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Naturalistic Auditory Contrast Improves Spectrotemporal
Coding in the Cat Inferior Colliculus
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Statistical analysis of natural sounds and speech reveals logarithmically distributed spectrotemporal modulations that can cover several
orders of magnitude. By contrast, most artificial stimuli used to probe auditory function, including pure tones and white noise, have
linearly distributed amplitude fluctuations with a limited average dynamic range. Here we explore whether the operating range of the
auditory system is physically matched to the statistical structure of natural sounds. We recorded single-unit and multi-unit neuronal
activity from the central nucleus of the cat inferior colliculus (ICC) in response to dynamic spectrotemporal sound sequences to deter-
mine whether ICC neurons respond preferentially to linear or logarithmic spectrotemporal amplitudes. We varied the intensity, dynamic
range, and contrast statistics of these sounds to mimic those of natural and artificial stimuli. ICC neurons exhibited monotonic and
nonmonotonic contrast dependencies with increasing dynamic range that were independent of the stimulus intensity. Midbrain neurons
had higher firing rates and higher receptive field energies and showed a net improvement in spectrotemporal encoding ability for
logarithmic stimuli, with an increase in the mutual information rate of �50% over linear amplitude sounds. This efficient use of
logarithmic spectrotemporal modulations by auditory midbrain neurons reflects a neural adaptation to structural regularities in natural
sounds and likely underlies human perceptual abilities.
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Introduction
A central hypothesis of sensory coding asserts that sensory sys-
tems efficiently make use of statistical structure inherent in nat-
ural signals. The possibility that sensory systems are adapted for
encoding natural signals has been a topic of discussion since the
early work of Barlow (1953, 1961). Recent work has revealed that
natural visual (Ruderman and Bialek, 1994; Dong and Atick,
1995; Ruderman, 1997) and acoustic signals (Voss and Clarke,
1975; Attias and Schreiner, 1998; Nelken et al., 1999; Lewicki
2002) show robust statistical properties such as scale invariant
contrast statistics and 1/f modulation spectrum. Although nu-
merous studies have looked at these statistical characteristics of
natural signals, only a few studies have addressed how such sta-
tistics can be used for efficient sensory coding (Rieke and Bodnar,
1995; Dan et al., 1996; Attias and Schreiner, 1998; Nelken et al.,
1999; Stanley et al., 1999). Direct application of information the-
oretic approaches has revealed that sensory neurons respond
most efficiently to sensory signals with natural statistics, although
the exact mechanisms enabling such efficient processing have not
been established.

In natural vision and hearing, our senses are exposed to stim-
uli that span many orders of magnitude in their mean and instan-
taneous intensities. Measurements of the spectral, spatial, or tem-
poral fluctuations in the local energy of the sensory signal are
typically represented by the modulation index for sounds or by
the contrast for visual images. Both of these measures rely on the
peak-to-peak amplitude excursion of the sensory signal as the
relevant signal parameter and do not fully account for the inter-
mediate amplitudes of the sensory waveform. Temporal modu-
lations in natural sounds and spatial fluctuations in natural
scenes, however, cover several orders of magnitude and therefore
are represented best by the log-amplitude transform (Ruderman
and Bialek, 1994; Attias and Schreiner, 1998).

Spatial and temporal energy gradations represent much of the
information-bearing components of sensory signals, and we
therefore expect that sensory systems efficiently make use of spec-
trotemporal information found in natural sounds and spatio-
temporal information found in natural scenes. Considering the
rules for scaling in natural sounds and visual scenes, and the
logarithmic Weber’s law scaling for intensity and luminance dis-
crimination (Weber 1834; Fechner, 1860; Miller, 1947; Harris,
1963; Jesteadt and Wier, 1977; Florentine et al., 1987), one hy-
pothesis is that sensory systems are attuned to logarithmic mod-
ulations. We therefore would like to determine whether the log-
transform signal expressed in units of decibels, 20 � log10 (s(t)),
is potentially more important than the corresponding linear
amplitude auditory signal, s(t).
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Numerous studies have addressed the neuronal representa-
tion of time-varying sounds, although these have traditionally
focused on linear amplitude excursions. Studies on sinusoidal
amplitude modulation (AM) have demonstrated that phase-
locking sensitivity improves with increasing modulation index in
the inferior colliculus (ICC) and neuronal firing rates increase
monotonically, although these can saturate with as little as 20%
modulation index (Rees and Moller, 1983; Krishna and Semple,
2000). There is some evidence, however, indicating that neurons
are also sensitive to the higher-order moments in temporally
modulated amplitudes in acoustic signals, even at near 100%
modulation depth where firing rates appear to be fully saturated.
First, auditory neurons in the cochlea and throughout the entire
auditory pathway are exceptionally sensitivity to the velocity and
acceleration profiles of temporally ramped stimuli (Heil,
1997a,b; Heil and Irvine, 1997). First-spike timing precision and
trial-to-trial reproducibility improve with increasing velocity or
acceleration of the temporal acoustic waveform. Time reversal of
ramped auditory stimuli produces a shift in the perceived quality
and intensity (Irino and Patterson, 1996; Akeroyd and Patterson,
1997) that is reflected in the response of primary auditory cortex
neurons (Lu et al., 2001), although these sounds have identical
peak-to-peak contrast and energy spectrum. Finally, neurons in
the auditory midbrain are sensitive to higher-order moments of
modulation waveform, such as the skewness and kurtosis, and
appear to respond preferentially to synthetic sounds with natu-
rally matched temporal modulations (Attias and Schreiner,
1998). These studies provide evidence that the entire distribution
of amplitudes is critical for the neuronal representation, and the
peak-to-peak values alone do not account for a significant frac-
tion of observed neuronal responses.

Evidence for the relevance of the log-transform amplitude
modulations comes from neurophysiology studies on the repre-
sentation of sound intensity. Peripheral and central auditory
neurons typically respond with an operating range of 30 –50 dB
and can show monotonic or nonmonotonic rate-level dependen-
cies in central stations (Evans and Whitfield, 1964; Palmer and
Evans, 1982; Ehret and Merzenich, 1988; Eggermont, 1989; Sut-
ter and Schreiner, 1995). Psychophysical evidence further sug-
gests that loudness perception and just-noticeable difference li-
mens for intensity discrimination follow logarithmic (e.g.,
Weber’s Law) relationships (Miller, 1947; Stevens, 1957; Harris,
1963; Jesteadt and Wier, 1977; Florentine et al., 1987). It is there-
fore likely that the operating range of auditory neurons is also
used to process fine spectrotemporal information found in nat-
ural sounds.

We tested whether the operating range of single neurons is
suited for encoding spectrotemporal information found in natu-
ral signals by comparing the neuronal representation of log-
amplitude spectrotemporal modulations, 20 � log10(S(t,f)) (units
of decibels), with the corresponding linear amplitude spectro-
temporal excursions, S(t,f). Statistical analysis of natural sounds
shows that natural signals follow logarithmic scaling laws, having
an effective dynamic range that is comparable with the intensity
operating range of single neurons for pure tones. Neuronal activ-
ity in the cat ICC to logarithmic rippled noise (RN) signals (Es-
cabı́ and Schreiner, 2002) was marked by improvement in spec-
trotemporal processing ability, including higher spike rates and
increased mutual information rates. These findings suggest that
the operating range of the auditory system is matched to the
spectrotemporal amplitude statistics of natural sensory stimuli.

Materials and Methods
Natural sound analysis. We studied the spectrotemporal modulations in
natural sounds to identify potential differences among various classes of
natural sounds and to determine whether neurons in the CNS preferen-
tially encode signals with similar statistical properties. The ensemble of
natural sounds included animal vocalizations (64.6 min), continuous
running speech (74.0 min), and environmental sounds (51.1 min). As a
control, white noise (10 min) was also analyzed using identical analysis
procedure. No attempt was made to limit the sounds to any particular
subcategory or species. All vocalizations and environmental sound were
obtained from commercially available compact disk media from the Ma-
caulay Library of Natural Sounds at Cornell University (Storm, 1994a,b;
Emmons et al., 1997). Human speech was obtained from a radio broad-
cast reproduction of the William Shakespeare play Hamlet (Shakespeare,
1992). All sounds were sampled at a rate of 44.1 kHz and 16-bit
resolution.

Sounds were initially decomposed by a bank of tonotopically arranged
filters into a spectrotemporal representation that mimics the spectral
decomposition performed by the cochlea. Filter center frequencies were
arranged according to the frequency position function of the cochlea
over a range covering 250 Hz to 14 kHz, and filter bandwidths were
selected according to the perceptual critical bandwidths (Greenwood,
1990). Sounds waveforms were decomposed according to:

sk�t� � hk�t�*s�t� , (1)

where hk(t) is the impulse response of the k-th filter channel centered
about the frequency fk, � is shorthand for the convolution operator, and
s(t) is the sound waveform. Spectrotemporally compact B-spline filters
(Roark and Escabı́, 1999) were chosen for this analysis to minimize cross
talk across adjacent filter channels and across separate time instants. For
the purpose of the statistical analysis, filter bandwidths overlapped by
50%. To increase the display resolution in Figure 1, however, filters were
overlapped by 90%.

The temporal waveform at the output of each filter was processed to
extract the relative temporal modulations in each filter channel. First, the
time-waveform of the k-th filter output, sk(t), was decomposed into a
temporal envelope:

ek�t� � sk�t� � H�sk�t�� , (2)

where H[�] is the Hilbert transform operator (Hilbert, 1912) and ek(t) is
the temporal modulation envelope of the k-th frequency channel cen-
tered about a frequency of fk. Next, the temporal envelope of each filter
channel was low-pass filtered to limit the modulations across each filter
channel to a maximum rate of 100 Hz:

Sk�t� � ek�t�*h100�t� , (3)

where h100 (t) is the impulse response of a low-pass B-spline filter with
cutoff frequency of 100 Hz and Sk(t) is the band-limited temporal mod-
ulation envelope centered about a frequency of fk. This filtering was
necessary so that all spectral channels have identical modulation band-
widths. A modulation bandwidth of 100 Hz was chosen because the
cochleotopic filter bank decomposition contained filter bandwidths of
�100 Hz at frequencies below 1 kHz, and therefore the outputs for these
frequency channels did not contain modulations above 100 Hz. We treat
Sk(t) as a two-dimensional function S(t,fk), the spectrotemporal enve-
lope, which displays the energy modulations of each natural sound wave-
form as a function of frequency and time.

