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� (30–70 Hz) followed by � (10–30 Hz) oscillations are evoked in
humans by sensory stimuli and may be involved in working
memory. Phenomenologically similar �3� oscillations can be
evoked in hippocampal slices by strong two-site tetanic stim-
ulation. Weaker stimulation leads only to two-site synchronized
�. In vitro oscillations have memory-like features: (1) EPSPs
increase during �3�; (2) after a strong one-site stimulus, two-
site stimulation produces desynchronized �; and (3) a single
synchronized �3� epoch allows a subsequent weak stimulus
to induce synchronized �3�. Features 2 and 3 last �50 min
and so are unlikely to be caused by presynaptic effects. A
previous model replicated the �3� transition when it was as-
sumed that K� conductance(s) increases and there is an ad hoc
increase in pyramidal EPSCs. Here, we have refined the model, so

that both pyramidal3pyramidal and pyramidal3interneuron syn-
apses are modifiable. This model, in a self-organized way, repli-
cates the �3� transition, along with features 1 and 2 above.
Feature 3 is replicated if learning rates, or the time course of K�

current block, are graded with stimulus intensity. Synaptic plas-
ticity allows simulated oscillations to synchronize between sites
separated by axon conduction delays over 10 msec. Our data
suggest that one function of � oscillations is to permit synaptic
plasticity, which is then expressed in the form of � oscillations. We
propose that the period of � oscillations, �25 msec, is “designed”
to match the time course of [Ca2�]i fluctuations in dendrites, thus
facilitating learning.
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The generation of � (10–30 Hz) oscillations in cortical structures
appears to be inextricably linked with the generation of � (30–70
Hz) oscillations. Examples in human EEGs are as follows. (1)
“Evoked” gamma, followed by �, is induced by auditory stimuli
(Haenschel et al., 2000). As in vitro (Doheny et al., 2000), the �
component is strongest in response to novel stimuli, whereas the
� component habituates. (2) �, mixed with �, appears after
exposure to a visual stimulus that needs to be remembered briefly
(Tallon-Baudry et al., 1999). (3) In response to pictures or words,
there is increased temporal /parietal coherence of EEG activity in
the 13–18 Hz band (von Stein et al., 1999).

In vitro models may provide clues to the mechanism and func-
tion of in vivo �/� oscillations. In the CA1 region of rat hippocam-
pal slices, �/� oscillations, lasting seconds, are most readily in-
duced by two-site stimulation (Whittington et al., 1997a). �
requires that the stimulus be sufficiently strong, so that pyramidal
cells and interneurons remain depolarized enough to fire
(Faulkner et al., 1999). Interneurons then continue to fire a
network �, whereas pyramidal cells skip beats, switching to �
frequency, because of increased afterhyperpolarizations (AHPs)
(Whittington et al., 1997a). Pyramidal cells must skip, on average,

the same beats of the underlying �, which is favored by increasing
recurrent EPSPs between pyramidal cells (Whittington et al.,
1997a).

Given that � oscillations in vivo may play a role in working
memory (Tallon-Baudry et al., 1998), it is interesting that in vitro
�/� oscillations have two “memory-like” features, lasting for �50
min (Whittington et al., 1997a). (1) Strong stimulation at a single
site, applied once, has a lasting interference on the ability of
subsequent two-site stimulation to induce synchronous �. (2)
Two-site weak stimulation normally induces only two-site syn-
chronized �, not followed by synchronized �. Nevertheless, if a
single instance of strong two-site stimulation is delivered, which
induces two-site synchronized �/�, then, subsequently, two-site
weak stimulation also induces two-site synchronized �/�. The
long duration of these effects makes it unlikely that they depend
on presynaptic mechanisms.
In this paper, we postulate that excitatory synaptic conductances
modify during the course of an oscillation, a reasonable assump-
tion given the observed Hebbian “learning rules” for CA3 recur-
rent pyramidal3pyramidal and pyramidal3interneuron synaptic
connections in vitro (Debanne et al., 1994, 1998; Laezza et al.,
1999). We use a two-threshold LTP/LTD learning rule (Cormier
et al., 2001) embedded into a large network model of multicom-
partment neurons. Our learning rule does not depend on the
time-order of presynaptic and postsynaptic spiking. Although this
is important in two-cell experiments (Markram et al., 1997; Bi
and Poo, 1998), it does not seem necessary in network oscillations
under the conditions that we consider. The learning rule depends
on presynaptically induced, and postsynaptic voltage-dependent
gCa-induced, [Ca2�]i signals, which decay with time constants in
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the tens of milliseconds up to 100 msec. The model can replicate
both the structure of �/� and, with some additional testable
assumptions, also the memory-like features.

MATERIALS AND METHODS
Simulation methods
The general model principles are as in Traub et al. (1999), with the major
difference that certain synapses (from pyramidal cells to other pyramidal
cells, and to interneurons) are modifiable, in Hebbian fashion, on the
time scale of the oscillations, i.e., tens to hundreds of milliseconds. Such
a network property was motivated by earlier simulations (Bibbig, 1999,
2000) in networks of integrate-and-fire neurons, as well as by certain
recent experimental data (see Results and Discussion). In addition, the
present model has fewer neurons than before (to allow more simula-
tions), and the connectivity is somewhat more realistic.

We chose to use a network model with relatively detailed (multicom-
partment) models of neurons and synapses for these reasons. (1) Past
experience (Traub et al., 1996b, 1999) has shown that detailed models are
the most useful for making specific biological predictions. The results are
easy to compare with electrophysiological recordings, and quantitative
parameters, as they become available, are most readily incorporated into
such models. (2) At the same time, it is our opinion that the conceptual
complexity of the detailed models is not necessarily more extreme than
that of simpler network models (although it can be), despite the vastly
larger number of parameters that go into describing the properties of
“detailed” neurons. Not only are many of these parameters known
experimentally, but the physical principles in the collective behavior of a
network are often no harder to grasp in the detailed model than in the
simpler one. We do believe, however, that there is still an important role
for network simulations using simpler neuron models, such as integrate-
and-fire neurons; it was simulations of such networks that gave rise to
many of the ideas explored in this paper. Even then, it was not obvious
beforehand that learning principles that work in a network of integrate-
and-fire neurons would also work in a more complex network of synap-
tically interconnected multicompartment neurons.

Condensed description of the present model
Overall network structure. The network contains 768 pyramidal cells
(excitatory cells, or “e-cells”) and 384 interneurons (“i-cells”). The
pyramidal cells are arranged into a 96 � 8 array. The long axis has a
lattice spacing of 20 �m, and so 96 � 20 �m � 1.92 mm of extent along
CA1 stratum pyramidale is represented. The interneurons are arranged
in four 96-cell rows, overlapping the e-cell array. Each row of i-cells
represents a type of interneuron, distinguished by its postsynaptic con-
nectivity. When, in Results, we speak of the “left half” and “right half”
of the array, we mean that the array is split into two halves along its long
(96-cell) axis.

Individual neuronal properties; addition of M-current. Each e-cell is a
multicompartment object (64 soma–dendritic compartments and 5 ax-
onal ones), with fast gNa, high-threshold gCa, C-type K � conductance
(voltage and Ca 2�-dependent), delayed rectifier gK(DR), and a slow
Ca 2�-dependent AHP K � conductance, as described in Traub et al.
(1994). As in Traub et al. (1999), the density of gCa has been reduced
twofold with respect to the original model, to suppress bursting, which is
not seen during �/� oscillations. An M-type voltage-dependent K �

conductance has been added, because of its contribution to medium-
duration AHPs and to firing accommodation (Madison and Nicoll, 1984;
Dutar and Nicoll, 1988) and its block, along with slower AHPs, by
metabotropic glutamate receptors (Charpak et al., 1990). M-conductance
was confined to the soma and proximal basal and apical dendrites. In a
particular compartment, the value of the M-conductance was described
by this equation:

gK(M) � scaling constant � �max. gK(DR)� � m. (1)

In Equation 1, m is a Hodgkin-Huxley-like activation variable. The
forward rate function �( V) was, in inverse milliseconds and with V
referred to resting potential (defined as 0 mV), equal to 0.02/(1 �
exp((40 � V )/5)), and the backward rate function �( V) was 0.01 exp
((17 � V )/18). The scaling constant in Equation 1 was time dependent
(see below). [All other kinetic parameters were as in Traub et al. (1994).]

Each i-cell is also a multicompartment object (46 soma–dendritic
compartments and 5 axonal ones), with multiple ionic conductances, as

for e-cells, although without gK(M) (Traub and Miles, 1995). Dendrites
were electrically active (Traub and Miles, 1995; Martina et al., 2000).

[Ca 2�]i dynamics in these model neurons follows a simple first-order
kinetic scheme, with updating of the variables every 0.25 msec (i.e., every
100 integration steps, each of which is 2.5 �sec). Thus, in each compart-
ment, expressing concentration in arbitrary units:

d	Ca2�
i/dt � scaling constant � IC a � 	Ca2�
i/�C a . (2)

In dendritic compartments, �Ca was 20 msec (cf. Miyakawa et al., 1992; B.
Sabatini and K. Svoboda, personal communication) (we call this time
constant “�post”). A similar scheme was used to simulate [Ca 2�]i gener-
ated by presynaptic activity; in the case in which the postsynaptic cell is
a pyramidal cell, this can be thought of as the synaptically mediated
component of spine [Ca 2�]i, although the spines themselves were not
modeled explicitly. Thus, the program checks when an axonal spike
reaches the point of connection between each pair of presynaptic and
postsynaptic cells, allowing for axonal conduction delays. If a spike just
reaches this site, “ICa” was defined to be 1 (units arbitrary) and otherwise
to be 0. Equation 2 was applied at each synaptic connection, using �Ca �
“�pre” � 25 or 100 msec (Koester and Sakmann, 1998). Note that the
model does not simulate, in an explicit way, the effects of metabotropic
glutamate receptors, acting via second messenger pathways, on [Ca 2�]i
(Nakamura et al., 1999, 2000; Pozzo-Miller et al., 2000), but simulates
only voltage-dependent effects. We are assuming, as a first approxima-
tion, that the metabotropic influence produces a tonic background
[Ca 2�]i on which voltage-dependent changes are superimposed.

