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Cortical Ensemble Adaptation to Represent Velocity of an
Artificial Actuator Controlled by a Brain–Machine Interface
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Monkeys can learn to directly control the movements of an artificial actuator by using a brain–machine interface (BMI) driven by the
activity of a sample of cortical neurons. Eventually, they can do so without moving their limbs. Neuronal adaptations underlying the
transition from control of the limb to control of the actuator are poorly understood. Here, we show that rapid modifications in neuronal
representation of velocity of the hand and actuator occur in multiple cortical areas during the operation of a BMI. Initially, monkeys
controlled the actuator by moving a hand-held pole. During this period, the BMI was trained to predict the actuator velocity. As the
monkeys started using their cortical activity to control the actuator, the activity of individual neurons and neuronal populations became
less representative of the animal’s hand movements while representing the movements of the actuator. As a result of this adaptation, the
animals could eventually stop moving their hands yet continue to control the actuator. These results show that, during BMI control,
cortical ensembles represent behaviorally significant motor parameters, even if these are not associated with movements of the animal’s
own limb.
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Introduction
Ever since Evarts (1966) pioneered single-unit recordings from
the cortex of awake, behaving monkeys, numerous studies have
scrutinized a fundamental observation: cortical neurons modu-
late their firing during voluntary movements and thereby encode
a variety of motor parameters (Georgopoulos et al., 1986, 1992;
Ashe and Georgopoulos, 1994; Fu et al., 1995; Sergio and Kalaska,
1998). This encoding incorporates motor, sensory, and cognitive
signals and appears to be highly complex (Cheney and Fetz, 1980;
Alexander and Crutcher, 1990; Lebedev et al., 1994; Shen and
Alexander, 1997; Donchin et al., 1998; Kakei et al., 1999) (for
review, see Georgopoulos, 2000; Johnson et al., 2001; Andersen
and Buneo, 2002; Paz et al., 2004). Individual cortical neurons do
not have a one-to-one relationship to any single motor parameter
(Ashe and Georgopoulos, 1994; Sergio and Kalaska, 1998; Car-
mena et al., 2003), and their firing patterns exhibit considerable

variability (Lee et al., 1998; Shadlen and Newsome, 1998; Cohen
and Nicolelis, 2004; Wessberg and Nicolelis, 2004). Precise motor
control is achieved through the action of large neuronal ensem-
bles (Wessberg et al., 2000; Carmena et al., 2003). With the ad-
vent of electrophysiological techniques permitting simultaneous
recordings from hundreds of neurons in multiple brain areas
(Nicolelis et al., 1995, 1997, 2003; Kralik et al., 2001; Nicolelis and
Ribeiro, 2002), detailed information can be collected about en-
semble encoding.

Using ensemble recordings, motor parameters can be pre-
dicted from neuronal activity in real time and used to control a
brain–machine interface (BMI) (Chapin et al., 1999; Wessberg et
al., 2000; Nicolelis, 2001; Serruya et al., 2002; Taylor et al., 2002;
Carmena et al., 2003; Wessberg and Nicolelis, 2004; Patil et al.,
2004). In addition, BMIs can be driven by planning and motiva-
tion signals extracted from cortical activity (Musallam et al.,
2004). Recently, we implemented a BMI in which cortical ensem-
ble activity recorded from macaque monkey brain directly con-
trolled reaching and grasping movements performed by a robotic
arm (Carmena et al., 2003). The monkeys’ proficiency in operating
the BMI improved with training, accompanied by changes in neu-
ronal directional tuning. Based on these observations, we suggested
that, with prolonged usage, an artificial actuator can be effectively
incorporated in the internal representation of the subject’s body,
commonly referred to as “body schema” (Head and Holmes, 1911;
Gurfinkel et al., 1991; Maravita et al., 2003; Nicolelis, 2003).

Notwithstanding initial reports that training to operate a BMI
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evokes plastic changes in the activity patterns of cortical neurons
(Taylor et al., 2002; Carmena et al., 2003; Musallam et al., 2004),
a number of questions about cortical representation of artificial
actuators remain to be addressed. Perhaps the most intriguing
finding is that neuronal ensembles previously modulated in as-
sociation with limb movements continue to be modulated after
the subjects stop moving their limbs, and
these modulations represent purposeful
movements of the actuator (Chapin et al.,
1999; Taylor et al., 2002; Carmena et al.,
2003). In the present study, we hypothe-
sized that neuronal adaptation to repre-
sent the velocity of an artificial actuator
instead of the limb can occur even while
the subjects continue to move their limbs.
Such adaptations would function to opti-
mize neuronal representation of new be-
havioral goals (Todorov and Jordan,
2002). Accordingly, we examined ensem-
ble encoding of the hand and actuator
movements before and after transition to
BMI control. We discovered changes in
spatial and temporal representation of
movements during the BMI control that
appeared to establish the representation of
the actuator at the expense of the represen-
tation of the limb.

Materials and Methods
Behavioral task and brain–machine interface op-
erations. Two adult female monkeys (Macaca
mulatta) were used in this study. All procedures
conformed to the National Research Council
Guide for the Care and Use of Laboratory Ani-
mals (1996) and were approved by the Duke
University Animal Care and Use Committee.
The monkeys were trained to pursue a visual
target on a computer monitor with a cursor,
initially set to motion using a hand-held pole
(see Fig. 1 A) (Carmena et al., 2003). The pole
actually controlled the movements of the robot
arm, which was not visible to the monkeys, and
the cursor provided visual feedback of the posi-
tion of the robot (see Fig. 1 A). The target ap-
peared at random locations on the screen, and
the monkeys had to place the cursor over it to
obtain a fruit-juice reward [task 1 of Carmena
et al. (2003)]. Multielectrode arrays consisting
of 16 – 64 microwires spaced at 300 �m were
implanted bilaterally in primary motor cortex
(M1), dorsal premotor cortex (PMd), supple-
mentary motor area (SMA), primary somato-
sensory cortex (S1), and posterior parietal cor-
tex (PP). Neuronal activity was sampled and
sorted using a multichannel acquisition proces-
sor (Plexon, Dallas, TX).