We were interested in the average statistical characteristics of the rel-
ative spectrotemporal fluctuations of each signal. After the filter bank
decomposition, the envelopes were therefore rescaled according to a lin-
ear amplitude convention:

SLin�t, fk� �
S�t, fk�

SMax
, (4)

where SMax � max[S(t,fk)] is the maximum amplitude value of the spec-
trotemporal envelope, S(t,fk). This rescaling limits the maximum ampli-
tude of the spectrotemporal modulations to 1, consistent with traditional
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definitions of the analytic modulation signal (Hilbert, 1912). The rescal-
ing also preserves the relative excursions and spectrotemporal interrela-
tionships across each frequency band.

Psychophysics of loudness perception and intensity discrimination
suggest that relative amplitude fluctuations described using decibel am-
plitude may be a more appropriate representation of the acoustic wave-
form. We therefore also considered a log-transform version of the spec-
trotemporal envelope:

SdB�t, fk� � 20 � log10�S�t, fk�� � �dB , (5)

where �dB is the mean value of 20 log10 (S(t,fk)). This transformation
removes the mean spectrotemporal level while preserving the variance
and expresses the spectrotemporal envelope in units of decibels.

Analysis of the spectrotemporal envelope statistics consisted of mea-
suring the amplitude distribution function for both the linear and decibel
amplitude envelopes. Pixel values obtained from the spectrotemporal
envelope were compounded into an amplitude distribution function,
p[SLin] and p[SdB], where p[�] is the amplitude distribution function and
SLin � SLin(t,fk) and SdB � SdB (t,fk) are shorthand for the linear and
decibel spectrotemporal envelopes, respectively. Examples of the corre-
sponding ensemble distributions for speech, vocalizations, background
sounds, and white noise are illustrated in Figure 1. Additional analysis
also consisted of estimating standard statistical measures directly from
SLin and SdB (see Table 1). These included the modulation index, � �
(SMax � SMin)/SMax, and the contrast, C � (SMax � SMin)/(SMax � SMin)
as well as the waveform SDs, 90th percentile range, and skewness.

Electrophysiology. A detailed account of our experimental methods has
been reported previously (Escabı́ and Schreiner, 2002). Briefly, cats (n �
4) were initially anesthetized with a mixture of ketamine HCl (10 mg/kg)
and acepromazine (0.28 mg/kg, i.m.). After an intravenous infusion line
was inserted, a surgical state of anesthesia was induced with �30 mg/kg
Nembutal and maintained throughout the surgery with supplements.
Body temperature was measured and maintained with a heating pad at
�37.5°C. An incision was made in the intercartilaginous area of the
trachea, and a tracheotomy tube was inserted. After a craniotomy was
performed, the ICC was exposed by removing the overlying cerebrum
and part of the bony tentorium using a dorsal approach. On completion
of the surgery, the animal was maintained in an areflexive state of anes-
thesia via continuous infusion of ketamine (2– 4 mg � kg � 1 � hr � 1) and
diazepam (0.4 –1 mg � kg � 1 � hr � 1) in lactated Ringer’s solution (1– 4
mg � kg � 1 � hr � 1). The state of the animal was monitored (heart rate,
breathing rate, temperature, and reflexes) throughout the experiment,
and the infusion rate was adjusted according to physiologic criteria. Ev-
ery 12 hr the cat received an injection of dexamethasone (0.14 mg/kg,
s.c.) and atropine (0.04 mg � kg � 1 � d � 1, s.c.). All surgical methods and
experiment procedures followed National Institutes of Health and
United States Department of Agriculture guidelines and were approved
by the committee on animal research, University of California, San
Francisco.

Data were obtained from single units (su) and multi-units (mu) in the
ICC. One or two closely spaced parylene-coated tungsten microelec-
trodes (Microprobe Inc., Potomac, MD; 1–3 M	 at 1 kHz) were ad-
vanced with a hydraulic microdrive (David Kopf Instruments, Tujunga,
CA). Electrode penetration trajectories were at �20 –30 o relative to the
sagittal plane and approximately orthogonal to the isofrequency band
lamina. Action potential traces were recorded onto a digital audio tape
(CDAT16; Cygnus Technologies, Delaware Water Gap, PA) at a sam-
pling rate of 24.0 kHz (41.7 �sec resolution) for off-line analysis. Off-line
analysis consisted of digital bandpass filtering (0.3–10 kHz) all spike
trains and individually spike sorting the action potential traces using a
Bayesian spike-sorting algorithm (Lewicki, 1994).

Acoustic stimuli. Our analysis of natural sounds suggests that spectro-
temporal fluctuations in natural sounds have a broad dynamic range and
that these are most appropriately described by the decibel amplitude
variable. Therefore, we hypothesized that sensory neurons in the CNS
should respond best to sounds that efficiently cover the decibel ampli-
tude dimension.

One approach for testing this hypothesis is to compare the response of

natural sounds with those of altered natural sounds. This approach may
be limited by the high dimensionality and the correlations present in
natural sounds that may prevent us from measuring true contrast effects.
Although we currently know very little about the statistical properties of
natural sounds, it is generally agreed that these are structurally complex
and exhibit spectral and temporal correlations over a wide range of scales
(Voss and Clarke, 1975; Attias and Schreiner, 1998; Theunissen et al.,
2000). Therefore, modifying the contrast of a natural sound directly
could potentially modify some alternate dependent variable. We there-
fore used synthetic stimuli with logarithmically matched and unmatched
contrast statistics to study the efficiency of neuronal coding in the infe-
rior colliculus.

The synthetic sounds consist of RN stimuli (Escabı́ and Schreiner,
2002) that are compatible with reverse correlation and can be used to
estimate the spectrotemporal receptive field (STRF) of a neuron. These
stimuli dynamically activate the sensory epithelium in the cochlea and
allow us to estimate neuronal preferences in an unbiased manner. The
spectrotemporal envelope of this stimulus is shown in Figure 2. It has
noise-like properties with energy fluctuations that span a temporal mod-
ulation range of 0 –350 Hz and spectral modulations from 0 to 4 cycles
per octave. Signals were generated by modulating individual sinusoidal
carriers of frequency, fk, and random phase, �k:

s�t� � �
k�1

L

S�t, Xk� � sin�2� fkt � �k� , (6)

over a range of 0.5–20 kHz by the stimulus spectrotemporal envelope
S(t,Xk). Here Xk � log2 ( fk/f0) is an octave frequency axis and the carrier
spacing was set to 
X � 0.0231 octaves.

To address our initial hypothesis of which stimulus dimension is most
important (linear or decibel amplitude), the amplitude statistics of the
RN spectrotemporal envelope were designed either on a decibel or linear
amplitude axis, without modifying the spectrotemporal content. First we
created a generic RN spectrotemporal envelope, Sg(t,Xk), that was used to
construct all of the sampled acoustic waveforms. From this we con-
structed five RN sounds that differed only in the contrast statistics of their
envelope: sLin(t), s15(t), s30(t), s45(t), and s60(t). Subscripts denote the type
of spectrotemporal contrast statistic: Lin designates an RN with linearly
distributed amplitude statistics (see Fig. 2 A–E). Numerical values desig-
nate the dynamic range (in decibels) for RN sounds with logarithmic-
distributed (Log) contrast statistics (see Fig. 2 F–J ). The later sounds
therefore had contrast statistics that could cover several orders of mag-
nitude, as is evident for all natural sounds. Because sounds were con-
structed using an identical generic envelope (Sg(t,Xk)) by applying a non-
linear transformation, all sound sequences had identical spectrotemporal
content and differed only in their contrast (amplitude) statistics.

The generic ripple noise envelope has uniformly distributed amplitude
statistics in the interval 0 –1. Decibel distributed sounds were constructed
by applying the transformation:

SM�t, Xk� � 10
M�Sg�t, Xk��M

20 , (7)

to the generic envelope, where M designates the dynamic range of the
envelope in units of decibels (M assumes values of 15, 30, 45, or 60 dB).
The decibel envelope for this sound, SdB(t,Xk) � 20 � log10(S(t,Xk)) �
M � Sg(t,Xk) � M, has a uniform amplitude distribution in the interval
[�M, 0] dB (see Fig. 2 J).

To determine whether linear or logarithmic modulations preferen-
tially excite sensory neurons, we designed a control stimulus with linear
amplitude modulations (as shown in Fig. 1 for white noise). The Lin-RN
sound covered a similar range of modulation amplitudes as the Log-RN.
The Lin-spectrotemporal envelope is designated as:

S��t, Xk� � � � Sg�t, Xk� � �1 � �� , (8)

where the modulation index of � � 1 � 10 �30/20 � 0.968 was chosen so
that the Lin-RN has an identical modulation index as the 30 dB Log-RN
sound (i.e., the maximum and minimum amplitude values are identical;
minimum � 10 �30/20, maximum � 1). These sounds thus are matched
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at their extremes and differ only in the shape of their amplitude distribu-
tion. The Lin-RN has a uniform amplitude distribution in the interval
10 �30/20 to 1 (see Fig. 2 B, C). To facilitate comparisons, we point out that
the 30 dB and Lin amplitude distributions have similar low-order statis-
tics (see Table 2). These include their SDs measured for S(t,Xk) (�Lin �
�/�12 � 0.28 and �30 � 0.23) and for 20 � log10(S(t,Xk)) (�30 � 8.66 dB
and �Lin � 6.71 dB).

Stimulus presentation. All experiments were conducted in a sound-
attenuating chamber (IAC, Bronx, NY) with stimuli delivered via a
closed, binaural electrostatic speaker system (Stax). Stimuli were pre-
sented binaurally with an independent RN sound sequence for each ear.
This allowed us to compute independent STRFs for the contralateral and
ipsilateral ears (Escabı́ and Schreiner, 2002). After single units and multi-
units were obtained for pure tones and white noise, a pseudorandom
sequence of four 15 sec ripple noise segments (60 sec total at each con-
dition) was presented at five intensities (in 10 or 15 dB steps) and five
contrast conditions (15, 30, 45, or 60 dB) and also for the Lin condition.
The mean firing rate was measured for each condition and a contrast-
intensity response function, R(C,SPL), was approximated by a 4 � 5
matrix of mean firing rates. For visualization purposes (see Figs. 3, 4), the
contrast-intensity response matrices were interpolated using the interp2
function (cubic interpolation) in MATLAB (Mathworks Inc.); however,
all of the subsequent analysis was performed on the original 4 � 5 re-
sponse matrix.

