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Dynamic stimulus-dependent correlated
spiking activity (on a millisecond scale)
has been observed in several regions of the
visual system, but dependencies have typ-
ically been limited to relatively simple in-
tegrative rules such as continuity and
collinearity (Singer, 1999). Continuity is
when features extend across multiple re-
ceptive fields (RFs) without interruption
and collinearity is when features extend
across aligned RFs. The notion that corre-
lated firing might play a role in integrating
visual features and solving the binding
problem has been a controversial topic in
neuroscience [an entire issue of Neuron
(Vol. 24, Issue 1, 1999) was devoted to this
debate]. The massive amount of physio-
logical and anatomical data on the pri-
mary visual cortex (V1), as well as the
accessibility to this area, have allowed re-
searchers to characterize systematically
stimulus-dependent correlated spiking
activity in that structure. These data, to-
gether with retinotopic organization and
the dependence of spike correlation on
simple grouping rules, provide an intui-
tive idea about how this behavior might
play a role in early stages of object recog-
nition such as contour integration.
Inferior temporal (IT) cortex is viewed
as one of the latest stages serving object
recognition (Gross, 1992). IT neurons se-
lectively respond to complex objects such
as faces and this selectivity can be partially
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invariant to spatial location and size. IT
neurons can respond equally well to indi-
vidual features isolated from complex ob-
jects. Correlated firing among V1 neurons
tuned for orientated segments depends on
collinearity and continuity among seg-
ments, which are ubiquitous configura-
tions in natural scenes. Therefore, corre-
lated firing among IT neurons tuned for
complex features should depend on eco-
logically critical configurations of features
such as faces. In a recent article in The
Journal of Neuroscience, Hirabayashi and
Miyashita (2005) tested this prediction by
looking for differences in IT spike cor-
relation between face-like objects (FO)
and nonface-like objects (NFO) [Hiraba-
yashi and Miyashita (2005), their Fig. 1
(http://www.jneurosci.org/cgi/content/
full/25/44/10299/FIG1)].

The authors demonstrated a clear dif-
ference in cross-correlation peaks among
IT pairs between FO and NFO stimuli
comprised of the same features [Hiraba-
yashi and Miyashita (2005), their Fig. 2
(http://www.jneurosci.org/cgi/content/full/
25/44/10299/F1G2)]. Over 75% of the
pairs had stronger spike correlation for
the FO configuration versus the NFO con-
figuration [Hirabayashi and Miyashita
(2005), their Fig. 3A (http://www.jneurosci.
org/cgi/content/full/25/44/10299/FI1G3)],
which was independent of firing rate
changes [Hirabayashi and Miyashita
(2005), their Fig. 4 (http://www.jneurosci.
org/cgi/content/full/25/44/10299/F1G4)].
Over the population of pairs, the differ-
ence in correlation peaks between FO and
NFO stimuli was more robust than the
variance in correlation peaks across pairs

[Hirabayashi and Miyashita (2005), their
Fig. 5 (http://www.jneurosci.org/cgi/
content/full/25/44/10299/F1G5)]. Con-
versely, the ability of the firing rate to dis-
tinguish between FO and NFO stimuli at
first glance appeared to be limited
[Hirabayashi and Miyashita (2005), their
Figs. 3B (http://www.jneurosci.org/cgi/
content/full/25/44/10299/FIG3) and 5
(http://www.jneurosci.org/cgi/content/
full/25/44/10299/FIG5)]. Approximately
one-half of the pairs had larger firing rates
for FO stimuli and the other one-half had
higher firing rates for NFO stimuli.

There are two primary concerns that
the authors addressed when interpreting
these results. The first is about the magni-
tude of the spike correlation. If these cor-
related spikes signal feature configura-
tions, the signal must be detectable among
all spiking activity. The authors defined
“correlation strength” as the percentage of
their raw shift predictor-corrected peak
measurement with respect to the average
number of spikes fired by each cell (Fig.
1A). On average, this 1 ms peak is 1.6%
for preferred FO stimuli and 1.1% for cor-
responding NFO stimuli. This means that
there was only a 0.5% difference in the
probability of any two spikes being within
a1 mswindow of each other beyond chance.
Although small, this difference between
configurations was significant and consis-
tent. In addition, expanding the temporal
window to match integration times (~10
ms) results in greater spike correlation
probabilities (Fig. 1A, gray area).