As the monkeys performed the task by mov-
ing the pole, a linear model was trained to pre-
dict hand velocity in real time (mathematical
description is given below by Eq. 3) (Wessberg
et al., 2000; Carmena et al., 2003). We call this
mode of operation pole control. After at least 30
min of operation in pole control, the model pa-
rameters were fixed. The robot (and the cursor)
was disconnected from the pole and was di-
rectly controlled by brain activity. Robot veloc-

ity was set to the predicted values of the model. We name this mode of
operation brain control, of which we distinguish two types. During brain
control with hand movements (BCWH), a mode that immediately fol-
lowed pole control in most experiments, the monkeys continued to move
the pole. This mode of operation continued for 20 –30 min, after which
the pole was removed from the apparatus. At that time, the monkeys
stopped moving their arms, as confirmed by EMG recordings (Carmena

Figure 1. Experimental design and modes of operation. A, Experimental apparatus. The monkey was seated in front of a
computer monitor on which visual stimuli were shown. It had to pursue a visual target (large circle) with a cursor (small circle). The
monkey controlled the cursor by moving a hand-held pole (pole control). The pole actually controlled a robotic arm invisible to the
monkey, and the cursor position on the screen reflected the robot’s position. A linear model was trained to predict hand/robot
velocity from neuronal ensemble activity recorded from the monkey’s cortex. Then, the pole was disconnected, and the robot was
directly controlled by the model’s output (brain control). B, Schematics of movement trajectory, instantaneous velocity, and
neuronal discharges preceding or succeeding an IVM. Neuronal rates were estimated using 100 ms bins placed at different lags
relative to the IVM. C, Representative traces of the hand (black) and the robot (red) during pole control. D, Hand and robot traces
during brain control. E1, E2, Time-dependent traces of the hand and robot position during pole control. F1, F2, Time-dependent
position traces during brain control. G1, G2, Hand and robot velocity during pole control. E1, E2, Velocity during brain control.
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et al., 2003), but continued to operate the BMI. This mode of operation is
termed brain control without hand movements (BCWOH). BCWOH
was first attempted after the monkeys were trained in BCWH for 1 week;
the monkeys were able to control the actuator in this mode of operation
and obtain rewards on the very first attempt. Each recording session
continued for 60 –90 min, until the monkeys had had enough juice and
became unmotivated to perform the task. In some sessions, to obtain
longer records of BCWOH, the pole was removed immediately after pole
control.

Tuning to velocity during pole and brain control. Significant correlation
between neuronal firing rate and movement velocity has been docu-
mented in previous studies of M1 (Georgopoulos et al., 1988; Ashe and
Georgopoulos, 1994; Moran and Schwartz, 1999; Carmena et al., 2003)
and other cortical areas (Carmena et al., 2003; Averbeck et al., 2005). This
finding was key for the experiment reported here, because the BMI relied
on predictions of velocity. The linear model predicted velocity in real
time, and the velocity of the robot was set to the output of the model. In
the present analysis, we describe the relationship between neuronal firing
rate and movement by examining the firing rate of each neuron as a
function of velocity and of the time lag between the firing rate and in-
stantaneous velocity measurement (IVM) (see Fig. 1 B). IVMs were sam-
pled every 100 ms. Neuronal activity was binned in 100 ms nonoverlap-
ping windows. Binned firing rates were then normalized by subtracting
the mean and dividing by the SD. Lags in the range of 1 s before to 1 s after
the IVM were examined. For each lag �, neuronal firing rate n was fitted
to velocity using the following multiple linear regression:

n�t � �� � a���Vx�t� � b���Vy�t� � c��� � ��t, �� , (1)

where t is time, n(t � �) is neuronal firing rate at time � from velocity
measurement (negative � corresponds to activity preceding velocity mea-
surement, and positive � activity succeeding velocity measurement),
Vx(t) and Vy(t) are x- and y-components of velocity, a(�), b(�), and c(�)

are regression coefficients, and �(t, �) is the residual error. We character-
ized the degree of correlation between the neuronal firing rate and the
velocity as the velocity tuning index (VTI), which was calculated as the
square root of R 2 for the regression (Eq. 1). This measure describes
correlation between neuronal firing rate and movement velocity (both
direction and amplitude taken into account) and represents it in normal-
ized form. The better the neuronal firing rate tracked movement velocity,
the higher was the VTI. The VTI did not depend on the absolute value of
firing rate (e.g., highly active versus less active neurons) because of nor-
malization. Preferred direction (PD; i.e., movement direction for which
the neuron fired the most) was calculated as PD(�) � arctan b(�)/a(�).

To examine whether the PDs of individual neurons in the population
were preserved after the monkey started to perform in a new mode of
operation (e.g., pole control vs BCWH), we used a correspondence index
defined as follows:

C �
90� � �� � ��

90�
, (2)

where statistical values are calculated for the neuronal samples of the PDs
(measured in degrees) before and after the transition, � and �, respec-
tively, the bar denotes the mean, and 90° is the mathematical expectation of
����� in case they are uncorrelated. C was scaled from 0 to 1. Values of C
approaching zero indicate no correspondence between the PDs, whereas
values of C approaching unity indicate an exact correspondence.