We characterized the contrast-response curves of each neuron along
the maximum SPL contour according to the shape of the contrast-
response curve as increasing-monotonic, nonmonotonic, decreasing-
monotonic, or independent of contrast. As a criterion, we searched for
statistically significant changes (increase or decrease) in firing rate at each
contrast condition. Estimates of the firing rate measurements, 	̂M, over a
60 sec time window were bootstrapped for each contrast condition, M �
15, 30, 45, or 60 dB, to determine the variability of the data. The signifi-
cance probability was determined numerically for p 
 0.05 by finding the
tail probabilities of the overlapping firing rate distributions across differ-
ent contrast conditions. Neurons were identified as contrast nonmono-
tonic whenever the measured firing rates for the 15 and 60 dB conditions
were statistically smaller than for 30 or 45 dB contrast. Mean firing rates
for monotonic neurons were chosen to satisfy a significance relationship
	̂15 
 	̂30 
 	̂45 
 	̂60 or 	̂15 � 	̂30 � 	̂45 � 	̂60.

A nonrepeating 18 min segment of the RN was presented at key locations
of the contrast-intensity response curve: Lin and 30 dB conditions, Lin and
60 dB conditions, or Lin, 30, and 60 dB conditions. This was used to estimate
the STRF of each neuron at multiple-contrast operating conditions. Finally,
at 25 recording sites, the mutual information rate of each neuron was esti-
mated from the response rastergrams to a 5 sec segment (repeated 150 times)
of the ripple noise (see Mutual information; see Fig. 8).

Spectrotemporal receptive field. Contralateral and ipsilateral STRFs are
computed by averaging the pre-event spectrotemporal envelope of the
contra- and ipsi-stimulus at the time instant of each neural spike, tn (47
�sec resolution):

STRF��, Xk� � 1/��s
2 � T� �nS� �tn � �, Xk� . (9)

Here T corresponds to the experimental recording time in seconds, � is
the temporal delay of the stimulus relative to the neural event time (0 –
100 msec), �S(t,Xk) is the zero-mean spectrotemporal envelope for the
contra- or ipsi-stimulus, and �s

2 is the envelope variance.
All of the analysis was performed so that the spectrotemporal envel-

oped used in Equation 9 corresponds precisely with the stimulus dimen-
sion under consideration. For instance, if the Lin-RN sound was pre-
sented (Eq. 8), the linear-amplitude zero-mean spectrotemporal
envelope:

S� �t, Xk� � S��t, Xk� � �1 � �/ 2� � � � S� g�t, Xk� , (10)

was used to compute the STRF of the neuron where � 2 � �/12 (� � 1 �
10 �30/20) is the variance of the envelope and �Sg is the zero-mean, unit-
variance generic spectrotemporal RN envelope. Alternately, if a

logarithmic-distributed RN envelope was used, e.g., M � 30 dB, the
corresponding zero-mean decibel envelope was used in the analysis:

S� �t, Xk� � 20 � log10�SM�t, Xk�� � M/2 � � � S�g�t, Xk� , (11)

where � 2 � M2/12 dB 2 is the signal variance for the Log sound. This
procedure assured that in both instances the stimulus spectrotemporal
envelopes used for the reverse correlation were identical in all respects
except their variance. Unfortunately, this meant that the STRF units were
distinctly different for the Lin- and Log-spectrotemporal envelopes (Eqs.
10 and 11, respectively). These are given as output/input where the out-
put units are spikes per second for either case but the input units are dB
for the Log envelope and unitless for the Lin-envelope. Therefore, an
alternate normalization was preferred for the STRF in which we removed
the input stimulus dimensions by multiplying by the average input sig-
nal: STRFr � � � STRF. This rate-normalized STRF is given in units of
spikes per second and corresponds to the average output produced for
the average input (Escabı́ and Schreiner, 2002). Furthermore, after nor-
malizing Equation 9 in this manner, both rate-normalized STRFs are no
longer confounded by any stimulus-dependent aspects and are now de-
scribed by the same equation:

STRFr��, Xk� � 1/T �n S� g�tn � �, Xk� . (12)

Throughout this report, the rate-normalized STRF is used to facilitate
comparisons.

Statistically significant STRF. Statistically significant regions of the
STRF were determined by considering a null condition in which N ran-
domly chosen Poisson spikes are put through Equation 9 (Escabı́ and
Schreiner, 2002). The amplitude distribution of this control-STRF was
derived in closed form, and significance was tested for all STRFs at p 

0.002. Because the amplitude distribution of the control-STRF quickly
approached a Gaussian distribution (for as few as N � 50 spikes), the
significant STRF was obtained by keeping all values that exceeded 3.09
SDs of the control noise STRF and setting all other values to zero (e.g.,
actual significance p 
 0.0019 for N � 50).

STRF similarity index. We compared STRF shapes across multiple
conditions with the STRF correlation coefficient or similarity index (SI)
(DeAngelis et al., 1999; Reich et al., 2000). For two experiment condi-
tions A and B, we consider the statistically significant vectorized RFs,
which consist of all pixels of STRFA and STRFB (determined for both the
contra- and ipsi-STRFs) that exceed a significance test ( p 
 0.002) for
condition A or B. The STRF similarity index is then computed as:

SIA,B �
�RFA, RFB�

�RFA� � �RFB� , (13)

where RFA and RFB are the significant vectorized binaural-STRFs for
condition A and B, respectively, ��,�� corresponds to the vector inner
product, and ��� designates the vector norm operator. The SI quantifies
the STRF shape differences or similarity independently of STRF amplitude
and assumes numerical values between �1 and 1, where 0 designates not
similar, 1 indicates that the STRFs have identical shape, and�1 indicates that
the STRFs have identical shape but differ by a sign inversion.

Rate and magnitude disparity index. Two metrics were designed that
allowed us to evaluate firing rate and STRF energy differences indepen-
dently of the STRF shape. First we computed a rate disparity index (RDI):

RDIA,B � s � ��	A

	B
� s

� 1� � 100% , (14)

where 	A and 	B are the measured firing rates for conditions A and B,
respectively, and s � sign (	A � 	B). The magnitude of the RDI is nu-
merically equivalent to the percentage of change in firing rate referenced
on condition A if s � 0 and B if s 
 0. Its sign, s, tells us which condition,
A or B, had a higher firing rate: 	A � 	B if s � 0 and 	A 
 	B if s 
 0.
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Differences in the driven neuronal activity between two stimulus con-
ditions were quantified by measuring the percentage of change in the
STRF energy, which we measured as an STRF magnitude disparity index
(MDI):

MDIA,B � s � ��EA

EB
� s

� 1� � 100% , (15)

where EA and EB are the significant binaural rate-normalized STRF en-
ergies for conditions A and B, respectively (Escabı́ and Schreiner, 2002).
The STRF energy measures phase-locked activity (units of spikes per
second) that is captured by the STRF of the neuron. Therefore, the MDI
measures changes in phase-locked or stimulus-driven neuronal activity
where the sign, s, designates which condition was stronger and the mag-
nitude of the MDI designates the percentage of change in driven activity.

Mutual information. A 5 sec segment of the RN stimulus was presented
for 150 trials. Response traces were recorded for each trial, and the reli-
ability of the spike train was determined by measuring the mutual infor-
mation rate (de Ruyter van Steveninck et al., 1997; Strong et al., 1998).
The first 25 traces were discarded for all neurons to minimize the effects
of adaptation. Each spike trace was digitized at a sampling resolution of

t � 1 msec, and the spike train entropy was determined by measuring
the probability distribution, P( W), of possible N-bit words, W (also
tested for 
t � 2 and 5 msec). A search through the whole experiment
was conducted to determine the word distribution, P( W). Using the
distribution of N-bit words, the spike train entropy is determined as:

Stotal � � �
W

P�W� � log2�P�W�� . (16)

This measure provides a theoretical upper limit on the amount of infor-
mation that a spike train can convey and does not account for the possi-
bility of internal noise. To determine the noise inherent within the re-
sponse, the noise entropy was computed by determining the trial-to-trial
reliability of the response (e.g., the entropy in the spike train that does not
convey any viable information about the stimulus). At any given time
instant, t, the conditional probability distribution of obtaining a given
N-bit word was computed, P(W�t). The noise entropy was then deter-
mined as:

Snoise � � � �
W

P�W�t� � log2�P�W�t��	
t

, (17)

where ��� is the conditional ensemble expectation computed over all time.
The information that the spike train contains about the stimulus (i.e., the
mutual information) is determined by subtracting these two quantities:
I � Stotal � Snoise. This procedure was bootstrapped across different
stimulus segments, word lengths (T � 5, 6, 8, 10, 15, 20, 40, 80, 160, and
200 msec), and data fractions (80, 50, 33, and 25%). The mutual infor-
mation and error bounds were then extrapolated (using 80, 50, 33, and
25% data fractions and T � 5–15 msec) for the infinite data case accord-
ing to the procedure of Strong et al. (1998). The algorithm was calibrated
with fly visual data from Borst (2003).

Spectrotemporal phase-locking index. We measured the contribution of
single action potentials by considering how each neuronal spike contrib-
utes to the STRF construction procedure (Eq. 12) with a spectrotemporal
phase-locking index (PLI) (Escabı́ and Schreiner, 2002). The PLI metric
allows us to measure the degree of alignment of action potentials to the
spectrotemporal envelope of the sound and provides a measure of the
fraction of the spikes of the neuron that contributes to the STRF con-
struction process.

The theoretical basis for the PLI metric is a tight temporal spike align-
ment to on- and off-features in the RN sound that will lead to optimal
buildup of the STRF (Eq. 12). This will produce a large peak-to-peak
STRF amplitude. If the alignment of action potentials and stimulus fea-
tures is poor, the resulting STRF peak-to-peak amplitude will be small.
On the basis of this fact, the phase-locking index is defined as the mea-
sured peak-to-peak amplitude of the STRF normalized by the theoretical

maximum attainable peak-to-peak amplitude for a perfectly phase-
locking neuron:

PLI �
max�STRFr� � min�STRFr�


12 � 	
, (18)

where max(STRFr) � min(STRFr) is the measured peak-to-peak ampli-
tude for the rate-normalized STRF (Eq. 12) and �12 � 	 is the maximum
theoretical value for Equation 12 (Escabı́ and Schreiner, 2002). The PLI is
bounded between 0 for no evident phase locking (no measurable STRF)
to 1 for a perfect phase locking.

Results
We studied the amplitude distributions of spectrotemporal mod-
ulations in natural sounds to determine whether sensory neurons
respond preferentially to sounds with a natural-like dynamic
range. First, we quantitatively measured the second-order mod-
ulations of various natural sound ensembles. We next tested the
representation of linear and logarithmic spectrotemporal modu-
lations to determine whether the amplitude statistics and the
dynamic range of the stimulus significantly improve neuronal
encoding in the ICC. We designed synthetic RN stimuli that uni-
formly cover the linear or decibel dimension over a predeter-
mined range of values and are matched to the statistical structure
of various artificial stimuli and natural sounds. This approach
allowed us to closely match a number of low-order statistics of the
linear and log-transform stimulus, such as the SD, modulation
depth, and contrast, while allowing us to independently modify
the shape of the amplitude distribution and its higher-order mo-
ments (e.g., its skewness, kurtosis, and log-transform SD). STRF
and information theoretic approaches were then used to compare
neuronal encoding abilities for both logarithmic- and linear-
ripple noise stimuli and for various dynamic range conditions.

