). Mitochondrial membrane potential, assessed with the
fluorescent probe JC-1, remained constant for 12 hr after homo-
cysteine exposure and then decreased significantly by 15 hr and
remained depressed thereafter (Fig. 3b). When cultures were pre-
treated with 3AB before exposure to homocysteine, levels of
mitochondrial oxyradicals did not increase, and mitochondrial
membrane potential remained constant through at least 18 hr of
exposure (Fig. 3c,d). Collectively, these findings suggest that DNA
damage and PARP activation are early events that are required for
the subsequent oxidative stress, mitochondrial dysfunction, and cell
death induced by homocysteine in neurons. Further supporting a
key role for DNA damage in neuronal apoptosis induced by ho-
mocysteine, exposure of cortical synaptosomes (a preparation that
lacks nuclear DNA) to homocysteine at concentrations up to 2 mm
was found not to impair mitochondrial function (data not shown).

Increased levels of oxidative stress and overactivation of gluta-
mate receptors may contribute to the pathogenesis of several neu-
rodegenerative conditions associated with increased homocysteine
levels including stroke (Dirnagl et al., 1999) and Alzheimer’s
disease (Mattson et al., 1999). To determine whether homocysteine
might render neurons vulnerable to oxidative stress and excitotox-
icity, we exposed hippocampal neurons to homocysteine alone or in
combination with oxidative (Fe>*, Cu®", and 4-hydroxynonenal)
or excitotoxic (glutamate) insults and then quantified apoptotic
neurons 24 hr later. We chose concentrations of these insults that
alone did not significantly increase neuronal apoptosis during the
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Figure 3. Homocysteine induces delayed mitochondrial oxidative stress
and membrane depolarization that require PARP activation. a, Levels of
mitochondrial reactive oxygen species (ROS; DHR fluorescence) were
measured in hippocampal neurons at the indicated time points after expo-
sure to 250 uM homocysteine. **p < 0.01 compared with the basal value. b,
Mitochondrial transmembrane potential (JC-1 fluorescence) was measured
in hippocampal neurons at the indicated time points after exposure to 250
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¢, Levels of mitochondrial ROS were measured 5 hr after exposure to 250
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1 hr with 5 mm 3AB. **p < 0.01 compared with the control value; #p < 0.05
compared with the value for cultures exposed to homocysteine alone. d,
Mitochondrial transmembrane potential was measured 18 hr after exposure
to 250 uM homocysteine in neurons in control cultures and cultures pre-
treated for 1 hr with 10 uM zVAD-fmk alone or in combination with 5 mm
3AB. *p < 0.05 and **p < 0.01 compared with the control value; #p < 0.01
compared with the value for cultures exposed to Hom+zVAD. For each
graph (a-d) the values are the mean and SD of determinations made in four
to six cultures; statistical comparisons used ANOVA with Scheffe post hoc
tests.

exposure period. Homocysteine sensitized neurons to death in-
duced by each of the oxidative insults and by glutamate (Fig. 4a).
The increased vulnerability of homocysteine-treated hippocampal
neurons to excitotoxicity was associated with perturbed Ca®* ho-
meostasis, as indicated by an elevation of basal intracellular Ca?"
concentration and an enhanced Ca”" response to glutamate (Fig.
4b). Treatment of neurons with 3AB primarily prevented the
elevation of intracellular Ca®* levels induced by homocysteine. In
neurons exposed to 250 uM homocysteine for 5 hr the Ca®* level
was 207 = 17% of that of the saline-treated control cultures, in
neurons exposed to 5 mMm 3AB plus 250 um homocysteine for 5 hr
the Ca>" level was 117 = 26% of the control level (p < 0.002
compared with homocysteine alone), and in neurons exposed to 5
mM™ 3AB alone for 5 hr the Ca*" level was 64 + 20% of the control
level (values are mean * SD of determinations made in six cul-
tures; 20-35 neurons analyzed/culture). In addition, treatment of
neurons with the NMDA receptor antagonist MK-801 and the
intracellular Ca®"* chelator BAPTA AM significantly attenuated
neuronal death induced by homocysteine alone or in combination
with glutamate (data not shown).

To determine whether increased levels of homocysteine modify
neuronal vulnerability to excitotoxicity in vivo, we infused either
homocysteine alone or in combination with the seizure-inducing
excitotoxin kainate into the dorsal hippocampus of adult mice.
Although homocysteine alone did not damage hippocampal neu-
rons, it markedly exacerbated kainate-induced damage to CA3
pyramidal neurons (Fig. 4¢,d). In the present experiments, in which
the mice were killed 24 hr after kainate administration, there was
no loss of CA1 neurons under any of the experimental conditions
(data not shown).
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0.01 and **#p < 0.001 versus Homhd.