To examine the contribution of correlation between neurons and tun-
ing parameters, we conducted a shuffle test that destroyed the correlation
between neurons by shifting spike trains of different neurons with respect
to each other by a random interval in the range of 0 to 200 s. This
procedure preserved the sequence of spikes of each neuron but removed
correlations between the neurons. After shuffling, robot movements
were recalculated using the same model with the fixed weights that had
been used for the real-time brain control. The VTI of each individual

neuron for shuffled data was a measure of tun-
ing that would be expected simply because that
neuron had a weighted contribution to the ro-
bot control signal. Higher values of VTIs for
unshuffled data indicated that correlated firing
between neurons improved tuning characteris-
tics of individual neurons (i.e., neuronal sub-
groups acted as “teams” producing movements
in particular directions).

A separate analysis tested velocity tuning
properties for instances in which the monkeys’
hands or the robotic actuator moved in
straight-line trajectories. Epochs of straight-
line movements of at least 300 ms duration
were selected. Firing rates were measured using
a 300 ms window placed at different time lags
relative to the selected epochs. Regression of
Equation 1 was used to determine the VTI. In ad-
dition, directional tuning depth was calculated
(Carmena et al., 2003). Directional tuning depth
was equal to the difference in the average firing
rate between the directions of maximum and
minimum firing, divided by the SD of the firing
rate.

Off-line predictions of hand velocity. Predic-
tions of velocity were made from a weighted
linear combination of neuronal firing rates us-
ing the following:

Vx�t� � b � �
���m

n

w���n�t � �� � ��t� ,

(3)

where n(t � �) is a vector of neuronal firing
rates, at time t and time lag � (negative lags cor-
respond to past events), Vx is the x-component

Figure 2. Frequency distributions of velocity (Vx and Vy) for different operations for monkey 1 (A–D) and monkey 2 (E–H ). A,
E, Pole control, hand velocity. B, F, Brain control with hand movements, hand velocity. C, G, Brain control with hand movements,
robot velocity. D, H, Brain control without hand movements, robot velocity.
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of velocity at time t, w(�) is a vector of weights
for each neuron at time lag �, b is the
y-intercept, and �(t) is the residual error. An
analogous equation was used to estimate Vy.
These equations were solved using linear least-
squares regression. Ten time lags preceding ve-
locity measurement with a bin size of 100 ms
were used for predictions. In a separate analysis,
estimations of velocity were calculated using a
single 100 ms bin placed at different lags relative
to velocity. Estimation quality was quantified
by the correlation coefficient ( R).

Random neuron dropping was implemented
as follows: 10 min of neuronal population data
were used to fit the model and find the weights,
w(�). These weights were then used to make
predictions of velocity on a different 10 min
period. A single neuron was then randomly re-
moved from the population, the model re-
trained, and new predictions generated on the
same data. This process was repeated until no
neurons remained. Average R as a function of
number of neurons was obtained by repeating
this procedure 100 times.

Results
Hand and robot velocity during
different modes of operation
The linear model was trained during pole
control. However, after the mode of oper-
ation was switched to brain control, robot
movements did not precisely match move-
ments of the hand. This is illustrated by
Figure 1C–H, which shows representative
traces of the hand and the robot during
pole and brain control. During pole con-
trol, movements of the hand and the robot
were in close correspondence (Fig. 1C),
which can also be seen in time-dependent
plots of the x- and y-components of posi-
tion (Fig. 1E1,E2) and velocity (Fig.
1G1,G2). During BCWH, the hand and the
robot moved differently (Fig. 1D), albeit
in a correlated manner (Fig. 1F,H).

Figure 2 shows the frequency distribu-
tion of hand and robot velocities (Vx and
Vy) during different modes of operation in
two monkeys. The correlation coefficient
between the robot and hand velocities was
0.995 � 0.001 (mean � SE) during pole
control versus 0.61 � 0.02 during BCWH
in monkey 1 and 0.980 � 0.001 versus
0.50 � 0.04 in monkey 2. The difference between these values was
highly significant statistically ( p � 0.001; Wilcoxon rank–sum
test). Ranges of hand velocities were similar during pole (Fig.
2A,E) and brain (Fig. 2B,F) control. However, a comparison of
robot velocities (Fig. 2C,G) with the hand velocities that accom-
panied them during brain control (Fig. 2B,F) showed that lower
robot velocities were less frequent than those of the hand. Abso-
lute velocity of the hand (5.65 � 0.03 cm/s in monkey 1 and
4.51 � 0.04 cm/s in monkey 2) was statistically different ( p � 0.001;
Wilcoxon rank–sum test) from absolute velocity of the robot
(6.93 � 0.03 and 7.00 � 0.03 for monkeys 1 and 2, respectively).
Thus, the monkey’s hand often moved slowly, but the robot moved
faster, driven by neuronal ensemble activity. Ranges of robot veloc-

ities were similar during BCWH (Fig. 2C,G) and BCWOH (Fig.
2D,H).

Neuronal tuning during different modes of operation
We analyzed neuronal data collected in nine daily recording ses-
sions in monkey 1 and in 20 sessions in monkey 2. Analyzed
neuronal samples on average consisted of 177 units per recording
session in monkey 1 and 72 units in monkey 2. Examination of
neuronal rates at different time lags relative to IVM (Fig. 1B)
showed modulations correlated with velocity magnitude and di-
rection (Figs. 3-5). We refer to correlation between neuronal rate
and velocity (Georgopoulos et al., 1988; Ashe and Georgopoulos,
1994; Moran and Schwartz, 1999; Carmena et al., 2003) as veloc-