Spectrotemporal modulations and contrast in natural sound
The statistical properties of the spectrotemporal modulations in
natural sounds were determined by analyzing an extensive data-
base that included speech, animal vocalizations, environmental
sounds, and white noise. Animal vocalizations included sound
emissions from a host of domestic (cat, horse, dog, etc.) and
nondomesticated (bats, primates, birds, large cats, frogs, etc.)
animals. Environmental background sounds were selected from
inanimate sources such as running water, wind, and thunder. The
sample also included unvocalized sound emissions from animals
such as a woodpecker hammering, footsteps in leaves, and buzz-
ing from a swarm of bees. Human speech was conversational,
obtained from long, continuous segments of a reproduction of
the play Hamlet. All sounds were decomposed into a cochleotopic
representation that mimics the output performed by the cochlea
(Fig. 1). This spectrotemporal stimulus pattern provides a picto-
rial representation of the spectral and temporal modulations that
are present in each signal.

Figure 1 illustrates representative sound segments from each
of the studied stimulus ensembles. The spectrotemporal modu-
lations in each sound are plotted either as a linear amplitude
variable (Fig. 1A,E, I,M), normalized to an amplitude range be-
tween 0 and 1, or as a log-transform variable expressed in ampli-
tude units of decibels (Fig. 1B,F, J,N). Visually, much of the
detail of the linear amplitude spectrotemporal envelope is ob-
scured because most of the stimulus modulations are localized
about amplitudes near zero. In contrast, the log-transform spec-
trotemporal envelope expands the effective dynamic range of
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each stimulus and expresses the modula-
tions as proportional amplitude, so that
much of the structural detail is readily vis-
ible. The perceptual difference in the visual
representation of these stimuli is consis-
tent with psychophysics of intensity and
luminance discrimination, both of which
follow Weber’s law scaling (Weber, 1834;
Fechner, 1860; Miller, 1947; Harris, 1963;
Jesteadt and Wier, 1977; Florentine et al.,
1987).

We computed the spectrotemporal
amplitude distribution of each signal by
collapsing all of the pixel values of the
spectrotemporal envelopes into a binned
histogram. These are shown for both the
linear and decibel spectrotemporal enve-
lopes. As observed from the linear spectro-
temporal envelopes, the distribution of
spectrotemporal amplitudes in natural
signals is highly skewed toward values near
zero (Fig. 1C,G,K; Table 1). By compari-
son, white noise has amplitude fluctua-
tions that cover a larger extent of the linear
amplitude space (Fig. 1O). Thus, although
all natural sounds exhibit spectrotemporal
modulations that span nearly the entire
range of linear amplitude values (from 0 to
1; all sounds had modulation depths
�99.99%), the measured SDs were typi-
cally small, indicating that the average am-
plitude modulations of these signals
spanned only a limited region of the linear
amplitude space and were skewed toward
zero value (Table 1). This conflicting as-
sessment of the spectrotemporal modula-
tions in natural signals indicates that typi-
cal measures such as the traditionally
defined contrast, C � (SMax � SMin)/(SMax

� SMin), or the modulation index, � �
(SMax � SMin)/SMax, are inappropriate be-
cause they only account for the maximum
and minimum stimulus intensities (SMax

and SMin, respectively) and do not take
into account the distribution of interme-
diate amplitude values.

The log-transform spectrotemporal
envelope histogram expands the observ-
able range of the signal and therefore over-
comes many of the limitations observed
for the linear amplitude variable. The deci-
bel amplitude modulations in natural
sounds follow a roughly symmetric bell-
shaped distribution as measured from the
low skewness values (Fig. 1D,H,L; Table
1). As is evident in the example spectrotemporal envelopes, the
measured SD and 90th percentile range of speech, vocalizations,
and environment sounds spanned an extensive range of values
(Table 1). Vocalizations and speech have the broadest distribu-
tions as measured from their SD and 90th percentile range,
whereas environmental sounds covered a narrower range of am-
plitudes. White noise, by comparison, spanned the narrowest
amplitude range.

These findings show that vocalizations and environmental
sounds contain logarithmically distributed spectrotemporal
modulations with an effective dynamic range (i.e., 90th percentile
range; �30 dB for environmental sounds and �50 dB for vocal-
izations and speech) that is closely matched to the intensity op-
erating range of neurons in the auditory pathway (Evans and
Whitfield, 1964; Palmer and Evans, 1982; Eggermont, 1989). We
therefore postulate that auditory neurons use such information

Figure 1. Analysis of the spectrotemporal contrast statistics of natural sounds and white noise. Cochlear model output repre-
sentation showing the spectrotemporal modulations of a short segment of human conversational speech (A, B), animal vocaliza-
tions (E, F ), environment background sounds (running water) (I, J ), and white noise (M, N ). Color scales are expressed either as a
linear amplitude spectrotemporal modulation (normalized for a maximum value of 1) (A, E, I, M ) or as the corresponding
log-amplitude spectrotemporal modulation pattern (zero mean) expressed in units of decibels (B, F, J, N ). The corresponding
acoustic sound pressure waveforms are shown for each sound segment above each spectrotemporal envelope in black. The
log-transformed spectrotemporal envelope expands the visible dynamic range of the stimulus, revealing detail that is not visible
in the linear amplitude spectrotemporal modulation envelope. For each of the sound ensembles, the amplitude values from each
spectrotemporal envelope were converted into a probability histogram for both the linear (C, G, K, O) and log-transform spectro-
temporal envelope (D, H, L, P). The linear amplitude distribution of all natural sounds (C, G, K ) shows a exponential-like distribu-
tion in which most of the stimulus components fall at low amplitude values. By comparison, the linear amplitude distribution of
white noise ( O) covers much of the linear amplitude dimension. The corresponding log-amplitude distributions exhibit a bell-
shaped profile in which speech had the broadest dynamic range ( D) and white noise covered the narrowest range of amplitude
values ( P).
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for efficiently encoding and detecting spectrotemporal features in
natural signals. As is evident from Figure 1, vocalizations and
speech dynamically change over time and exhibit short periods of
high-energy and low-energy comodulated activity followed by
quiet or background activity (Nelken et al., 1999). Background
sounds by comparison are usually stationary over the time scales
that are relevant for intensity discrimination and loudness per-
ception (Green et al., 1957; Stephens, 1973) and generally have a
much narrower dynamic range. These difference in the effective
dynamic range and the time-varying structure between vocaliza-
tion and environmental sounds thus may be important for signal
segregation and may facilitate the detection of vocalizations in
high levels of background noise.

Contrast and intensity response characteristics
To test the possibility that the operating range of the central
auditory system is matched to efficiently process natural acoustic
stimuli, we designed naturalistic RN stimuli that mimic the log-
arithmic amplitude fluctuations observed in natural sounds and a
control stimulus with linearly distributed amplitude fluctuations
(see Materials and Methods) (Fig. 2) similar to those found in
common experimental stimuli. Although the distribution of log-
arithmic modulations in the log-RN does not exhibit long tails as
evident in all natural sounds (Fig. 1), these sounds have spectro-
temporal amplitudes that efficiently cover the decibel amplitude
space (Fig. 2 I, J), an exponential-like linear amplitude distribu-
tion (Fig. 2H), and envelope SDs within the range observed for
natural sounds (see Materials and Methods) (Tables 1, 2). For
both conditions, the modulations in the RN sound covered an
unbiased range of temporal (0 –350 Hz range) and spectral (0 – 4
cycles per octave) modulations, making it a suitable test stimulus
for measuring spectrotemporal receptive fields in the ICC (Escabı́
and Schreiner, 2002; Qiu et al., 2003). The spectrotemporal con-
tent of all sounds was held fixed, and the amplitude distribution
of each sound was varied independently. The naturalistic RN has
spectrotemporal intensity fluctuations that uniformly covered a
dynamic range of 15, 30, 45, or 60 dB (shown for 45 dB in Fig.
2 I, J). The linearly distributed control sound had amplitude fluc-
tuations that uniformly covered a predefined linear amplitude
range from 10�30/20 � 0.032 to 1 (modulation index � 0.968)
(Fig. 2B,C). Both the naturalistic (Log) and artificial (Lin) stimuli
had identical spectrotemporal envelope content and differed only
in their amplitude statistics (see Materials and Methods) (Figs.
2A,F).

Recordings were performed on n � 63 su and n � 40 mu in the
ICC. Sound segments (15 sec) were presented in a pseudorandom
order for the different contrast conditions and for 5 rms sound
pressure levels (SPLs) extending over a range of 50 or 75 dB (step
size of 10 or 15 dB, respectively). Intensity- versus contrast-
response curves were derived for each neuron by measuring the
mean spike rate at all operating conditions (see Materials and
Methods) (Fig. 3). As expected, neurons showed monotonic or
nonmonotonic response characteristics as a function of SPL

(Evans and Whitfield, 1964; Ehret and Merzenich, 1988; Egger-
mont, 1989; Sutter and Schreiner, 1995). Similar dependencies
were observed for the contrast axis. Response characteristics can
be increasing-monotonic with increasing dynamic range (Fig.
3A–C), tuned (Fig. 3D–F), decreasing-monotonic (Fig. 3I), or
independent (Fig. 3G,H) of the stimulus contrast statistics. For
reference, results for the Lin stimulus are shown alongside the Log
contrast conditions.

Increasing-monotonic units (n � 37 mu � su) showed a sig-
nificant increase in firing rate ( p 
 0.05) with increasing contrast
dynamic range. In such cases the mean spike rate was typically
minimal for the Lin-RN and 15 dB Log-RN and maximal for the
60 dB Log-RN (firing rate increase over Lin: average � 168%,
median � 78%). For all neurons, the mean spike rates were sim-
ilar for linear-RN and 15 dB Log-RN ( p � 0.1). Hence, the minor
differences between these two stimulus conditions were biologi-
cally insignificant. On increasing the dynamic range above 15 dB,
spike rates increased monotonically (Fig. 3A: 	15 � 0.10 spikes/
sec and 	60 � 0.95 spikes/sec, p 
 0.0001; B: 	15 � 0.03 spikes/sec
and 	60 � 3.36 spikes/sec, p 
 0.0001; C: 	15 � 0.31 spikes/sec
and 	60 � 2.15 spikes/sec, p 
 0.0001; taken for the intensity with
maximum response).