However, the difference between FO
and NFO correlation strength is only one
factor determining whether spike correla-
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Figure 1. Distinguishing “effective connectivity” spike
correlation from correlated spikes that arise from chance. A,
Shift-predictor corrected cross-correlation (effective connec-
tivity) for two cells. B, Shift-predictor corrected cross-
correlation for five cells. €, Shift predictor (chance) for two
cells. D, Shift predictor for five cells.

tion is a viable signal. It is also important
to distinguish correlated spikes that may
have functional significance from corre-
lated spikes that simply arise from chance.
A neuron that detects correlated spikes
will be unable to discriminate between
these two sources of correlation. Based on
an average firing rate of 20 spikes per sec-
ond, the percentage of correlated spikes
within 10 ms that arise from chance is
~15-20% (or 2% for a 1 ms peak) (Fig.
1C). This corresponds to the magnitude
of the shift predictor with respect to the
average number of spikes [Hirabayashi
and Miyashita (2005), their Fig. 2 (http://
www.jneurosci.org/cgi/content/full/25/44/
10299/F1G2)]. This percentage is propor-
tional to firing rate. For one-half of the
pairs that showed greater spike correla-
tion for FO stimuli with respect to NFO
stimuli, the firing rate actually decreased
[Hirabayashi and Miyashita (2005), their
Fig. 4 (http://www.jneurosci.org/cgi/con-
tent/full/25/44/10299/F1G4)]. This means
the percentage of correlated spikes that
arose from chance also decreased for FO
stimuli with respect to NFO stimuli.
Therefore, the two sources of correlation
interfered with each for one-half of the
pairs. Because the shift-predictor cor-
rected spike correlation strength for a 10
ms window was ~5-10% (1.6% fora 1 ms
peak) (Fig. 1A), there is some concern as
to whether feature configuration-depen-
dent spike correlation in IT can be distin-
guished from the conflicting correlated
spikes that arise from chance.

This first concern can be tempered by
the fact that the authors were observing
only two simultaneously recorded neu-
rons. The relatively weak synaptic connec-
tions in IT likely require larger numbers of

correlated spikes for effective transmis-
sion of information (Gochin et al., 1991).
The percentage of correlated spikes that
arise from chance will decrease substan-
tially when synchronous events involve
increasing numbers of neurons (e.g., for
n =5 cells, ~0.10-0.16%) (Fig. 1 D). It is
unknown whether or not the percentage
of correlated spikes that arise beyond
chance for five neurons is substantially
higher than 0.16% (Fig. 1 B).

The second concern is about the con-
sistency of response measurements to re-
peated presentations of stimuli. The dif-
ferences in firing rate for the two stimuli,
regardless of the direction, were reliable
across stimulus trials (based on informa-
tion measurements). In addition, changes
in firing rate were substantially more reli-
able than changes in spike correlation for
repeated presentations. This raises the
question of whether spike correlation is
behaviorally relevant, because a relatively
small population of IT neurons (<100)
can accurately identify and categorize ob-
jects based on distributed firing rate rep-
resentations alone (Hung et al., 2005).

However, correlation that may have
functional significance was not separated
sufficiently from correlation that arose
from chance (i.e., shift predictor correc-
tion) in the information estimates. A
single-trial correlation-coefficient calcu-
lation will be underestimated or over-
estimated if the firing rate changes within
the trial, which is typical for neuronal
responses [Hirabayashi and Miyashita
(2005), their Fig. 2 (http://www.jneurosci.
org/cgi/content/full/25/44/10299/F1G2)].
Considering that these two sources of corre-
lation are many times contradictory and on
the same order of magnitude as discussed
above, the available information that either
might provide about feature configuration
could be cancelled out. Whether spike cor-
relation is informative in IT will require ob-
serving larger numbers of cells or perform-
ing a correction similar to the shift predictor
for single trials that accounts for within trial
nonstationarity.

