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Telomerase, a reverse transcriptase that maintains chromo-
some ends (telomeres) during successive cell divisions in mi-
totic cells is present in neuroblasts and early postmitotic em-
bryonic neurons but is absent from adult neurons. The signals
that control telomerase levels during development are un-
known, as are the functions of telomerase in developing neu-
rons. We now report that telomerase activity and levels of its
catalytic subunit telomerase reverse transcriptase (TERT) are
increased in embryonic hippocampal neurons by brain-derived
neurotrophic factor (BDNF) and a secreted form of �-amyloid
precursor protein (sAPP). BDNF and sAPP promote the survival
of the embryonic neurons, and these trophic effects are blocked
when TERT production is suppressed using antisense technol-
ogy. Telomerase is required for the long-term survival of early

postmitotic neurons during a time window of �1 week in cul-
ture; telomerase is then downregulated and is not required for
BDNF and sAPP survival signaling in mature neurons. The
increase in telomerase activity and trophic effects of BDNF and
sAPP are mediated by phosphatidylinositol-3 kinase and p42/
p44 MAP kinases. Our findings demonstrate a requirement for
telomerase in the cell survival-promoting actions of BDNF and
sAPP in early postmitotic hippocampal neurons, suggesting
a previously unknown role for telomerase in mediating the
biological actions of neurotrophic factors during brain
development.
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Telomerase is an enzyme activity that adds a six base DNA repeat
sequence (TTAGGG) to chromosome ends and thereby prevents
their shortening during successive rounds of mitosis (Lingner et
al., 1997). Telomerase consists of an RNA template and a protein
called telomerase reverse transcriptase (TERT) that possesses
reverse transcriptase (RT) activity. Levels of TERT and telom-
erase activity are high in cells throughout the developing embryo
but decrease rapidly as cells differentiate and are absent from
most somatic cells in the adult (Blasco et al., 1995; Greenberg et
al., 1998; Klapper et al., 2001). Telomerase is present at very high
levels in neural precursor cells in the developing brain and may
play an important role in maintaining the cells in a proliferative
state (Ostenfeld et al., 2000; Klapper et al., 2001). However,
embryonic neurons continue to express TERT and have telom-
erase activity for many days to weeks after they begin to differ-
entiate (Fu et al., 2000; Klapper et al., 2001), suggesting an
additional role for telomerase in neuronal development. The
mechanisms that regulate telomerase expression and activity in
the developing nervous system are unknown. However, recent
studies of non-neural cells have shown that TERT expression can
be regulated by environmental signals, including basic fibroblast
growth factor (bFGF) (Tsumuki et al., 2000), insulin-like growth
factor (IGF) (Tu et al., 1999), transforming growth factor-�
(Yang et al., 2001), estrogen (Misiti et al., 2000), and interferon-�
(Xu et al., 2000).

The development of the nervous system is controlled by various
neurotrophic factors and cytokines, among which members of the

neurotrophin family have been shown to play major roles in
promoting the differentiation and survival of neurons (Conover
and Yancopoulos, 1997). This family includes nerve growth fac-
tor, brain-derived neurotrophic factor (BDNF), neurotrophin-3,
and neurotrophin-4. Neurotrophins exert their effects on devel-
oping neurons by activating membrane receptor tyrosine kinases
coupled to signaling cascades that regulate the expression of
various genes (Patapoutian and Reichardt, 2001). BDNF has
been shown to have a widespread influence on neurons through-
out the brain, because many different populations of neurons in
the brain express tyrosine protein kinase receptor B (trkB), the
high-affinity BDNF receptor (Ernfors et al., 1992; Yan et al.,
1997). Another cell survival signal with a broad influence on
developing neurons is the secreted form of �-amyloid precursor
protein (sAPP), which is released from neurons in an activity-
dependent manner (Furukawa et al., 1996). sAPP can promote
neurite outgrowth (Mattson, 1994), prevent cell death (Mattson
et al., 1993) in cultured embryonic rat hippocampal neurons, and
may exert similar effects on other types of neurons (Ninomiya et
al., 1994; Roch et al., 1994). In the present study, we establish
links between neurotrophic signaling, telomerase, and the sur-
vival of embryonic hippocampal neurons. We show that increased
TERT production is required for long-term survival of early
postmitotic embryonic hippocampal neurons in culture and for
the cell survival-promoting effects of BDNF and sAPP. These
findings identify a novel role for telomerase as a mediator of the
biological actions of neurotrophic factors.