Synaptic connectivity. Each pyramidal cell contacts exactly 30 others,
forming a contact with a single compartment in basal dendrites; the
probability of connection decreases exponentially with a space constant
of 1 mm along the long axis of the array. Each pyramidal cell contacts
interneurons, again with probability falling off with 1 mm space constant
and with density so that any interneuron was excited by 150 pyramidal
cells. Contacts were to single compartments in the dendrites. [In Traub
et al. (1999), pyramidal cell connectivity was globally random and did not
fall off with distance, but this scheme does not appear to be consistent
with data of Csicsvári et al. (1998).]

As in Traub et al. (1999), each pyramidal cell receives input from 80
interneurons, 20 from the interneurons of the first row (“basket cells”),
20 from interneurons of the second row (“axo-axonic cells”), 20 from
i-cells of the third row (“bistratified cells”), and 20 from i-cells of the
fourth row (“o/ lm cells”). Interneurons receive the same number of
inputs from other interneurons, as do pyramidal cells, with the exception
that interneurons are not contacted by axo-axonic cells. Basket cells
contact uniformly the soma and most proximal dendrites of pyramidal
cells and dendrites of interneurons. Axo-axonic cells contact the initial
segment (most proximal axonal compartment) of pyramidal cells.
Bistratified cells and o/ lm cells contact the dendrites of pyramidal cells
and interneurons. The axons of interneurons are constrained to run no
farther than 25 cell diameters (500 �m) along the long axis of the array;
within this domain, interneuron connection probabilities are uniform.

Synaptic actions. AMPA- and GABAA-receptor-mediated synaptic
connections were simulated. A unitary synaptic conductance was
switched on when (1) the most distal axonal compartment of the presyn-
aptic neuron was depolarized 	70 mV from the rest, and no such
depolarization has occurred in the last 4 msec, and (2) a signal propa-
gated, over a delay line representing axonal conduction delay, from the
axonal compartment to the postsynaptic neuron. The general form of a
unitary e3e synaptic conductance was ce3e t exp (�t/2), where t is the
time in milliseconds, and ce3e is a scaling parameter; for unitary e3i
synaptic conductance it was ce3i t exp (�t). The scaling parameters ce3e
and ce3i depend on learning in a manner described below.

The general form of a unitary IPSC was ci exp(�t/10). Default values
of ci were as follows: basket cell3pyramidal cell, 1.6 nS; basket
cell3interneuron, 2.3 nS; axo-axonic cell3pyramidal cell, 1.6 nS;
bistratified or o/ lm cell3pyramidal cell, 1.6 nS; bistratified or o/ lm
cell3interneuron, 0.23 nS. In simulations of the effects of morphine,
smaller values of ci were used (Madison and Nicoll, 1988).

Stimulation conditions. As before (Traub et al., 1999), oscillations were
evoked by applying tonic “metabotropic” conductances to dendrites of
principal cells and interneurons (Whittington et al., 1997b). The reversal
potential of this conductance was 60 mV positive to resting potentials.
Interneurons received a conductance of 4.0–4.2 nS. For pyramidal cells,
“low heterogeneity” and “high heterogeneity” conditions were used on
different occasions. In the former, the maximum tonic conductance was
75.0–77.5 nS; in the latter, it was 75.0–82.5 nS. In some cases, stimulation

9054 J. Neurosci., November 15, 2001, 21(22):9053–9067 Bibbig et al. • Hebbian Synapses and � Oscillations



was applied only to half of the array. Details are specified in Results. The
tonic excitatory conductance to pyramidal cells was time dependent,
starting at 0 at time 0, rising to its maximum over 100 msec (Whittington
et al., 1997b), staying constant for the next 700 msec, and then declining
linearly with time to 55% of the maximum value, agreeing qualitatively
with experimental data (Whittington et al., 1997b).

Time-varying maximal K � conductances. As in the previous study
(Traub et al., 1999), and as motivated by experimental observations
(Whittington et al., 1997a), certain K � conductances are presumed to be
suppressed at the beginning of the tetanically elicited � oscillation and
then to recover during the course of � and into �. In this study,
time-varying K � conductances were gK(M) and gK(AHP). To define the
value of gK(M) density in each compartment, the scaling constant in
Equation 1 was varied as follows: it was 0.25 for time 
250 msec, grew
linearly with time to 1.3 over the interval 250–1000 msec, and then stayed
at 1.3. To define gK(AHP) density, the reference value as used in Traub et
al. (1994) was used, but it was also multiplied by a time-dependent scaling
constant. This scaling constant was 0.25 for time 
250 msec, usually grew
linearly with time to 1.25 over the interval 250–1000 msec, and then
stayed at 1.25. In some cases, both of the scaling constants grew linearly
with time to 1.3 and 1.25, respectively, over the interval 250–500 msec,
and then stayed fixed.

It should be noted that metabotropic glutamate receptors depress K �

conductances via a G-protein-dependent pathway, whereas the metabo-
tropic slow EPSP is mediated by a G-protein-independent process, in-
volving an Src-family protein tyrosine kinase (Guérineau et al., 1994;
Heuss et al., 1999); thus, these two parameters, EPSC and K � conduc-
tances, in principle could be independently regulated.

Learning. As noted above, e3e synapses and e3i synapses are mod-
ifiable during the course of a simulated oscillation. The general rules for
this modification, which is “Hebbian” in the sense of depending on
correlations between presynaptic and postsynaptic activity, are as
follows.

(1) ce3e and ce3i, the scaling constants for e3e and e3i synaptic
connections, respectively, can assume independent values at each synap-
tic connection, not depending on values assumed at other connections
(apart from the initial conditions).

(2) The program sets initial values and maximum values for the scaling
constants. The minimum values are 0. Initial values are ce3e � 0.3 nS and
ce3i � 1.0 nS. Maximum values are ce3e � 7.5 nS and ce3i � 3.0 nS.

(3) The signals used to “integrate” presynaptic and postsynaptic ac-
tivity, and hence used to determine whether synaptic conductances
increase, decrease, or remain fixed over some time interval, are [Ca 2�]i
concentrations. The “presynaptic” signal can be thought of as a local
[Ca 2�]i signal gated by a presynaptic action potential and might corre-
spond (in the case of a pyramidal cell) to the [Ca 2�]i rise in the spine
induced by presynaptic activity. The “postsynaptic” signal can be thought
of as a localized [Ca 2�]i signal induced by voltage-dependent activity in
the postsynaptic cell, in basal dendrites (for pyramidal cells), or in
selected portions of the dendrites (for interneurons). The equations
governing [Ca 2�]i dynamics were described above. The postsynaptic
signal used was not [Ca 2�]i in the individual dendritic compartment on
which the synapse was located; rather, the total value of [Ca 2�]i was used,
summing over compartments on which excitatory synapses could be
located. This spatial averaging was done to smooth over wide differences
in peak [Ca 2�]i values that could occur at different dendritic locations.
Consideration of each separate [Ca 2�]i signal would have introduced
impractically many parameters into the system, because each dendritic
compartment, in principle, might have needed its own values of the
learning thresholds (see below). In addition, it should be noted that
somatic spikes propagated, in our model, to all compartments in the basal
dendrites with little decrement. We did not explicitly simulate the release
of [Ca 2�]i from internal stores or the actions of metabotropic glutamate
receptors on [Ca 2�]i dynamics.

(4) Learning began 175 msec into the simulation, to allow equilibration
of the system.

(5) The learning code was executed once per millisecond. It used a
two-threshold rule formally similar to (but not identical to) that used by
other authors (Bienenstock et al., 1982; Artola et al., 1990). Thus, fixed
postsynaptic and presynaptic thresholds were set at the beginning of the
program, Tpost and Tpre, equal to 75 and to 1.0, respectively (units
arbitrary). If both presynaptically gated and postsynaptic [Ca 2�]i signals
were above their respective threshold values, then the appropriate scaling
constant was increased by a preset “up” value. If one of the [Ca 2�]i
signals, but not the other, was above its respective threshold, then the

appropriate scaling constant was decreased by a preset “down” value. If
both [Ca 2�]i signals were below the respective thresholds, then the
scaling constant was not changed. Specific choices most often used for the
up and down values were these: ce3e up, 18.75 pS; ce3e down, 1.875 pS;
ce3i up, 6.0 pS; ce3i down, 0.6 pS. Other choices were also tried,
particularly when the time constants for relaxation of [Ca 2�]i were
varied. Suitable values for Tpost and Tpre were found after extensive trial
simulations.