These two concerns do not limit the
significance and importance of Hiraba-
yashi and Miyashita’s results. As the au-
thors pointed out in their introduction,
we do not have to view spike correlation
and firing rate as two mutually exclusive
mechanisms for neural signaling. Spike
correlation can affect integration and
shape the flow of information in IT. Suc-
cessful identification and categorization
of objects based on firing rates depended
on appropriately weighted summation
(Hung et al., 2005). Spike correlation can
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Figure 2.  Dynamic “effective connectivity.” When C; and
C, are driven by FO configurations, the spike correlation be-
tween these two cells (inset histograms, W, ) is stronger
than for NFO configurations (whether directly connected or
mediated through a common input). This increased correla-
tion results in more effective integration and stronger effec-
tive connections (W, and W,;) for C; and G, with G;. W,
Connection weight.

be an indicator of “effective connectivity”
or weighting between IT neurons (Fig. 2).
Hirabayashi and Miyashita’s results sug-
gest the possibility that this weighting is
dynamic. These dynamic weights can in
turn influence the weighting with other
neurons. For example (Fig. 2), if a simul-
taneously recorded IT pair with signifi-
cant spike correlation [cell 1 (C,) and cell
2 (C,)] converges to the same neuron at a
subsequent processing level [cell 3 (C;)],
the spike correlation between the pair will
affect the weighting for each neuron with
this hypothetical integrator (Alonso et al.,
1996). This could occur regardless of
whether the spike correlation is caused by
direct connectivity or common input
(feedforward or feedback) (Fig. 2).
Although the stimulus-dependent
spike correlation in IT parallels the behav-
ior in V1, there are some important differ-
ences. In V1, neurons with similar tuning
properties tend to have spike correlation
and stronger effective connections. This
can be attributed to relatively small V1
RFs for local processing, along with Ge-
stalt predictions of gradual changes in
simple features with respect to space.
However, at the level of IT, there is more
global integration with larger RFs involv-
ing more complex features. Indeed, spike
correlation in IT is not biased toward neu-
ron pairs with similar tuning characteris-
tics (Gochin et al., 1991). This raises inter-
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esting questions about the organization
and role of intracortical connectivity in IT.
Hirabayashi and Miyashita begin to answer
these questions and also provide an intrigu-
ing example of how spike correlation and
effective connectivity are not static proper-
ties of IT cortical networks. Cortical net-
works are made up of complex dynamic
synaptic connections and cannot be defined
by single-neuron tuning and anatomy
alone. This additional dimension likely

plays a critical role in object recognition
throughout the visual system.

References

Alonso JM, Usrey WM, Reid RC (1996) Pre-
cisely correlated firing in cells of the lateral
geniculate nucleus. Nature 383:815-819.

Gochin PM, Miller EK, Gross CG, Gerstein GL
(1991) Functional interactions among neu-
rons in inferior temporal cortex of the awake
macaque. Exp Brain Res 84:505-516.

Gross CG (1992) Representation of visual stim-

J. Neurosci., April 5, 2006 - 26(14):3621-3623 * 3623

uli in inferior temporal cortex. Philos Trans R
Soc Lond B Biol Sci 335:3-10.

Hirabayashi T, Miyashita Y (2005) Dynamically
modulated spike correlation in monkey infe-
rior temporal cortex depending on the feature
configuration within a whole object. ] Neuro-
sci 25:10299-10307.

Hung CP, Kreiman G, Poggio T, DiCarlo JJ (2005)
Fast readout of object identity from macaque
inferior temporal cortex. Science 310:863—866.

Singer W (1999) Neuronal synchrony: a versa-
tile code for the definition of relations? Neu-
ron 24:49—65; review 111-125.