MATERIALS AND METHODS
Neuronal cell cultures and experimental treatments. Hippocampi were
removed from embryonic day 18 (E18) Sprague Dawley rats (Harlan
Sprague Dawley, Indianapolis, IN), and cells were dissociated by mild
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trypsination and trituration and seeded onto polyethyleneimine-coated
plastic 35 or 60 mm diameter dishes at a density of �150 cells/mm 2

culture surface. Cultures were maintained in Neurobasal medium contain-
ing B-27 supplements (Invitrogen, San Diego, CA), 2 mM L-glutamine, 1
mM HEPES, and 0.001% gentamicin sulfate (Sigma, St. Louis, MO). When
maintained under these conditions, the hippocampal cultures are highly
enriched in neurons, with �95% of the cells exhibiting morphological,
antigenic, and electrophysiological properties of neurons (Cheng and Matt-
son, 1991, 1992, 1994). Experimental treatments were added to the cultures
by dilution from concentrated stocks. Recombinant human BDNF and
bovine bFGF were purchased from Boehringer Mannheim (Indianapolis,
IN), IGF-1 and epidermal growth factor (EGF) were purchased from
Sigma, activity-dependent neurotrophic factor (ADNF) was synthesized as
described previously (Guo et al., 1999), and recombinant human sAPP
(sAPP�695) was prepared as described previously (Furukawa et al., 1996).
The TERT antisense oligonucleotide (5�-GAGGAGCGCGGGTCAT-
TGT-3�) and scrambled control oligonucleotide (5�-GGAGGACGCT-
GCGAGTGTT-3�) were purchased from IDT (Coralville, IA) and pre-
pared as 1 mM stocks in sterile deionized water. LY294002 (Cell Signaling
Technology, Beverly, MA); K252a, KT5823, and PD98059 (Calbiochem,
La Jolla, CA); and H-89 (Sigma) were prepared as 500� stocks in dimeth-
ylsulfoxide. Bisindolylmaleimide (Sigma) was prepared as a 200� stock in
saline.

Telomerase activity assay. A capillary electrophoresis-based telomeric
repeat amplification protocol (TRAP) assay was used to quantify levels
of telomerase activity as described in our previous studies (Krupp et al.,
1997; Klapper et al., 2001). The reaction was initiated by adding 100 ng
of sample protein to a TRAP reaction mixture containing 20 mM Tris-
HCl, pH 8.0, 1 mM EGTA, 0.005% Tween 20, 1.5 mM MgCl2, 63 mM
KCl, 200 �M deoxyNTP (dNTP) mix, 4 U of Taq polymerase, 10 pmol of
TS primer (5�-AAT CCG TCG AGC AGA GTT-3�), and 10 pmol of
CX-ext primer (5�-GGT CCC TTA CCC TTA CCC TTA CCC TAA-3�).
The reaction was incubated at 30°C for 30 min to allow telomerase to add
telomeric repeats to the TS primer followed by amplification of the
telomerase products by PCR (33 cycles). The samples were analyzed by
capillary electrophoresis (ABI prism 310; PerkinElmer Applied Biosys-
tems, Foster City, CA). Integrated values were summed for telomerase
products containing five (one repeat beyond primer dimer size) to 10
telomeric hexamer repeats and calibrated by dividing by the value for the
internal amplification standard (ITAS). All assays were performed at
least in triplicate. Values are expressed as a percentage of the value
obtained using an equivalent amount of HeLa cell extract (100 ng).

RT-PCR analysis. The methods were similar to those described previ-
ously (Klapper et al., 2001). cDNA was synthesized from 1 �g of total
RNA with the SuperScript First-Strand Synthesis System for RT-PCR
(Invitrogen) using random primers and following recommendations pro-
vided by the supplier. Reaction mixtures consisting of 1 �l of cDNA,
PCR buffer (Invitrogen), 200 �M dNTPs, 4 U of Taq polymerase, 1.5 mM
MgCl2, and 10 pM primers were denatured at 94°C for 2 min, subjected
to 36 PCR cycles (30 sec at 94°C, 30 sec at 60°C, and 45 sec at 72°C), and
then elongated at 72°C for 10 min. The primers for the internal �-actin
control were added to the reaction at the 60°C step of cycle 9. PCR
products were analyzed by agarose gel electrophoresis (1.5%) followed
by staining with ethidium bromide and scanning with a FLA 3000
(Fujifilm, Tokyo, Japan). The primers used in this study were as follows:
TERT forward primer, 5�-CTGCGTGTGCGTGCTCTGGAC-3�;
TERT reverse primer, 5�-CACCTCAGCAAACAGCTTGTTCTC-3�;
�-actin forward primer, 5�-TGTGATGGACTCCGGTGACGG-3�;
�-actin reverse primer, 5�-ACAGCTTCTCTTTGATGTCACGC-3�.
Values for TERT mRNA levels were normalized to the level of actin
mRNA in the same sample. In preliminary studies, we established that
the RT-PCR products of the correct size corresponded to TERT mRNA
by excising the band from the gels and sequencing it. We also performed
preliminary analyses to determine the optimum PCR conditions that
resulted in a level of amplification that fell within the linear range.

