
Learning Input Correlations through Nonlinear Temporally
Asymmetric Hebbian Plasticity

R. Gütig,1* R. Aharonov,2* S. Rotter,1 and Haim Sompolinsky2,3

1Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany, and 2Interdisciplinary Center for Neural Computation and 3Racah Institute of
Physics, Hebrew University, Jerusalem 91904, Israel

Triggered by recent experimental results, temporally asymmetric Hebbian (TAH) plasticity is considered as a candidate model for the
biological implementation of competitive synaptic learning, a key concept for the experience-based development of cortical circuitry.
However, because of the well known positive feedback instability of correlation-based plasticity, the stability of the resulting learning
process has remained a central problem. Plagued by either a runaway of the synaptic efficacies or a greatly reduced sensitivity to input
correlations, the learning performance of current models is limited. Here we introduce a novel generalized nonlinear TAH learning rule
that allows a balance between stability and sensitivity of learning. Using this rule, we study the capacity of the system to learn patterns of
correlations between afferent spike trains. Specifically, we address the question of under which conditions learning induces spontaneous
symmetry breaking and leads to inhomogeneous synaptic distributions that capture the structure of the input correlations. To study the
efficiency of learning temporal relationships between afferent spike trains through TAH plasticity, we introduce a novel sensitivity
measure that quantifies the amount of information about the correlation structure in the input, a learning rule capable of storing in the
synaptic weights. We demonstrate that by adjusting the weight dependence of the synaptic changes in TAH plasticity, it is possible to
enhance the synaptic representation of temporal input correlations while maintaining the system in a stable learning regime. Indeed, for
a given distribution of inputs, the learning efficiency can be optimized.

Key words: Hebbian learning; spike-timing-dependent plasticity; synaptic updating; symmetry breaking; unsupervised learning; info-
max; activity-dependent development

Introduction
Correlation-based plasticity has long been proposed as a mecha-
nism for unsupervised experience-based development of neuro-
nal circuitry, particularly in the cortex. However, the specifics of
a biologically plausible model of plasticity that can also account
for the observed synaptic patterns have remained elusive. Two
major issues are stability and competition (Miller and MacKay,
1994; Miller, 1996; Abbott and Nelson, 2000; Song et al., 2000;
van Rossum et al., 2000; Rao and Sejnowski, 2001; van Ooyen,
2001). If maps, such as ocular dominance maps, emerge from
initially random (but statistically homogeneous) synaptic config-
urations by a Hebbian mechanism (but see Crowley and Katz,
2000), this would imply that there is an inherent instability in the
dynamics of synaptic learning that destabilizes an initially homo-
geneous synaptic pattern. However, this raises the question as to
what mechanism prevents synapses from growing to unrealistic

values when driven by unstable dynamics. The emergence of in-
homogeneous synaptic patterns also requires a competition
mechanism that makes some synapses decrease their efficacies as
other synapses grow in strength. Such competition is absent in
the most naive Hebb rule, which contains only a mechanism for
synaptic enhancement. Recent experiments have led to an impor-
tant refinement of correlation-based or Hebbian learning, by
showing that activity-induced synaptic changes can be tempo-
rally asymmetric with respect to the timing of presynaptic and
postsynaptic action potentials with a precision of down to tens of
milliseconds. Causal temporal ordering of presynaptic and
postsynaptic spikes induces synaptic potentiation, whereas the
reverse ordering induces synaptic depression (Levy and Steward,
1983; Debanne et al., 1994, 1998; Magee and Johnston, 1997;
Markram et al., 1997; Bi and Poo, 1998, 2001; Zhang et al., 1998;
Feldman, 2000; Sjöström et al., 2001).

In this work, we address the question of whether temporally
asymmetric Hebbian (TAH) plasticity rules provide an adequate
mechanism for unsupervised learning of input correlations. Two
models of TAH plasticity have been studied recently that differ in
the way that they implement the weight dependence of the syn-
aptic changes and the boundaries of the allowed range of synaptic
efficacies. The additive model (Abbott and Blum, 1996; Gerstner
et al., 1996; Eurich et al., 1999; Kempter et al., 1999, 2001; Rob-
erts, 1999; Song et al., 2000; Levy et al., 2001; Câteau et al., 2002)
assumes that changes in synaptic efficacies do not scale with syn-
aptic strength, and the boundaries are imposed as hard con-
straints. This model retains inherently unstable dynamics while
exhibiting strong competition between afferent synapses. Be-
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cause this model yields binary synaptic distributions, its ability to
generate graded representations of input features is restricted.
Moreover, because of the strong competition, patterns in the
synaptic distribution can emerge that do not reflect patterns of
correlated activity in the input. On the other hand, the multipli-
cative model (Kistler and van Hemmen, 2000; van Rossum et al.,
2000; Rubin et al., 2001) assumes linear attenuation of potentiat-
ing and depressing synaptic changes as the corresponding upper
or lower boundary is approached. This model results in stable
synaptic dynamics. However, because of reduced competition, all
synapses are driven to a similar equilibrium value, even at mod-
erately strong input correlations. Thus, neither the additive nor
the multiplicative model provides a satisfactory scenario for a
robust learning rule that implements a synaptic storage mecha-
nism of temporal structures in the inputs. Here, we introduce a
nonlinear TAH Hebbian (NLTAH) model, a novel generalized
updating rule that allows for continuous interpolation between
the additive and multiplicative models. We demonstrate that by
appropriately scaling the weight dependence of the updating, it is
possible to learn synaptic representations of input correlations
while maintaining the system in a stable regime. Preliminary re-
sults have been published previously in abstract form (Aharonov
et al., 2001; Gütig et al., 2001).

Materials and Methods
Temporally asymmetric Hebbian plasticity. We describe TAH plasticity as
a change in the synaptic efficacy w between a pair of cells, where the range
of w is normalized to [0, 1]. A single pair of presynaptic and postsynaptic
action potentials with time difference �t � tpost � tpre induces a change
in synaptic efficacy �w given by:

�w � � ��f��w� � K��t� if �t � 0
�f��w� � K��t� if �t � 0. (1)

The temporal filter K(�t) � exp(���t�/�) (Song et al., 2000; van Ros-
sum et al., 2000; Rubin et al., 2001) implements the spike-timing depen-
dence of the learning. The time constant � of the exponential decay
determines the temporal extent of the learning window. Following ex-
perimental measurements (Bi and Poo, 1998), we let � � 20 msec
throughout this paper. The learning rate �, 0 � � �� 1, scales the mag-
nitude of individual weight changes. The temporal asymmetry of the
learning is represented by the opposite signs of the weight changes for
positive and negative time differences. The updating functions f�(w),
f�(w) � 0, which are in general weight dependent, scale the synaptic
changes and implement synaptic potentiation for causal time differences
(�t 	 0), and depression otherwise. Here, we introduce a family of
nonlinear updating functions in which the weight dependence has the
form of a power law with a non-negative exponent �:

f��w� � �1 	 w�� and f��w� � 
w�, (2)

with 
 	 0 denoting a possible asymmetry between the scales of poten-
tiation and depression. Figure 1 A shows the updating curves (Eq. 2) for
several values of �. For � � 0, the updating functions are independent of
the current synaptic efficacy, and the rule recovers the additive TAH
learning model. This model requires that weights, which would have left
the allowed range after an updating step, are clipped to the appropriate
boundary (0 or 1). The case � � 1 corresponds to the multiplicative
model, in which the updating functions linearly attenuate positive and
negative synaptic changes as a synapse approaches the upper or lower
boundary of the allowed range. Intermediate values of the updating pa-
rameter � determine the range of the boundary effects on the changes in
w. Note that any non-zero �, given a sufficiently small learning rate,
automatically prevents the synaptic efficacies from leaving the allowed
range [0, 1], thereby preventing the runaway problem of synaptic effica-
cies and removing the necessity of artificially clipping synaptic weights.
Figure 1 B provides an illustrative example of the effects of the parameter
� on a sequence of synaptic weight changes (see legend for details).

Following previous work (Kempter et al., 1999; Song et al., 2000; Ru-
bin et al., 2001; but see van Rossum et al., 2000), the plasticity effects of
individual spike pairs are assumed to sum independently: given a
postsynaptic spike, each synapse is potentiated according to Equations 1
and 2 by pairing the output spike with all preceding synaptic events.
Conversely, a synapse is depressed when a presynaptic event occurs,
using all pairs that the synaptic event forms with preceding output spikes.

Mean synaptic dynamics. Because in general the spike times of the

Figure 1. Non-linear TAH. A, Effect of the parameter � on the updating functions f�(w) (top
half) and f�(w) (bottom half) for �� 0, 0.02, 0.15, 0.5, 1 (
� 1). As � increases, the curves
change from the constant additive updating curves (��0, horizontal lines at 1 and�1) to the
multiplicative updating functions with linear weight dependence (� � 1, straight lines with
slope �1). B, Illustration of the effect of � on synaptic changes. At each step, one pair of
presynaptic and postsynaptic spikes induces a change in the efficacy w according to Equations 1
and 2. To elucidate the weight dependency of the updating, the magnitude of the time
difference between the spikes �t is the same in all steps, namely �� at step 4 and � at
all other steps. For illustrative purposes, we assume that the spike pairs are sufficiently distant
so that the weight change is effected only by the current spike pair. Furthermore, the effect of a
single pair is unrealistically magnified (� � 0.4). For additive updating (� � 0), all poten-
tiating changes are of equal magnitude, because �t is constant here and the updating is
independent of the synaptic efficacy. Note, however, that the last additive efficacy change
would have resulted in an efficacy of 	1, and hence the efficacy is clipped to 1. The depression
in step 4 is larger exactly by a factor of 
 � 1.2. In contrast, when � 	 0, although the
contribution to the synaptic change from the time dependency is constant, the actual change in
synaptic efficacy is not. Because potentiation is scaled by (1 � w)�, as the synapse becomes
stronger the same time difference induces a smaller change. This scaling effect is more
pronounced for larger values of � (compare the cases of � � 0.5 and � � 1).
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presynaptic and postsynaptic neurons are stochastic, the dynamics of
synaptic changes are also a stochastic process. However, if the learning
rate � is small, the noise accumulated over an appreciable amount of time
is small relative to the mean change in the synaptic efficacies, called the
synaptic drift. This drift, denoted as ẇ, is the mean rate of change of the
synaptic efficacy. Using Fokker–Planck mean field theory, the synaptic
drifts are described in terms of the correlations between the presynaptic
and postsynaptic activity (Kempter et al., 1999, 2001; Kistler and van
Hemmen, 2000; Rubin et al., 2001). We consider a pair of stationary
presynaptic and postsynaptic processes described by the pulse trains
�pre(t) � 
k�(t � tk

pre) and �post(t) � 
k�(t � tk
post), with mean rates

r pre � ��pre� and r post � ��post� and the raw cross-correlation function:


pre,post��t� � ��pre�t��post�t 
 �t��t. (3)

The angular brackets denote averaging over time t while keeping the time lag
�t between the two spike trains fixed. This cross-correlation is the probabil-
ity density for the occurrence of pairs of presynaptic and postsynaptic spikes
with time difference �t. Using this probability density, the synaptic drift ẇ is
given by integrating the synaptic changes �w (Eq. 1) over the time differ-
ences �t weighted by the probabilities 
pre,post(�t):

ẇ � ��f��w��
��

0

d�tK��t�
pre,post��t�


 �f��w��
0

�

d�tK��t�
pre,post��t�. (4)

The integral in the first term represents the synaptic depression that
stems from all input– output correlations with negative time lag (i.e.,
acausal correlations). These correlations are filtered by the temporal win-
dow K(�t) of the learning. This contribution from the spike-timing
dependence of the learning is multiplied by the weight-dependent scale
of depressing synaptic changes f�(w). Conversely, the second term rep-
resents the potentiating drift originating from causal input– output cor-
relations, which is scaled by f�(w). Note that the weight-dependent
scales f�(w) are evaluated outside the time integrals, because when � is
small, w does not change appreciably during the time scale of the tem-
poral filter of learning. In summary, the dynamic evolution of the syn-
aptic weights depends on the properties of the correlation between the
presynaptic and postsynaptic activity 
pre,post(�t), which in turn depend
on the details of the spike generation mechanism of the postsynaptic cell
as well as on the statistics of the afferent inputs (Kuhn et al., 2003).