(6) An alternative learning rule was sometimes used for e3i synaptic
modification, intended to emulate use-dependent removal of polyamine
block of AMPA receptors (Rozov et al., 1998). In this case, opening of
AMPA receptors on interneurons, induced by transmitter binding, leads
to detachment of a molecule from the receptor, a molecule the presence
of which would lower channel conductance. The binding of the transmit-
ter, glutamate, is determined, of course, by presynaptic firing. Thus, the
presynaptic signal to be used in the learning rule does not correspond to
synaptically induced changes in [Ca 2�]i but rather to the extent of
AMPA receptor-gated channel opening. The signal was constructed
formally in the same way as described above (Eq. 2 and after), only with
a decay time constant of 1 msec rather than 25 msec, approximating the
kinetics of AMPA receptor-gated conductance in interneurons (Geiger
et al., 1995). Specifically, let us call the presynaptic signal in the present
case “AMPA-gated.” Then:

d	AMPA-gated
/dt � scaling constant � IC a,pre � 	AMPA-gated
. (3)

As for the usual learning rule, ICa,pre equals 1 when a spike reaches the
presynaptic terminal and otherwise is 0.

In such a case, when polyamine block at e3i synapses is being
simulated, the learning parameters were changed: Tpre was set to 0.1
(because the channel is open now only a small fraction of the time, and
a low threshold is necessary for potentiation to occur at all), and Tpost was
set to 0, making synaptic modification solely dependent on presynaptic
firing, i.e., on glutamate release (Rozov et al., 1998). ce3i up was 15 pS,
and ce3i down was 0.3 pS. (Note that the presynaptic signal is not
identical in time course to a unitary EPSC, but with synaptic modifica-
tions occurring only once per millisecond, it is accurate enough for our
purposes.)

(7) We did not try an analogous presynaptic learning rule for synapses
between pyramidal cells for two reasons. First, [Ca 2�] imaging data
(Yuste and Denk, 1995) are consistent with a Hebbian mechanism.
Second, the effects of intense tissue stimulation on oscillations, effects
that appear to be mediated at least in part by changes in synaptic
strength, last for tens of minutes (Whittington et al., 1997a); this makes
a presynaptic mechanism unlikely.

Some relevant characteristics of the learning algorithm, for the case
�pre � 25 msec and �post � 20 msec, are shown in Figure 1. Of note are
several features. First, the time constants of [Ca 2�]i decay in the model,
20–25 msec, are taken to represent what we presume to be the fastest
decay time constant of this signal in dendrites (Miyakawa et al., 1992;
Sabatini and Svoboda, personal communication); other, slower time
constants are also present (Koester and Sakmann, 1998; Majewska et al.,
2000; Schwartz and Alford, 2000). [In some cases, therefore, we also used
�pre or �post (or both) � 100 msec at e3e connections.] Second, the
fraction of time that a [Ca 2�]i signal spends above threshold is influ-
enced by firing rate (compare, for example, the � and � portions of the
simulation); learning here thus is influenced by oscillation period, as well
as by details of synchronization. Learning will be influenced, in addition,
by “beat-skipping”; for instance, if the postsynaptic cell fails to fire on a
peak of a particular � wave, then the postsynaptic dendritic [Ca 2�]i signal
will be severely attenuated. This occurs because the model voltage-
dependent calcium conductance, in basal dendrites, closely follows the
depolarization induced by the somatic action potential; the latter readily
and faithfully propagates into the basal dendrites of model pyramidal
neurons. [The reader will recall that recurrent pyramidal3pyramidal
synaptic connections, in CA1, are largely in the basal dendrites (Deu-
chars and Thomson, 1996), and that is where pyramidal cell learning is
presumed to occur during tetanic CA1 �/� (Faulkner et al., 1999; Traub
et al., 1999).] Finally, in thinking about the results, the reader must
constantly have in mind axonal conduction delays in the system, which in
some of our simulations are �10 msec. It is the correlation between
[Ca 2�]i signals at postsynaptic dendrites and presynaptic terminals (not
presynaptic cell bodies) that controls synaptic conductance changes;
depolarization at the presynaptic terminal can be delayed by more than
half a � cycle from the action potential at the presynaptic soma. This
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important detail is different from the learning schemes used in many
connectionist models.

As noted above, experimentally, e3i potentiation can also occur by
activity-dependent removal of polyamine block, in AMPA receptors
lacking GluR-B (GluR2), i.e., in AMPA receptors of a sort often found
in interneurons (Geiger et al., 1995). This phenomenon is Hebbian in
that it requires presynaptic activity, whereas it is being expressed
postsynaptically (Rozov et al., 1998). On the other hand, removal of
polyamine block occurs faster at hyperpolarized membrane potentials in
the postsynaptic neuron than at depolarized potentials (Rozov et al.,
1998). Therefore, it was considered necessary to examine this type of
learning in the model as well. Note that Rozov et al. (1998) described
conductance increases, with 33 Hz stimulation, up to �38% in homo-
meric GluR-B(Q) channels expressed in human embryonic kidney cells.

We did not use learning at inhibitory synapses in this model [see,
however, Bibbig (1999, 2000)]. [Changes in i3e synaptic connections are
difficult to document experimentally during the course of �/�. For ex-
ample, isolation of IPSPs requires blockade of AMPA receptors, but
block of AMPA receptors prevents the � portion of the oscillation from
occurring in a normal way (Traub et al., 1999).] We did not attempt to
model the decay of synaptic potentiation. On the one hand, we lack the
quantitative data to do so; on the other hand, the decay time constants
are likely to be minutes or longer, and it is only practical for us to
simulate a few seconds of neuronal activity, at most.

Axon conduction delays. Pyramidal cell axons conducted at 0.5 mm/
msec, and interneuron axons conducted at 0.2 mm/msec. Thus, the
maximum conduction delay for excitation across the array was 3.84 msec.
In some simulations, the array was split in two, imposing an extra
conduction delay (up to 20 msec) for axons crossing the midline (cf.
Kopell et al., 2000).

Noise. Noise was simulated, as before (Traub et al., 1999), with ectopic
spontaneous axonal action potentials, originating by independent Pois-

son processes, with the average interval at 10 sec in e-cell axons and 5 sec
in i-cell axons.

Signals saved and data analysis. The program saved voltages of selected
cells (soma, dendrites, terminal axon), [Ca 2�]i signals, and synaptic input
conductances. It saved, in addition, e-cell spatial averages (56 cell so-
mata) and i-cell spatial averages (28 cell somata), one average from
either end of the array. The average signals are presented both as raw
data, and in auto- and cross-correlations, the latter using 200–800 msec
of data. Average values of synaptic scaling constants, ce3e and ce3i, were
also saved. These data were saved either as averages regardless of relative
position of presynaptic and postsynaptic cells or as averages over the four
cases in which presynaptic or postsynaptic cells lay in left versus right
halves of the array.

Data base, run times, programming, and systems aspects. After numer-
ous preliminary simulations, mostly aimed at defining parameters of the
learning rule, a data base of �120 simulations was accumulated. Code
was written in FORTRAN augmented with extra instructions for a
parallel computer and run on an IBM SP2 machine with 12 processors.
A typical 2 sec simulation took �6 hr to run. For details on programming
aspects, contact rtraub@netmail.hscbklyn.edu.

Experimental methods
Transverse dorsal CA1 hippocampal slices 400–450 �m thick were pre-
pared from brains of Sprague Dawley rats (200–250 gm), which were
killed by cervical dislocation followed by decapitation. Slices were main-
tained at 34–35° at the interface between warm, wetted 95% O2–5% CO2
and artificial CSF (ACSF) containing (in mM): NaCl 135, KCl 3,
NaHCO3 16, NaH2PO4 1.25, CaCl2 1.5–2, MgCl2 0.8, D-glucose 10.

Oscillations were evoked with tetanic stimuli delivered to proximal
stratum radiatum at two sites simultaneously (CA1a and CA1c; separa-
tion 1.5–2.5 mm). Two types of experiments were performed. In the first,
fast-spiking interneurons were impaled at the level of stratum pyramidale
at one site, with tetani consisting of eight stimuli delivered at 100 Hz.
Recording electrodes (40–90 M�) were filled with 2 M potassium acetate
or potassium methylsulfate. In the second, both stratum pyramidale and
distal stratum oriens field potentials were recorded at one or both sites,
with tetani consisting of 20 pulses at 100 Hz. Recording electrodes (0.5–1
M�) were filled with 2 M sodium chloride.

RESULTS
EPSP amplitudes increase in interneurons during the
course of tetanically elicited �3� oscillations
In Whittington et al. (1997a), two cellular phenomena were
documented as taking place, simultaneously, during the transition
from � to � frequencies in tetanically induced oscillations: an
increase in apparent spike AHPs and an increase in AMPA-
receptor-mediated EPSPs in pyramidal cells. Figure 2, A and B,
shows that compound EPSPs also increase in interneurons under
the same conditions. The EPSPs in interneurons during � are
broader, with an apparent multicomponent structure, than the
EPSPs during �; in control simulations, phasic AMPA receptor-
mediated excitations also become broader during � as compared
with �. The increase in interneuronal EPSPs in the oscillating
slice stands in contrast to the depression of interneuronal EPSPs
often seen in the resting slice, when a single presynaptic pyrami-
dal cell is induced to fire repetitively (Ali et al., 1998).

Figure 2, C and D, again documents the increase of field EPSPs
(extracellular potentials corresponding to synchronized EPSPs in
many nearby neurons, measured in stratum oriens) during the
course of �/�. Figure 2 emphasizes that this increase occurs
despite the fact that population spikes, in stratum pyramidale, are
not larger in � compared with �; thus, the growth in field EPSPs
is not a simple byproduct of increased synchronization, or in-
creased firing, of pyramidal neurons (cf. Faulkner et al., 1999;
Traub et al., 1999).