Figure 3. Velocity tuning in M1 neuron tuned during pole control and brain control. A, Color plots of the firing rate of the
neuron (color coded; key, bottom left) as a function of Vx and Vy (key, bottom left) for different lags with respect to IVM, different
modes of operation (pole control and brain control with and without hand movements), and different velocity parameters (hand
or robot movements). B, Velocity tuning index as a function of lag for different types of operation (color coded; key on top). C,
Preferred direction as a function of lag (color coded; key on top). deg, Degrees.
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ity tuning. The degree of velocity tuning was quantified as the VTI
(see Materials and Methods). This normalized index measured
the dependency of neuronal firing rate on both direction and
magnitude of velocity. Because of normalization, the VTI was not
biased toward highly active neurons. Neurons tuned before the
IVM are more likely to have a causal relationship to movements,
for example by projecting to spinal motoneurons. Neurons tuned
after the IVM may reflect sensory feedback. Pre-IVM and post-
IVM tuning can also be related to movement patterns, such as
acceleration and deceleration (Sergio and Kalaska, 1998; Johnson
and Ebner, 2000; Todorov, 2000). The dependency of firing rate
on x- and y-components of velocity is depicted in color plots (Fig.
3A) (Johnson and Ebner, 2000; Lebedev et al., 2003; Paninski et
al., 2004). The color encodes firing rate (red, high rate; blue, low
rate). The center of each color plot represents the firing rate for

zero velocity; x- and y-axes correspond to
x- and y-components of velocity, respec-
tively. These color plots are useful to eval-
uate the velocity tuning of a neuron at a
glance. They contain information about
both directional tuning of the neurons (di-
rection is represented by a vector originat-
ing in the center of the plot) and their sen-
sitivity to velocity magnitude (velocity
magnitude is measured as the distance
from the center of the plot). The color
plots were constructed for different lags
relative to the IVM and for different
modes of operation (compare Figs. 3–5).
Two sets of color-plots were calculated for
BCWH, because during this mode of op-
eration, hand movements did not match
robot movements. One set relates firing
rate to velocity of hand movements (Fig.
3A, second row from top). The other was
calculated relative to robot velocity (Fig.
3A, third row from top). The color plots
for BCWOH were calculated relative to ro-
bot velocity (Fig. 3A, bottom row). In ad-
dition, VTIs (Fig. 3B) and PDs (Fig. 3C)
were plotted as a function of lag for differ-
ent modes of operation.

Individual neurons exhibited a diver-
sity of tuning patterns that depended on
the mode of operation. Figures 3–5 illus-
trate three representative neurons re-
corded in M1. Their tuning characteristics
were averaged over five consecutive re-
cording sessions. The neuron shown in
Figure 3 was tuned during both pole and
brain control. The VTI of this neuron
peaked at 	200 ms before the IVM (Fig.
3B), and for all modes of operation, it was
better tuned before the IVM than after it.
Peak VTI values (Fig. 3B) for different
modes of operation were significantly dif-
ferent ( p � 0.001; Kruskal–Wallis
ANOVA; � � 0.05 for Tukey’s multiple
comparison). The highest VTI values were
observed during pole control (Fig. 3B, blue
curve). During BCWH, tuning relative to
hand movements (Fig. 3B, red curve) was
significantly diminished. However, tuning

relative to robot movements (Fig. 3B, black curve) was compara-
ble with tuning during pole control (no statistical difference).
Tuning during BCWOH was measured relative to robot move-
ments. It was significantly lower than tuning relative to robot
movements during BCWH but higher than tuning relative to
hand movements during BCWH. The PD of this neuron was
stable and similar for different modes of operation for the lags
preceding the IVM (Fig. 3C). For the points after the IVM, the PD
rotated for all modes of operation except BCWOH. Thus, after
transition to brain control, this neuron retained many features of
its original velocity tuning. However, it became less tuned to
hand movements.

Figure 4 illustrates a neuron whose tuning mostly reflected
hand movements. Changes in the VTI during different modes of
operation were statistically significant ( p � 0.001; Kruskal–Wal-

Figure 4. An M1 neuron that was tuned to movement velocity only if the monkey’s hand moved. Conventions are as in Figure
3. deg, Degrees.
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lis ANOVA; � � 0.05 for Tukey’s multiple
comparison). This neuron was tuned dur-
ing pole control and BCWH. However, ve-
locity tuning vanished during BCWOH
(Fig. 4A,B). Similar to the neuron illus-
trated in Figure 3, the highest VTIs of this
neuron were observed for lags preceding
the IVM, which may have been related to
the causal relationship between the neuro-
nal activity and hand movements. How-
ever, this neuron was also tuned after the
IVM, especially during pole control. The
PD depended on the lag relative to the
IVM. It rotated counterclockwise (Fig. 4C)
and completely reversed for lags succeed-
ing the IVM. Comparable PD reversals
have been reported previously in arm move-
ment tasks and attributed to a representation
of accelerative and decelerative forces (Ser-
gio and Kalaska, 1998; Todorov, 2000).
Note, in addition, that post-IVM tuning was
markedly decreased when tuning was as-
sessed relative to robot movements during
brain control. Prevalence of pre-IVM tuning
was also observed for the whole neuronal en-
semble (see below). Because of the strong de-
pendency of tuning on the presence of hand
movements, this neuron is likely to have
been critically involved in generation of de-
scending motor commands (e.g., pyramidal
tract neuron).

Pairwise comparison of pole control
with different types of brain control
(which was somewhat different from
grouping the data from different sessions
together, because different types of brain
control were not tested in every session)
showed that in the majority of neurons
(77 � 2%; mean � SE), the peak VTI for
hand movements decreased after the tran-
sition to BCWH. During BCWH, the peak
VTI relative to robot velocity exceeded the
peak VTI relative to hand velocity in 84 �
2% of neurons. Each of these differences in
proportions was highly significant statisti-
cally ( p � 0.001; Wilcoxon signed rank
test). Importantly, the peak VTI of a sub-
stantial number of neurons (38 � 2%) was
higher during BCWOH than during pole
control. A neuron of the latter type (Fig. 5)
had a peculiar tuning pattern: it was much better tuned during
BCWOH than other conditions ( p � 0.001; Kruskal–Wallis
ANOVA; � � 0.05 for Tukey’s multiple comparison).