Immunocytochemistry. These methods were similar to those described
previously (Fu et al., 2000). Briefly, cells were fixed for 30 min in a
solution of 4% paraformaldehyde in PBS and were then incubated for 5
min in 0.2% Triton X-100 in PBS. Cells were then incubated for 1 hr in
PBS containing 3% goat serum, and TERT antibody (rabbit polyclonal
antibody from Calbiochem) was added at a final dilution of 1:2000. Cells
were then incubated overnight at 4°C, washed with PBS, and incubated
for 1 hr at room temperature in the presence of a 1:500 dilution of goat
anti-rabbit IgG in PBS. Cells were further processed using an ABC kit
(Vector Laboratories, Burlingame, CA) with diaminobenzidine as sub-

strate; the reaction times for each step in the ABC immunostaining
protocol were identical for all cultures processed. Cells were visualized
and photographed under bright-field optics using a 100� oil immersion
lens.

Quantification of neuron survival. Neuronal survival was quantified as
described previously (Mattson et al., 1993). Briefly, viable neurons in
premarked fields (10� objective) were counted before experimental
treatment and at specified time points thereafter. Neurons with intact
neurites of uniform diameter and a cell body with a smooth round
appearance were considered viable, whereas neurons with fragmented
neurites and vacuolated soma were considered nonviable.

RESULTS
BDNF and sAPP increase telomerase activity and
TERT levels in embryonic neurons
To identify signals that may regulate telomerase in neurons
during brain development, we exposed cultured embryonic rat
brain neurons to bFGF, IGF-1, EGF, BDNF, sAPP, and ADNF
and then quantified telomerase activity using a TRAP assay. The
concentration of each trophic factor was chosen based on previ-
ous studies demonstrating effects on the survival of neurons in
similar embryonic hippocampal cell cultures (Cheng and Matt-
son, 1991, 1992, 1994; Maiese et al., 1993; Mattson et al., 1993;
Guo et al., 1999). Telomerase activity was increased by twofold to
threefold during a 24 hr exposure period to BDNF and sAPP
compared with vehicle-treated control cultures (Fig. 1). In con-
trast, bFGF, IGF-1, EGF, and ADNF had no effect on telomerase
activity. RT-PCR analysis revealed increased levels of TERT
mRNA in cultures that had been treated with BDNF (threefold
increase) and sAPP (twofold increase) compared with control
cultures (Fig. 2A). We subsequently immunostained control and
neurotrophic factor-treated cultures with an antibody against
TERT, the catalytic subunit of telomerase. In control cultures not
treated with a neurotrophic factor, TERT immunoreactivity in
neurons was very weak and, as expected, localized predominately

Figure 1. Telomerase activity is increased by BDNF and sAPP in em-
bryonic hippocampal neurons. A, Representative capillary electrophore-
togram showing telomerase activity in a dilution series of HeLa cell
extracts. B, C, Cultures (2 d in culture) were exposed for 24 hr to saline
(control) or the indicated trophic factors (ADNF, 1 pM; BDNF, 100 ng/ml;
EGF, 10 ng/ml; IGF-1, 10 ng/ml; bFGF, 100 ng/ml; sAPP, 1 nM), and
telomerase activity in cell lysates (100 ng of protein per sample) was
determined by TRAP assay analysis (see Materials and Methods). B,
Representative electrophoretograms of telomerase activities in lysates
from cultures that had been treated with the indicated growth factors. C,
Quantitative comparisons. Integrated values were summed for telomerase
products containing five (1 repeat beyond primer dimer size) to 10
telomeric hexamer repeats and calibrated by dividing by the value for the
ITAS. Values are the mean and SD of determinations made in four
separate experiments. **p � 0.01 compared with control value (ANOVA
with Scheffe post hoc tests).
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in the nucleus (Fig. 2B). Levels of TERT immunoreactivity were
markedly increased in neurons that had been exposed for 24 hr to
BDNF or sAPP (Fig. 2B). There was no increase in the level of
TERT immunoreactivity in neurons that had been treated with
bFGF, IGF-1, EGF, or ADNF (data not shown). Thus, BDNF
and sAPP increase the expression of TERT and a corresponding
increase in telomerase activity.

Telomerase is essential for the cell survival-promoting
effects of BDNF and sAPP
Based on studies in tumor cell lines, it has been proposed that
TERT has an anti-apoptotic function, which may explain, in part,
its association with cell immortalization and cancer (Kondo et al.,
1998; Fu et al., 1999). Because previous studies have shown that
BDNF (Cheng and Mattson, 1994; Qiu et al., 1998) and sAPP
(Mattson et al., 1993; Goodman and Mattson, 1994) can protect
embryonic hippocampal neurons against death induced by gluta-
mate and oxidative insults, we performed experiments aimed at
determining whether the increased production of TERT played a
role in the neuroprotective effects of BDNF and sAPP. Previous
studies have shown that antisense oligonucleotides directed
against TERT mRNA can suppress TERT production in cultured
cells (Fu et al., 2000). When hippocampal cultures were treated
for 24 hr with a TERT antisense oligonucleotide, telomerase
activity was significantly decreased to �40% of the telomerase
activity in cultures treated with a control oligonucleotide (Fig.
3A). We subsequently treated cells with TERT antisense or
control oligonucleotides alone or in combination with BDNF or
sAPP, and then performed immunohistochemical analysis to as-
sess relative levels of TERT protein. In contrast to the increase in
the amount of TERT protein observed in neurons treated with
BDNF or sAPP, neither of these neurotrophic factors increased
TERT levels in neurons treated with the TERT antisense oligo-
nucleotide (Fig. 2B).