Integrate-and-fire neuron. To study the implications of the above NLTAH
plasticity model in a biologically motivated spiking neuron, we simulate a
leaky integrate-and-fire neuron, with parameters similar to those of Song et
al. (2000). The membrane potential of the neuron is described by:

Cm

dV

dt
�

Vrest 	 V

Rm

 gexc�t��Eexc 	 V� 
 ginh�t��Einh 	 V�,

with membrane capacitance Cm � 200 pF, membrane resistance Rm �
100 M�, resting potential Vrest � �70 mV, and excitatory and inhibitory
synaptic reversal potentials Eexc � 0 mV and Einh � �70 mV, respec-
tively. Whenever the membrane potential exceeds a threshold of �54
mV, an action potential is generated and the neuron is reset to the resting
potential with no refractory period. Modeling synaptic conductance dy-
namics by 
-shaped response functions, excitatory and inhibitory con-
ductances are given by:

gA�t� � g�A �
j�1

NA

wj�t��
tj�t

�t 	 tj�exp���t 	 tj�/�A�, A � exc, inh,

respectively, where the tj values are the spike times of synapse j and �exc �
�inh � 5 msec. The values g�exc � 30 nS and g� inh � 50 nS were chosen such
that the total charge injected per spike (at the threshold potential) is
Qexc � 0.04 pC and Qinh � 0.02 pC, respectively. While the efficacies w of
the N � Nexc � 1000 excitatory synapses are plastic and governed by the

TAH learning rule, all Ninh � 200 inhibitory efficacies are held fixed at
�1. In the numerical simulations, the integrate-and-fire neuron is driven
by Bernoulli (i.e., zero-one) processes defined over discrete time bins of
duration �T � 0.1 msec, approximating Poisson spike trains with a
stationary rate r. For the inhibitory inputs, r � 10 Hz. All equilibrium
synaptic distributions obtained with this model neuron result from an
initially uniform synaptic state with all efficacies set to 0.5. In each case,
the learning process (learning rate, � � 0.001) is simulated until the
shape of the synaptic distribution ceases to change.

Linear Poisson neuron. To investigate analytically the properties of the
TAH learning rule, we consider in addition a linear Poisson neuron
(Kempter et al., 2001). The spiking activity of this neuron �post(t) is a real-
ization of a Poisson process with the underlying instantaneous rate function:

Rpost�t� �
1

N �
j�1

N

wj�t��j
pre�t 	 ��, (5)

where, as before, the N presynaptic input spike trains and the output
spikes are characterized by a series of � pulses [i.e., �j

pre(t) � 
k�(t �
tk
pre, j) and �post(t) � 
k�(t � tk

post)]. The parameter 0 � � �� � denotes
a small constant delay in the output. Because this delay is small compared
with the temporal window of learning, we approximate exp(��/�) � 1
throughout this work. As before, wj(t) � [0, 1] denotes the efficacy of
the jth synapse. Except for Figures 5 and 9, in which we investigate the
large N limit, we let N � 100 throughout this work.

In Figure 2 A, we numerically simulate the linear Poisson neuron re-
ceiving uncorrelated Poisson input spike trains. Generating the spike
arrival times in continuous time (down to machine precision), the
postsynaptic process defined in Equation 5 is implemented by generating
a postsynaptic spike with probability wi /N, whenever a presynaptic spike
arrives at a synapse (i) of the neuron.

Mean synaptic dynamics for the linear Poisson neuron. For the integrate-
and-fire neuron, there is no simple exact expression relating the correla-
tions between the presynaptic and postsynaptic spike trains to the system
parameters such as the rates and input correlations. However, because of
the linear summation of inputs in the linear Poisson neuron (Eq. 5), this
model permits the expression of the input– output correlations

pre,post(�t) in closed form. Considering the case that all input spike
trains have a common rate r, we obtain from Equations 3 and 5 that the
correlation of the activity at synapse i with the output activity is:


i,post��t� � ��i
pre�t��post�t 
 �t��t

�
1

N �
j�1

N

wj��i
pre�t��j

pre�t 
 �t 	 ���t.

Substituting the above in Equation 4, and rearranging the terms, we
obtain the drift of the ith synapse:

ẇi � ��f��wi�
1

N �
j�1

N

wj�r2�1 
�
��

0

d�t
1

�
K��t�
ij

o ��t 	 ���

 �f��wi�

1

N �
j�1

N

wj�r2�1 
�
0

�

d�t
1

�
K��t�
ij

o ��t 	 ���,

where we define the normalized cross-correlations between the input
spike trains by:


ij
o �t�� �

��i
pre�t��j

pre�t 
 t���t

r2 	 1. (6)

We denote the integrated normalized cross-correlations appearing in the
above drift equation by:

Cij
� � �

0

�

d�t
1

�
K��t�
ij

o ���t 	 ��. (7)
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These matrices are the effective between-input correlations for positive
and negative time lags. If Cij

� 	 0, the activity at synapse j temporally
follows that at synapse i, such that its contribution to the postsynaptic
activity results in a potentiating drift on synapse i. Conversely, if Cij

� 	 0,
the activity at synapse j precedes that at synapse i and contributes to its
depression. Note that the effective correlations Cij

� are zero if the ith and
jth input spike trains are uncorrelated. Finally, the synaptic drifts can be
written as:

ẇi �
��r2

N
���f�wi��

j�1

N

wj 
 f��wi��
j�1

N

wjCij
� 	 f��wi��

j�1

N

wjCij
��,

(8)

with �f � f� � f�. Note that the first term in Equation 8 describes
competition between the synapses when �f 	 0; independently from the
input correlations, the amount of induced depression on a given synapse
wi is large when other synapses wj are strong. The second term represents
the cooperative increase of the synaptic weights inherent in TAH learn-
ing. In contrast, the last term denotes depressive synaptic interactions
stemming from negative time correlations in the input activity.

Generating correlated inputs. We consider input spike trains with rate r
and instantaneous correlations defined by:


ij
o ��t� �

1

r
cij���t�, (9)

where �(t) is the Dirac-� function and cij is non-negative. In this case,

Cij
� � 0 and Cij

� �
cij

�r
. (10)

The backward effective correlations Cij
� vanish because the argument of


ij
o (��t � �) in Equation 7 is never 0. Recall that for a Poisson process

�(t) with rate r, the raw autocorrelation is ��(t)�(t � �t)� � r 2 �
r�(�t). Hence, the normalized autocorrelation is cii � 1 and the
between-input correlations are cij � 1, with equality only if the two spike
trains i and j are identical. In the numerical simulations, we generate
populations of correlated spike trains by conditioning the binwise spike
probabilities at time bin T on the activity of a common reference Ber-
noulli spike train X0(T) with the binwise spike probability r�T. To
obtain a positive pairwise correlation coefficient of 0 � c � Cov(Xi(T),
Xj(T))/�Var(Xi(T))Var(Xj(T)) between two spike trains Xi(T) and
Xj(T), the conditional probabilities � � P(Xk(T) � 1�X0(T) � 1) and
� � P(Xk(T) � 1�X0(T) � 0) for k � i, j are determined by:

� � r�T 
 �c�1 	 r�T�, � � r�T�1 	 �c�. (11)

This choice of � and � for all spike trains within the correlated group
guarantees that the spike trains have rates r and an instantaneous pair-
wise correlation coefficient c (see Appendix). For small bin sizes, this
process mimics the instantaneously correlated Poisson point processes
defined above (Eq. 9). We will also consider the case of delayed correla-
tions of the form 
ij

o (�t) � r �1cij�(�t � Dij ). These correlations are
obtained by shifting the instantaneously correlated input spike trains
relative to each other by a time delay Dij.

Measuring the performance of learning rules. A natural way to measure
the performance of a learning rule is to quantify its ability to imprint the
statistical features of the neuronal input onto the distribution of the
learned synaptic weights. One measure of this ability is the mutual infor-
mation between the neuronal inputs and the synaptic weights. However,
direct calculation of the mutual information in cases in which the num-
ber of synaptic weights is large is computationally not feasible. Instead,
we use here a related quantity that measures the effect of a small change in
the statistics of the input on the learned synaptic weights. We denote the
features of an ensemble of neuronal inputs by the vector � � (�1 , . . . ,
�R ), where the �i parameterize specific input features (e.g., mean
strength of the inputs or temporal correlations between different inputs).

Given these features, we calculate the N � R susceptibility matrix �ij , the
elements of which are:

�ij �
�wi

�� j
. (12)

The ijth element measures the amount of change in the ith synaptic
efficacy that is incurred by a small change in the jth input feature, �j. A
global sensitivity measure S is constructed from this matrix by
calculating:

S �
1

2
ln�det��T���, (13)

where det� denotes the determinant. The average sensitivity Savg is de-
fined as �S�� where the average ��� is taken over the distribution of the
feature vector �. The rational for calculating S is that it is closely related
to the mutual information between the input features and the weight
distribution. Specifically, if the mapping from the feature space to the
synaptic weight space induced by the learning dynamics is invertible,
maximizing Savg is equivalent to maximizing the mutual information
(Bell and Sejnowski, 1995; Shriki et al., 2001) in the limit of a small
learning rate �. In this work, we focus on the equilibrium properties of
the TAH learning rule (i.e., the weight distributions that result after the
learning dynamics have converged to a stable stationary state). There-
fore, �ij is evaluated at the fixed point solution w* of the drift equations
in the linear Poisson neuron, Equation 8 (see Appendix). The possibility
of using the analytic expressions for �ij in calculating the sensitivity S is
the main advantage of using it as a measure of performance of various
learning models.