Categories of simulations
Most of the simulations performed fell into two categories. In the
first category (“Category 1”), we fixed �pre at 25 msec, for con-

Figure 1. Example of fluctuations in [Ca 2�]i signals during the course of
a simulated network oscillation (same simulation as Fig. 3). The entire �
and a portion of the � oscillation are shown. Top traces, Signals from a site
in the basal dendrites of pyramidal cell 1. Thick trace is the local [Ca 2�]i
signal (units arbitrary), and thin trace is the postsynaptic voltage at the
same site (action potentials truncated; the amplitude of action potentials
at this site is �60 mV depolarized from rest). Note the subthreshold
voltage fluctuations between full action potentials, during �. Middle trace,
Total [Ca 2�]i signal in pyramidal cell 1 (units arbitrary); horizontal line
through this trace shows the postsynaptic learning threshold, Tpost. Bottom
trace, A presynaptic [Ca 2�]i signal at a synapse located at the same site in
the basal dendrites of pyramidal cell 1; horizontal line through this trace
shows the presynaptic learning threshold, Tpre. Decay time constants are
�post � 20 msec (dendritic voltage-induced signal) and �pre � 25 msec
(presynaptically induced signal) of the same order as the period of the �
oscillation.
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nections onto either e-cells or i-cells; Tpost was a positive number
(75.0) in both e-cells and i-cells. This is, so to speak, “strictly
Hebbian.” In the second category (“Category 2”), we set �pre at
100 msec for e3e connections (Koester and Sakmann, 1998), and
we set it at 1 msec for e3i connections (Rozov et al., 1998). Tpost

in pyramidal cells was the same as in the first category, but was set
to 0 in interneurons. Thus, simulations in the second category use
learning at excitatory connections onto pyramidal cells that is
formally Hebbian, but with a longer presynaptic time constant
than in the first category. Additionally, in the second category,
excitatory connections onto interneurons learn by a process re-

sembling removal of polyamine block. Learning rates at the
different sorts of synapses were adjusted accordingly. The first
category of model can replicate virtually all of the experimental
data, and for most of the figures below, we illustrate examples
chosen from the first category of model. Nevertheless, as noted
below, the second category of model can also replicate many of
the data.

We also used further variations of these cases, by altering �pre

or �post in different combinations. These variations are noted in
the text.

Learning can lead, in cooperation with increasing K�

conductances, to an organized �3� transition
The mechanistic idea on the �3� transition proposed in Traub et
al. (1999) was this: tetanic stimulation evokes � oscillations, in
which both pyramidal cells and interneurons participate and in
case two sites are stimulated, with interneuron doublets stabiliz-
ing the synchrony between sites (Traub et al., 1996b; Whittington
et al., 1997b). The oscillation is primarily gated by IPSPs, both in
pyramidal cells and in interneurons. If the stimulus is strong
enough to produce a long-lasting depolarization (Faulkner et al.,
1999; Whittington et al., 2001), interneurons remain excited
enough to generate a long-lasting � oscillation, whether or not the
pyramidal cells are firing (Whittington et al., 1995; Traub et al.,
1996a), so-called “ING” (interneuron network �). As AHP con-
ductance(s) increase in pyramidal neurons, the latter become
unable to follow the interneuron oscillation cycle by cycle and
skip beats, so that pyramidal cells fire at � frequency, even as
interneurons continue to fire at � frequency (more accurately, to
fire singlets, doublets, or brief bursts at � frequency). Hence,
increases in AHPs can account for � phenomenology, at least in
individual pyramidal cells. Nevertheless, AHP increases, by
themselves, do not account for what happens in the whole system:
without coupling between the pyramidal cells, different pyramidal
cells would tend to skip beats in a manner only loosely coupled
together, a “disorganized” �. The increases in pyramidal cell
EPSPs that also occur, however, introduce correlations between
which ING cycles are skipped by the different pyramidal cells and
help to lead to an organized �. This idea works, so far as it goes,
both in detailed network simulations (Traub et al., 1999) and in
reduced models that can be analyzed more rigorously (Kopell et
al., 2000).

There is no obvious reason to think that the AHP increases are
“self-organized” (that is, dependent on communication between
cells in the network). It is possible, however, that the EPSP
increases are self-organized, given that (1) Hebbian-type synaptic
plasticity exists between hippocampal and cortical neurons (Stan-
ton and Sejnowski, 1989; Debanne et al., 1994, 1998; Ouardouz
and Lacaille, 1995; Markram et al., 1997; Laezza et al., 1999;
Dragoi et al., 2000) and (2) metabotropic receptors (known to be
critical for inhibition-based � rhythms (Whittington et al., 1997b,
2001), intrinsic membrane properties, and phasic synaptic inputs
together interact to give supralinear increases in dendritic
[Ca2�]i signals, thus providing a possible physical substrate for
Hebbian synaptic plasticity (Christie et al., 1996; Emptage et al.,
1999; Nakamura et al., 1999, 2000; Normann et al., 2000; Perez et
al., 2000, 2001). There is also in vivo evidence that metabotropic
glutamate receptors are important for functional learning, al-
though the cellular mechanisms are not clear (Balschun et al.,
1999).

For these reasons, we allowed maximum gK(M) and gK(AHP)

conductances to increase in a prespecified time-dependent man-

Figure 2. Compound EPSPs grow in both interneurons and pyramidal
neurons during the course of tetanically evoked �/�. A, Intracellular
recording of EPSPs in an interneuron, hyperpolarized to �70 mV by
current injection (�0.3 nA). Example traces show pattern of EPSPs
during the initial � component of the post-tetanic response and the later
� component. Calibration: 100 msec, 5 mV. B, Example trace of EPSPs
recorded from the beginning of the post-tetanic response to the beginning
of the � oscillation, in an interneuron held at �70 mV. Calibration: 100
msec, 5 mV. Graph shows pooled data from five interneurons with mean
(�SEM) EPSP amplitudes for each of the first 20 periods of the post-
tetanic response. C, Example of field EPSPs recorded in stratum oriens.
Trace shows response from the end of the tetanic stimulation to the
beginning of the � oscillation. Graphs shows pooled data, expressed as
mean (�SEM; n � 4) amplitude of the field EPSP for each of the 20
periods of oscillation. D, Growth of field EPSPs is not an artifact of
growth of population spikes. Traces recorded concurrently in stratum
oriens (top traces) and stratum pyramidale (bottom traces) during the
initial �-frequency oscillation and the later �-frequency oscillation. Cali-
bration: 100 msec, 2 mV.
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ner (see Materials and Methods), similar to our earlier study
(Traub et al., 1999), but, we let e3e and e3i synapses modify,
cooperatively, as described in Materials and Methods. Figure 3
demonstrates that, at least with certain initial conditions and
learning parameters, a realistic-appearing �/� oscillation still can
occur. In particular, e-cell � occurs when i-cells continue to form
an oscillation at � frequency, so that beat-skipping during � takes
place (Fig. 3A, asterisk). Both � and � portions of the oscillation
are synchronized (Fig. 3B). The slowing of � before the “switch”
to � at time �900 msec (Fig. 3C) is seen experimentally (Whit-
tington et al., 1997a). The increase in e3e and e3i conductances,
depicted in Figure 3D, allows interneuron singlets to switch to
(mostly) doublets (Fig. 3A, d) during �, as often occurs experi-

mentally (M. A. Whittington, unpublished data), and the increase
in conductances provides enough coupling between pyramidal
cells to allow long-range synchrony of �. Once � is established,
further increases in synaptic conductances stop, in this simula-
tion. This is a result of the relatively reduced e-cell firing rate
during �, with consequent reduction of [Ca2�]i signals to levels
that are most often below threshold for synaptic conductance
increases. Note that spike AHPs increase from � to � (Fig. 3A,
arrowheads). Analysis of the GABAA conductance to this pyra-
midal cell (data not shown) indicates, however, that part of this
increase is actually attributable to rises in synaptic inhibition: not
growth of unitary IPSCs, an effect not included in this simulation,
but rather a reflection of interneuron doublets and, during �, an
occasional triplet.

Figure 3 illustrates another interesting feature: there is a period
of a few hundred milliseconds in which interneurons do not fire
doublets (doublet firing begins at approximately t � 275 msec),
and yet � is synchronized, at least transiently [because � syn-
chrony without doublets is not stable (Ermentrout and Kopell,
1998)]. The � cross-correlation of Figure 3B uses data from t �
100–300 msec. Once doublet firing begins, the oscillations slows,
as expected, and remains synchronized (data not shown), also as
expected (Traub et al., 1996b).

e3i plasticity influences the number of interneuron doublets
during � and the tightness of synchronization, whereas e3e
plasticity has little effect
With the same parameters as in Figure 3, but without e3i
plasticity (data not shown), the period of � from 100 to 300 msec
had only a small (1.5 msec) lag in the cross-correlation of e-cell
signals, but with few doublets occurring during any portion of �;
the period of � from 300 to 500 msec had a cross-correlation that,
although possessing a central peak near 0 (�0.6 msec), had
multiple small side peaks. (The corresponding cross-correlation
for the simulation of Fig. 3 was narrow and had a single small side
peak.) � phenomenology was similar to the case of blocked e3i
plasticity, when e3e plasticity was also blocked (data not shown).

Simulations with the second category of model (defined above)
were also able to replicate �/� oscillations, which had an appear-
ance quite similar to that in Figure 3 (Fig. 4).