As expected, fewer neurons were killed by glutamate in cul-
tures that had been pretreated for 24 hr with BDNF or sAPP
compared with cultures not receiving a trophic factor (Fig. 3B).
We pretreated cultures for 1 hr with TERT antisense or scram-
bled control oligonucleotides, followed by treatment with BDNF
or sAPP for 24 hr in the continued presence of oligonucleotide.
The cell survival-promoting effects of BDNF and sAPP were
significantly attenuated in cultures treated with the TERT anti-
sense oligonucleotide compared with cultures treated with the
control oligonucleotide in which the cell survival-promoting ac-
tivities of BDNF and sAPP were unaffected (Fig. 3B). These data
indicate that increased TERT production is required for the cell
survival-promoting actions of BDNF and sAPP. In contrast,
treatment of cultures with TERT antisense did not alter the
neuroprotective effects of two other neurotrophic factors, bFGF
and IGF-1 (Fig. 3B); previous studies had shown that bFGF and
IGF-1 protect neurons against glutamate-induced death by a
mechanism involving stabilization of cellular calcium homeosta-
sis (Cheng and Mattson, 1991, 1992).

Telomerase is required for neuronal survival during a
defined developmental time window
Because telomerase is not present in neurons in the adult brain
(Klapper et al., 2001), we determined levels of telomerase activity
in hippocampal neurons at increasing time points in culture.
Telomerase activity was high on culture day 2, decreased by
�40% by culture day 7, and then further decreased to �10% of
the day 2 level by culture day 12 (Fig. 4A). We subsequently
quantified neuronal survival in cultures treated with TERT anti-
sense beginning on culture day 2. During a 6 d exposure period to
TERT antisense, neuronal survival decreased to �40% of the
initial number of neurons (Fig. 4B). In contrast, only 10% of the
neurons died during the 6 d time period in cultures treated with
a control oligonucleotide with a scrambled sequence or with no

Figure 2. BDNF and sAPP induce an increase in
TERT mRNA and protein levels in embryonic hip-
pocampal neurons. A, Cultures were treated for 24 hr
with saline (Control), 100 ng/ml BDNF, or 1 nM sAPP.
RNA was isolated, and levels of TERT mRNA and
�-actin mRNA were determined by RT-PCR analysis
(see Materials and Methods). The graph shows results
of densitometric analyses of mRNA levels (values are
expressed as a percentage of control; mean and SD of
3 separate experiments). *p � 0.05, **p � 0.01 com-
pared with control value (ANOVA with Scheffe post
hoc tests). B, Cultures were pretreated for 1 hr with
saline or TERT antisense oligonucleotide (AS; 20 �M)
and then exposed for 24 hr to saline (Control), 100
ng/ml BDNF, or 1 nM sAPP (in the continued pres-
ence of oligonucleotide). Cells were then fixed and
immunostained with a TERT antibody. Micrographs
show TERT immunoreactivity in neurons in cultures
subjected to the indicated treatment conditions. Note
that TERT immunoreactivity is localized primarily to
the nucleus, that the intensity of the immunoreactivity
is increased in neurons treated with BDNF and sAPP,
and that the TERT antisense oligonucleotide blocked
the increase in TERT immunoreactivity.

10712 J. Neurosci., December 15, 2002, 22(24):10710–10719 Fu et al. • Telomerase and Neurotrophic Factor Signaling



DNA. However, exposure of more mature neurons (12 d in
culture) to the TERT antisense oligonucleotide had no significant
effect on their survival during a 6 d exposure period (data not
shown). These results suggest that telomerase is required for the
survival of early postmitotic hippocampal neurons but not for
more mature neurons. The cultures are established from E18
embryos; at this time, the vast majority of cells have already

acquired a neuronal phenotype. A small percentage (1–2%) of
the cells will undergo a final cell division during the first 24 hr of
culture before differentiating into neurons (Mattson et al., 1989).
From culture day 2 onward, we have never observed division of
neurons in these cultures despite examining thousands of micro-
scope fields in time-lapse studies. We found that TERT immu-
noreactivity is present in essentially all cells with a neuronal

Figure 3. TERT production is essential for the cell survival-promoting
actions of BDNF and sAPP. A, Cells were treated for 24 hr with 20 �M
scrambled control oligonucleotide (Control) or 20 �M TERT antisense
oligonucleotide (TERTAS). Telomerase activity in cell lysates (100 ng of
protein) was then quantified by TRAP assay. Values are the mean and SD
of determinations made in six cultures. ***p � 0.001 compared with
control value (paired t test). B, Cells that had been in culture for 8 d were
pretreated for 24 hr with 20 �M TERT antisense oligonucleotide or 20 �M
scrambled control oligonucleotide and were then treated for 24 hr with
100 ng/ml BDNF, 1 nM sAPP, 100 ng/ml bFGF, or 10 ng/ml IGF-1 in the
continued presence of the oligonucleotides. Cultures were then exposed
to 20 �M glutamate (Glut), and neuronal survival was quantified 24 hr
later. Values are the mean and SD of determinations made in at least six
separate cultures. #p � 0.01 compared with corresponding control value;
**p � 0.01 compared with value for control cultures exposed to gluta-
mate; ANOVA with Scheffe post hoc tests.