Population averages for all recording sessions confirmed that
neurons typically became less tuned to hand movements and
better tuned to robot movements (Table 1). Population aver-
ages of peak VTIs were 0.074 � 0.002 for pole control, 0.056 �
0.002 for BCWH relative to hand, 0.077 � 0.003 for BCWH
relative to robot, and 0.070 � 0.001 for BCWOH relative to
robot (mean � SE) in monkey 1 and 0.104 � 0.005, 0.069 �
0.004, 0.118 � 0.002, and 0.126 � 0.007 in monkey 2. Changes
in the peak VTI were statistically significant ( p � 0.001;
Kruskal–Wallis ANOVA). Pairwise comparison (Tukey’s mul-

tiple comparison; � � 0.05) showed that the peak VTI during
BCWH relative to hand was significantly less than the peak
VTI during pole control and BCWH and BCWOH relative to
robot. This decrease in tuning to hand movements and better
tuning to the actuator instead was observed in the majority of
sampled areas. Statistical comparison of peak VTIs for indi-
vidual cortical areas is presented in Table 1.

Tuning patterns for the whole ensemble
Color plots of Figure 6 show VTIs as a function of lag for the
whole neuronal ensemble. They present VTI curves (Figs. 3B, 4B,
5B) in color-coded format, stacked one above the other, so that
each line corresponds to a neuron. It can be seen that for the

Figure 5. An M1 neuron with enhanced tuning to robot velocity during brain control without hand movements. Conventions
are as in Figure 3. deg, Degrees.
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ensemble as a whole, tuning to hand movements decreased dur-
ing BCWH (Fig. 6A2) compared with tuning during pole control
(Fig. 6A1) and tuning to robot movements during BCWH (Figs.
6A3, 4). Individual neurons exhibited a diversity of VTI changes.
Averaging VTIs for the whole ensemble (Fig. 6B) confirmed a
decrease in tuning to hand movements during BCWH (Fig. 6B,
compare blue and red curves). VTIs for robot movements (Fig.
6B, black and green curves) were clearly higher before than after
the IVM. This occurred for two reasons. First, only the bins pre-
ceding the IVM contributed to the on-line predictions of velocity.
Second, as a result of the delay of the robotic system (	100 ms),
the curves were shifted to the left. VTIs for hand movements
during pole and brain control peaked closer to IVM compared
with robot movements. Average VTIs for the whole ensemble
were similar to those for M1 (Fig. 6B,C), because in the sampled
neuronal population, M1 neurons were tuned most strongly.

The occurrence of tuning of the neuronal ensemble to robot
velocity during BCWOH is not surprising, because the weighted
sum of neuronal firing rates was made to control the robot. How-
ever, neuronal tuning to robot movements during BCWOH was
not a simple consequence of using the linear model (as it would
be if just one neuron controlled the BMI). Rather, correlated
firing of the whole ensemble played a role in the tuning properties
of individual neurons. This was shown using the shuffle test. The
average VTI decreased after the correlation between the neurons
was destroyed by the shuffling procedure (see Materials and
Methods), as seen in Figure 6, B and C (dotted green lines vs solid
green lines) and Table 1. This decrease was statistically significant
for both monkeys ( p � 0.001; Wilcoxon signed rank test; means
and SDs are presented in Table 1). Thus, tuning of any individual
neuron was not related only to the weights assigned to that neuron
by the linear model but also depended on the firing of the rest of the
ensemble. We have shown previously (Carmena et al., 2003) that
firing of individual neurons was correlated, and this correlation in-
creased in brain control. Because of the enhancement in correlated
activity, VTIs of individual neurons increased as well.

Preferred directions plotted as a function of lag relative to the
IVM (Fig. 7A) showed that, generally, there was no fixed PD for
each neuron. Rather, PDs rotated with lag changes similarly to
the examples in Figure 3 and 4. This rotation is consistent with
previous results of Sergio and Kalaska (1998), Todorov (2000),
and Johnson and Ebner (2000). After the mode of operation was
switched to brain control, if the monkeys continued to move
their arms, the pattern of PDs generally resembled that of pole
control (Fig. 7A1–A3). Correspondence index analysis indicated
that the best correspondence between the PDs measured with

respect to hand movements during pole control and BCWH oc-
curred at the time of the IVM (Fig. 7B, red line), whereas PDs
measured with respect to robot movements were in best corre-
spondence to pole control 	100 ms before the IVM (Fig. 7B,
black line). This is in agreement with average VTI curves (Fig.
6B). Statistical analysis of peak values of correspondence indices
showed better correspondence between the PDs during pole con-
trol and BCWH measured with respect to robot movements
compared with the values measured with respect to hand move-
ments, which was statistically significant for monkey 1 (0.38 �
0.01 vs 0.33 � 0.01; mean � SE; p � 0.05; Wilcoxon signed rank
test) and did not reach statistical significance for monkey 2
(0.66 � 0.03 vs 0.59 � 0.04; p 
 0.05). The PDs during BCWOH
(Fig. 7A4) were confined to a narrower angular range and rotated
much less with changes in the lag than those observed during pole
control (Fig. 7A1) and BCWH (Fig. 7A2,A3) (Carmena et al., 2003).
Correspondence index analysis, however, indicated a relatively good
match between the PDs during BCWOH and pole control for the
100 ms lag preceding the IVM (Fig. 7B, green line). Peak values of the
correspondence between the PDs during BCWOH and pole control
for monkey 1 (0.24 � 0.01) were significantly less than the corre-
spondence index between pole control and BCWH ( p � 0.05; Wil-
coxon signed rank test), and the values for monkey 2 (0.52 � 0.05)
were not significantly different ( p 
 0.05).