Effects of altering �pre or �post

We tried the second category of model (that is, e3i learning
depends on polyamine unblocking) with different combinations of
pyramidal cell �pre and �post. With �pre � 100 msec and �post � 20
msec, we have the usual second category case, described above.
Setting both parameters to 100 msec led to a case in which there
was a large slow envelope of the [Ca2�]i signal in basal dendrites,
making it impossible to select a fixed learning threshold, so that
increases in EPSC amplitudes would not take place continuously.
As a result, pyramidal cell doublets would occur quickly (data not
shown), contrary to experimental observations. On the other
hand, with �post � 100 msec and �pre � 25 msec, �/� occurred that
resembled the case of Figure 3, but with certain important details
disagreeing with the experiment. For example, it was not possible
to chose the learning threshold Tpre so that no pyramidal cell
doublets would occur during � and still have enough learning for
synchronized � to occur (data not shown). These data suggest,
therefore, that one or the other [Ca2�]i decay time constants, but
not necessarily both, should have a value similar to the � oscilla-
tion period; furthermore, at least in our hands, the model results
were most realistic when it was �post that had a value close to the

Figure 3. Simulated �/� oscillation (category 1 model). A, Simultaneous
traces showing local averages of e-cell voltages (from either end of the
array), an e-cell (pyramidal cell) soma, the total AMPA conductance
delivered to that e-cell, an i-cell (interneuron), and the total AMPA
conductance delivered to that interneuron. Asterisk indicates underlying
subthreshold � during �; arrowheads under the e-cell trace emphasize the
growth of pyramidal cell AHPs (partly reflecting synaptic conductances)
from � to �. d is the first doublet generated by the interneuron, and s
indicates a singlet amid the doublet firing. B, Superimposed auto- and
cross-correlations of average e-cell signals, from � and � portions of the
oscillation. Note the presence of low-amplitude � activity in the � corre-
lations. C, Instantaneous frequency plot, calculated from local average
e-cell signal at one site (cf. Whittington et al., 1997a). D, Average unitary
synaptic scaling factors, for e3e and e3i synaptic connections, showing
the time course of learning through the evolution of the oscillation.
Virtually all of the learning takes place during �. These signals were
averages of excitatory synaptic connections on 64 e-cells and 32 i-cells.
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� oscillation period. Recall that the time constants of postsynaptic
[Ca 2�]i decay in the model, 20–25 msec, are taken to represent
what we presume to be the fastest decay time constant of this
signal in dendrites (Miyakawa et al., 1992; Sabatini and Svoboda,
personal communication).

Initial synaptic conditions could be important in
determining whether organized � occurs
There is an interesting experimental observation on � that may
be related to memory: smaller tetani evoke �, which can be
synchronized between two sites, but not �, or at least not � that
is synchronized between sites (Whittington et al., 1997a; Traub et
al., 1999). Nevertheless, despite this, a single strong stimulus,
evoking two-site synchronized �, allows future weaker stimuli to
evoke two-site synchronized �. This observation might be ex-
plained by two assumptions, both testable in principle: (1) the
learning rates in the system increase with the strength of stimu-
lation, an idea consistent with observations that metabotropic
glutamate receptors both influence synaptic plasticity (Bortolotto
et al., 1999) and also exert a cooperative effect with phasic

synaptic inputs and dendritic gCa in regulating [Ca2�]i (Naka-
mura et al., 2000), and (2) a single two-site-synchronized � epoch
leaves excitatory synapses potentiated above their baseline values.
The simulations in Figure 5 were undertaken to test the feasibility
of this idea.

Figure 5 illustrates effects of learning parameters and of initial
synaptic conductances. Figure 5A shows a simulation identical to
that of Figure 3, except that the learning rates have been reduced
50%; that is, the up and down increment values have all been cut
in half. In this case, e3e connections do not become as strength-
ened as in Figure 3. Compare the AMPA conductance in an
e-cell in Figure 5A with the AMPA conductance in the same
e-cell in Figure 5B, which uses the same data as Figure 3. (Note

Figure 4. The �/� transition can also be replicated when e3i learning
simulates the removal of polyamine block (category 2 model) (cf. Rozov
et al., 1998). The conditions of this simulation are the same as in the run
of Figure 3, except that some of the [Ca 2�]i dynamics and learning
parameters were altered: �pre for e3e connections was increased from 25
to 100 msec, and for e3i connections was reduced from 25 to 1 msec
(corresponding approximately to the open time of interneuron AMPA
receptors). In interneurons, Tpost , the postsynaptic learning threshold, was
set to 0, making learning at e3i connections entirely dependent on
presynaptic activity, even as the learning is expressed postsynaptically.
Finally, learning rates at e3i connections were adjusted, as described in
the learning section of Materials and Methods. The traces in A–D corre-
spond to those in Figure 3.

Figure 5. � can evolve into an “organized” (i.e., long-range synchro-
nized) � rhythm, if the learning rate is fast enough, or with a slower
learning rate, if combined with elevated initial excitatory conductances.
Traces on the lef t are, respectively, average e-cell voltages from either end
of the array (designated here V1 and V2) and the total AMPA conduc-
tance received by a selected e-cell. Traces on the right are cross-
correlations of the last 800 msec (in 2 sec runs) of V1 and V2 , time periods
during which � would be expected to occur. A, Case in which learning
rates are slow for e3e and e3i conductances, that is, half the usual values
(see Materials and Methods). There is some rise in AMPA conductances
during �, and each side develops its own � rhythm, but in the absence of
sufficient excitatory coupling, the sides produce � that is out of phase
(double-headed arrow) (cf. Traub et al., 1999). The cross-correlation has
its major peaks at � frequency. B, With the usual learning rate, AMPA
conductances increase more than in A. � between the two sides is
correlated, and the major side peak in the cross-correlation is at 77 msec
(13 Hz). C, The learning rates are slow, as in A, but initial values of e3e
and e3i conductances are elevated above their usual values (but not so
much that e-cell doublets occur during � or that i-cell doublets occur
immediately). Note the horizontal arrows at the start of the AMPA signals.
Again, � between the two sides is correlated, and the cross-correlation is
similar to that in B.

Bibbig et al. • Hebbian Synapses and � Oscillations J. Neurosci., November 15, 2001, 21(22):9053–9067 9059



also that the AMPA conductance stays smaller in Fig. 5A than in
5B, even before � has started, so that the reduced AMPA size in
the � portion of Fig. 5A is not simply a consequence of reduced
synchrony.) The � part of the simulation in Figure 5A is synchro-
nized (phase differences 
1.5 msec; data not shown), and � can
develop at each individual site, because of the time-dependent
growth in K� conductances. Nevertheless, because of the small
e3e coupling present when � is starting, the two ends of the array
do no oscillate in stable synchrony; indeed, our simulations
showed an anti-phase oscillation (double-headed arrow).

The simulation of Figure 5A, using the slowed learning rates,
was then repeated (Fig. 5C), but now with higher initial unitary
e3e conductance (5�; note horizontal arrows on the lef t of the
figure showing initial excitatory conductances “seen” by a se-
lected e-cell) and higher initial unitary e3i conductance (1.25�).
In this case, excitatory conductances become potentiated enough
that � can synchronize between the two sides, as shown in the
cross-correlation on the right. The higher initial excitatory con-
ductances come at a price, however: � is now not organized as
well, the cross-correlation (data not shown) containing a split
peak instead of a single sharp peak near 0 msec. Maxima of this
split peak were at �6.6 and �3.4 msec, for data from 100 to 300
msec after the start of the oscillation. Such a “disorganizing”
effect on � appeared to be caused by the appearance of interneu-
ron doublets at one site before the other site, followed by alter-
nating singlets and doublets at each site, with the patterns out of
phase between the two sites. Other data (Fuchs et al., 2001)
suggest that excessively prolonged AMPA receptor-mediated ex-
citation of interneurons can actually be detrimental to � syn-
chrony. When initial unitary e3e conductances were too large,
pyramidal cell doublets occurred during � (data not shown),
something observed only rarely experimentally (H. J. Faulkner
and M. A. Whittington, unpublished data). Therefore, there is a
constraint on how large initial excitatory conductances can be.

In summary, Figure 5 shows that lasting effects on EPSPs,
produced by an oscillatory epoch containing �, along with
stimulus-dependent learning rates, could explain the experimen-
tal observations outlined at the start of this section. There is,
however, another means to produce the results shown in Figure 5.
This is to suppose that a weak stimulus allows the AHP conduc-
tance to return to baseline faster than does a strong stimulus; such
an idea is also consistent with experimental observations on the
suppression of the AHP conductance by metabotropic glutamate
receptor activation (Charpak et al., 1990), although to our knowl-
edge a dose–response curve has not been determined for the
duration of AHP suppression versus metabotropic activation.
Thus, when the simulations of Figure 5, A and C, were repeated,
with the AHP recovering over the interval from 250 to 500 msec,
as compared with the usual 250–1000 msec (used in Fig. 5A, and
other simulations in this paper), then we observed the following.
With synaptic conductances starting at their baseline values, as in
Figure 5A, having the AHP recover rapidly, as might be expected
with weak stimulation, led to � that was not synchronized be-
tween the two sites, analogous to the behavior shown in Figure
5A: not enough learning took place for � synchrony to occur. On
the other hand, when using rapid recovery of the AHP, but with
higher initial values of excitatory synaptic conductances ( just as in
Fig. 5C), then organized and synchronized � did occur, also as
illustrated in Figure 5C (data not shown). In summary, there are
two possible explanations for the ability of a single �-inducing
stimulation to allow subsequent weaker stimulations to induce
synchronized �: a dependence of learning rates on stimulus

intensity and a dependence of AHP recovery kinetics on stimulus
intensity. These explanations are not mutually exclusive.

In addition, the data of Figure 5 could also be replicated using
a category 2 model, using the same manipulations as in Figure 5.
Reducing the learning rates prevents organized � from occurring,
whereas using reduced learning rates, along with increased initial
values of the starting conductances, does allow organized � to
occur (data not shown).