Results
To understand learning phenomena in biological nervous sys-
tems in terms of neural network function, it is crucial to bridge
the gap between the microscopic mechanisms that implement
experience-based changes in neuronal signaling pathways and
the macroscopic properties of the learning system composed of
these pathways. In this paper, we focus on two general goals of
learning that can be defined at the network level and also inves-
tigate the importance of the updating parameter � of the learning
rule in these contexts. First, we consider the question of how a
network can develop a functional connectivity architecture, as for
example in ocular dominance columns. As noted in the Introduc-
tion, this type of learning task typically requires the synaptic
learning dynamics to be competitive, to allow segregation be-
tween initially homogeneous synaptic populations. Moreover, it
is important that the learning process is robust in the sense that
the learned synaptic patterns faithfully reflect meaningful fea-
tures in the neuronal input activity, rather than being dominated
by contributions from random noise. Therefore, we study here
how the interplay between competition and stability in TAH plas-
ticity affects the learned synaptic distributions. In the second part
of Results, we turn to the conceptually different learning task of
imprinting information about the input activity of a neuron into
the respective synaptic efficacies. In this context, the sensitivity of
the learning dynamics to features in the neuronal input becomes
crucial. Thus, using the sensitivity measure introduced in Mate-
rials and Methods, the second part of Results concentrates on a
quantitative evaluation of the performance of different TAH
learning rules.

The emergence of synaptic patterns by symmetry breaking in
TAH learning
One of the basic requirements for the activity-driven formation
of cortical maps is the ability of the learning to generate spatially
inhomogeneous synaptic patterns from a population of synapses
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with statistically homogeneous inputs. The emergence of such
symmetry breaking is an essential property of current cortical
plasticity models (Miller, 1996). In this section, we study the
conditions under which the TAH learning models introduced
above exhibit symmetry breaking and, hence, qualify as candidate
models for the development of functional maps. Moreover, be-
cause the learning dynamics may also lead to symmetry breaking
that overrides the correlation structure of the afferent activity, it
is important to ask what learning rules ensure a faithful represen-
tation of the input activity within the learned synaptic connec-
tions. We address these questions in three basic types of homo-
geneous afferent activities, that differ with respect to the
correlation structure of the input spike trains: uncorrelated in-
puts, uniformly correlated inputs, and uniformly correlated sub-
populations without correlations between the subpopulations
(“correlated subgroups”). Before treating these specific cases, we
highlight the general features of the synaptic learning dynamics in
a population of synapses with statistically homogeneous input
activities. These results apply to all three cases of homogeneous
populations of inputs.

Dynamics of a population of synapses with homogeneous inputs
To study the symmetry breaking in the synaptic patterns, we
consider the learning dynamics in cases in which the input statis-
tics are spatially homogeneous. This means that each input obeys
the same spike statistics and has the same pattern of correlations
with the other inputs. This assumption implies that the presyn-
aptic rates ri (where i denotes the index of the different afferents)
are all equal. Likewise, the total sum of the correlations that each
input has with the rest of the inputs is the same. In particular, the
mean effective causal correlations, C0 :

C0 �
1

N �
j�1

N

Cij
�, (14)

is the same for all input channels i, and similarly for the backward
correlations (Kempter et al., 2001).

To understand the implications of spatial homogeneity in the
presynaptic inputs on the learning dynamics, it is useful to con-
centrate on the linear Poisson neuron model (Eqs. 5, 8). For
convenience, we assume that all correlations between input
spikes are instantaneous (see Materials and Methods, Eq. 10).

The important consequence of the spatial homogeneity across
the presynaptic inputs is that the product of the effective correla-
tion matrix Cij

� with a homogeneous vector of synaptic efficacies
wo � (wo , wo , . . . , wo ) remains homogeneous, because
C �wo � NC0wo. Hence, the homogeneous synaptic state is an
eigenvector of the effective correlation matrix C � with eigen-
value NC0. The existence of this homogeneous eigenvector is
important for the synaptic learning, because it means that in a
homogeneous synaptic state wo, all synapses experience identical
drifts (Eq. 8). Moreover, if there is a wo � w* such that the
synaptic drifts become zero, the learning dynamics have a steady-
state solution, with wi � w* for all synapses. We call a solution in
which all of the learned synapses are equal a homogeneous solu-
tion. Indeed, we show in the Appendix that for all non-zero up-
dating parameter � values in our model (Eq. 2), there exists a
steady-state homogeneous solution of the learning (ẇi � 0 in Eq.
8), with w* being the solution of the equation:

f��w*�

f��w*�
� 
� w*

1 	 w*�
�

� 1 
 C0. (15)

This equation expresses the weight-dependent balance between
depression and potentiation that is controlled by the mean effec-
tive correlation C0.

Although the homogeneous synaptic steady state always ex-
ists, it may be unstable with respect to small perturbations of the
synaptic efficacies, driving them into inhomogeneous states. Be-
cause of the important functional consequences of this emer-
gence of inhomogeneous synaptic patterns at the network level, it
is important to understand the features of the learning dynamics
that give rise to this phenomenon of symmetry breaking. There-
fore, we analyze the effects of small deviations of the synaptic
efficacies from the homogeneous synaptic steady-state w*. For
each synapse wi , we denote a corresponding small deviation from
the homogeneous solution by �wi � wi � w* and express its
temporal evolution as a function of all deviations �wj. As we
show in the Appendix, this temporal evolution is determined by
three separate contributions:

�ẇi � ��r2	�go�wi 	
�f�w*�

N �
j�1

N

�wj 

f��w*�

N �
j�1

N

Cij
��wj
,

where go � w*f�(w*)
d

dw
[ f�(w)/f�(w)]w�w* � 
�w*�/(1 �

w*) 	 0 (Appendix, Eqs. 20, 21). The first term is a local stabi-
lizing term. It counteracts individual deviations from the homo-
geneous solution, maintaining the synaptic efficacies at the same
value w*. To understand the origin of this stabilizing term in the
learning dynamics, we consider the effect of a single synaptic
deviation �wi on the balance between depression and potentia-
tion. If a synapse is strengthened by a deviation �wi 	 0, the
resulting scale of potentiation f�(w* � �wi ) decreases, whereas
the scale of depression f�(w* � �wi ) increases (Eq. 2). Con-
versely, a weakening deviation �wi � 0 shifts the balance be-
tween potentiation and depression in favor of potentiation. Be-
cause this stabilizing drift stems from the weight dependence of
the ratio f�(w*)/f�(w*) (Appendix), it is not present in the
additive model (� � 0), where the f� values themselves are con-
stant. The second term is proportional to the net drift
��f(w*) � f�(w*) � f�(w*). This drift is negative, because at
the homogeneous solution, f�(w*) 	 f�(w*) when depression
balances the potentiating correlations (see Eq. 15, and recall that
C0 	 0). The negative drift is multiplied by the total perturbation

j�wj , which denotes the change in the output rate attributable
to the changes in the synaptic efficacies. Thus, this term repre-
sents the competition between the synapses. This competition
results from the fact that strengthening the efficacy of any synapse
increases the output rate, thereby increasing the frequency of
occurrence of net negative drift in all of the synapses. It is impor-
tant to note that this competition is acting between all synapses,
unrelated to the correlation structure in the afferent input.

Finally, the last term is a cooperative term. Synapses that are
positively correlated cooperate to elevate their weights. This co-
operation is driven by the potentiating component of the TAH
learning and depends on the pattern of correlations among the
input channels. We emphasize that the cooperativity in the syn-
aptic learning in general does not originate from a possible ad-
vantage of correlated synapses to drive a potentially nonlinear
spike generator of the postsynaptic cell, but rather already occurs
because of an inherently increased probability of correlated syn-
apses to precede postsynaptic spikes, even when nonlinear coop-
erative effects in the spike generator are absent.

The stability of the homogeneous synaptic steady state results
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from the interplay between the stabilizing, the competitive, and
the cooperative drifts in the learning dynamics. As we derive in
the Appendix, perturbations of the steady state that slightly
change all weights by the same amount �w (homogeneous per-
turbations) decay to zero with time and, hence, do not destabilize
the learning of a homogeneous synaptic distribution. In contrast,
inhomogeneous perturbations (i.e., perturbations in which the
deviations of the synaptic efficacies from w* are not identical) can
grow exponentially through the learning dynamics and drive the
system into inhomogeneous synaptic states. In the Appendix, we
specifically show that the homogeneous synaptic state becomes
unstable if the largest real part of all inhomogeneous eigenvalues
(eigenvalues corresponding to inhomogeneous eigenvectors) of
the effective correlation matrix C � is sufficiently large. Denoting
this eigenvalue by NC1 , we find that when:

� � C1f��w*� 	 go � 0, (16)

the homogeneous state is unstable. This inequality means that
symmetry breaking occurs whenever the cooperation between
synapses C1 is strong enough to outweigh the stabilizing term go.
Note that the competition coefficient �f does not enter directly
into the stability criterion. This is because the competition term is
proportional to the total weight value, and hence is not sensitive
to inhomogeneous perturbations that do not change this value.
Nevertheless, this term has a crucial role in the stability of the
learning, because it suppresses the homogeneous growth of all
synapses. As is shown in the Appendix, Equation 16 implies that
the homogeneous solution is always stable in the multiplicative
model (� � 1).

Although this analysis was performed using the plasticity
equations of the linear Poisson neuron, it is qualitatively valid as
well for other neuron models, as we show for specific cases. Below
we study how the emergence of symmetry breaking (i.e., transi-
tions from homogeneous to inhomogeneous synaptic distribu-
tions) depends on the nonlinearity of the TAH dynamics, namely
the parameter �, as well as on the asymmetry between depression
and potentiation 
, and on the size of the synaptic population N.

Uncorrelated inputs: linear neuron
In this section, we investigate the synaptic distributions that re-
sult from the TAH learning process when the postsynaptic neu-
ron is driven by independent Poisson spike trains of equal rate r.
For this input regime, it has been found in an integrate-and-fire
neuron that additive learning (� � 0) breaks the symmetry of the
statistically identical presynaptic inputs and leads to a bimodal
weight distribution (Song et al., 2000; Rubin et al., 2001). How-
ever, it was shown by Rubin et al. (2001) that multiplicative learn-
ing (� � 1) leads to a unimodal distribution of synapses. As
shown in the preceding section, these qualitatively different
learning behaviors originate in the stabilizing effect of the weight
dependence of the synaptic changes on the homogeneous synap-
tic state. Here, we study the generalized nonlinear TAH rule with
arbitrary � � [0, 1].

In the uncorrelated case, cij � �ij , and hence Cij
� � �ij /�r.

Both its homogeneous and inhomogeneous eigenvalues normal-
ized by N are:

C0 � C1 �
1

�rN
. (17)

Thus, the only cooperation in the learning dynamics stems from
the positive feedback induced by the correlation of each synapse

with its own contribution to the postsynaptic activity. The effects
of this self-correlation on the learning dynamics decrease in-
versely to the effective size of the presynaptic population �rN
(i.e., the expected number of spikes that arrive within the learning
time window).

By inserting the above expression for C0 into Equation 15, we
obtain the steady-state efficacy w* of the synaptic population
when the learned synaptic state is homogeneous (see Appendix,
Eq. 19). In this case, the output rate of the linear neuron is given
by this steady-state efficacy times the rate of the presynaptic in-
puts r (compare Eq. 5). Figure 2A depicts the output rate of the
postsynaptic neuron as a function of the presynaptic input rate r,
for 
 � 1.05. We focus on this value of 
 here, because we want to
compare the nonlinear rules with the additive rule. In the latter
case, 
 must be close to 1; otherwise, practically all synapses will
become zero (see Appendix). For � � 1 (multiplicative TAH),
the efficacy w* is fairly independent of r and, hence, the output
rate grows linearly with the input rate. However, if � is suffi-
ciently small, w* decreases inversely with the input rate, resulting
in the output rate being nearly constant.