Neuronal tuning for selected hand movements
Changes in neuronal tuning to hand movements that occurred
after the monkeys started to perform in brain control could be
related, among other factors, to differences in the pattern of hand
movements. To test whether these changes would still be present
if the same hand movements were compared, we selected epochs
during which the monkeys’ hands or the robot moved in straight
lines for at least 300 ms (Fig. 8A). For these epochs, we con-
structed classical tuning curves, which represented average firing
rate as a function of movement direction (Fig. 8B). Directional
tuning depth (Fig. 8C) and VTI (Fig. 8D), calculated as functions
of the lag between the 300 ms window in which firing rate was
measured, showed the same effect as demonstrated with other
methods: both directional tuning depth and VTI with respect to
hand movements were less during BCWH than during pole control.
Average peak tuning depth was 0.55 � 0.01 and 0.71 � 0.01 in
monkeys 1 and 2, respectively, during pole control, and it was 0.44 �
0.01 and 0.55 � 0.01 during brain control. Average peak VTI was
0.203 � 0.005 and 0.277 � 0.005 (monkeys 1 and 2) during pole
control versus 0.161 � 0.004 and 0.207 � 0.005 during brain con-
trol. These differences between tuning to hand movements in pole

Table 1. Velocity tuning index (mean � SE) by cortical area and condition

Pole control (a) BCWH, relative to hand (b) BCWH, relative to robot (c) BCWOH, relative to robot (d) BCWOH, shuffled data (e)

Monkey 1
PMd (n � 62) 0.047 � 0.002 c, d 0.046 � 0.003 c, d 0.063 � 0.004 a, b, e 0.060 � 0.002 a, b, e 0.045 � 0.001 c, d
M1 (n � 54) 0.127 � 0.005 b, d, e 0.089 � 0.004 a, c, e 0.116 � 0.006 b, e 0.096 � 0.003 a, e 0.071 � 0.003 a, b, c, d
S1 (n � 37) 0.059 � 0.003 b, d, e 0.036 � 0.002 a, c, d, e 0.054 � 0.003 b, d 0.060 � 0.002 b, c, e 0.044 � 0.001 a, b, d
SMA (n � 18) 0.055 � 0.006 0.049 � 0.008 d 0.063 � 0.010 0.055 � 0.004 b 0.046 � 0.003
M1 ipsilateral (n � 6) 0.035 � 0.002 d 0.026 � 0.003 d 0.037 � 0.002 0.044 � 0.002 a, b, e 0.034 � 0.002 d
All neurons (n � 177) 0.074 � 0.002 b, c, d, e 0.056 � 0.002 a, c, d 0.077 � 0.003 a, b, e 0.070 � 0.001 a, b, e 0.052 � 0.001 a, c, d

Monkey 2
PP (n � 52) 0.104 � 0.005 b, c, d 0.069 � 0.004 a, c, d, e 0.118 � 0.005 a, b, e 0.126 � 0.007 a, b, e 0.082 � 0.007 b, c, d
M1 (n � 15) 0.080 � 0.004 b, c, d 0.042 � 0.002 a, c, d, e 0.102 � 0.002 a, b, e 0.125 � 0.005 a, b, e 0.065 � 0.002 b, c, d
SMA (n � 5) 0.078 � 0.005 b 0.040 � 0.002 a, c, d, e 0.108 � 0.005 b 0.126 � 0.006 b 0.094 � 0.009 b
All neurons (n � 72) 0.097 � 0.004 b, c, d 0.061 � 0.003 a, c, d, e 0.114 � 0.004 a, b, e 0.126 � 0.005 a, b, e 0.079 � 0.005 b, c, d

Numbers represent mean � SE and the columns for which Tukey’s multiple comparison test indicated significant difference (p � 0.05).
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control and brain control were statistically
significant ( p � 0.001; Wilcoxon signed
rank test).

Off-line predictions of hand velocity
during pole and brain control
Similar to the decrease in VTIs, the quality
of off-line predictions of hand velocity de-
creased during BCWH (Fig. 9A). In this
analysis, the linear model was trained to
predict hand velocity using either pole-
control or brain-control data as training
epochs. Ten minute (Fig. 9A) or 5 min
(Table 2) data segments were used for
training. Predictions were then tested on a
new 10 or 5 min epoch (splitting the data
into 5 min epochs was useful for statistical
analysis, although prediction quality was
less compared with 10 min epochs, which
was also used for training the model dur-
ing online predictions). Prediction quality
dropped during brain control (Fig. 9A).
This decrease occurred quite abruptly after
the operation was switched to brain con-
trol (Fig. 9B). Average R values for predic-
tions of hand velocity using 5 min seg-
ments of data during pole control were
0.64 � 0.02 and 0.48 � 0.01 for monkey 1
and 2, respectively, whereas they were
0.40 � 0.01 and 0.30 � 0.01 for predic-
tions of hand velocity made during BCWH
(Table 2). This change in R values was sta-
tistically significant ( p � 0.001; Kruskal–
Wallis ANOVA; � � 0.05 for Tukey’s mul-
tiple comparison).

To inspect changes in contribution to
velocity prediction for different lags be-
tween the velocity and neuronal activity,
velocity predictions were performed using
a single 100 ms sampling window. The
window was placed at different lags with
respect to the IVM. This analysis showed a
decrease in prediction for all tested lags
(Fig. 9C).

It is important to note that the same
drop in prediction quality for hand veloc-
ity as we show here in the off-line analyses
occurred during the experimental sessions
as well after the mode of operation was
switched to brain control. However, such
deterioration in prediction quality only
meant that the model became less predic-
tive of the velocity of the hand. This decrease in predictions of hand
movement did not impede the behavioral performance, which was
determined by the robot movements rather than hand movements.
Behavioral performance improved with training in brain control
(Carmena et al., 2003), suggesting that cortical representation of the
robot was optimized at the expense of representation of the animal’s
own limb.