Because experimental observations (Whittington et al., 1997a,
their Fig. 2), and also our model (Fig. 2), indicate that excitatory
synapses become strengthened during � and during the �3�
transition rather than during � itself, the model therefore predicts
the following: that strengthened excitatory synapses do not decay
all the way back to their baseline conductances during � or during
the subsequent “quiet” period before the next stimulus. A further
testable prediction of the model, as discussed above (Fig. 5C), is
that � evoked after an episode of �/� should be less precisely
synchronized than is � in the “naive” system: an episode of �/�
should leave e3e synaptic connections potentiated enough to
interfere with � synchrony.

Because of learning, stimulation of one side of the
array can interfere with the ability of subsequent two-
sided stimulation to evoke synchronized �, as
observed experimentally
We next performed two-part simulations of 4.5 sec of neuronal
activity, data from one of which are shown in Figures 6 and 7. In
the first 2 sec in this series of simulations, the array was stimulated
as described in Materials and Methods, but with driving conduc-
tances given only to cells in the right half of the array. Cells in the
left half were not stimulated, and interneurons were hyperpolar-
ized to suppress (at least partly) their firing in response to EPSPs
coming from neurons in the right half. AHP and “M” conduc-
tances started small and increased, following the protocol de-
scribed in Materials and Methods. This initial 2 sec of stimulation
(Fig. 6), which we call “epoch 1,” produced changes in unitary
EPSCs, described below. After epoch 1, stimulation was shut off
for 0.5 sec, and then epoch 2 began (Fig. 7), with stimulation of
the whole array (“small heterogeneity” conditions; see Materials
and Methods). Again, at the start of epoch 2, AHP and M
conductances began with small values and were increased over
time following the usual protocol. In other words, epoch 2 was
similar to a control simulation, except for the initial values of the
unitary EPSCs: these latter had been “conditioned” by activity in
epoch 1.

Figure 6A illustrates that, during epoch 1, the stimulated right
side develops a locally synchronized � oscillation, whereas the
unstimulated left side does not. Interneurons on the right side can
fire doublets, but much less frequently than in control conditions
when both sides are stimulated (Fig. 3). This can be determined
from the average i-cell signals, which show doublets in the control
case and not in epoch 1, when a single side is stimulated (cf.
Whittington et al., 1997b). In Figure 6B, we see that, on average,
excitatory connections in which the presynaptic e-cell is on the
right (hence stimulated and firing regularly) become potentiated
when the postsynaptic e- or i-cell is also on the right side (hence
also stimulated and firing regularly). There is some lesser degree
of potentiation of connections from right e-cells to left i-cells,
because of the fact that some left interneurons are synaptically
excited (by right e-cells) enough to fire.

Thus, epoch 2 (Fig. 7) begins in a state in which the initial
excitatory connections are asymmetrically distributed. Each side
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produces a � oscillation, although at somewhat different frequen-
cies (35.7 Hz on the left side; 33.1 Hz on the right side; data from
100–300 msec). The slower frequency on the right (previously
stimulated) side occurs because of the greater incidence of inter-
neuron doublets on the right than on the left. Examples of this are
shown in Figure 7A, and the relatively increased incidence of
interneuron doublets on the right side was confirmed by exami-
nation of the local average interneuron voltages (data not shown).
The asymmetry in doublet firing is presumably a consequence of
the asymmetry in the excitatory synaptic conductances. The net
result is a lack of synchrony between the two sides (Fig. 7A, top, B).

Figures 6 and 7 enlarge on an idea discussed in Traub et al.
(1999) that was offered to explain another “memory-like” feature
of � oscillations: strong one-site stimulation interferes with the
ability of subsequent two-site stimuli to induce two-site � syn-
chrony, stimuli that normally would induce two-site � synchrony
(Whittington et al., 1997a). In the previous study (Traub et al.,
1999), we considered only depression of excitatory synapses at
connections from pyramidal cells at one site to interneurons at
the other site. The present simulations, in which learning takes
place, suggest that the desynchronizing effect of a one-site stim-
ulus could also be influenced by potentiation of excitatory syn-
apses, so long as it is asymmetrical.

Simulation of morphine effects: disrupted � and
impaired learning
Morphine (�50 �M) has a number of effects on �/� oscillations:
(1) it interferes with � synchrony; (2) interneurons fire in dou-
blets, triplets, and even quadruplets during �; (3) strong tetani-
zation does not evoke normal �, but rather an oscillation in which,
as recorded in stratum pyramidale field potentials, many of the
intervals are at � frequency; and (4) field EPSPs, recorded in CA1
stratum oriens do not increase, over the course of the �3�
transition, nearly to the extent that they do in control oscillations,
suggesting that morphine disrupts at least one type of potentia-
tion of excitatory synapses (Faulkner et al., 1998, 1999; Whitting-
ton et al., 1998). We were interested in whether the present model
would replicate the finding of diminished EPSP potentiation,
under conditions in which other aspects of morphine on oscilla-
tions were captured. This question is of clinical relevance, given
that morphine exerts amnesic effects in humans (Kerr et al.,
1991).

We have shown previously that features 1 and 2 above, inter-
ference with � synchrony and excessive interneuron firing, could
be simulated in a model, when GABAA conductances (on both
pyramidal cells and interneurons) were reduced sufficiently
(Whittington et al., 1998), consistent with the known effect of

Figure 6. Induction of oscillations, in one side only of the array, leads to
asymmetric potentiation within and between array halves. Control stim-
ulation with small heterogeneity (see Materials and Methods) was deliv-
ered, but only to the 384 e-cells and 192 i-cells in the right half of the
array. e-cells in the left half of the array were not stimulated, and i-cells
were hyperpolarized (�0.2 nA somatic current). A, Average e-cells from
a region in the right side (showing collective � oscillation; � also occurs
but is not shown); average e-cells from a region in the left side (unstimu-
lated), showing hyperpolarization by IPSPs; an interneuron (i-cell ) from
the right side, showing fewer doublets than in control simulations (Fig. 3);
an interneuron from the left side, showing rhythmic EPSPs. (Some i-cells
on the left side do fire occasionally.) Horizontal lines indicate resting
potentials in the interneurons. B, Learning in this simulation, showing
evolution of average excitatory synaptic scaling constants, for synaptic
connections in which the presynaptic cells are e-cells in the right side of
the array. These excitatory connections potentiate most when the postsyn-
aptic cell is also in the right (stimulated) half. If the postsynaptic cell is in
the left half, then synaptic connections either potentiate less (e3i) or else
depress (e3e). (e3i potentiation is possible in these circumstances,
because some i-cells in the left, unstimulated side are synaptically induced
to fire by activity of e-cells in the right, stimulated side.)

Figure 7. Asymmetrical stimulation of the array interferes with subse-
quent two-site synchrony. The simulation of Figure 6 was continued for a
total of 2 sec, and then stimulation of both e-cells and i-cells was halted for
500 msec. At that point, stimulation of all of the cells was begun as in
Figure 3, although with smaller heterogeneity in driving conductances, to
give the array an optimum chance to synchronize, if such were possible.
The protocol, for starting gK(M) and gK(AHP) conductances small and then
increasing them, was reinitiated at the same time as the onset of the
driving conductances, as was the collection of data for this figure. A, Part
of the � portion of the oscillation evoked by widespread stimulation under
above conditions. e-cell averages, superimposed from the two sides, are
asynchronous. An interneuron (i-cell ) on the right side (previously stim-
ulated) fires singlets and doublets. An interneuron on the left side fires
only singlets. (Recall from Fig. 6B that during the initial one-sided
stimulation, excitatory synapses on right interneurons become more po-
tentiated than excitatory synapses on left interneurons.) B, Cross-
correlation of average e-cell activities during this � activity confirms the
lack of synchrony.
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morphine of reducing GABA release, by a presynaptic mecha-
nism, at both excitatory and inhibitory terminals (Madison and
Nicoll, 1988). Property 3 above, disruption of �, could be repli-
cated if, in addition, K� conductance(s) did not recover to a
normal extent during the �3� transition (an assumption that was
supported by experimental data), and e3e synaptic conductances
were held constant (as a constraint imposed by the program)
(Faulkner et al., 1999).

In the present study, we simulated morphine effects as before,
with reduced GABAA conductances, and with incomplete recov-
ery of K� conductances, but allowed the learning rules to apply as
in control conditions (see Materials and Methods). Figure 8
illustrates a typical example. In this simulation, unitary i3e
conductances were reduced by 32%, and unitary i3i conduc-
tances were reduced by 73%. Maximum gK(M) density and
gK(AHP) density increased only threefold over the �3� transition,
rather than the usual 5.0- to 5.2-fold. The resulting simulation
captures the major effects of morphine: oscillations during � are

of variable amplitude and frequency [often � frequency (Fig.
8A,C)]; interneurons fire triplets on occasion, associated with
total excitatory synaptic inputs of varying amplitude and breadth;
the � cross-correlation is broader than control and somewhat
phase shifted [2.5 msec (Fig. 8B vs Fig. 3B, and bottom of Fig.
8A)]. Of particular interest is that although the parameters for
learning are as in control simulations, the total increase in exci-
tatory conductances is less (by �40%) in the morphine simulation
than in the control simulation (Fig. 8D vs Fig. 3D).