To study the regime in which the synaptic learning dynamics
break the symmetry of the uncorrelated input population, we
substitute Equation 17 into Equations 15 and 16, computing the
homogeneous solution w* (Eq. 19) and the regime of its stability.
Figure 3A depicts the critical contour lines according to the sta-
bility condition (Eq. 16). Each line traces the critical combination
of the parameters � and �rN for a fixed value of 
, such that � �
0. Outside the corresponding contour (� � 0), the homogeneous
synaptic state is stable, and thus learning generally results in all
synapses having the same efficacy. In contrast, inside the contour
line, the learning dynamics induce symmetry breaking.

Figure 3A shows how the outcome of TAH learning depends
on the effective size of the presynaptic population. For a suffi-
ciently small �rN, the relative contribution of each input channel
to the postsynaptic activity is large and, hence, the resulting
strong positive feedback drives all synapses to a stable homoge-
neous state near the upper boundary (Fig. 3B, squares). In con-
trast, as �rN is increased, the effect of a single synapse on the
postsynaptic activity decreases. Therefore, for a sufficiently large
�rN, the stabilizing force induced by the weight dependence of
the synaptic changes dominates the learning dynamics for any
non-zero �, resulting in a stable homogeneous synaptic state
(Fig. 3B, triangles). In between the two extremes of small and
large �rN, there is a regime of intermediate effective population
sizes for which symmetry breaking may occur, with the synaptic
population segregating into a strong and a weak group. Such a
case is shown in Figure 3B (circles).

Importantly, Figure 3A demonstrates that as the number of
afferents N increases, the regime of values of � for which the
homogeneous solution is unstable shrinks to zero. The inset of
Figure 3A shows the value of � at the border between stability and
instability of the homogeneous solution, as a function of the
effective population size. It is apparent that this � decreases lin-
early with 1/(�rN) when �rN is large (also see Appendix). Hence,
for any sizable degree of weight dependence and large synaptic
populations, symmetry breaking does not occur.

In the purely additive TAH model, synaptic changes do not
scale at all with the efficacy of a synapse, and the weights have to
be constrained by an additional clipping to prevent unrealistic
synaptic growth. As a result, the additive learning dynamics do
not possess stationary synaptic states in the above sense that the
individual synaptic drifts become zero. Instead, synapses with
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positive drifts are held at the upper boundary, whereas synapses
with negative drifts saturate at the minimum allowed efficacy.
Our treatment of the additive model in the Appendix shows that
the numbers of synapses gathering at the upper and lower bound-

Figure 2. Firing rate responses of a neuron driven by uncorrelated Poisson input processes. A,
OutputfiringrateofthelinearPoissonneuronasafunctionoftheinputrateforselectedvaluesof��
0, 0.024, 0.04, 1, with N � 100 and 
 � 1.05. Solid lines show analytical results derived from the
homogeneous synaptic state (Eq. 19) (which is stable for all values � 	 0 and r shown here) or for
additive TAH (��0) from the ratio of strong synapses given by Equation 25 (see Results and Appen-
dix). In both cases, the output rate is given by the input rate multiplied with the corresponding mean
synaptic efficacy. Plot symbols depict the output rates of a numerically simulated spiking linear Pois-
son neuron (Materials and Methods) with parameters as in the analytical calculation and a learning
rate��0.001 (except for��0, where we used��0.003). B, C, Results from the integrate-and-
fire neuron with N�1000. All results refer to the neuron after convergence of the learning process. B,
The output firing rate of the neuron as a function of the input rate for 
� 1.05. C, The output firing
rate as a function of 
 for an input rate of 10 Hz.

Figure 3. Symmetry breaking in the linear neuron driven by uncorrelated Poisson input
processes. A, The critical contour lines of the stability criterion ��0 (Eq. 16) for 
�1.05, 1.1,
1.25, 1.5, 2, 2.5, 3, 3.5 (from right to left, thick line corresponds to 
 � 1.05). The homoge-
neous solution is stable outside the contour and unstable in its interior. Inset, Critical contour for
large �rN and 
 � 1.05. B, Equilibrium synaptic weights as a function of � for �rN � 10
(squares), 20 (circles), and 200 (triangles), with 
 � 1.05. Plot symbols mark the efficacy
values obtained from simulating the mean field learning dynamics of the linear neuron with
N � 100 and the input rate r � 5, 10, 100 Hz, adjusted to obtain the desired value of �rN. As �
is decreased, each simulation is initialized with the synaptic efficacies of the equilibrium state
obtained for the previous value of �, plus a perturbation vector ranging from �0.001 to 0.001.
For small and large values of �rN (squares and triangles), the homogeneous solution is stable for
all � (except the vanishing regime of very small ���crit in the large �rN case). For �rN � 20
(circles), the synaptic population splits into two groups (54 strong and 46 weak synapses) when
� crosses the corresponding critical contour in A. The solid lines depict the analytically obtained
values of the equilibrium weights. For �rN � 20 (circles), the line was obtained by numerically
solving the analytical expression for a bimodal synaptic state with the same split ratio that was
obtained in the simulations.
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aries critically depend on the ratio of depression and potentiation

, as well as on the effective population size �rN. As in the non-
linear TAH learning model, small effective synaptic populations
(�rN � 1/(2(
 � 1)) will lead to all synapses saturating at the
upper boundary because of the strong positive feedback. How-
ever, as �rN increases beyond a critical value, the synaptic popu-
lation breaks into two groups, one of which remains saturated at
the upper boundary while the other, losing the competition, sat-
urates at the lower boundary. The ratio of synapses saturating at
the top boundary is nup � 1/ 2�rN(
 � 1) (Appendix). Because
this ratio is inversely proportional to the input rate r, the output
rate of the postsynaptic neuron becomes independent of the in-
put rate, as shown in Figure 2A.

Uncorrelated inputs: integrate-and-fire neuron
We now turn to the behavior of TAH learning in the integrate-
and-fire neuron driven by uncorrelated inputs. Figure 2B shows
the output rate of this neuron model versus the input rate for
different values of �. As the figure demonstrates, the output-rate
normalization quickly deteriorates as � departs from the additive
model and synaptic changes become dependent on the efficacy of
the synapse. Figure 2C demonstrates that the sensitivity of the
output rate to the parameter 
 rapidly diminishes as � increases.
Comparing A and B of Figure 2 shows the qualitative similarity
between the output rate responses of the linear Poisson and the
integrate-and-fire model neurons. Note that we have not at-
tempted to match the overall scale of the output rates in the two
models. The output rate of the linear neuron can be arbitrarily
changed by a gain factor without affecting any other results.

Figure 4 displays the histograms of the equilibrium distribu-
tions of learned synaptic efficacies as a function of the updating
parameter �. Recovering the behavior of additive (Song et al.,
2000) and multiplicative (Rubin et al., 2001) updating models for
� � 0 and � � 1, respectively, the plot reveals the transition
between these models for intermediate values of �. Specifically, it
shows the emergence of symmetry breaking as � approaches
zero.

As expected from the analysis of the linear neuron, we find
that in the integrate-and-fire neuron also, the critical value of � at
which the synaptic distribution becomes bimodal decreases as the
effective population size �rN increases. Increasing the rate of the
input processes from 10 Hz (Fig. 4A) to 40 Hz (Fig. 4B) lowers
the first occurrence of a bimodal weight distribution from �crit �
0.023 to �crit � 0.017. The inset in each panel depicts the equi-
librium weight distribution for the intermediate value of � �
0.019, showing a clearly bimodal distribution for the 10 Hz input
(Fig. 4A) and a clearly unimodal distribution for the 40 Hz input
(Fig. 4B). Moreover, as expected from the equations describing
the homogeneous steady state in the linear neuron (Eqs. 15 and
17), the synaptic efficacy of the homogeneous state at a given �
decreases when the input rate increases.

It is interesting to note the close similarity in the � depen-
dence of the learned synaptic distributions in the linear and the
integrate-and-fire neurons. For example, in both cases, the criti-
cal � for symmetry breaking is close to 0.023 for input rates of 10
Hz [compare Fig. 4A with Fig. 3B (circles)]. This is despite the
fact that the two models have very different spike generators and
different sizes of synaptic populations. The reason for this simi-
larity is that the input– output correlations in the integrate-and-
fire neuron with 1000 synapses turn out to match in magnitude
the corresponding correlations of the linear neuron with 100
synapses (data not shown).

In summary, for uncorrelated inputs and biologically realistic
sizes of the presynaptic population, N, on the order of thousands,
and for rates on the order of �10 Hz, the regime in � and 
 in
which symmetry breaking between uncorrelated inputs as well as
output rate normalization occur is extremely narrow. Thus, the
learning behavior changes qualitatively as soon as synaptic plas-
ticity becomes weight dependent.

Uniformly correlated inputs
We briefly discuss here the case in which the presynaptic inputs
have positive uniform instantaneous correlations, namely that
for all i � j, cij (Eq. 9) are equal. This situation may, for instance,
occur when the entire presynaptic pool of a neuron is driven by a
common source. Treating the behavior of the linear Poisson neu-
ron, we show in the Appendix that positive uniform correlation
increases the value of the synaptic efficacy in the homogeneous
synaptic steady state. Moreover, the uniform correlation does not
alter the 1/(�rN) dependence of the destabilizing drifts. As a
result, in nonadditive learning, when the effective synaptic pop-

Figure 4. Symmetry breaking in the integrate-and-fire neuron driven by uncorrelated Pois-
son input processes. A, B, Histograms of the equilibrium synaptic distributions in logarithmic
gray-scale as a function of the updating parameter � for N � 1000 and 
 � 1.05. The input
rate is 10 Hz in A and 40 Hz in B. The arrow marks the critical � where the first bimodal
distribution occurs. Insets, The synaptic distributions at � � 0.019. Note that whereas the
histograms shown in the main figures are single realizations of the equilibrium synaptic distri-
butions for each �, the histograms shown in the insets were obtained by averaging 30 different
readouts of the converged synaptic weights taken at consecutive intervals of 500 sec.
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ulation is sufficiently large, the homogeneous steady state re-
mains stable for any positive uniform correlation strength. In
fact, these correlations increase the stability of the homogeneous
state (Appendix) and, hence, oppose the emergence of spontane-
ous symmetry breaking.

Correlated subgroups
We now consider afferent input activity to a neuron that is com-
posed of M equally sized groups. These groups are defined by a
uniform within-group correlation coefficient cij � c 	 0 (com-
pare Eq. 9) that is equal within all groups. For pairs of inputs
belonging to different groups, the cross-correlation is zero. In
this scenario, the M different presynaptic groups compete for
control over firing of the postsynaptic neuron. We first treat the
linear neuron and, for simplicity, focus on the case in which the
overall number of presynaptic input channels N is large. In this
limit, the homogeneous and largest inhomogeneous eigenvalues
of C � normalized by N are:

C0 � C1 �
c

�rM
.