Discussion
The principal finding of this study is that once cortical ensemble
activity is switched to represent the movements of the artificial

actuator, it is less representative of the movements of the animal’s
own limb. Although the original rate of the sample of recorded
cortical neurons was initially modulated in association with hand
movements, after these neurons became involved in brain con-
trol, they became less correlated with hand movements. More-
over, neuronal tuning to the movements of the actuator was en-
hanced because of increased correlation between the neurons.
This result accords with the vast literature showing that neuronal
modulations in cortical motor areas do not exclusively reflect
limb movements and that cognitive signals are abundant in these
areas (for review, see Wise et al., 1997; Georgopoulos, 2000; John-

Figure 6. Changes in velocity tuning for the whole ensemble. A, VTI as a function of lag relative to IVM for the ensemble
recorded in monkey 1. Each row corresponds to a neuron. VTI values are shown for pole control (1), brain control with hand
movements, relative to hand (2) and to robot (3), and brain control without hand movements, relative to robot (4). ips, Ipsilateral.
B, Average VTIs as a function of lag for different conditions (color coded; key on right). Average VTI for shuffled data during brain
control without hand movements is shown by the green dotted line. Averages are shown for the whole ensemble. C, Average VTIs
as a function of lag for M1 only.
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son et al., 2001; Andersen and Buneo, 2002; Paz et al., 2004). For
instance, neuroimaging studies in human subjects have shown an
activation of cortical motor areas in the absence of limb move-
ments (e.g., when subjects imagine that they produce move-
ments) (Leonardo et al., 1995; Porro et al., 1996; Ehrsson et al.,
2003) or when the illusion of limb movement is induced by mus-
cle vibration (Naito et al., 1999). Moreover, Graziano et al. (Gra-
ziano, 1999; Graziano et al., 2000) demonstrated that if the vision
of the monkey’s own arm was occluded, PMd and PP neurons
reflected the position of a visible, realistic false arm, but at the
same time, they were not sensitive to unrealistic substitutes for
the arm. A recent neuroimaging study confirmed this result by dem-
onstrating similar activations that occurred in human premotor cor-
tex when the subjects experienced a rubber hand illusion (Ehrsson et
al., 2004). Thus, cortical representation of the limb is highly flexible
and susceptible to illusions and mental imagery.

Neurophysiological studies have
shown that modulations in cortical areas
that occur during movement planning and
execution often reflect abstract parameters
of movements rather than low-level de-
tails. Cortical neurons can encode move-
ment direction regardless of muscle pat-
terns (Kakei et al., 1999, 2001), represent
target of movement and movement of the
hand-controlled visual marker toward it
rather than actual hand trajectory (Alex-
ander and Crutcher, 1990; Shen and Alex-
ander, 1997a,b; Ochiai et al., 2002), encode
multiple spatial variables (Lebedev et al.,
2004; Cisek and Kalaska, 2005), reflect ori-
entation of selective spatial attention (Leb-
edev and Wise, 2001), and represent mis-
perceived movements of visual targets
(Lebedev et al., 2001; Lebedev and Wise,
2002; Schwartz et al., 2004). In addition,
frontal cortex neurons can flexibly adapt
to new visuomotor (Wise et al., 1998; Paz
et al., 2003; Paz and Vaadia, 2004) and dy-
namic (Li et al., 2001; Padoa-Schioppa et
al., 2004) conditions. Based on the results
presented here, we suggest that neuronal
mechanisms underlying these adaptive
properties can also subserve cortical ensem-
ble adaptation during the BMI operation.

Operating a BMI is not unlike using
mechanical tools, and the idea that body
schema can extend along a wielded tool
was formulated almost 100 years ago
(Head and Holmes, 1911). This suggestion
was substantiated much later by neuro-
physiological data showing that cortical
neurons responsive to both somatosen-
sory and visual stimuli extended their re-
ceptive fields along a rake that a monkey
used to retrieve distant objects (Iriki et al.,
1996). Effects consistent with the idea of
remapping body schema after tool usage
have been also observed in human psycho-
physics experiments (for review, see Mara-
vita et al., 2003). A recent neuroimaging
study (Maruishi et al., 2004) reported spe-
cific activations of the right ventral premo-

tor cortex during manipulation of a myoelectric prosthetic hand.
The authors interpreted this result as the recognition by the brain
of the prosthetic hand as a “high performance alternative to a real
hand.” Perhaps a long-term operation of a BMI-controlled actua-
tor would lead to even more vivid perception of the actuator
being a body part rather than merely a tool or an alternative to the
real hand. In support of this suggestion, perceived voluntary
movements of phantom limbs in amputees were associated with
primary sensorimotor cortex activation (Roux et al., 2003).

When interpreting neuronal patterns during BMI control as
reflecting a new representation of the artificial actuator, however,
one should be careful, because the BMI design effectively makes
any modulation of neuronal activity translate into the move-
ments of the actuator. One piece of evidence that the system
adapts to control the actuator comes from the nonrandomness of
the actuator movements and behavioral improvements as the

Figure 7. Changes in preferred directions for the whole ensemble. A, PD as a function of lag relative to IVM for the ensemble
recorded in monkey 1. Each row corresponds to a neuron. PDs are shown for pole control (1), brain control with hand movements,
relative to hand (2) and to robot (3), and brain control without hand movements, relative to robot (4). ips, Ipsilateral. B, Corre-
spondence index describing the similarity between PD distribution during pole control and brain control. deg, Degrees.