Three factors contribute to the reduced learning in the mor-
phine simulations: (1) the average frequency of � can be a bit
slower (initial morphine � 41.7 Hz, vs 50 Hz in Fig. 3); (2) even
during the � phase in morphine, there can be missed beats at one
side or the other, something also seen experimentally (Whitting-
ton et al., 1998); and (3) � is less synchronized in morphine.
Dissecting these factors apart experimentally is quite difficult.

It was also possible to produce a simulation similar to that of
Figure 8, closely resembling the experimental data, using a cate-
gory 2 model. Some of the parameters were slightly different, e.g.,
we used a somewhat higher value for unitary IPSCs on pyramidal
cells, in the category 2 model. It is at least possible to say that the
morphine experimental data do not, by themselves, allow one to
distinguish between the two types of models.

With very long conduction delays (>10 msec), learning
leads to production of an “i-weak beat,” which in turn
leads to a jump from anti-phase to in-phase �
oscillation
The ability of oscillating networks to synchronize, despite signif-
icant separation in space (hence time), is of biological interest,
given the long distances, up to 9 cm, over which human � activity
can synchronize during perceptual and learning tasks (Desmedt
and Tomberg, 1994; Miltner et al., 1999; Rodriguez et al., 1999).
In Kopell et al. (2000), the ability of two sites to synchronize was
examined, for both � and � oscillations, when conduction delays
were long, i.e., �5 msec, and in networks without synaptic plas-
ticity. The general finding was that � could synchronize with
longer conduction delays than �, and in the detailed network
simulation illustrated, using a model quite similar to that of Traub
et al. (1999), an extra 10 msec conduction delay imposed on axons
crossing the array midline did not permit � synchrony.

In Bibbig (1999, 2000), a mechanism was considered, “i-weak
beats,” that could lead to synchrony in the presence of axon
conduction delays of 10 msec or more. (An i-weak beat is defined
as a beat in which, at one site in the array, only a few interneurons
fire, as well as only a few pyramidal cells.)

The phenomenology of two-site � oscillations in the model of
Bibbig (2000), when �10 msec delays between sites were in-
cluded, was roughly as follows (Bibbig, 2000; Bibbig and Traub,
2000): oscillations occurred initially in near anti-phase between
the two sites, when delays were sufficiently long. Given that the
period of � rhythms is primarily determined by locally generated
IPSPs of approximately the same amplitude (but opposite phase)
at each site, how can the system switch to in-phase? If a single,
small IPSP could be induced to occur in neurons at one site but
not the other, a “flip” to in-phase oscillation might be possible.
This effect is what an i-weak beat accomplishes.

We observed in simulations that as learning proceeded, there
came a time at which e-cell activity at one site (site 1) was enough,
on its own, to cause (via enhanced e3i conductances) firing of
some relatively small number of i-cells at the other site (site 2).

Figure 8. Simulation of morphine effects on oscillations. GABAA con-
ductances were reduced, compared with control simulations (Madison
and Nicoll, 1988): i3e by 32% and i3i by 73% (Whittington et al., 1998).
gK(M) and gK(AHP) scaling factors were increased only threefold through-
out the simulation, rather than the usual 5- to 5.2-fold (Faulkner et al.,
1999). A, e-cell average shows that � is replaced by activity of variable
(often �) frequency and variable amplitude (cf. Faulkner et al., 1999). An
i-cell sometimes fires triplets, and its AMPA input is variable in ampli-
tude and time course; superimposed e-cell averages show variable phase
relations during �. B, Cross-correlations of average e-cell activity show a
broader central peak of �, as compared with control (Fig. 3) (Whittington
et al., 1998), and � is replaced by �. C, Instantaneous frequency plot of
average e-cell activity confirms the spread of frequencies at which � would
normally occur (cf. Faulkner et al., 1999). D, e3e learning is reduced,
compared with control (Fig. 3).
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This (site 2) i-cell activity then suppressed the firing of nearby
(site 2) e-cells, which, in turn, ensured that the local (site 2) i-cell
firing would remain limited in extent, thus, the i-weak beat. Once
this happened, the next oscillation period of site 2 would be
shortened, and the system would switch abruptly from an anti-
phase to an in-phase oscillation, despite the long conduction
delay. Once the in-phase oscillation began, the breadth of inter-
neuron doublets increased, which acted to stabilize the in-phase
oscillation as well as to lengthen its period. The period often
would increase enough so that an oscillation of � frequency (i.e.,
�20 Hz) would result.

The i-weak beat mechanism was studied in model networks
that differed from the present model in several respects, including
the following: (1) having a smaller number of neurons; (2) sim-
ulating the neurons with integrate-and-fire models that, among
other characteristics, do not possess slow intrinsic conductances
(e.g., gK(M) and gK(AHP)); and (3) including plasticity of i3e
synapses, as well as of excitatory synapses. This was one motiva-
tion for asking whether i-weak beats could work in more detailed
models. In addition, although extra conduction delays as long as
10 msec cannot be realized experimentally in the hippocampal
slice preparation, the issue of long-range synchrony of � is of
great interest for in vivo neocortical physiology (Gray, 1994;
Tallon-Baudry et al., 1998, 1999; von Stein et al., 1999). We
therefore investigated the behavior of the present detailed model
when 10 msec extra delays were imposed on the conduction of all
axonal signals crossing the midline of the array (see Materials and
Methods), with other parameters as in control conditions (Fig. 3).
(An extra delay of 10 msec across the midline would produce an
average conduction delay, from an excitatory cell to a postsynap-
tic neuron, of �12 msec.)

Interestingly, the phenomenology in the present detailed model
was quite similar to the simpler model (Fig. 9). After a period of
near anti-phase oscillation (Fig. 9A,Bi), during which learning
was taking place (Fig. 9C), an i-weak beat occurred (Fig. 9A,C,
arrowheads); the fact that the i-weak beat occurs when the two
learning curves cross is coincidental. After the i-weak beat, the
system switched to in-phase oscillatory activity (Fig. 9A,Bii), at
lower frequency and with broader interneuron doublets than
before. [Interneuron doublets broaden because the second spike
in the doublet is triggered by excitatory input from the opposite
side. If the two sides are in phase, such excitation takes at least 10
msec to arrive. Besides, the additional smaller middle peaks in the
average interneuron activity (Fig. 9A, top trace) after synchroni-
zation are attributable to the fact that a few highly driven inter-
neurons fire twice because of strong local activation of nearby
pyramidal cells and/or maybe noise, whereas their third spike,
with a respective delay of �10 msec, is generated from the distant
population of pyramidal cells.] The in-phase oscillation persisted
for at least 800 msec. Without learning, and consistent with
Kopell et al. (2000), the switch to in-phase oscillation did not
occur (Fig. 10). Results similar to those shown in Figure 9 were
also observed with extra delays of 11 and 8 msec and also with 15
msec (in case the maximal AHP conductance was somewhat
reduced) (data not shown). When the extra delay was 6 msec, the
system did not produce an anti-phase oscillation at all, but rather
remained in-phase throughout (data not shown).

In addition, i-weak beats and a switch from anti-phase to
in-phase oscillations could be observed in a simulation with
learning based on category 2 rules.

DISCUSSION
This paper contains six main results. (1) Experimentally, there is
e3i potentiation during a �3� transition (Fig. 2). (2) A large-scale
network model was generated using a relatively realistic learning
rule. This network uses plasticity of pyramidal3pyramidal and
pyramidal3interneuron synapses and an ad hoc increase of gk(M)

and gk(AHP) conductances. It generates, in a self-organized way, a
�3� transition (Figs. 3, 4). (3) The network model could also
(re)produce the following features seen in hippocampal slices and
in earlier simulations using ad hoc changes in e3e synapses (Whit-
tington et al., 1998; Faulkner et al., 1999; Traub et al., 1999):
desynchronizing and reduced-learning effects of morphine (Fig. 8);
two memory features, i.e., after a strong one-site stimulus, a two-
site stimulus produces a desynchronized � (Figs. 6, 7); after (at
least) one synchronous �3� induced by a strong stimulus, a weak
stimulus also generates a synchronous �3� (Fig. 5). (4) The
network was able to synchronize two sites, despite their being

Figure 9. The two sides of the array can synchronize despite long axon
conduction delays, when learning is present; the switch to synchrony is
preceded by an i-weak beat (Bibbig, 2000). The simulation of Figure 3 was
repeated, with the modification that all signals passing in axons that cross
the midline are subject to an extra 10 msec conduction delay. A, The
i-weak beat is indicated by an arrowhead in the two top traces representing
local average i-cell and e-cell activity, respectively. There is reduced (on
average) i-cell firing at one site and reduced e-cell firing. Before the
i-weak beat, interneuron doublets are narrower than after the i-weak beat
(top trace). Also before the i-weak beat, the two sides are in near
anti-phase (middle traces), whereas just after the i-weak beat, the two sides
switch to synchrony, at a lower frequency. After the i-weak beat, EPSPs
from the opposite side appear �10 msec (i.e., the extra conduction delay)
after action potentials in an e-cell (bottom trace). The [Ca 2�]i signal in the
bottom trace is shown with a thick line. B, Cross-correlations of 200 msec
of average e-cell activity, from before the i-weak beat [( i) near anti-phase]
and from after the i-weak beat [(ii) synchronized, and at a lower frequen-
cy]. C, Learning curves, with the time of the i-weak beat shown by the
arrowhead. Learning proceeds more slowly after the i-weak beat.
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separated by axonal conduction delays of �10 msec and with
anti-phase firing at the beginning of the oscillation (Fig. 9). This
was caused by a so-called i-weak beat, dependent on plasticity (Fig.
10). (5) We could generate these oscillations with two sets of
learning rules. Both used Hebbian plasticity at e3e synapses, but
for e3i synapses one rule was Hebbian and the other was presyn-
aptic (Rozov et al., 1998). This implies that �3� oscillation struc-
ture does not determine the exact formulation of the learning rules.
(6) A Hebbian e3e learning rule worked best if the time constant
of postsynaptic [Ca2�]i decay was in the range of a � period length.
We propose that the period of the � oscillation is “designed” to
match the time course of [Ca2�]i fluctuations in dendrites to
facilitate learning. Thus, we predict that [Ca2�]i fluctuation time
constants, in neurons in visual areas, should match the period of
visually evoked oscillations in the respective species: �50 msec in
turtle (Prechtl, 1994) and �11 msec in monkey (Eckhorn et al.,
1993).