Figure 4. Telomerase is required for long-term survival of embryonic
hippocampal neurons during a restricted developmental time window. A,
Telomerase activity was determined in lysates of hippocampal neurons
that had been maintained in culture for the indicated time periods. Values
are expressed as a percentage of the day 2 level of telomerase activity and
represent the mean and SD of determinations made in four to six separate
cultures. *p � 0.05, ***p � 0.001 compared with day 2 value. B, Cultures
were treated with 20 �M scrambled control oligonucleotide (scramDNA),
20 �M TERT antisense oligonucleotide (TERTAS), or no DNA beginning
on culture day 2 (day 0), and fresh DNA was added every second day.
Neuron survival was quantified at the indicated time points. Values are
the mean and SD of determinations made in four separate cultures. **p �
0.01, ***p � 0.001 compared with corresponding values for cultures
exposed to scrambled DNA or no DNA.
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phenotype in these cultures during the first week in culture
(present study and Fu et al., 2000). Moreover, we find that
telomerase activity is higher in the neuron-enriched hippocampal
cultures than it is in pure astrocyte cultures (W. Fu and M. P.
Mattson, unpublished data). Thus, we conclude that TERT pro-
tein and telomerase activity are present in postmitotic embryonic
neurons during a limited developmental time window after their
differentiation.

We subsequently determined whether the effects of BDNF and
sAPP on telomerase activity and neuronal survival were limited
to a particular developmental period. Although BDNF and sAPP
significantly increased levels of telomerase activity in hippocam-
pal neurons that had been in culture for 2–7 d, neither trophic
factor affected telomerase activity in 12-d-old cultures (Fig. 5A).
To determine whether the cell survival-promoting actions of
BDNF and sAPP were also limited to the developmental time
window during which they induce telomerase, we pretreated 2-,
7-, and 12-d-old cultures with BDNF and sAPP, in the presence
or absence of TERT antisense DNA, and then assessed the
vulnerability of the cells to death induced by glutamate. BDNF
and sAPP protected neurons against glutamate-induced cell
death in cultures of each age (Fig. 5B). However, although TERT
antisense treatment abolished the neuroprotective effects of
BDNF and sAPP in 2- and 7-d-old cultures, it did not alter the
ability of BDNF and sAPP to protect neurons against glutamate-
induced death in 12-d-old cultures (Fig. 5B). These findings
suggest that the neuron survival-promoting actions of BDNF and
sAPP are mediated by telomerase during a defined developmen-
tal time window and involve an alternative mechanism in more
mature neurons.

To determine whether BDNF and sAPP increased the level of
TERT expression in neurons that already expressed TERT
and/or induced expression in neurons not expressing TERT, we
immunostained cells at 2, 7, and 12 d in culture with the TERT
antibody. The results showed that 96 � 3, 87 � 4, and 19 � 4%
of the neurons exhibit TERT immunoreactivity on days 2, 7, and
12, respectively (mean � SD; n � 4 cultures). Thus, during the
time period when BDNF and sAPP are able to increase telom-
erase activity, the vast majority of the neurons express TERT.
This large decrease in the percentage of neurons between culture
days 7 and 12 coincides with the large decrease in telomerase
activity during this same time period. These results suggest that
BDNF and sAPP stimulate an increase in TERT telomerase
activity in neurons that already express TERT, rather than in-
ducing TERT expression in neurons not expressing TERT.

Signal transduction pathways that mediate
telomerase induction and cell survival promotion
by BDNF and sAPP
BDNF activates a receptor (trkB) coupled to stimulation of
phosphatidylinositol-3 (PI3) kinase, Akt kinase, and p42/p44
MAP kinases that may mediate its cell survival-promoting effects
(Skaper et al., 1998; Dolcet et al., 1999; Hetman et al., 1999; Han
and Holtzman, 2000). In the case of sAPP, previous studies have
implicated cGMP (Barger et al., 1995; Furukawa et al., 1996) and
protein kinase C (Ishiguro et al., 1998) in its cell survival-
promoting actions. To determine whether trkB phosphorylation is
required for telomerase induction by BDNF, we used the bacte-
rial alkaloid K252a, an inhibitor of trkB tyrosine phosphorylation
(Tapley et al., 1992). The ability of BDNF to increase telomerase
activity in hippocampal neurons was completely abolished by
treatment with K252a (Fig. 6A). To determine whether cGMP

and/or protein kinase C mediated induction of telomerase by
sAPP, we used an inhibitor of cGMP-dependent protein kinase
(KT5823) (Mattson et al., 1999) and an inhibitor of protein
kinase C (bisindolylmaleimide) (Courtney et al., 1997). The abil-
ity of sAPP to increase telomerase activity was completely abol-
ished by bisindolylmaleimide and partially attenuated by KT5823
(Fig. 6B), suggesting involvement of protein kinase C and, to a
lesser extent, cGMP.