Lebedev et al. • Cortical Adaptation during BMI Control J. Neurosci., May 11, 2005 • 25(19):4681– 4693 • 4689



monkey trains (Taylor et al., 2002; Carmena et al., 2003). The
second piece of evidence is coordinated activity of the neurons in
the ensemble. Extending our previous demonstration of in-
creased correlation between the neurons during brain control
(Carmena et al., 2003), we showed here using the shuffle test that
neuronal correlation enhanced tuning to robot velocity in indi-
vidual neurons. Moreover, tuning of the same neurons to hand

velocity decreased, and this decrease occurred even for the relatively
stereotypical subset of hand movements having a straight-line tra-
jectory (Fig. 8). Together, these observations suggest that the neuro-
nal ensemble adapted to represent the actuator at the expense of the
representation of the animal’s own limb.

Tuning patterns in the entire ensemble (Fig. 5A) during pole
control and brain control with and without hand movements
showed that, in general, most of the neurons that encoded move-
ment velocity during pole control continued to do so during the
BMI operation. How then could the monkeys operate the BMI
and at the same time inhibit movements of their hands? We sug-
gest that subtle rather than dramatic differences in the way the
activity of individual neurons was combined at the ensemble level
determined this novel behavioral outcome. For example, al-
though the overall modulation pattern was similar across behav-
ioral states, some neurons (Fig. 4) did not modulate when the
monkeys’ hands stopped moving, whereas others (Fig. 3) were
strongly modulated. It should be noted that the neuronal ensem-
ble that was recorded and used to control the BMI constituted
only a tiny part of the entire network normally involved in con-
trolling arm movements. It is possible that these selected neurons
were preferentially modulated to control the actuator during BC-
WOH, whereas the ones that were not recorded from continued
to operate as normally. Alternatively, the ensemble controlling
the BMI could be assisted by a neuronal network to which it was
connected. Additional studies will be needed to resolve between
these possibilities.

Our finding that after learning to control an artificial actuator
using a BMI, neuronal ensembles represented the actuator veloc-
ity better than the velocity of the animal’s own arm appears to
support the theory of optimal feedback control (Todorov and
Jordan, 2002; Scott, 2004). This theory describes the motor sys-
tem as a stochastic feedback controller that optimizes only those
motor parameters that are necessary to achieve task goals. In our
study, the task goals were achieved by the robot. Thus, in terms of
optimal feedback control theory, cortical ensembles should adapt
to represent the goal-related variable although it is related to the
robot instead of the limb.

The present observations also suggest that the quality of pre-
dictions in open-loop mode that computational neuroscientists
are striving to achieve may be relatively unimportant for closed-
loop BMI control. Once the neuronal ensemble starts to control a
BMI, imperfections in the model may be compensated by neuro-
nal adaptations that improve control of the actuator movements.
Whereas they improve the BMI performance, these adaptations
may actually worsen the predictions of hand movements, the
effect that we observed here. These considerations concur with
the results of Taylor et al. (2002), who showed differences in
tuning properties of M1 neurons during hand movements and
during a BMI control that used a coadaptive algorithm for adjust-
ing the model weights in the absence of hand movements.

To clarify the dynamics of cortical plasticity associated with
BMI control and to elucidate the exact mechanism of cortical
adaptation to represent an artificial actuator will require addi-
tional studies. It is very likely that the features of such adaptations
will depend on concrete requirements for the BMI operations.
For example, it is possible that if the subject is required to sub-
serve the BMI control with limb movements, the system may
come to an optimal solution in which both the limb and the
actuator are represented. Alternatively, if limb movement is not
required, the system may gradually evolve to a different state
(Taylor et al., 2002; Carmena et al., 2003). It is also possible that
certain neuronal adaptations could work as temporary solutions

Figure 8. Analysis of neuronal tuning for straight trajectories of the hand. A, Straight trajec-
tories of the hand selected for eight movement directions during pole control and brain control
with hand movements. B, Directional tuning curves calculated for the traces above by averaging
firing rates for different movement directions within a 300 ms window leading the movement
by 100 ms. Each horizontal line represents a curve for a particular neuron. ips, Ipsilateral; deg,
degrees. C, Directional tuning depth as a function of lag between the firing rate window and
movement trace. D, Velocity tuning index.
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to maintain performance. Previously, we reported (Carmena et
al., 2003) that, as a consequence of the increase in correlation
between the neurons during BCWOH, PDs of many neurons
became more similar (Fig. 6A). This effect may appear maladap-
tive, because PD diversity is likely to improve directional encod-
ing (Georgopoulos et al., 1986, 1988). However, our present anal-
ysis using the shuffling procedure showed that tuning of
individual neurons was increased because of the correlation be-
tween neurons. Thus, the neuronal ensemble controlling the BMI
may have been optimizing its performance by finding a trade-off
between the magnitude of tuning and the diversity of PDs. It is
possible that increased correlation was a temporary effect, and
with prolonged and intensive training to control the BMI, the
neuronal ensemble would eventually return to the original distri-
bution of PDs and neuronal correlations. Even during learning of
relatively simple motor skills, highly distributed cortical net-
works undergo transient changes before settling to the level of
automated performance, as shown by human neuroimaging
studies (Jueptner et al., 1997; Floyer-Lea and Matthews, 2004).
Interestingly, epochs of high attention to motor performance
(and increased attention is very likely needed for successful learn-
ing to control a BMI) have been found to be associated with
increases of synchrony between neurons (Murthy and Fetz, 1992,
1996a,b; Riehle et al., 1997, 2000; Hatsopoulos et al., 1998; Leb-
edev and Wise, 2000; Baker et al., 2001).

In conclusion, we propose that a wide-
spread process of cortical plasticity, result-
ing from BMI operation, may lead to the
establishment of a representation of an ar-
tificial actuator into multiple cortical ar-
eas. This raises the interesting hypothesis
that the distinct levels of primate profi-
ciency in tool manufacturing and utiliza-
tion may be defined by the ability of these
animals to incorporate the properties of
these tools as extensions of the subject’s
own body.
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