Nonmonotonic contrast response curves were seen in �46%
of the sites ( p 
 0.05; n � 47 mu � su) (Fig. 3D–F). Responses
were minimal for 15 dB-RN and maximal for Log-RN with a
dynamic range of 30 or 45 dB. On increasing the dynamic range
to 60 dB, the responses of nonmonotonic neurons were sup-
pressed. On the average, a 34% (multi-unit � 27%) decrease in
firing rate was observed for the 60 dB contrast condition (su
median � 25%; mu median � 26%; not significantly different,

v�5

2 � 3.75; p � 0.44). The single neuron depicted in Figure 3D
has a significant reduction (91%; p 
 1 � 10�6) in firing rate (	30

� 9.7 spikes/sec and 	60 � 0.9 spikes/sec). Although the observed
nonmonotonic relationships were statistically significant, we
point out that reductions in firing rate were usually small. The
neurons shown in Figure 3, E and F, had a reduction of 49% (	30

� 14.7 spikes/sec and 	60�7.48 spikes/sec; p 
 2 � 10�6) and
16% (	30 � 39.0 spikes/sec and 	60 � 33.8 spikes/sec; p 
 0.001),
respectively. Only four single neurons and three multi-units
showed a significant decrease in firing rate to less than half of
their maximum response amplitude. Other neurons showed a
decreasing trend in firing rates (n � 7) with increasing con-
trast (Fig. 3I ) (	15 � 2.3 vs 	60 � 0.75 spikes/sec; p 
 1 �
10 �6) or showed no statistically significant response pattern
(n � 12) (Fig. 3G: 	15 � 3.6 vs 	60 � 4.5 spikes/sec, p � 0.35; H:
	15 � 7.7 vs 	60 � 6.7 spikes/sec, p � 0.4).

Independence of response to intensity and contrast
The contrast-intensity response curves of Figure 3 demonstrate
that, in principle, stimulus intensity and contrast can be encoded
by the mean firing rate characteristics of individual neurons. The
hypothesis that intensity is partly encoded by the mean firing rate
of single neurons is consistent with this observation. What is

Table 1. Summary statistics for the natural sound ensembles and white noise comparing the linear versus the log amplitude analysis

Linear amplitude Log amplitude (dB)

Mean
(�10�3)

SD
(�10�3) Skewness

90th percentile range
(�10�3) Mean SD (dB) Skewness

90th percentile range
(dB)

Speech 2.3 6.29 7.81 0– 4.5 0 14.84 0.1001 �28.4–20.6
Vocalizations 3.1 7.49 7.15 0– 6.5 0 13.32 0.072 �21.9–21.1
Environment 5.4 9.1 5.71 0–12.0 0 9.09 �0.3866 �14.5–15.5
White noise 40.7 26.13 0.99 0–79.5 0 6.1 �0.48 �8.7–10.3
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presently not clear is how spectral and
temporal fluctuations (which are them-
selves a form of intensity at very fine spec-
tral and temporal scales) associated with
the contrast characteristics of the ripple
sound are jointly encoded with intensity
by individual or populations of neurons. It
is possible that neuronal responses to in-
tensity (SPL) and contrast covary or, alter-
natively, are processed independently of
each other. To determine which of these
two possibilities is consistent with the ob-
served data, we determined whether the
intensity-contrast rate-level functions are
separable for these two parameters.

Intensity-contrast response (for loga-
rithmically distributed RN only) curves
were decomposed using a singular value
decomposition procedure (Strang, 1988).
This procedure decomposes the contrast-
intensity response curve into a weighted
sum of functions that are each indepen-
dent products of the contrast (C) and in-
tensity (SPL) parameters. Mathematically
the response function can be expressed as:

R�C,SPL� � �
k�1

N

�k � uk�C� � �k�SPL� ,

(19)

where R(C,SPL) is the contrast-intensity
response curve, �k is the k-th singular
value, and uk(C) and vk(SPL) are functions
of contrast and intensity, respectively. If
the contrast-intensity response curve is
strictly a separable function of SPL and C,
it is expected that the above sum degener-
ates into a single term. For this unique sce-
nario, the response of the neuron is ex-
pressed by the first term in the sum
R(C,SPL) � �1 � u1(C) � v1(SPL).

A separable approximation of the
contrast-response curve was obtained by
considering only the first singular value:
R̂(C,SPL) � �1 � u1(C) � v1(SPL). The sep-
arable approximation and the true
contrast-intensity response curves are de-
picted in Figure 4 for two single neurons.
In both cases the separable approximation
captures most of the detail of the true re-
sponse function, thus supporting the idea
that contrast and intensity are processed
independently.

A direct measure of separability is pro-
vided by considering the relative strength
of the first singular value to the higher-order singular values.
Thus we devise a separability index:

S �
�1

2

�
k�1

N

�k
2

, (20)

which consists of the ratio of the first singular value, 	1
2, to the

weighted sum of all the squared singular values (N � 4 because
the measured contrast-intensity response function consists of a
4 � 5 matrix; four contrast versus five intensity conditions). This
measure quantifies the overall fraction of the contrast-intensity
response curve accounted for by the separable approximation, R̂.
Values near zero indicate that the contrast-intensity response

Figure 2. Spectrotemporal envelope and contrast statistics of the Lin- and Log-ripple noise test stimulus. The RN spectrotem-
poral envelope has random intensity modulations along the temporal and frequency stimulus dimensions (A, F ). Log- and Lin-RN
have identical spectrotemporal features and differ only in their amplitude statistics (A, F; both shown on a linear amplitude color
scale). Temporal cross section of the Lin sound on a linear amplitude axis ( B), Lin sound on a decibel axis ( D), Log sound on a linear
axis ( G), and Log sound on a decibel axis ( I ). The amplitude distributions of each sound (Lin- and Log-RN) are shown, respectively
(far right), on a linear (C and H, respectively) and decibel (E and J, respectively) amplitude axis. The Lin-RN follows a uniform linear
amplitude distribution, whereas the Log-RN is uniformly distributed on a log-amplitude axis.
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curve is strongly nonseparable, whereas values near unity indi-
cate that the response curve is fully separable. The examples of
Figure 4 exemplify this point. Both response curves are in close
agreement with their separable approximations and conse-
quently the measured separability index values are near unity
(Fig. 4A,B: 0.98; C, D: 0.99). Across the population of neurons
(n � 63 su and n � 40 mu), the separability index was exception-
ally high (Fig. 4E) (mean value � 0.99 � 0.01; mean � SD),
suggesting that contrast-response characteristics are independent
of SPL.

Effects of envelope statistics on
spectrotemporal coding
It is conceivable that the auditory system
uses the range and shape of the contrast
distribution as a secondary acoustic cue.
Individual neurons can show nonmono-
tonic rate response curves to Log-contrast
fluctuations that are independent of inten-
sity, reflecting a contrast range sensitivity
or even selectivity. For most neurons, the
mean response rates were considerably
larger for the naturalistic Log-RN than for
the control Lin-RN, indicating sensitivity
to the shape of the contrast distribution.

Do individual neurons use the dynamic
range characteristics in natural sounds to
faithfully encode fine spectral and tempo-
ral sound components? Can individual
neurons more accurately detect specific
acoustic features under such naturalistic
contrast conditions?

To address these questions, we com-
puted the STRF at different operating
points of the contrast-intensity response
curve (see Materials and Methods). RN
stimuli were presented at identical rms
intensity and two or more contrast condi-
tions (Lin vs 30, Lin vs 60, 30 vs 60, or Lin
vs 30 vs 60). Figure 5 shows STRFs and the
corresponding contrast-intensity response
curves for three typical neurons. STRFs
were computed at the operating points de-
picted by the circles on the contrast-
intensity response curve (red � Lin,
green � 30 dB, and blue � 60 dB). For all
conditions, the shape of the STRF is qual-
itatively similar, indicating that the neu-
ron is responding to similar sound features
during all contrast conditions. The mean
firing rate and STRF amplitude of the neu-
ron, however, are significantly stronger
( p 
 0.01) for the Log- than for the

Lin-RN stimulus. Comparing the contrast-intensity response
curves with the STRF, it is noted that the differential strength of
the STRF (units of spikes per second) is increased at contrast
operating points where the mean spike rate is likewise increased.
This observation indicates that the neuron uses the increased
spike rate to encode phase-locked activity with respect to the
stimulus spectrotemporal envelope. This response enhancement
is typical for the majority of neurons.

It appears that changing the contrast operating point of the
RN input alters the relative amplitude of the STRF and leaves its

Table 2. Low- and high-order statistics of the RN envelope

Modulation
index (%) Contrast (%) SD (linear) Skewness SD (dB)

Intensity
offset (dB)

Lin 96.8 93.8 0.28 0 6.7 0
15 dB 82.2 69.8 0.232 0.59 4.3 1.6
30 dB 96.8 93.8 0.257 1.12 8.7 0.75
45 dB 99.5 99.0 0.244 1.57 13 1.2
60 dB 99.9 99.8 0.226 1.96 17.3 1.9

Shown for all of the tested conditions (Lin and Log: 15– 60 dB): modulation index (�), contrast (C), linear amplitude standard deviation (�Lin), skewness, log-amplitude SD (�dB), and intensity offset (
I).

Figure 3. Contrast versus intensity response curves of nine single units. The ripple noise stimulus was presented in pseudo-
random order for Lin, 15, 30, 45, and 60 dB and at five intensity conditions (intensity spacing of 10 or 15 dB) for a possible 25
combinations. Surface plots depict the measured spike rate as a function of the stimulus contrast and intensity parameters. Spike
rates often increased monotonically with increasing contrast (dynamic range) parameter ( A–C) and were typically weakest for the
Lin-RN. Other neurons displayed nonmonotonic contrast response curves ( D–F) in which the mean spike rate was greatest for
contrast values of either 30 or 45 dB. The remaining neurons either had a decreasing monotonic response curve ( I ) or displayed no
statistically significant contrast dependency (G, H ).
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shape unaffected, suggesting that the neuron responds to similar
sound components but with increased or decreased efficacy. To
quantify this effect, we measured amplitude and shape differ-
ences of the STRF as a function of the contrast and intensity
operating point. We considered three metrics that independently
quantify STRF shape, amplitude, and firing rate differences. First
we computed the STRF similarity index (DeAngelis et al., 1999;
Reich et al., 2000; Escabı́ and Schreiner, 2002). This metric takes
values between �1 and �1 and is numerically equivalent to the
Pearson correlation coefficient. Next we measured the percent-
age of change in firing rate and STRF energy with the rate
(RDIA,B) and magnitude disparity index (MDIA,B). These metrics
quantify changes in firing rate and STRF energy, respectively, be-
tween two experiment conditions, A and B, in which the magnitude
designates the percentage of change and the sign (�
or �) designates which condition is stronger (A or B, respectively).