Figure 5. The requirement of telomerase for the neuron survival-
promoting actions of BDNF and sAPP is limited to a defined develop-
mental time window. A, At the indicated time points in culture, hippocam-
pal neurons were treated for 24 hr with 100 ng/ml BDNF, 1 nM sAPP, or
saline (Control). Telomerase activity in cell lysates was quantified. Values
are expressed as a percentage of the telomerase activity in control
cultures and represent the mean and SD of determinations made in four
to six cultures. *p � 0.05, **p � 0.01, ***p � 0.001 compared with
corresponding control value. B, Neurons that had been in culture for 2, 7,
or 12 d were pretreated for 24 hr with 100 ng/ml BDNF or 1 nM sAPP in
the presence or absence of 20 �M TERT antisense DNA (TERTAS) or
scrambled DNA (Control). Cultures were then exposed for 24 hr to 20 �M
glutamate (Glut), and neuronal survival was quantified. Values are the
mean and SD of determinations made in four separate cultures.
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We subsequently determined the effects of the different kinase
inhibitors on the cell survival-promoting actions of BDNF and
sAPP. K252a completely abolished the ability of BDNF to protect
hippocampal neurons against glutamate-induced death, whereas
KT5823 and bisindolylmaleimide did not alter the ability of
BDNF to protect the neurons (Fig. 6C). However, K252a did not
alter the ability of sAPP to protect neurons against glutamate-
induced cell death. Instead, both bisindolylmaleimide and
KT5823 blocked the neuron survival-promoting effect of sAPP
(Fig. 6C).

Because both BDNF (Dolcet et al., 1999; Hetman et al., 1999;
Han and Holtzman, 2000) and sAPP (Greenberg et al., 1995;
Cheng et al., 2002) can activate PI3 and MAP kinases, we
determined the involvement of these kinases in the BDNF- and
sAPP-induced upregulation of telomerase and neuron survival
promotion. We assessed the involvement of these kinases in the
upregulation of telomerase by treating neurons with either
LY294002, a selective inhibitor of PI3 kinase (Crowder and
Freeman, 1998; Matsuzaki et al., 1999), or PD98059, a selective
inhibitor of p42/p44 MAP kinases (Bonni et al., 1999). LY294002
completely prevented the BDNF-induced increase in telomerase
activity and significantly attenuated the sAPP-induced increase in
telomerase activity (Fig. 7A). PD98059 partially inhibited the
ability of BDNF to stimulate telomerase activity and completely
abolished the telomerase response to sAPP (Fig. 7A).

We subsequently determined whether activation of PI3 kinase
and/or p42/p44 MAP kinase mediated the cell survival-
promoting effects of BDNF and sAPP. The ability of BDNF to
protect neurons against glutamate toxicity was completely
blocked by LY294002 and partially blocked by PD98059 (Fig. 7B).
The ability of sAPP to protect neurons was partially blocked by
LY294002 and was also significantly attenuated by PD98059 (Fig.
7B). In contrast, treatment of cultures with H-89, an inhibitor of
cAMP-dependent protein kinase, did not alter the abilities of
BDNF and sAPP to protect neurons against glutamate toxicity
(neuronal survival values were as follows: control, 96 � 4%;
glutamate, 39 � 3%; H-89 plus glutamate, 38 � 5%; BDNF plus
glutamate, 66 � 5%; H-89 plus BDNF plus glutamate, 63 � 5%;
sAPP plus glutamate, 63 � 6%; H-89 plus sAPP plus glutamate,
61 � 7%). Collectively, the data suggest that PI3 and p42/p44

Figure 6. Involvement of protein kinases in the induction of telomerase
activity and cell survival promotion by BDNF and sAPP. A, Hippocampal
cultures were treated for 24 hr with 100 ng/ml BDNF or saline (Control)

4

in the presence of 200 nM K252a or vehicle. Telomerase activity in cell
lysates was quantified. Values are expressed as a percentage of the
telomerase activity in vehicle-treated control cultures and represent the
mean and SD of determinations made in four to six separate cultures.
**p � 0.01 compared with the value for vehicle-treated control cultures.
##p � 0.01 compared with the value for vehicle-treated cultures exposed
to BDNF. B, Hippocampal cultures were treated for 24 hr with 1 nM sAPP
or saline (Control) in the presence of 25 �M KT5823, 0.5 �M bisindolyl-
maleimide (BIM ), or vehicle. Telomerase activity in cell lysates was
quantified. Values are expressed as a percentage of the telomerase activ-
ity in vehicle-treated control cultures and represent the mean and SD of
determinations made in four to six separate cultures. **p � 0.01 com-
pared with the value for vehicle-treated control cultures. #p � 0.05, ##p �
0.01 compared with the value for vehicle-treated cultures exposed to
sAPP. C, Hippocampal cultures were treated for 24 hr with 100 ng/ml
BDNF, 1 nM sAPP, or saline (Control) in the presence of 200 nM K252a,
25 �M KT5823, 0.5 �M bisindolylmaleimide, or vehicle. Cultures were
then exposed for 24 hr to 20 �M glutamate, and neuronal survival was
quantified. Values are the mean and SD of determinations made in four
separate cultures. *p � 0.05, **p � 0.01 compared with the value for
vehicle-treated cultures exposed to glutamate. #p � 0.01 compared with
the corresponding value for vehicle-pretreated BDNF- or sAPP-treated
cultures exposed to glutamate.
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MAP kinases play key roles in the upregulation of telomerase and
in the cell survival-promoting effects of BDNF and sAPP.