Which characteristics of the learning rule are
important for generation of a �3� transition and for
synchronization despite long axonal conduction
delays?
The necessary potentiation of e3e synapses could be generated
by a Hebbian learning rule, taking “presynaptically induced syn-
aptic spine [Ca2�]i” and postsynaptic [Ca2�]i as measures. This
is consistent with current ideas about supralinear interactions

between spine [Ca2�]i (e.g., from Ca2� entry through NMDA
channels) and voltage-gated [Ca2�]i increases, which release
Ca2� from intracellular stores (Schiller et al., 1998; Emptage et
al., 1999; Rae et al., 2000). Nevertheless, we are unable to predict
the kinetic details of the various processes, because presynaptic
[Ca2�]i decay time constants of 25 and 100 msec (Koester and
Sakmann, 1998) both work (Figs. 3, 4). On the other hand, our
data suggest that the postsynaptic [Ca2�]i decay time constant
should be about a � period length, i.e., �20 msec, consistent with
experimental data in dendrites of Purkinje and hippocampal
pyramidal cells (Miyakawa et al., 1992; Sabatini and Svoboda,
personal communication). Simulations with a much longer
postsynaptic [Ca2�]i decay time constant (e.g., 100 msec) could
not produce a synchronous �3� oscillation resembling the one
seen in hippocampal slices, even if the presynaptic [Ca2�]i decay
time constant was set to 25 msec, a � period length. This occurs
because, with such a long decay time constant, the postsynaptic
[Ca2�]i stays above threshold, producing, in effect, a purely
presynaptic learning rule.

Figure 11. In a network oscillating at � frequency, implementation of a
“time-ordered” learning rule leads to a comparable plasticity result as
does implementation of the simpler rule used here: namely, potentiation.
Top, Scheme of a pair recording, with the presynaptic cell stimulated
periodically. As the presynaptic cell (1) fires before the postsynaptic cell
(2), the cell 1 3 cell 2 connection will be potentiated (Markram et al.,
1997). Bottom, Network � oscillation with many neurons active on each
beat. Because cell 1 here fires �20 msec before cell 2 (1), connection cell
13 cell 2 will be potentiated; because cell 1 also fires �20 msec after cell
2 (2), then connection cell 1 3 cell 2 will be depressed. Because poten-
tiation increments are larger than depression increments (see Materials
and Methods), the net effect is expected to be potentiation. Note that
Figure 3C of Markram et al. (1997) shows that potentiation toward the
larger steady-state EPSP amplitude occurs faster than does depression
toward the corresponding, smaller steady-state EPSP amplitude.

Figure 10. With an extra 10 msec conduction delay, using the initial
conditions and stimuli of Figure 9, but without e3e and e3i learning, �
synchronization does not occur [consistent with the results of Kopell et al.
(2000)]. A, Traces illustrated are as in Figure 9A. There is no i-weak beat;
interneuron doublets, when they occur, are narrow, and the phase rela-
tions between the two local e-cell averages remain variable. B, Cross-
correlations of the same 200 msec segments of average e-cell data, as used
in Figure 9, confirming the persistence of near anti-phase between the two
sides. C, Flat learning curves, imposed by the conditions of the simulation.
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At e3e synapses, we used a Hebbian learning rule for several
reasons. First, several authors have shown Hebbian learning at
CA3 e3e synapses (Debanne et al., 1994,1998) and a supralinear
effect of presynaptic and postsynaptic activity on the postsynaptic
Ca2� concentration (Yuste and Denk, 1995). Second, with purely
presynaptic or postsynaptic e3e learning rules, we had the prob-
lem of setting the learning rate and/or threshold such that there
is enough potentiation during � for generation of synchronous �

but also not so much potentiation as to cause e-doublets during �.
This parameter range was narrow and with some rules not even
available.

Unlike earlier simulations of the �3� transition (Traub et al.,
1999), here both e3e and e3i synapses were made plastic,
because EPSPs grow in interneurons (Fig. 2), as well as in pyra-
midal cells, during the �3� transition. In the simulations, e3i
plasticity produced details similar to slice experiments, such as
the occurrence of mainly singlets during the beginning of the �

oscillation; e3i plasticity also enlarged the region in parameter
space in which the �3� transition appeared realistic.

For e3i synapses, the involvement of both presynaptic and
postsynaptic sides in synaptic plasticity was shown by Laezza et
al. (1999) for LTD and by Perez et al. (2000, 2001) for LTP. On
the other hand, Rozov et al. (1998) proposed a shorter lasting
facilitation process depending on glutamate binding at the
postsynaptic site, in effect a purely presynaptic process. We have
shown here that both learning rules could account for various
experimental data on �3� oscillations.

How does the learning rule for pyramidal3pyramidal
and pyramidal3interneuron synapses described above
fit with experimental data on pyramidal cell pairs?
The experiments of Markram et al. (1997) showed that the firing
order of two connected neurons is important for the learning
result, so that if neuron 1 fired before neuron 2, then the synapse
132 was potentiated, whereas the same synapse was depressed if
the two neurons fired in reverse order. The different plasticity
results produced by the different stimulation paradigms might be
caused by differences in Ca2� levels, namely a higher Ca2�

concentration if the presynaptic neuron fired before the postsyn-
aptic one, as opposed to the reverse case.

In network oscillations the situation is different. First of all,
there are many other neurons active at about the same time as a
given pair of presynaptic and postsynaptic neurons. This elevates
the overall Ca2� level, favoring the generation of LTP compared
with LTD (Yang et al., 1999; Zucker, 1999). Second, the tetanus,
used in the experiments simulated here to generate the network
oscillations, generates a tonic depolarization and elevates
postsynaptic Ca2� concentration caused by activation of metabo-
tropic glutamate receptors (Connor et al., 1999; Heuss et al.,
1999). This also favors potentiation over depression. In addition,
the timing of action potentials during � oscillation is shaped by
IPSPs, a factor not included in experiments on pairs of principal
neurons. Finally and most importantly, as Figure 11 shows, im-
plementation of a time-ordered learning rule would lead to the
same result for learning in a network oscillating at � frequency, as
does the learning rule used in this paper, namely, potentiation at
all synapses. This occurs because learning increments are larger
for potentiation than for depression (Markram et al., 1997, their
Fig. 3C). Thus, for � oscillations, we can use a less complicated
learning rule.

How could the necessary learning take place with
axonal conduction delays of >10 msec?
Consider the case of assemblies oscillating almost in anti-phase,
separated by a conduction delay of approximately half the oscil-
lation period. Then, the spike of an assembly-1 cell reaches its
axonal terminal to generate a Ca2� signal, when the cells of
assembly 2 are just firing or are about to fire their next beat; the
dendritic voltage-dependent signal and the [Ca2�]i rise induced
by presynaptic activity will be in register and allow for plasticity
(Traub et al., 1998). For almost anti-phase oscillations, this rela-
tion also holds for connections from assembly 2 to assembly 1
cells. Thus, bidirectional symmetrical strengthening is possible,
which seems necessary for the subsequent development of syn-
chronization (asymmetric e3e and e3i synapses between the
two assemblies lead to desynchronized activity) (Figs. 6, 7). Once
the two sites switch to a synchronized oscillation, then the con-
duction delay acts to limit further synaptic strengthening.

Our model generates the following predictions. (1) If a plastic
network similar to that described here is present in vivo, then
synaptic plasticity is an inescapable consequence of � oscillations.
(2) Either learning rates increase with the amount of metabo-
tropic activation or AHP recovery kinetics do, or both. (3) After
an episode of �/�, excitatory synapses are stronger, on average,
than baseline. (4) After an episode of �/�, two-site � might be less
synchronized than in baseline conditions. (5) Plasticity occurs
more readily during a fast � oscillation then during slower oscil-
lations such as �, a consequence of the kinetics of [Ca2�]i

changes.
The experimental data underpinning this model derive from

oscillations in hippocampal slices, under conditions during which
principal neurons fire at high rates. Such intense activity is
unlikely during the theta state in the hippocampus but might be
achieved in neocortex during sensory activation, for example. In
vivo correlates of the ideas discussed here might best be sought in
neocortex.

Why would the brain “want” tight synchrony between presyn-
aptic and postsynaptic events, when the Ca2� time constants
involved in plasticity are �20 msec or slower (Miyakawa et al.,
1992; Koester and Sakmann, 1998), so that coarse synchrony also
suffices to generate potentiation? It appears that the more syn-
chronous the two assemblies are during the � part of the oscilla-
tion, the more potentiation is achieved, and the easier it is to
obtain a synchronous �, at least in the case of small delays
between sites. Synchronous � then is a sign that learning has
taken place. Once there is synchronous �, plasticity is more
difficult, because of the slower oscillation frequency. In the case of
longer intersite delays, learning during � appears to be favored by
a near anti-phase oscillation; the subsequent slower synchronized
oscillation is again a sign that learning has taken place.
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