Typical neurons depicting differences in STRF shape, firing
rate, and STRF energy are shown in Figure 5. The neuron de-
picted in Figure 5E–H has similar STRFs (SI60,30 � 0.97; SI60,Lin �
0.92; SI30,Lin � 0.91) for all conditions tested. Therefore this neu-
ron responded to identical spectrotemporal sound patterns at all
operating points. Despite the similarity in spectrotemporal
shape, its RDI and MDI indicate that the neuron responded with
a higher spike rate (RDI30,Lin � 390%; RDI60,Lin � 543%) and
stronger differential response strengths (MDI30,Lin � 395%;

MDI60,Lin � 468%) for the 30 and 60 dB conditions (compared
with Lin). Neurons with nonmonotonic contrast dependencies
(Fig. 5A–D) typically show higher spike rates for 30 dB Log-RN
compared with Lin-RN (RDI30,Lin � 35%); however, their spike
rates are typically higher for 30 dB than for 60 dB (RDI60,30 �
�43%). The STRF energy of the neuron is likewise greater for the
30 dB contrast than for Lin-RN or 60 dB-RN (MDI30,Lin � 72%;
MDI60,Lin � 2.3%; MDI60,30 � �42%). Other neurons (Fig.
5I–K) responded weakly to the Lin-RN and therefore did not
produce statistically significant STRFs for this condition. SI val-
ues comparing Lin- versus Log-RN for this example were small
(SI30,Lin � 0.21 and SI60,Lin � 0.28); however, SI values between
the 30 and 60 dB condition were much higher (SI60,30 � 0.88).
MDI (MDI30,Lin � 4,558% and MDI60,Lin � 18,120%) and RDI
values (RDI30,Lin � 5,589% and RDI60,Lin � 22,130%) were large,
suggesting that the neuron responded efficiently to the Log- but
not to the Lin-RN.

Similarity index population data are shown in Figure 6 for n �
57 single neurons and n � 75 multi-units. Multi-unit and single
unit data showed similar trends and therefore were pooled to-
gether for all conditions (30 vs Lin; 60 vs Lin; 60 vs 30). Most
neurons had high SI values (mean SI � 0.77; median SI � 0.87)
across all conditions, supporting the initial observations (Fig. 5)
that most neurons responded to similar spectrotemporal sound
features for both Lin- and Log-RN. Other neurons (12 single units
and 7 multi-units) had low SI values (SI 
 0.5). Inspection of the
data revealed that these neurons had statistically significant
STRFs ( p 
 0.002) for the 30 and 60 dB conditions, but not for
the Lin-RN because of insufficient number of action potentials
(Fig. 5J–L).

RDI and MDI metrics were computed for all single and multi-
units to compare the response rate and STRF energy differences
for the three contrast conditions (Lin, 30, and 60 dB). The initial
observation for the single units of Figure 5 supports the hypoth-
esis that ICC neurons respond more efficiently to decibel fluctu-
ations. Population data further support this possibility. The MDI
and RDI metrics were positively skewed and had only a few neg-
ative values as indicated in the summary plots of Figure 7. On
average, a significant increase in firing rates (mean: RDI30,Lin �
267%, RDI60,Lin � 995%; median: RDI30,Lin � 60%, RDI60,Lin �
172%; t test, p 
 0.01) and STRF energy (mean: MDI30,Lin � 135%,
MDI60,Lin � 352%; median: MDI30,Lin � 103%, MDI60,Lin � 141%;
t test, p 
 0.01) was observed for the 30 or 60 dB contrast relative to
the Lin-contrast condition. Furthermore, both the MDI and RDI are
significantly correlated (r60,Lin � 0.95 � 0.05; r30,Lin � 0.96 � 0.04;
r60,30 � 0.99 � 0.01; mean � SE), indicating that increases in
firing rate are accompanied by an STRF strength increase. Because
the additional spikes for the 60 and 30 dB conditions (compared
with the Lin) must be time locked to the stimulus to produce a
difference rate increase in the STRF, this observation indicates that
additional spikes for the Log-RN are used directly to encode spectro-
temporal information.

Spectrotemporal phase locking and mutual information
The combined increase in mean firing rate and STRF strength for
the decibel contrast conditions indicates that ICC neurons have
additional spikes available to encode spectrotemporal informa-
tion. The observation that STRFs have similar shapes for the Lin-
and Log-RN conditions combined with the fact the Lin- and
Log-RN sounds have identical spectrotemporal content (because
they differ only in their amplitude statistics; see Materials and
Methods) further suggests that ICC neurons encode information
about similar acoustic features for all of the conditions tested.

Figure 4. Separability of the contrast-intensity response function. Representative contrast-
intensity response curves of a contrast-monotonic ( A) and nonmonotonic ( C) single neuron.
Separable approximations (B, D) closely match the true response curves of A and C. In both cases
high separability index values are obtained (0.98 for B and 0.99 for D). The separable response
components for contrast and SPL are depicted above and to the left of the separable response
curves of B and D. Histogram showing the separability index of n � 63 single units and n � 40
multi-units ( E). All neurons had a very high separability index, indicating that the response rate
can be expressed as an independent function of contrast and intensity.
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Given that average spike rates and STRF strengths are higher for
the decibel contrast, it is expected that the overall information
content conveyed by each neuron is higher for this condition.

The spiking patterns of ICC neurons to the ripple noise stim-

ulus are characterized by phasic response
components as depicted in Figure 8. The
response rasters and peristimulus time
histograms (PSTHs) show a precisely
time-locked signature down to a few mil-
liseconds resolution. Inspection of the re-
sponse rasters and PSTHs for the linear
and decibel contrast reveals systematic
changes in firing rate and spiking pattern.
The increase in firing rate observed for the
decibel contrast relative to the linear con-
trast (mean firing rates) (Fig. 8A: RateLin

� 6.3 spikes/sec, Rate30 � 8.5, Rate60 �
11.9 spikes/sec; B: RateLin � 4.4 spikes/sec,
Rate30 � 4.2 spikes/sec; Rate60 � 9.0
spikes/sec) was also accompanied by an in-
crease in peak-to-trough amplitude of the
phasic response components.

We quantified this effect by measuring
the mutual information rate for the Lin, 30
dB, and 60 dB contrast conditions (de
Ruyter van Steveninck et al., 1997; Strong
et al., 1998). The systematic increases in
the observed firing rates are reflected di-
rectly in the measured mutual information
rate (Fig. 8A: Lin � 24.3 � 1.2 bits/sec, 30
dB � 39.9 � 0.5 bits/sec, 60 dB � 56.1 �
0.9 bits/sec; B: Lin � 10.2 � 0.9 bits/sec, 30
dB � 11.7 � 0.7 bits/sec, 60 dB � 22.2 �
0.9 bits/sec; mean � SE). Thus each of the
example neurons conveys more stimulus-
related information for the logarithmic
modulation ripple noise. Combined with
the fact that the STRF magnitudes are

greater for the Log-RN, this finding suggests that the added infor-
mation carried by the spike train is used directly for more efficient
spectrotemporal coding.

Scatter plots and histograms comparing differences in the
transmitted information between Log- and Lin-RN are shown in
Figure 9, A and B (30 dB vs Lin: 7 su and 7 mu; 60 vs Lin: 7 su and
8 mu). Across the population of neurons there is significant in-
crease in the mutual information rate (Fig. 9B) (47.2 � 4.2%
increase, mean � SE; 49.6%, median; t test, p 
 10� 6) for Log-
over Lin-RN, although there was no specific enhancement be-
tween the 60 and 30 dB ripple noise (30 dB vs Lin � 43.0 � 3.3%
increase; 60 dB vs Lin � 50.0 � 7.1% increase; paired t test, p �
0.37). This improvement for Log modulations was not accompa-
nied by an equivalent increase in the mutual information per
spike (percentage of difference Lin vs Log � 0.50 � 4.2%; mean �
SE; paired t test, p � 0.8). Thus the increase in the mutual infor-
mation rate was caused strictly by higher spike rates and not
increased spiking precision.

We confirmed this finding by computing a phase-locking in-
dex (Escabı́ and Schreiner, 2002) for each of the measured STRFs
(Fig. 9C,D). This metric provides a basis for comparing the pre-
cise timing of action potentials on a spike-normalized basis rela-
tive to the modulations in the ripple noise sound. A PLI of 0
indicates that the temporal alignment between action potentials
and specific instances of the RN sound waveform were poor,
whereas a PLI of 1 indicates that the action potentials and the
sound waveforms were highly aligned (observed range, 0.014 –
0.78). The PLI was not statistically different between the linear
(0.18 � 0.01; mean � SE) and decibel conditions (30 dB �

Figure 5. Relationship between the contrast-intensity response curve and the STRF. The contrast-intensity response curve is
shown for a contrast nonmonotonic unit ( A) and two contrast monotonic neurons (E, I ). STRFs were computed at the contrast-
intensity operating points designated by the colored circles (red �Lin, green � 30 dB, and blue � 60 dB). B–D show the STRFs
for the contrast nonmonotonic neuron depicted in A. Both the mean firing rate and STRF amplitude covary, following a similar
nonmonotonic relationship with contrast. The STRF energy for the monotonic neuron depicted in D increases monotonically with
increasing contrast ( F–H). The neuron of I did not respond to the Lin ( J) condition but responded with increased efficacy to the 30
and 60 dB conditions (K, L, respectively). Red contours designate statistically significant regions of the STRF; p 
 0.002.

Figure 6. Population similarity index histogram comparing STRF shape across all contrast
conditions. Similarity index measurements were obtained by computing the STRF correlation
coefficient for the 30 dB versus Lin, 60 dB versus Lin, and 60 dB versus 30 dB contrast conditions
(n � 57 single units and n � 75 multi-units). The population histogram is skewed toward �1
(mean�0.77; median�0.87), indicating that STRFs for the different contrast conditions have
similar spectrotemporal patterns.
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0.17 � 0.01; 60 dB � 0.17 � 0.01; mean �
SE; paired t test: 30 dB vs Lin, p � 0.41; 60
vs Lin, p � 0.77), therefore suggesting that
the added information was not caused by
improvements of the precise timing of the
spike (Fig. 9C,D). These findings therefore
reflect a preference for logarithmic over
linear modulations that manifests as an in-
crease in the number of evoked action po-
tentials, and not in temporal precision,
that collectively contribute to the spectro-
temporal coding capacity.