DISCUSSION
Our findings suggest a novel role for telomerase in mediating the
cell survival-promoting actions of two neurotrophic factors in
developing hippocampal neurons. We found that BDNF and

sAPP increased telomerase activity and TERT mRNA and pro-
tein levels in embryonic brain neurons, and that suppression of
TERT production with an antisense oligonucleotide abolished
the abilities of BDNF and sAPP to protect neurons against
glutamate-induced death. In contrast, bFGF, IGF-1, EGF, and
ADNF did not increase levels of telomerase activity, suggesting
that the mechanisms whereby they protect embryonic neurons
against excitotoxicity and apoptosis may not involve telomerase.
BDNF and sAPP are both present at high levels in neurons in the
developing and adult rodent brain, with levels being particularly
high in late embryonic and early postnatal time periods (Neve et
al., 1996; Salvietti et al., 1996; Ivanova and Beyer, 2001). In
addition, BDNF and sAPP are produced and released from
hippocampal neurons in an activity-dependent manner (Patterson
et al., 1992; Nitsch et al., 1993), and each may play an important
role in regulating neurite outgrowth, synaptic plasticity, and cell
survival (Mattson et al., 1993; Cheng and Mattson, 1994; Kang
and Schuman, 1995; Furukawa et al., 1996; Ishida et al., 1997;
Crozier et al., 1999). Neuronal populations known to respond to
BDNF and sAPP, including hippocampal and cortical neurons
(Thoenen, 1995; Mattson and Furukawa, 1998), express TERT
during embryonic and early postnatal development (Klapper et
al., 2001). The abilities of BDNF and sAPP to increase TERT
levels and telomerase activity in embryonic hippocampal neurons
therefore suggest the possibility that these trophic factors play a
prominent role in controlling telomerase expression during brain
development.

We found that BDNF and sAPP were able to increase telom-
erase activity in cultured hippocampal neurons during the first
week of culture but did not increase telomerase activity in more
mature neurons that had been in culture for 12 d. Interestingly,
treatment with a TERT antisense oligonucleotide attenuated the
neuron survival-promoting actions of BDNF and sAPP in imma-
ture neurons but not in the more mature neurons. These findings
suggest that telomerase plays an important role in the trophic
actions of BDNF and sAPP only during a narrow developmental
time window. However, BDNF and sAPP may use additional
mechanisms to promote neuronal survival during this develop-
mental time period, including their previously documented ability
to induce the expression of genes that encode anti-apoptotic
proteins, such as Bcl-2 and antioxidant enzymes (Allsopp et al.,
1995; Mattson et al., 1995; Barger and Mattson, 1996). Important
roles for telomerase in the regulation of cell proliferation and
survival of mitotic cells have been suggested based on studies of
cultured fibroblasts (Bodnar et al., 1998) and tumor cells (Zhang
et al., 1999) and analyses of telomerase-deficient mice (Lee et al.,
1998). Our findings are the first to identify a function for telom-
erase in postmitotic cells, suggesting novel developmental roles
for telomerase.

A relatively rapid decrease in TERT levels in the hippocampus
occurs during the period when naturally occurring cell death also
occurs (Klapper et al., 2001), suggesting a possible role for TERT
in the programmed cell death of those neurons. Thus, a decrease
in the availability of neurotrophic factors may decrease TERT
levels, and a decrease in TERT levels may, in turn, facilitate
neuronal apoptosis. Because neurons are postmitotic and there-
fore do not exhibit telomere shortening, it seems unlikely that the
cell survival-promoting action of TERT is related to its ability to
prevent telomere shortening. However, telomerase may suppress
DNA damage-related signals that can trigger apoptosis. For ex-
ample, TERT can protect cells against death induced by DNA-
damaging agents (Lu et al., 2001) and p53-mediated apoptosis