Comparing these expressions with
their respective values in the case of N un-
correlated inputs (Eq. 17), we note that
the learning behavior in both input sce-
narios is equivalent when N is identified
with M/c, the number of correlated sub-
groups divided by the strength of the
within-group correlation. The stability of
the homogeneous synaptic steady state in
a large network comprising M correlated
synaptic subgroups, each with within-
group correlation c, behaves as in an un-
correlated network of finite size M/c.
Thus, in the limit of a large presynaptic
population, the correlation strength c
scales the effective number of presynaptic
inputs from M for c � 1 to infinity for c �
0. Importantly, the largest inhomoge-
neous eigenvector is such that when the
homogeneous solution loses stability, the
symmetry is broken between the corre-
lated subgroups and not within each
subgroup.

The nature of the synaptic pattern that
emerges once the homogeneous synaptic
state loses stability depends on the num-
ber of afferent subgroups. Here we focus
on the example of two equally sized sub-
groups (i.e., M � 2). A similar scenario,
which is motivated by the problem of the
activity-driven development of ocular
dominance maps, has recently been stud-
ied by Miller and MacKay (1994) and
Song and Abbott (2001). The regimes of
symmetry breaking in which the learned
synaptic efficacies segregate according to
the two correlated input groups are de-
picted in Figure 5A (this figure is equiva-
lent to Fig. 3A, with c replacing 2/N).
Thus, symmetry breaking between two
correlated subgroups can occur in nonad-
ditive TAH learning models even when
the number of presynaptic inputs N is

large. This is demonstrated in Figure 5B (solid black line), which
plots the learned synaptic efficacies as � as varied, with c held
fixed at 0.11. As is evident from Figure 5, for this level of correla-
tion, symmetry breaking occurs below a fairly high value of � �
0.15. Note that in contrast to our treatment of the uncorrelated
inputs, here we do not use 
 close to 1 but rather set it to a generic
value of 
 � 1.5.

Figure 5, C and D, describes the behavior of the system as the
within-group correlation is gradually turned on. As expected
from the analysis of the uncorrelated input scenario, the substan-
tial weight dependence of the synaptic changes induced when
� � 0.15 (solid black lines), yields a stable homogeneous synaptic
state if the within-group correlation is sufficiently weak. How-
ever, when the correlation reaches a critical value, the homoge-
neous state becomes unstable and the synaptic efficacies segregate
into the two input groups, with the one winning the competition
suppressing the other. As the correlation increases still further,

Figure 5. Symmetry breaking in the linear neuron driven by two equally sized correlated groups in the large N limit. A, The
critical contour lines of the stability criterion � � 0 (Eq. 16) for 
 � 1.25, 1.5, 2, 2.5, 3, 3.5 (from left to right, thick solid line
corresponds to 
 � 1.5, thick dashed line to 
 � 3) plotted as a function of the within-group correlation c. The homogeneous
solution is stable outside a contour line and unstable in its interior. The lines depicted in B–D correspond to the equilibrium synaptic
states obtained by numerically solving the analytical expressions for the two-group solutions with r � 10 Hz. Circles depict
synaptic efficacies obtained by simulating the mean field learning dynamics of N�1000 synapses. We set N�1000 here to obtain
a better approximation of the analytical results derived for the large N limit. Note that small discrepancies between the analytical
curves and the simulated mean field equilibrium, stemming from the finiteness of N in the simulation, can be observed in B. B,
Equilibrium synaptic weights (black line) as a function of � for c � 0.11 (horizontal line in A) with 
 � 1.5. Gray lines show the
equilibrium weights for c � 0.05, 0.06, . . . , 0.2. C, D, Equilibrium synaptic weights (black lines) as a function of c for � � 0.15
(vertical line in A) with 
 � 1.5 in C and 
 � 3 in D. The gray lines in C show how the region in which the homogeneous solution
is unstable vanishes as � is increased from 0.15 to 0.1725 in steps of 0.0025. The gray lines in D show the change in the equilibrium
synaptic weights when 
 is increased from 2 (largest group separation) to 4 (smallest group separation) in steps of 0.1. The dashed
lines in C and D depict the equilibrium synaptic weights for the multiplicative case (� � 1).
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another transition may occur at a higher value of c, above which
the homogeneous synaptic state becomes stable again. The pres-
ence of this second transition (which is discontinuous) depends
on the values of �r, the expected number of input spikes per
synapse arriving within its learning time window, and the ratio of
depression and potentiation 
 (Fig. 5, compare C and D). Impor-
tantly, for large values of �, in particular in the multiplicative
model (� � 1), the stabilizing force is so strong that the homo-
geneous synaptic state remains stable for all positive correlation
strengths (Fig. 5C, D, dashed black lines; also see Appendix), and
no segregation is possible.

The behavior described above for the linear neuron is repro-
duced qualitatively in simulations of the integrate-and-fire neu-
ron, as shown in Figure 6A. To address the question of whether
symmetry breaking in the integrate-and-fire neuron can also oc-
cur at higher values of �, we follow the linear Poisson neuron

analysis shown in Figure 5A, which suggests that increasing the
value of 
 extends the � range of bimodal synaptic distributions.
Figure 6B displays the learned synaptic distributions as a func-
tion of � for a within-group correlation c � 0.05, with 
 � 1.5
and r � 10 Hz. Similar to the linear neuron findings shown in
Figure 5B, symmetry breaking occurs here in a wide regime of �.

To emphasize important differences between symmetry
breaking in nonlinear versus additive TAH learning, Figure 7
shows corresponding learned synaptic efficacies for selected cases
of low, intermediate, and high within-group correlations. Figures
7A–D depicts learned weight distributions from Figure 6A for
which � � 0.019. For each correlation, synaptic efficacies result-
ing from additive learning are depicted on the right (Fig. 7E–H).
Except in Figure 7, A and B, where c � 0 (i.e., no input subgroups

Figure 6. Symmetry breaking in the integrate-and-fire neuron driven by two equally sized
correlated groups. Keeping N � 1000, each group consists of 500 synapses receiving Poisson
inputs. A, The learned synaptic weights of the two input groups as a function of the within-
group correlation c, for an input rate of 40 Hz, � � 0.019 and 
 � 1.05. For each correlation,
the group means (circles) are computed for 30 different realizations of the synaptic weight
distribution, taken after convergence at successive intervals of 500 sec. Error bars indicate the
corresponding SDs. The inset shows how the regime of symmetry breaking vanishes as � is
increased through � � 0.019, 0.021, 0.022, 0.023, 0.024. B, The learned distributions of syn-
aptic weights as a function of � for an input rate of 10 Hz, c � 0.05 and 
� 1.5. In all bimodal
weight distributions depicted here, the splitting corresponds to the two input groups.

Figure 7. Symmetry breaking in nonlinear and additive TAH learning. The learned synaptic
efficacies of the integrate-and-fire neuron driven by two equally sized correlated groups are
depicted for selected within-group correlations c � 0, 0.03, 0.1, 0.3. Each input group consists
of 500 synapses receiving Poisson inputs with a rate of 40 Hz (compare Fig. 6 A). The asymmetry
parameter 
 � 1.05. For c � 0 (A, E), the histogram of the total synaptic population is de-
picted. For c 	 0, the light bars describe the distribution of the presynaptic input group with the
higher mean, and the dark bars (stacked on top of the light ones) depict the distribution of the
weaker group. All histograms were obtained by averaging 30 different readouts of the con-
verged synaptic weights taken at consecutive intervals of 500 sec. A–D, Results from nonlinear
TAH learning with � � 0.019. E–H, Results from additive TAH learning, � � 0. In E, a total of
112 synapses are in the upper mode. In F, the stronger group (light bars) has a bimodal distri-
bution with 175 synapses (35%) in the upper mode.
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are defined), the synaptic distribution of the subgroup with
higher mean efficacy is depicted in light gray, whereas that of the
subgroup with lower mean efficacy is displayed in dark gray.

Inspection of Figure 7, A and B versus E and F, shows that in
the regime of low correlations, the learning behavior induced by
the two types of plasticity is qualitatively different. While in non-
linear TAH learning (Fig. 7A,B), the homogeneous synaptic state
is stable and all synapses distribute around the same mean effi-
cacy, unstable additive learning induces symmetry breaking (Fig.
7E,F). Importantly, this symmetry breaking in general does not
reflect the correlation structure in the afferent input. As shown in
Figure 7F, when the within-group correlation is 0.03, the 500
synapses of the group winning the competition (light gray) split
into two fractions of 325 versus 175 synapses, of which the larger
fraction tends to zero efficacy and mixes with the efficacies of the
losing input group. In contrast, in the nonlinear TAH model,
unfaithful splitting of the weights occurs only for extremely small
values of �, of the order of 1/�rN (Fig. 7, compare A and B with
E and F). This is because symmetry breaking within a uniformly
correlated group does not occur for � 	 1/�rN, and hence the
weights of each subgroup remain the same.

For intermediate strengths of the within-group correlation,
both learning rules induce symmetry breaking that faithfully re-
flects the structure of the input correlation, with the synaptic
distributions of the two input groups well separated. This is
shown in Figure 7, C and G, for a correlation of c � 0.1. Note,
however, that whereas in additive learning the efficacies of both
input groups reach the respective boundaries of the allowed range
(i.e., are clipped to saturation), the weights resulting from non-
linear TAH learning do not saturate. As we show in the next
section, this property of NLTAH plasticity enhances the sensitiv-
ity of the synaptic population to changes in the strength of the
within-group correlation. Finally, when the within-group corre-
lation is strong, in both types of learning all efficacies become
large (Fig. 7D,H).

Clearly, the detailed quantitative properties of the learned
synaptic patterns, as well as the parameter values at which sym-
metry breaking occurs, depend on the neuron model, and specif-
ically on the spike generating mechanism. Nevertheless, the strik-
ing qualitative similarity in the findings from both neuron
models investigated here suggests that the symmetry breaking
induced by the within-group correlations is a general property of
the nonlinear TAH rule with small but non-zero �, independent
of the specifics of the spike generator.

Synaptic representation of input correlations
In the previous section, we studied the emergence of symmetry
breaking in homogeneous synaptic populations for different
types of instantaneously correlated input activity. In this section,
we study the more general issue of how information about the
spatiotemporal structure of the afferent input is imprinted into
the learned synaptic efficacies by TAH plasticity. Specifically, we
investigate how the weight dependence of the synaptic changes
affects the sensitivity of the learning to features embedded in the
input spike trains.