Discussion
This study provides evidence that auditory
midbrain neurons use their large intensity
operating range for efficiently encoding
spectrotemporal information in natural
sounds. We find that neural responses are
strongly modulated by higher-order am-
plitude statistics of the spectrotemporal
waveform. These changes manifest as in-
creased firing rates, STRF energy, and im-
proved information transmission for deci-
bel modulations compared with linear
modulations. Analysis of the receptive
field structure further reveals that RF
shape is unaffected for all conditions
tested. Together these findings indicate
that neurons respond to identical spectro-
temporal features but with increased effi-
cacy for log modulations. Given that all
sensory systems have operating ranges that
span several orders of magnitude, and
both acoustic and visual stimuli have log-
distributed spectral (spatial) and temporal
gradations of similar dynamic range (Ru-
derman and Bialek, 1994; Attias and
Schreiner, 1998), our findings support the
hypothesis that the large operating range
of sensory systems is used for efficient
spectrotemporal (spatiotemporal) coding
in addition to loudness (luminance)
coding.

The structure of natural sounds
The analysis of second-order statistical properties of the spectro-
temporal sound representation demonstrates that natural sounds
and speech contain spectrotemporal modulations that cover sev-
eral orders of magnitude, exhibiting nearly symmetric Gaussian-
like distribution of log amplitudes. By comparison, the linear
amplitude spectrotemporal modulations in natural sounds ex-
hibit sparse segments of high-energy activity, and consequently
the linear amplitude distribution of all natural sounds is heavily
weighted toward low amplitude values. These results are in con-
trast to the white noise control, which has spectrotemporal mod-
ulations that efficiently cover the linear amplitude dimension.

The range of amplitudes as estimated from the log amplitude
SD is greatest for human speech, followed by animal vocaliza-
tions and background sounds (Table 1). This extended dynamic
range combined with the large amount of temporally comodu-
lated onsets and offsets (Nelken et al., 1999) in communication
signals may be necessary to facilitate detection of spectrotempo-

ral features among background signals with highly overlapped
spectrotemporal amplitude distributions.

The effective dynamic range of natural sounds represents a
salient parameter that could potentially be used by the auditory
system to efficiently extract and represent spectrotemporal infor-
mation. The 90th percentile range of log amplitudes spanned by
both environmental sounds (30 dB range) and communication
sounds (speech � 49 dB; vocalizations � 43 dB) is comparable with
the operating range of peripheral and central auditory neurons for
pure tones (Evans and Whitfield, 1964; Palmer and Evans, 1982;
Eggermont, 1989). White noise, by comparison, spanned the nar-
rowest range of spectrotemporal amplitudes (18 dB). These results
support the idea that the operating range of sensory neurons co-
evolved with the statistics of natural sensory signals.

Contrast parameters affecting neural responses
We tested whether log-transform amplitude distributions yield a
better representation of the sensory signal than linear amplitude

Figure 7. Population response rate and STRF energy statistics comparing Log- and Lin-contrast. RDI and MDI measurements
quantify the percentage of increase in firing rate and STRF energy, respectively, for 30 ( A) or 60 dB RN ( B) relative to the Lin-RN and
for 60 dB relative to 30 dB ( C). Positive percentage increases indicates higher firing rates or STRF energy, respectively, for 30 and
60 dB conditions compared with Lin (A, B) or for the 60 dB condition relative to 30 dB ( C). Negative percentage values indicate that
the Lin condition is stronger for the Log versus Lin comparisons (A, B) or that the 30 dB condition was stronger for the 60 dB versus
30 dB comparison ( C). RDI and MDI population scatter plots show a large percentage increase in the mean firing rate and the STRF
strength for the 30 dB ( A) and 60 dB ( B) contrast condition relative to Lin. Firing rate and STRF energy increases of �100% were
observed for 29 of 53 neurons for 30 dB and 34 of 50 for 60 dB. Seven neurons had MDI and RDI that exceeded 1000% for the 60 dB
condition (data not shown). A smaller increase in firing rate and STRF energy is observed for the 60 dB dynamic range compared
with 30 dB ( C). Both RDI and MDI are significantly correlated (r60,Lin � 0.95 � 0.05; r30,Lin � 0.96 � 0.04; r60,30 � 0.99 � 0.01;
mean � SE). Open circles and triangles represent multi-unit and single-unit data, respectively.

Figure 8. Spiking pattern and response reproducibility as a function of contrast for two single neurons. A 5 sec segment of the
Lin, 30 dB, and/or 60 dB ripple noise was presented. Rastergrams and PSTHs show 125 response traces to the ripple noise: Lin, 30
and 60 dB for neuron 1 (A, shown top to bottom, respectively) and for neuron 2 (B, shown top to bottom, respectively). Each spike
is shown as a single dot (bin width, 1 msec). The PSTH for each condition is shown above the corresponding rastergrams (shown
on identical amplitude scales for Lin, 30 dB, and 60 dB). Driven firing rates and response reproducibility improve for the 30 and 60
dB RN relative to Lin-RN. Higher peak-to-trough amplitude modulations of the driven spike rate for 30 and 60 dB indicate that
stimulus encoding is improved for the Log condition.
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by matching various aspects of our RN sounds to the spectrotem-
poral amplitude distributions of natural sounds and by compar-
ing the response efficiency of neurons. We limited the maximum
and minimum excursions in the RN sounds to uniformly cover
either the linear amplitude dimension at a fixed modulation
depth (97%) or the logarithmic amplitude dimensions for vari-
ous dynamic range conditions (15– 60 dB). The use of uniformly
distributed amplitudes for the Log stimulus prevents potentially
ambiguous firing rate dependencies that could arise because of
the long tails of the amplitude distribution in natural sounds,
which could activate intensity-dependent nonlinearities, thereby
enhancing or suppressing neuronal activity (Evans and Palmer,
1980; Palmer and Evans, 1980; Ehret and Merzenich, 1988;
Eggermont, 1989; Schreiner et al., 1992). This stimulus regimen
therefore isolates intensity-dependent effects from purely con-
trast-dependent mechanisms. We varied the width of the ampli-
tude distribution of the Log-RN sound to address how the dy-
namic range affects neuronal responsiveness. Finally, the
spectrotemporal structure of the RN stimuli is ideal for this anal-
ysis because, unlike for natural sounds, it does not contain time-
dependent correlations that could potentially engage highly non-
linear response mechanisms (Theunissen et al., 2000; Escabı́ and
Schreiner, 2002).

Firing rates and STRF energies were substantially higher for
Log spectrotemporal modulations than for the matched Lin mod-
ulations, despite the fact that the 30 dB and Lin sounds were
matched in a number of low-order parameters (Table 2) and had
nearly identical modulation spectrum (�2% average difference).
In addition, increasing the dynamic range of the Log-RN sound
typically increases the neuronal firing rates and receptive field
energies, although some neurons also exhibit nonmonotonic de-
pendencies, analogous to neuronal sensitivities for broadband
noise in the primary auditory cortex (Barbour and Wang, 2003).
Contrast and intensity coding appear to be independent of each
other for the tested time scales, supporting the idea that these two
stimulus parameters reflect separate neural mechanisms (Fig. 4).

Because our analysis represents an intensity-adapted state, it is
possible that time-varying intensity changes at a faster time scale,
such as for comodulated signals (Nelken et al., 1999), could in-
voke interactions between intensity and contrast encoding.

How do the observed changes in neuronal firing rate and re-
ceptive field energy affect the capacity to encode spectrotemporal
information? In nearly all of our neurons, significant changes in
the firing rates produced similar changes in receptive field energy
(Fig. 7), although the receptive field shape remained constant
(Fig. 6). Thus, although the driven activity can change substan-
tially between the different stimulus conditions, neurons appear
to respond to very similar sound features. Estimates of the mutual
information from the response rastergrams show an average mu-
tual information rate increase of �50% for the Log over Lin con-
dition (Fig. 9A,B); however, there is no direct improvement in
spike-timing precision as reflected in the phase-locking index
and spike-normalized mutual information (Fig. 9C,D). Conse-
quently, neuronal improvements in spectrotemporal encoding
ability are caused strictly by increases in the firing rate for the
Log-RN condition.

There are two possible ways that higher spike rates improve
the overall encoding of spectrotemporal signal components. On
the one hand, increasing the spike rate could increase the trial-
to-trial reliability of spiking to specific features of the RN stimu-
lus. On the other hand, increases in firing rate could manifest in
multiple spikes per feature representation, in which a collection
of action potentials collectively encode for a given sound compo-
nent. Although either one of these mechanisms is consistent with
the observed improvements in encoding ability, our preliminary
findings support the trial-to-trial reproducibility alternative as
the dominant mechanism. This is evidence in the neurons of
Figure 8, where the response rasters remain constant but their
overall reproducibility improves significantly with increasing
spike rate. Thus, for the Log-RN sound, neurons would be able to
reliably detect stimulus components that could not be detected
for the Lin-RN condition (Fig. 8).

Which specific stimulus parameters contribute to the ob-
served improvements in the spectrotemporal coding ability of
inferior colliculus neurons? It is possible that the observed re-
sponse enhancement to Log-RN conditions arose from trivial
low-order stimulus parameters (such as the modulation depth or
the maximum intensity) that covary as a function of the per-
formed contrast alterations. To control for this, a number perti-
nent stimulus statistics were closely considered (Table 2).

The simplest parameter affecting neural responses is the mod-
ulation index or contrast. In previous studies, modulation depths
were typically varied over a large range (�5–100%), and these
typically elicited increased spike rates and improved phase lock-
ing with increasing modulation depths (Rees and Moller, 1983;
Krishna and Semple, 2000). The modulation depths in this study
varied between 82.2% for the 15 dB-RN and 99.9% for the 60
dB-RN, i.e., the peak-to-trough ratios of the stimulus envelopes
were nearly maximal in all instances. Given that output firing
rates of many ICC neurons saturate with as little as 20 – 40%
modulation depths and neurons often show modulation gain
enhancement (Rees and Moller, 1983; Krishna and Semple,
2000), it is unlikely that the observed effects were directly related
to the maximum and minimum amplitude values of the stimulus
waveform. To eliminate this possibility, the Lin-RN modulation
index was identical to the 30 dB Log-RN (� � 1 � 10�30/20 �
0.968). Despite this match, many neurons showed significantly
stronger responses for the 30 dB Log-RN condition.