Figure 7. Evidence for the involvement of PI3 kinase and p42/p44 MAP
kinases in the telomerase-inducing and neuroprotective effects of BDNF
and sAPP. A, Cultures were pretreated for 1 hr with vehicle (0.2%
dimethylsulfoxide), LY294002 (2 �M), or PD98059 (4 �M). Cultures were
then exposed to saline (Control), BDNF (100 ng/ml), or sAPP (1 nM) for
24 hr, and telomerase activity in cell lysates was quantified. Values are the
mean and SD of measurements made in four to six cultures. *p � 0.05,
**p � 0.01, ***p � 0.001 compared with the corresponding value for
vehicle-treated cultures. B, Cultures were pretreated for 1 hr with vehicle
(0.2% dimethylsulfoxide), LY294002 (2 �M), or PD98059 (4 �M). Cul-
tures were then exposed to saline (Control), BDNF (100 ng/ml), or sAPP
(1 nM) for 24 hr. Glutamate was then added to the cultures, and neuronal
survival was quantified 24 hr later. Values are the mean and SD of
measurements made in four to six cultures. *p � 0.05, **p � 0.01, ***p �
0.001 compared with corresponding value for vehicle-treated cultures.
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(Karlseder et al., 1999). DNA damage occurs in cells undergoing
apoptosis during development and in glutamate-induced neuro-
nal death and may be a key trigger of such cell deaths (Didier et
al., 1996; Frank et al., 2000; Culmsee et al., 2001). Neurotrophic
factors can prevent DNA damage and DNA damage-induced cell
death (Middlemas et al., 1999). Our findings suggest a role for
TERT in mediating the cell survival-promoting actions of neu-
rotrophic factors, a new and unexpected function in the develop-
ing nervous system.

BDNF is known to signal via a receptor tyrosine kinase called
trkB. TrkB likely mediates the induction of telomerase activity by
BDNF in embryonic hippocampal neurons because treatment of
the neurons with K252a, an inhibitor of trkB, completely pre-
vented the increase in telomerase activity. We also found that
K252a abolishes the cell survival-promoting action of BDNF in
embryonic hippocampal neurons, consistent with results from
previous studies of BDNF survival signaling in neural cells
(Matsumoto et al., 1995). In the case of sAPP, previous studies
have suggested roles for cGMP and protein kinase C (Barger et
al., 1995; Ishiguro et al., 1998), although the specific cell surface
receptor linked to these second messenger pathways has not yet
been identified. We found that the protein kinase C inhibitor
bisindolylmaleimide completely blocked the sAPP-induced in-
crease in telomerase activity and also abolished the cell survival-
promoting activity of sAPP in embryonic hippocampal neurons.
An inhibitor of cGMP-dependent protein kinase attenuated the
induction of telomerase activity and the cell survival-promoting
actions of sAPP. Previous studies have shown that activation of
protein kinase C can increase telomerase activity in cultured
tumor cells (Li et al., 1998), suggesting a role for this kinase in
telomerase induction and cell survival promotion. There have
been no previous reports of effects of cGMP on telomerase, and
it will be of considerable interest to determine whether this
second messenger regulates telomerase activity in other cell
types.

Studies of non-neuronal cells have shown that TERT expres-
sion can be regulated at the transcriptional level. Transcription
factors that may stimulate TERT expression include c-myc (Wu
et al., 1999), nuclear factor (NF)-�B (Yin et al., 2001), and
Sp1/Sp3 (Guo et al., 2001). Our data suggest roles for PI3 and
p42/p44 MAP kinases in the upregulation of TERT expression
and telomerase activity by BDNF and sAPP. Our findings are
consistent with a report that activation of PI3 kinase plays a role
in the stimulation of telomerase activity in B lymphocytes ex-
posed to antigen (Igarashi and Sakaguchi, 1997) and with studies
of cancer cells, suggesting that MAP kinase activation can up-
regulate TERT gene expression (Wang et al., 2000) and increase
telomerase activity (Seimiya et al., 1999). The transcription fac-
tor(s) that may mediate the effects of BDNF and sAPP on TERT
expression are unknown, but one candidate is NF-�B. Activation
of the PI3 kinase–Akt pathway by BDNF (Bhave et al., 1999) can
stimulate NF-�B (Madrid et al., 2001). sAPP has been shown to
activate NF-�B in cultured embryonic neurons and PC12 cells, in
which it plays a key role in the anti-apoptotic effects of sAPP
(Barger and Mattson, 1996; Guo et al., 1998). Moreover, upregu-
lation of TERT (present study) and activation of NF-�B (Yu et
al., 1999) can protect hippocampal neurons against glutamate
toxicity. Finally, although BDNF and sAPP each increased levels
of TERT mRNA, suggesting transcriptional regulation of telom-
erase activity, it is also possible that these trophic factors regulate
telomerase activity at a post-translational level. Indeed, it was
reported recently that Akt kinase enhances telomerase activity by

phosphorylating TERT (Kang et al., 1999). Because the PI3
kinase pathway, and presumably Akt, appear to mediate the
effects of BDNF and sAPP on telomerase activity, these two
trophic factors might increase telomerase activity, at least in part,
by increasing TERT phosphorylation. A better understanding of
the signaling pathways that regulate TERT expression and telom-
erase activity will not only provide new insight into mechanisms
of nervous system development but may also lead to novel ap-
proaches for preventing unwanted death of neurons in neurode-
generative disorders.
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