An example of the associated phenomena is shown in Figure 8.
Here we study the effect of weight dependence on the steady-state
synaptic efficacies of the integrate-and-fire neuron receiving
1000 Poisson inputs that comprise a small subgroup of 50 corre-
lated synapses (c � 0.1) while all other input cross-correlations
are zero. In this scenario, the subgroup is statistically distinct
from the rest of the synaptic population. The coherence of spikes
within the subgroup increases the causal correlation of the mem-

ber synapses with the spiking activity of the postsynaptic neuron.
Because of the ensuing cooperation between the correlated syn-
apses, they grow stronger than those of the uncorrelated back-
ground. Figure 8 shows how the strength of the stabilizing drift
induced by the weight dependence of the synaptic updating mod-
ulates the degree of separation between the two subpopulations.
For decreasing values of �, learning becomes increasingly af-
fected by the correlation structure in the input, and the separa-
tion between the subgroup and the background is more pro-
nounced. However, below a critical �, the homogeneous state of
the uncorrelated population loses stability and splits, resulting in
a bimodal distribution of the background synapses. As a conse-
quence, the representation of the afferent correlation structure in
associated groups of synaptic efficacies is confounded by the mix-
ing of the high-efficacy mode of the background with the sub-
group of correlated synapses. This example raises the general
problem of finding an optimal learning rule that, for a given type
of input activity, compromises best between sensitivity and
stability.

To address this question, we need a quantitative measure for
the performance of a learning rule in imprinting information
about the input correlations onto the synaptic efficacies. Here we
apply the sensitivity measure S (Eq. 13, Materials and Methods),
which quantifies the sensitivity of the learned synaptic state to
changes in features embedded in the input correlation structure.
When S is high, small changes in the input features are picked up
by learning and induce a large change in the learned synaptic
efficacies. We emphasize that the goal of this performance mea-
sure is to quantify and compare general properties of different
plasticity rules. It is therefore based only on the relationship be-
tween the afferent neuronal inputs and the learned synaptic effi-
cacies. In particular, it avoids direct reference to the neuronal
output activity.

We first illustrate the application of the sensitivity measure by
considering a simple example in which the input feature to be
represented by the learned synaptic efficacies is only one dimen-
sional (i.e., a scalar quantity). Specifically, we apply S to the sce-
nario discussed in the previous section, of two independent input
groups with within-group correlation c. We investigate the be-

Figure 8. Effect of the updating parameter � on the learned synaptic distribution of the
integrate-and-fire neuron driven by a small correlated group and an uncorrelated background.
The neuron is driven by 950 uncorrelated and 50 weakly correlated (c � 0.1) Poisson input
processes with a rate of 10 Hz (
� 1.05). Together, A and B cover the range of � � [0, 1], but
note the difference in resolution.
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havior of the linear Poisson neuron and quantify how the sensi-
tivity of the learned synaptic distribution to the strength of the
within-group correlation is affected by the weight dependence of
the synaptic changes. We consider the sensitivity of the learning
as a function of � for a fixed correlation of c � 0.11. As shown in
Figure 5, B and C, this correlation represents an intermediate
correlation strength in the linear Poisson neuron treatment. Us-
ing the steady-state synaptic efficacies from Figure 5B, we com-
pute S for values of � between 0 and 0.5 (see Materials and Meth-
ods, Appendix). Figure 9 shows the resulting sensitivity curve.
We note that each point quantifies the sensitivity of the learned
synaptic weights to small changes in the correlation strength
around c � 0.11.

As can be seen in Figure 5B, there are two qualitatively distinct
regimes of synaptic distributions emerging from learning in this
case. For high values of �, no symmetry breaking takes place, and
the correlation strength is represented by the common mean
value of the synaptic efficacies. In this regime (� � 0.15), S de-
creases monotonically with increasing � (Fig. 9), because the
higher weight dependence strengthens the confinement of the
homogeneous synaptic state to the center range of the synaptic
efficacies. For lower values of �, symmetry breaking occurs, and
the correlation strength is represented by the mean efficacy values
of the two resulting groups. In this regime, S is nonmonotonous
in �. For very low �, the synaptic efficacies are close to saturation
at the boundaries and, hence, a change in the correlation strength
cannot induce a large change in the efficacies. However, the cen-
tralizing drift induced by a large � reduces the sensitivity. Thus, S
has a maximum at an intermediate � (in the present case around
� � 0.02). Finally, at the transition between the regions of ho-
mogeneous and bimodal synaptic distributions (� � 0.15), sen-
sitivity is large, because here a small change in c may cause an
abrupt and large change in the synaptic efficacies, namely a bifur-
cation from a homogeneous to an inhomogeneous synaptic dis-
tribution. Note, however, that this transition region in � is
narrow.

We now turn to a richer input scenario in which the afferent
correlation structure is inhomogeneous and the input feature
space to be represented by the learned synaptic efficacies is high-
dimensional. Specifically, we consider presynaptic activity in
which each synapse receives spike inputs with a specific relative
latency with respect to the remaining synaptic population. Such
latency or delay-line scenarios have been studied previously in

the context of additive TAH learning (Gerstner et al., 1996; Song
et al., 2000) and can, for instance, be motivated by their analogy
to certain delay-line models in auditory processing (Jeffress,
1948).

We consider the input activity to consist of N time-shifted
versions of one common Poisson spike train with rate r. Because
the synaptic learning process depends on the relative timing of
the input spikes, we fix one presynaptic input as reference, and
treat the remaining N � 1 delays � � (�1 , . . . , �N�1) as R �
N � 1 dimensional vector of input features to be represented by
the learned synaptic weights. Whereas the delays � fully specify
the temporal correlation structure of the neuronal input activity,
S measures the sensitivity of the learned synaptic efficacies to
small independent changes in the individual delays. Because of
the temporal sensitivity of TAH plasticity, it is intuitively clear
that the learning dynamics will critically depend on the temporal
scale of the relative delays. Although it is a natural choice to set
this temporal scale through the SD of a Gaussian distribution
from which the delays are drawn (Song et al., 2000; Aharonov et
al., 2001; Gütig et al., 2001), we here apply the sensitivity measure
to the simpler case in which we fix � such that the delays between
the N inputs are uniformly spaced at a fixed delay �/(N � 1)
[i.e., �i � i�/(N � 1) (i � 1, 2, . . . , N � 1)]. We have
checked that the qualitative behavior of S in the case of a fixed
delay spacing is similar to that of Savg (see Materials and Meth-
ods) obtained from averaging over an ensemble of Gaussian delay
vectors with SD � (Aharonov et al., 2001; Gütig et al., 2001).

We investigate here the behavior of the linear Poisson neuron.
One important difference between the delay-line input scenario
considered here and the input correlations treated above is that
here non-zero cross-correlations between input spike trains also
exist at negative time lags. Specifically, if the delays of the input
activities of synapses i and j are given by �i and �j , respectively,
and the additional delay of the postsynaptic neuron is � (Eq. 5),
the delay difference �i � (�j � �) determines the temporal
position of the sharp peak in the otherwise zero effective correla-
tion between the two shifted Poisson inputs (Eq. 7). If this delay
difference is negative, the output activity contributed by the jth
synapse lags behind the input spikes at the ith synapse. Hence, the
jth synapse contributes to the potentiation of synapse i, and the
respective effective causal correlation Cij

� is positive. Corre-
spondingly, in this case the backward effective correlation Cij

�

contributed by synapse j to the depression of synapse i is zero.
Conversely, if the delay difference between the ith and jth input
spike trains is positive, synapse i is depressed by the activity of
synapse j, because Cij

� becomes positive. In both cases, the mag-
nitude of the effective correlation is scaled by the exponentially
decaying time dependence of the learning rule (Eq. 1). The full
expressions for the effective correlation matrices Cij

� and Cij
� are

given in the Appendix.
To calculate S for a given delay vector �, we numerically solve

the drift equation of the synaptic learning (Eq. 8) for the synaptic
steady state. Using the resulting learned synaptic distributions,
we compute the susceptibility matrix � (Eq. 12, Appendix), giv-
ing S (Eq. 13). Figure 10A shows the sensitivity S as a function of
� for different values of the temporal delay spacing �. The curves
clearly show an optimal weight dependence of the synaptic
changes for which the sensitivity peaks. For larger values of �, the
performance of the learning deteriorates because the increasing
confinement of the synaptic weights to the central range of effi-
cacies restricts the sensitivity of the learning to changes in the
input correlation structure. Conversely, for lower values of �, the
sensitivity is impaired because the synaptic efficacies are begin-

Figure 9. Sensitivity to the within-group correlation strength c in the linear neuron receiving
input from two correlated subgroups. The sensitivity is plotted as a function of � for correlation
strength c � 0.11 and 
 � 1.5 (see Fig. 5B for parameter settings, large N limit).
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ning to saturate at the boundaries of the allowed range as bimodal
efficacy distributions emerge. The value of � that optimally ad-
justs the weight dependence of the synaptic changes depends
both on the system parameters and on the input correlations
determined by the relative time delays between the inputs. In-
creasing � (i.e., increasing the relative delays) weakens the effec-
tive correlations between the presynaptic inputs because of the
exponentially decaying temporal extent of the learning rule (Eq.
7). Hence, a lower weight dependence of the synaptic changes
(corresponding to a lower value of �) is needed to pick up the
correlations and allow sufficient sensitivity of the learning to the
input delays. The effect of this change in the temporal extent of
synaptic interactions on the learned efficacies is shown in Figure
11, which for each � depicts all N synaptic efficacies for � � �
(Fig. 11A) and � � 4� (Fig. 11B). Note that because of the equi-
distant delays, the relationship between the relative temporal po-
sition of a synapse within the presynaptic population and its
steady-state efficacy is monotonic, with the leading synapse (� �
0) taking the largest weight. In the foreground, the corresponding
sensitivity curves are shown. The plots clearly demonstrate that
the saturation regime in which most synaptic weights accumulate

at the boundaries of the allowed range (black and white) begins at
higher values of � when the temporal dispersion of the inputs is
small (Fig. 11A) (i.e., the synaptic interactions are strong). The
plot also reveals that in both cases for low values of �, only the
leading synapse remains at a high value. Finally, it can be seen that
the peaks in the sensitivity curves approximately coincide with
those values of � for which the synaptic weights smoothly cover a
large range of efficacies, as shown by the gradual change from
dark to light values in the corresponding vertical cross sections.

Finally, we ask how the learning sensitivity depends on the
statistics of the input delays for a fixed value of �. To answer this
question, Figure 10B shows S as a function of the delay-line spac-
ing �, demonstrating that S does not vary monotonically with �,
but rather has a maximum at an optimal temporal separation of
the inputs. This is because tight spacing leads to strong effective
correlations between the inputs, driving the synapses toward sat-
uration. On the other hand, loose spacing reduces the effective
correlations between the presynaptic inputs to the extent that the
learning behaves essentially as if driven by an uncorrelated pre-
synaptic population.

Discussion
The understanding of activity-dependent refinement of neural
networks has long been one of the central interests of synaptic
learning studies. In this context, most investigations of unsuper-
vised learning using correlation-based plasticity rules have been

Figure 10. Sensitivity in the linear neuron evaluated at uniformly spaced input delays. The
delay vector � covers the range from 0 to � (see Results). The learning dynamics are simulated
for the linear neuron, with N � 101 synapses driven by the delayed Poisson inputs with a rate
of 10 Hz and 
� 1.5. A, The sensitivity per input feature S/R as a function of � for �/�� 0.25,
0.5, 0.75, . . . , 4.75, 5 (from bottom to top). The termination of the curves at low � is a result of
poor numerical convergence arising as the synaptic efficacies come close to the boundaries of
the allowed range. B, The sensitivity per feature S/R as a function of the delay interval �/� for
� � 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 (from top to bottom).