DISCUSSION

The events in the apoptotic pathway activated by homocysteine
appear to be ordered as follows: DNA damage, PARP activation,
caspase activation and p53 activation, mitochondrial membrane
potential decline, and nuclear disintegration. We found that inhi-
bition of PARP primarily suppressed homocysteine-induced in-
creases of levels of p53, intracellular calcium, reactive oxygen

Hom hd
Hom 1d+KA
Hom hd+KA

species, and caspase activation and also attenuated the decline in
mitochondrial membrane potential. Our data do not establish
whether NAD/ATP depletion can account for the entire cascade of
PARP-mediated neurodegenerative events triggered by homocys-
teine, and further studies in which the energy pathways are selec-
tively manipulated will be required to address this important issue.
Interestingly, caspase activation preceded mitochondrial mem-
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brane depolarization in the cascade of events induced by homo-
cysteine. One possible explanation for this temporal ordering is
that membrane depolarization occurs after cytochrome c release
and caspase-3 activation; this would be consistent with recent
studies showing that cytochrome c can be released without detect-
able depolarization of the mitochondrial membrane (Bossy-Wetzel
et al, 1998; Krohn et al, 1999). A second possibility is that
premitochondrial caspases (Steemans et al., 1998) might be acti-
vated in neurons exposed to homocysteine. A role for p53 in
homocysteine-induced, PARP-mediated neuronal apoptosis is con-
sistent with considerable data implicating p53 in neuronal deaths
that occur in experimental models of excitotoxic and ischemic brain
injury (Sakhi et al., 1996; McGahan et al., 1998; Xiang et al., 1998).

Previous studies have shown that homocysteine is rapidly taken
up by neurons via a specific membrane transporter (Grieve et al.,
1992), a mechanism that results in accumulation of relatively high
concentrations of homocysteine within the cell. Increased levels
of homocysteine in the nucleus of cells may induce DNA strand
breaks by disturbing the DNA methylation cycle (Blount et al,,
1997). In agreement with previous studies of the actions of PARP
in cell deaths resulting from DNA damage in non-neuronal cells
(Nosseri et al., 1994), we found that inhibition of PARP protected
neurons against both apoptosis and necrosis. On the other hand,
suppression of PARP cleavage by treatment of neurons with the
caspase inhibitor zZVAD-fmk shifted the mode of cell death from
apoptosis to necrosis, although our data do not exclude the possi-
bility that, under these conditions, homocysteine can kill neurons
by a caspase-independent apoptotic mechanism. These results sup-
port a model in which caspase-mediated cleavage of PARP pre-
vents ATP depletion, thereby allowing the energy-dependent steps
required for apoptosis. It was reported recently that basal levels of
PARP activity are greater in neurons than in glia and, within the
hippocampus, are greater in dentate neurons than in pyramidal
neurons (Pieper et al., 2000). The latter study also showed that
PAREP is activated in response to glutamate receptor stimulation,
suggesting that differential activation of PARP under excitotoxic
conditions may contribute greatly to selective neuronal vulnerabil-
ity. Consistent with the latter findings, our data suggest a major
role for PARP activation in homocysteine-induced neuronal apo-
ptosis and increased neuronal vulnerability to excitotoxicity.

Neurons have been shown to be more vulnerable to DNA dam-
age than have other cell types. For example, mouse neuroblastoma
cells become extremely sensitive to ultraviolet radiation-induced
apoptosis after terminal differentiation (McCombe et al., 1976),
and neurons are more vulnerable to y-irradiation than are astro-
cytes (Gueneau et al., 1979). We have found that cultured hip-
pocampal neurons are much more vulnerable to homocysteine than
are cultured vascular endothelial cells or astrocytes; the latter cell
types are not killed by homocysteine concentrations up to 10 mm
during a 48 hr exposure period (I. Kruman and M. P. Mattson,
unpublished data). This is in agreement with a previous study
showing that millimolar concentrations of homocysteine are not
toxic to endothelial cells (Outinen et al., 1998). Although it is not
known how homocysteine sensitizes neurons to oxidative stress
and excitotoxicity, one possibility is that the mechanism involves
oxidation of its sulfhydryl group, resulting in production of super-
oxide and hydrogen peroxide (Wall et al., 1980; Starkebaum and
Harlan, 1986; Blundell et al., 1996). Our data suggest that a DNA
damage response is an early event in the apoptotic cascade induced
by homocysteine. However, additional adverse effects on neuronal
physiology may also contribute to the neurotoxic actions of homo-
cysteine. For example, it was reported that homocysteine is a
partial agonist at the NMDA receptor (Lipton et al., 1997).

The normal range of homocysteine concentrations in plasma is
5-15 pM, and levels of homocysteine in CSF and brain tissue are
reported to range from 0.5 to 10 um (Welch and Loscalzo, 1998).
In patients with inherited hyperhomocysteinemia, plasma homo-
cysteine levels reach millimolar concentrations, and CSF levels are
elevated into the low micromolar range (Surtees et al., 1997). We
found that concentrations of homocysteine as low as 0.5 uM can
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induce apoptosis of cultured hippocampal neurons and that homo-
cysteine is particularly effective in sensitizing neurons to excitotox-
icity, both in cell culture and in vivo. These findings suggest that an
endangering action of homocysteine damage may underlie its ad-
verse effects on neurons in the brains of patients with hyperhomo-
cysteinemia. Levels of plasma homocysteine have been found to
increase with age (Andersson et al., 1992; Brattstrom et al., 1994),
possibly as a result of age-related impairment of renal function or
a decline in cystathionine B-synthase activity (Meleady and Gra-
ham, 1998). Moreover, elevated levels of homocysteine are associ-
ated with an increased risk for stroke (Elkind and Sacco, 1998) and
Alzheimer’s disease (Clarke et al., 1998). The latter disorders
involve increased oxidative stress and overactivation of glutamate
receptors (Mattson, 1997; Dirnagl et al., 1999). Our experimental
data showing that homocysteine can sensitize neurons to such
adverse age-related conditions suggest a mechanism by which ho-
mocysteine might contribute to the pathogenesis of neurodegen-
erative disorders and further suggest a mechanism by which dietary
folate may reduce the risk for these disorders (Selhub et al., 2000).
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