Other stimulus properties that could affect the comparison

Figure 9. Mutual information and phase-locking statistics. A, Mutual information rate com-
parison for the linear and logarithmic ripple noise (30 dB vs Lin, open circles; 60 dB vs Lin, open
triangles) shows a net increase in the transmitted information for the Log condition of
�47.2 � 4.2% ( B). The precise timing of action potentials relative to the sound waveform was
quantitatively measured with a phase-locking index (see Materials and Methods). Comparisons
for 30 dB ( C) and 60 dB ( D) relative to the Lin condition show no improvements in the relative
timing of action potentials across the tested conditions.
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between linear and logarithmic stimuli are the waveform linear
amplitude SD and the peak intensity offset. Stimulus differences
for these properties were either not systematically expressed
across all of the stimulus conditions or were too small to account
for the large systematic differences in neuronal activity. For the
contrast-matched 30 dB Log-RN and Lin-RN conditions, the 30
dB Log-RN has a slightly smaller linear amplitude SD (�Lin �
0.280 vs �30 � 0.257; 8% difference), which is inconsistent with
the large increase in firing rates and STRF energies. Although all
sounds were matched for their average (RMS) intensity, the peak
intensities were different for each sound (Table 2). This subtle but
undesirable effect is a direct consequence of the varying degrees
of skewness in the spectrotemporal envelope waveforms; how-
ever, the peak intensity differences between the Log and Lin (0.75
dB for 30 dB vs Lin; 1.9 dB for 60 dB vs Lin) were typically too
small to account for the large increases in neural firing rates for
the Log-ripple noise.

The most likely parameters accounting for the observed
changes in the neuronal responses are the spectrotemporal enve-
lope skewness and the log-amplitude SD. The contrast distribu-
tion for the control Lin- and Log-RN differed significantly if com-
puted on the logarithmic or linear amplitude dimensions (Fig. 2).
As for natural sounds (Fig. 1), the linear amplitude distribution
of the Log-RN has skewed values toward zero. As the dynamic
range of the Log-RN sound is increased from 15 to 60 dB, the
measured skewness increases accordingly from 0.59 to 1.96. By
comparison, the Lin-RN stimulus is perfectly symmetric with a
skewness value of zero (Fig. 2C). Similarly, in the log-amplitude
dimension, the width of the amplitude distribution (i.e., the SD)
of the Log-RN is seen to increase systematically with increasing
dynamic range. Given that response efficacy increased on the
average with increasing log dynamic range or with increasing
skewness, it is likely that these parameters account for the ob-
served response enhancement in the Log conditions.

Functional implications for spectrotemporal sound analysis
Studies of pure tone transients and onsets in the auditory nerve
and auditory cortex have demonstrated that first-spike latency
and response amplitude are strongly affected by the onset wave-
form on the peripheral integration mechanism (Heil, 1997a,b;
Heil and Irvine, 1997; Heil and Neubauer, 2001). In particular,
the time to first-spike latency is inversely proportional to the peak
acceleration or velocity of the sound pressure envelope.

One possible explanation for our findings on information
transmission and spectrotemporal coding is that the spectral and
temporal acceleration and velocity profiles of the RN envelope
account for observed response improvement. The increased
mean firing rates for Log-RN indicate that additional spikes are
used to encode spectrotemporal information, consistent with the
observed increase in the peak-to-trough amplitude of responses
as a function of dynamic range (Fig. 8). Unlike the results of onset
transients (Heil, 1997a,b), however, we find no analogous im-
provement in the precision of spike timing. Our results on phase
locking suggest that on a spike-normalized basis, the precision of
action potentials is constant for the Log and Lin conditions. Given
that STRF shapes are identical at all contrast conditions, these
observations demonstrate that sounds with logarithmic modula-
tions improve the reliability and throughput of individual neu-
rons, allowing them to faithfully encode those stimulus features
that resemble the STRF of the neuron.

This net improvement in firing rates can be explained partly
by the fact that Log-amplitude fluctuations in the RN have vary-
ing degrees of skewness. Because the skewness of the RN envelope

is directly proportional to the spectral and temporal acceleration
and velocity of the spectrotemporal envelope of the sound (Fig.
10), our findings are consistent with previously reported findings
with onset transients. The range of spectrotemporal velocities–
accelerations for the RN sounds is greater for the 30 dB than for
the Lin condition and increases proportionally to the dynamic
range of the Log-RN (Fig. 10). This difference can activate similar
mechanisms as invoked by narrowband onsets (Heil and
Neubauer, 2001), thereby increasing spike rates and STRF ener-
gies by improving the reliability of spike generation.

Other related mechanisms observed for sinusoidal AM likely
play a role as well. These include nonlinear contrast normaliza-
tion that appears to be expansive for low modulation depths and
saturating for large modulation depths (Krishna and Semple,
2000). Enhancement and suppression in the response area of the
neuron as a function of SPL, modulation depth, and modulation
frequency (Krishna and Semple, 2000) can also fine tune neuro-
nal selectivity, thereby increasing specificity of the neural output.
The fact that neurons produce similar STRFs for Log-RN (mean
SI � 0.77), but with increased spike rates and STRF energies,
suggests that the additional spikes encode for acoustic features
with similar spectrotemporal content that were not detected dur-
ing the Lin-RN. Such a mechanisms could benefit natural sound
processing by improving detectability of weak signals in noise
and guaranteeing that both large and small amplitude fluctua-
tions are encoded adequately. This is especially important for
encoding spectrotemporal modulations natural vocalization sig-
nals (Fig. 1A–H) because these can cover several orders of mag-
nitude in their instantaneous spectrotemporal intensities and are
often superimposed on background noise with similar statistical
properties (Fig. 1 I–L).

Although temporal integration certainly plays an important
role in the shaping of neuronal sensitivities to our Log- and
Lin-RN stimuli (Attias and Schreiner, 1998), our results cannot
rule out the possibility that spectral integration mechanisms also
contribute to the observed differences between the Log- and
Lin-RN and the different dynamic range conditions tested. Our
data cannot distinguish between the types of spectral and tempo-
ral mechanisms involved. Given that auditory cortical responses

Figure 10. Temporal velocity profile and velocity statistics. A, A temporal cross section of the
Lin (continuous), 30 dB (dashed-dot), and 60 dB (dotted) ripple noise (Fig. 2) expressed as a
linear amplitude variable, s( t). B, The temporal velocity profile of s( t) is obtained by differenti-
ating each of the respective temporal waveforms. C, The distribution of linear amplitudes
(shown for amplitudes from 0 to 0.5) and the distribution of temporal velocities ( D). The am-
plitude distribution for the Lin sound is symmetrically distributed. The 30 and 60 dB RN follow an
exponential-like distribution where the skewness is highest for the 60 dB case. The observed
range and SD of temporal velocities ( D) for each stimulus becomes expanded with increasing
skewness of s( t).
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to broadband sounds become preferentially tuned for large dy-
namic range (up to 40 dB), this is not an unlikely scenario for the
ICC (Calhoun and Schreiner, 1998). Similar to the observed non-
monotonic dependencies with increasing dynamic range (Fig. 3),
recent studies have also shown an analogous form of spectral
contrast tuning in the primary auditory cortex of primates (Bar-
bour and Wang, 2003). Our data, however, show that the origins
of this form of dynamic range tuning are located or at least initi-
ated subcortically, although it may be further enhanced at the
cortical level. Taken together, our findings provide evidence
that the dynamic range and skewness of natural sound enve-
lopes are a critical cue for spectrotemporal integration and
sound processing.

Implications for sensory perception
The hypothesis that the human ear is adapted to encode signals
with large dynamic range is supported by human speech studies.
Analyses of the spectral envelopes of speech have shown that the
peak-to-valley ratios in human speech (vowel formants) can ex-
tend over �20 dB (Plomp, 1983). Spectral peaks associated with
vowel formants provide a critical cue for the perception of vowel
sounds. Given the large amount of across-subject variability in-
herent in natural speech, human perception must be robust to
envelope alterations under many operating conditions. Produc-
tion of same vowels by different speakers, for examples, shows a
large amount of inter-subject variability with an average intensity
SD near 16 dB (Pols et al., 1969; Klein and Plomp, 1970). Addi-
tional sources of envelope noise (�5 dB) are introduced by the
reverberant characteristics associated with environmental and
room acoustics (Schroeder et al., 1974), yet psychoacoustic stud-
ies indicate that perception of vowel sounds is tolerant to such
alterations. For example, the just noticeable peak-to-valley ratio
of vowel envelopes can be exceptionally large (Ghitza and Gold-
stein, 1983) and is relatively robust to noise contamination. Such
contrast-related cues likely play a critical role in speech percep-
tion because increasing the decibel contrast alters the perceived
sound in such a manner that it improves intercategory discrimi-
nation of vowel sounds (van-Veen and Houtgast, 1985).

A critical question raised by these findings is whether the ner-
vous system processes linear amplitude or decibel amplitude gra-
dations. Historically temporal modulation signals (both in audi-
tory and visual modalities) have been defined on a linear
amplitude dimension essentially because of convenience and be-
cause these conform to the mathematical conventions devised for
communications engineering that came about during the advent
of radio and telephony (Hilbert, 1912). In general there is no a
priori reason for using linear or decibel amplitude fluctuations as
the pertinent stimulus parameter. Thus, the choice of assigning
the linear amplitude as the relevant stimulus variable has been
arbitrary, for the most part. Only through proper examination
can one determine which of these dimensions is most suitable for
defining and quantifying the response characteristics of a sensory
system.

Studies on loudness coding and intensity discrimination sup-
port the notion that decibel amplitude is the more relevant stim-
ulus variable. Human perception of loudness follows linear rela-
tionship with sound pressure level (measured in decibels) over
most of the hearing range (Stevens, 1957, 1972). Intensity dis-
crimination thresholds are constant (�0.5 dB) throughout most
of the hearing range following the well known Weber’s law
(Weber, 1834; Fechner, 1860; Miller, 1947; Harris, 1963; Jesteadt
and Wier, 1977; Florentine et al., 1987). The fact that response
level curves of neuronal data also follow a simple monotonically

increasing function of decibel intensity further supports the hy-
pothesis that decibel amplitudes are most suitable for describing
physiologic data (Evans and Palmer, 1980; Palmer and Evans,
1980; Ehret and Merzenich, 1988; Eggermont, 1989; Schreiner et
al., 1992). Because the spectrotemporal envelope is simply an
extension of the intensity variable that extends over time and
along the sensory epithelium receptor surface, it is not surprising
that the auditory system processes spectrotemporal information
in a similar manner as it would for intensity. Our finding that
spectrotemporal fluctuations of natural sounds extend over a
comparable range of differential intensities as the operating range
of single auditory neurons (Evans and Palmer, 1980; Viemeister,
1988) suggests that the operating range of auditory neurons is
matched to the dynamic range of natural sounds. Aside from the
well accepted doctrine that sensory systems use their large oper-
ating range directly for level coding, our findings suggest that it is
also used for efficiently processing spectrotemporal information
in natural acoustic stimuli with a comparable dynamic range.
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