Figure 11. Mapping between synaptic delays and equilibrium weights. The parameters are
identical to those used in Figure 10 A, with �/� � 1 in A and �/� � 4 in B. The background
depicts the learned synaptic efficacies as a function of �. Each row i reflects the equilibrium
weight wi in gray-scale, with the top row corresponding to the leading synapse with zero delay
and the bottom row to the last synapse with delay �. The solid lines depict the sensitivity curves
from Figure 10 A.
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conducted in the framework of additive plasticity models, which
do not incorporate explicit weight dependence in the changes of
synaptic efficacies. These simple models suffer from stability
problems: either all synapses decay to zero or they grow without
bound. An additional problem inherent to simple Hebbian mod-
els is the lack of robust competition. Indeed, it has been found
that even the inclusion of synaptic depression mechanisms does
not provide a robust source of synaptic competition, unless syn-
aptic plasticity is fine-tuned to approximately balance the
amount of potentiation and depression (Miller, 1996).

Recent studies of experimentally observed temporally asym-
metric Hebbian learning rules have added two new ideas. One
idea is that under these plasticity mechanisms, synapses compete
against each other in controlling the time of firing of the target
cell and, thus, engage in competition in the time domain. Al-
though TAH learning rules are indeed inherently sensitive to
temporal correlations between the afferent inputs, we have
shown here that this sensitivity alone is not sufficient to resolve
the problems associated with either stability or competition. In
the additive model of TAH plasticity, hard constraints need to be
imposed on the maximal and minimal synaptic efficacies to pre-
vent the runaway of synaptic strength. In addition, as was shown
here, in this model synaptic learning is competitive only when the
ratio between depression and potentiation is fine-tuned, and
even then the emergent synaptic patterns do not necessarily seg-
regate the synaptic population according to the correlation struc-
ture in the neuronal input. The second idea is that TAH rules
would exhibit novel behavior because of the role of the nonlinear
spike-generation mechanism of the postsynaptic cell (Song et al.,
2000). In fact, we have shown in this work that the qualitative
features of TAH plasticity are strikingly insensitive to the nonlin-
ear integration of inputs in the target cell (see also Kempter et al.,
2001). For the parameter choices studied, the properties of the
synaptic steady states in the integrate-and-fire neuron are quali-
tatively similar to those found in a linear input– output model for
neuronal firing. Nevertheless, we note that there are substantial
quantitative differences between the two models, particularly
with respect to the parameters �rN and c, which effectively
determine the correlations between the presynaptic and post-
synaptic spike trains. Although a quantitative analysis of these
differences is beyond the scope of our work, such a study might
reveal interesting insights into the quantitative effects of the de-
tails of the postsynaptic spike generator on the learned synaptic
distributions. In addition, it is possible that the details of the
spike-generation mechanism will affect the transient phase (i.e.,
the dynamics) of the synaptic learning process.

From the present work, we conclude that some of the under-
lying difficulties in correlation-based learning are alleviated by
nonlinear plasticity rules such as the NLTAH rule. The nonlinear
weight dependence of the synaptic changes provides a natural
mechanism to prevent runaway of synaptic strength. As in addi-
tive TAH learning, synaptic competition is provided by the mix-
ture of depression and potentiation. However, in NLTAH plas-
ticity, the balance between depression and potentiation is
maintained dynamically by adjusting the steady-state value of the
synaptic efficacies. Indeed, we have shown that this competition
is sufficient to generate symmetry breaking between two inde-
pendent groups of correlated presynaptic inputs. However, for
this to occur, the stabilizing drift induced by the weight depen-
dence of the synaptic changes should not be too strong. In par-
ticular, the simple linear weight dependence (Eq. 2, with � � 1)
assumed in the original multiplicative model is incapable of
breaking the symmetry between competing input groups. In fact,

we have shown that with � � 1, the homogeneous synaptic state
is stable for any pattern of homogeneous input correlations, pro-
vided there are no negative correlations in the afferent activity.
The present power-law plasticity rule with 0 � � � 1 provides a
reasonable balance between the need for a stabilizing force and a
potential for spontaneous emergence of synaptic patterns. Our
study of symmetry breaking between two competing groups of
correlated synapses is inspired by the activity-dependent devel-
opment of ocular dominance selectivity. This scenario has also
been studied recently by Song and Abbott (2001) using the addi-
tive version of TAH plasticity. In their model, achieving a faithful
splitting between the two competing input groups with weak
correlations requires relatively tight tuning of the depression to
potentiation ratio, 
.

One of the surprising results of our investigation is the possi-
bility that when the correlation within input groups is made
strong, the stability of the homogeneous synaptic state may be
restored. We have shown that this apparently counterintuitive
behavior, predicted by the analytical study of the mean synaptic
dynamics of the linear Poisson neuron, is also seen in simulations
of the full learning rule in the integrate-and-fire neuron. It would
be interesting to explore possible experimental testing of this
result, perhaps in the context of the development of ocular dom-
inance. In this work, we have limited ourselves to correlated sub-
populations of inputs with positive within-group correlations.
However, in general, negative correlations are an additional po-
tential source of competition (Miller and MacKay, 1994). Fur-
thermore, we have not addressed the important issue of compe-
tition between synapses that target different cells. Lateral
inhibitory connections between target neurons may provide a
source of such competition.

The last part of the present work addresses situations with
inhomogeneous input statistics. Different inputs are distinct in
their temporal relationship to the rest of the input population.
Here the issue is not whether a spatially modulated pattern of
synaptic efficacies will form through TAH learning, but rather
whether this pattern will efficiently imprint the information em-
bedded in the input statistics. To quantify the imprinting effi-
ciency of the learning rule, we introduced a new method for
measuring learning rule sensitivity. In the present context, this
measure quantifies the amount of information about the tempo-
ral structure in the inputs that a TAH rule can store. Using this
method to study the novel class of NLTAH plasticity rules intro-
duced here, we find that the optimal learning rule depends on the
input statistics, in the present example on the characteristic time
scale of the temporal correlations between the inputs. This find-
ing suggests that biological systems may have acquired mecha-
nisms for metaplasticity to adapt the learning rule to slow tem-
poral changes in the input statistics. It should be pointed out that
the sensitivity measure S focuses entirely on how the learned
synaptic distribution changes as a result of changes in the corre-
lation pattern among the input channels. It does not, however,
address the problem of “readout,” namely how the resulting
changes in the synaptic distribution affect the firing pattern of the
output cell. A measure that takes the postsynaptic spike train into
account will in general depend on the details of the spike-
generating mechanism rather than only capture the properties of
the learning rule. In general, however, any readout mechanism
will depend on the information that is available in the learned
synaptic state. Hence, if the learning itself is insensitive to changes
in the input features, the synaptic efficacies will fail to represent
these changes and no readout mechanism will be able to extract
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them. The sensitivity measure S therefore provides an upper
bound on the learning performance of the full neural system
(including readout). In summary, while quantitative claims
about the optimality of specific learning rules have to consider
specific readout mechanisms, our study of the general properties
of the investigated plasticity rules provide general insights into
the mechanisms that enable unsupervised synaptic learning to
remain sensitive to input features during learning.

Present experimental results (Bi and Poo, 1998) based on the
averaging of individual efficacy changes in different synapses sug-
gest the possibility that indeed the ratio of depressing and poten-
tiating synaptic changes increases in a stabilizing manner as syn-
apses grow stronger (cf. van Rossum et al., 2000). However,
available data do not provide conclusive evidence regarding the
details of the weight dependence of the efficacy changes. Our
work clearly demonstrates the importance of the weight depen-
dence of the TAH updating rule. Synaptic learning rules that
implement a stabilizing weight dependence of the type intro-
duced in this work have several advantageous properties for the
learning in neural networks. Specifically, our results predict that
synaptic changes should be neither additive nor multiplicative,
but rather should feature intermediate weight dependencies that
could, for instance, result from a gradual saturation of the poten-
tiating and depressing mechanisms. It will be interesting to see
whether future experimental results will confirm such a predic-
tion. In this context, it is also important to note that recent ex-
periments and modeling studies reveal important nonlinearities
in the accumulation of synaptic changes induced by different
spike pairs (Castellani et al., 2001; Senn et al., 2001; Sjöström et
al., 2001) as well as evidence for complex intrinsic synaptic dy-
namics that challenges the simple notion of a scalar synaptic ef-
ficacy (Markram and Tsodyks, 1996). The theoretical implica-
tions of these sources of nonlinearity and intrinsic dynamics
remain to be explored.

Appendix
Generating correlated spike trains
We show here that two spike trains that are generated by condi-
tioning their binwise spike probabilities on the activity of a com-
mon reference spike train X0(T) as described in Materials and
Methods, have a pairwise correlation coefficient c. For clarity, we
denote Xi(T) simply by Xi. The pairwise correlation coefficient is
defined by Cov(Xi , Xj )/�Var(Xi )Var(Xj ), where the covari-
ance is Cov(Xi , Xj ) � E[XiXj] � E[Xi]E[Xj]. Because Xi is
either 0 or 1, E[Xi] � P(Xi � 1), and therefore:

E�Xi� � P�Xi � 1�

� P�X0 � 1�P�Xi � 1�X0 � 1� 
 P�X0 � 0�P�Xi � 1�X0 � 0�

� r�T� 
 �1 	 r�T��

� r�T,

where in the final step we use Equation 11. Note that because
E[Xi] � r�T, the spike train Xi has rate r. Similarly:

E�XiXj� � P�Xi � 1, Xj � 1�

� P�X0 � 1�P�Xi � 1, Xj � 1�X0 � 1� 
 P�X0 � 0�P�Xi

� 1, Xj � 1�X0 � 0�

� r�T�2 
 �1 	 r�T��2

� �r�T�2 
 c�r�T��1 	 r�T�.

Finally, because Var(Xi ) � (r�T)(1 � r�T), the binwise cor-
relation coefficient becomes:

Cov�Xi, Xj�

�Var�Xi�Var�Xj�
�

�r�T�2 
 c�r�T��1 	 r�T� 	 �r�T�2

�r�T��1 	 r�T�
� c.

Homogeneous synaptic steady state for a homogeneous
population of synapses
We derive the homogeneous synaptic steady-state solution by
setting ẇi � 0 and wi � w* in Equation 8 with Cij

� � 0:

��r2

N 	 f��w*��
j�1

N

Cij
�w* 	 �f�w*��

j�1

N

w*
 � 0.

Using Equation 14, this yields:

f��w*�w*NC0 	 �f�w*�w*N � 0,

which, discarding the trivial solution in which all synapses are
zero, implies that at the homogeneous steady state:

f��w*�C0 	 �f�w*� � f��w*��1 
 C0� 	 f��w*� � 0.

(18)

From this, we find that the homogeneous solution is given by
wi � w*, where w* is the solution to Equation 15. Because C0 is
positive, this equation has a unique solution 0 � w* � 1 for any
� 	 0. Note, however, that in the additive model where � � 0, the
ratio f�(w)/f�(w) � 
 and, hence, in general there is no homo-
geneous synaptic steady state unless w* � 0 or all weights are
clipped to the upper boundary.

For uncorrelated input activity Cij
� � �ij /(�r) and hence

C0 � 1/(�rN). Substituting C0 into Equation 15, we obtain the
homogeneous solution for this input scenario:

w* �
1

1 
 
1/��1 	
1

1 
 �rN� 1/� . (19)

Stability of the homogeneous synaptic steady state
We analyze the stability of the homogeneous synaptic steady
state by deriving the time evolution of small perturbations
�wi � wi � w* of the synaptic efficacies wi around the steady-
state value w*. If these perturbations decay to zero, the homo-
geneous steady state is stable. For small perturbations, the
time evolution is given by:

�ẇi � �
j�1

N
�ẇi

�wj
�wj.

Using the expression for the synaptic drifts from Equation 8, we
obtain:

�ẇi �
��r2

N 	�Ngo�wi 	 �f�w*��
j�1

N

�wj 
 f��w*��
j�1

N

Cij
��wj
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where:

go � w	 d

dw
�f�w� 	 C0

d

dw
f��w�
�

w�w*

� w	 d

dw
f��w� 	 �1 
 C0�

d

dw
f��w�
�

w�w*

�
w

f��w�	 f��w�
d

dw
f��w� 	 f��w�

d

dw
f��w�
�

w�w*

� wf��w�
d

dw	 f��w�

f��w�
�
w�w*

. (20)

In the second step, we used Equation 15 to substitute for 1 � C0.
Note that the factor go is proportional to the derivative of the ratio
between the scales of negative and positive synaptic changes with
respect to the weights. Hence, go � 0 in the additive model. For
� 	 0:

go � w�1 	 w��
d

dw	
� w

1 	 w�
�
�

w�w*

� 
�
w*�

1 	 w*
(21)

is positive because 0 � w* � 1. In matrix notation, the time
evolution of a synaptic perturbation �w can be rewritten as:

�ẇ �
��r2

N
J�w

with the matrix:

Jij � ��ijNgo 	 �f�w*� 
 f��w*�Cij
�.

If the eigenvalues of J are negative, all perturbations of the homo-
geneous state are attenuated by the learning dynamics and, hence,
this synaptic state is stable. In contrast, if any eigenvalue of J is
positive, a perturbation along the direction of the corresponding
eigenvector will grow exponentially. The matrix J has a homoge-
neous eigenvector with eigenvalue �Ngo � N�f(w*) �
NC0f�(w*), which using Equation 18 reduces to �Ngo. Because
this eigenvalue is always negative, the homogeneous component
of any perturbation �w decays to zero with rate ��r 2go. In con-
trast, the temporal evolution of the strictly inhomogeneous com-
ponent of �w (whose elements sum to zero) comprises a spec-
trum of rates that are determined by the various eigenvalues of J
that correspond to inhomogeneous eigenvectors. The largest in-
homogeneous eigenvalue of J is f�(w*) NC1 � Ngo , where NC1

denotes the largest inhomogeneous eigenvalue of C �. Hence, the
homogeneous synaptic state is stable if f�(w*) NC1 � Ngo � 0,
which gives the stability criterion stated in Results (Eq. 16). In-
serting Equations 15 and 21 into the criterion 16, we obtain an
upper bound for �crit , the largest value of � for which the homo-
geneous solution is unstable:

�crit �
C1

1 
 C0
. (22)

An important observation is that C1 � C0 , and hence this bound
is necessarily smaller than 1, implying that the homogeneous
solution is always stable in the multiplicative model where � � 1.
To see that C1 � C0 , recall that because NC1 is an eigenvalue of

C �, there is an eigenvector v such that C �v � NC1v. Specifically,
for vm , the largest component of v, this implies that NC1vm �

j�1

N Cmj
� vj , and hence, NC1 � 
j�1

N Cmj
� (vj/vm) � 
j�1

N Cmj
� . But be-

cause 
j�1
N Cmj

� � NC0 (Eq. 14), this yields C1 � C0.
For uncorrelated input activity, the above bound for �crit

becomes:

�crit �
1

1 
 �rN
, (23)

where we used C0 and C1 from Equation 17. Hence, for large
�rN, the regime of � for which symmetry breaking exists van-
ishes at least with 1/(�rN).

Additive TAH in the linear neuron: uncorrelated inputs
The drift of the ith synapse of a neuron receiving uncorrelated
inputs and implementing the additive model is given by setting
� � 0 in Equation 8 with Cii

� � 1/(�r) and all other effective
correlations equal 0:

ẇi � ��r2�1 	 
�� 1

N �
j�1

N

wj� 

�rwi

N
. (24)

As explained above, this linear system has no steady state. Impos-
ing the boundary conditions by clipping the efficacies results in
all synapses taking the value of either 0 or 1. Thus, the learned
synaptic distribution is fully described by nup, the ratio of the
synapses that are saturated at the upper boundary. For a ratio nup

to be consistent, the drift of a synapse with efficacy 0 must be non-
positive, whereas the drift of a synapse with efficacy 1 must be non-
negative. From imposing these conditions in Equation 24 we get:

�r2�1 	 
�nup � 0 and

�r2�1 	 
�nup 

r

N
� 0.

The first inequality implies 
 � 1 if nup 	 0. It is important to
note that the regime of 
 � 1 would simply yield saturation of all
efficacies at the upper boundary because all synapses experience a
positive drift. The second condition yields:

nup �
1

�rN�
 	 1�
.

However, it can be shown using methods similar to those of
Rubin et al. (2001) that:

nup �
1

2�rN�
 	 1�
, (25)

where if this quantity is 	1, nup � 1. Therefore, if 
 � 1 �
1/(2�rN), all synapses will saturate at the upper boundary,
whereas if 
 	 1 � 1/(2�r), even a single synapse at the upper
boundary will experience a negative drift, and hence no synapse
will saturate at 1.

Moreover, the firing rate of the linear neuron is given by:

rpost � nupr �
1

2�N�
 	 1�
,

which is independent of the input firing rate r [except for very low
rates, where all synapses become strong (i.e., nup � 1 and r post �
r)]. Thus, output rate normalization is a property of the linear
neuron when the additive model is used.
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Uniformly correlated inputs in the linear neuron
When the presynaptic inputs are uniformly correlated, namely
cij � c � 0 for all i � j (cii � 1), the effective correlation matrix
Cij

� � [c � �ij(1 � c)]/(�r), and hence:

C0 �
1 
 c�N 	 1�

�rN
and C1 �

1 	 c

�rN
. (26)

Because C0 increases with c, the correlation increases the value of the
synaptic efficacy in the homogeneous synaptic state w* (Eq. 15). To see
theeffectofthecorrelationonthestabilityofthehomogeneoussolution,
note thatbecauseC1 decreaseswith c, thecorrelationdecreases thevalue
of � (Eq. 16), and hence increases the stability of the homogeneous
solution. Moreover, because both C0 and C1 decrease with 1/(�rN), for
large�rNthecritical�(Eq.22)approacheszero.Thus,forany�	0,the
homogeneous synaptic state is stable when the effective population is
sufficiently large.

Computing the susceptibility matrix � for the linear neuron
Here we compute the susceptibility matrix � (Eq. 12, Materials and
Methods) used in Results to evaluate the sensitivity measure S for the
learning process in the linear Poisson neuron model. This matrix is
obtained by the implicit function theorem. In the synaptic steady
state (w*), the synaptic drifts are zero by definition, and hence:

dẇk

d� j
�

w*

� 0 �k � 1 . . . N, j � 1 . . . R�,

where R is the dimension of the space of input features. Using:

dẇk

d� j
�

w*

�
�ẇk

��j
�

w*


 �
i�1

n

�ij

�ẇk

�wi
�

w*

� 0 with �ij �
�wi

��j
�

w*

and denoting:

Mij �
�ẇi

�wj
�

w*

Mij
o �

�ẇi

��j
�

w*

,

we obtain:
� � �M�1Mo.

The matrices � and M o are of dimensions N by R, and M is an N
by N matrix. Below we derive � for the two input scenarios stud-
ied in Results.

Two correlated input groups
For the case of two correlated subgroups, the sensitivity to the
within-group correlation is measured. Hence, the input feature is
� � c with R � 1. Using Equation 8 with Cij

� � 0, Cij
� � c/(�r)

if i � j are in the same subgroup (Cii
� � 1/(�r)), and Cij

� � 0
otherwise, we derive the expressions for M and M o:

Mii �
�r2

N
��1 	 wi�

� 	 
wi
�� 


rc

N
�1 	 wi�

� 

r

N
�1 	 c��1 	 wi�

�

	 �
�r2

N��
k�1

N

wk���1 	 wi�
��1 
 
wi

��1�

	 ��1 	 wi�
��1

r

N	�1 	 c�wi 
 �
k��i

wk

Mij �

�r2

N
��1 	 wi�

� 	 
wi
�� 


rc

N
�1 	 wi�

� j � �i

Mij �
�r2

N
��1 	 wi�

� 	 
wi
�� j � �i

Mi
o � �1 	 wi�

�
r

N	 �
k��i

wk 	 wi
 ,

where j � �i if synapse j and i are in the same group.

Delayed Poisson inputs
For a neuron receiving time-shifted versions of a common Pois-
son spike train �0

pre, the input processes are �i
pre(t) � �0

pre(t �
�i ) (i � 1, . . . , N), where �i is the delay of the activity at
synapse i. Substituting these into Equation 6, we obtain the effec-
tive correlation matrices (Eq. 7):

Cij
� � �����i 	 �j 	 �����r��1exp����i 	 �j 	 ��/��,

(27)

where � denotes the Heaviside step function (�( x) � 1 if x � 0
and �( x) � 0 otherwise). In this case, the input features � � �
and R � N � 1. Based on Equations 8 and 27, we derive the
expressions for M and M o. For compactness, we define the ma-
trix of relative delays Dij � (� � �j � �i ), with �N � 0
corresponding to the delay of the reference spike train. Thus:

Mii �
�

N
����1 	 wi�

���1���r2 �
j

wj


 r �
j�i

wj��Dij�exp��
Dij

� � 
 rwi

	 
�wi

���1���r2 �
j

wj


 r �
j�i

wj���Dij�exp�Dij

� �


 �r2��1 	 wi�

� 	 
wi
�� 
 �1 	 wi�

�r

i � 1 . . . N

Mij �
�

N	�r2��1 	 wi�
� 	 
wi

�� 	 
wi
�r���Dij�exp�Dij

� �

 �1 	 wi�

�r��Dij�exp��
Dij

� �
 i, j � 1 . . . N, i � j

Mii
o �

�

N	 �1 	 wi�
�	 r

�
�
j�i

wj��Dij�exp��
Dij

� �

	 
wi

�	�
r

�
�
j�i

wj���Dij�exp�Dij

� �

 i � 1 . . . N 	 1

Mij
o �

�

N	 �1 	 wi�
�	�

r

�
wj��Dij�exp��

Dij

� �

	 
wi

�	r

�
wj���Dij�exp�Dij

� �


i � 1 . . . N, j � 1 . . . N 	 1, i � j,

where � denotes the Heaviside step function and all sums are
taken over the N weights. The expressions are evaluated at the
synaptic steady-state w*, which is obtained by numerically sim-
ulating the learning equations for all N synapses.
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