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Scale-Invariant Memory Representations Emerge from
Moiré Interference between Grid Fields That Produce Theta
Oscillations: A Computational Model
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The dorsomedial entorhinal cortex (dMEC) of the rat brain contains a remarkable population of spatially tuned neurons called grid cells
(Hafting et al., 2005). Each grid cell fires selectively at multiple spatial locations, which are geometrically arranged to form a hexagonal
lattice that tiles the surface of the rat’s environment. Here, we show that grid fields can combine with one another to form moiré
interference patterns, referred to as “moiré grids,” that replicate the hexagonal lattice over an infinite range of spatial scales. We propose
that dMEC grids are actually moiré grids formed by interference between much smaller “theta grids,” which are hypothesized to be the
primary source of movement-related theta rhythm in the rat brain. The formation of moiré grids from theta grids obeys two scaling laws,
referred to as the length and rotational scaling rules. The length scaling rule appears to account for firing properties of grid cells in layer
II of dMEC, whereas the rotational scaling rule can better explain properties of layer III grid cells. Moiré grids built from theta grids can
be combined to form yet larger grids and can also be used as basis functions to construct memory representations of spatial locations
(place cells) or visual images. Memory representations built from moiré grids are automatically endowed with size invariance by the
scaling properties of the moiré grids. We therefore propose that moiré interference between grid fields may constitute an important
principle of neural computation underlying the construction of scale-invariant memory representations.
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Introduction
Invariant memory representations make it possible to recognize
familiar stimuli independently of their size, position, or context.
For example, a resized version of a previously encountered visual
image (such as a familiar object viewed from a novel distance) can
easily be recognized as familiar, despite the fact that the perceived
size of the stimulus has changed. Scale-invariant stimulus recog-
nition is not merely a perceptual phenomenon but seems to re-
flect underlying properties of the memory representations that
encode the familiar stimulus (Jolicoeur, 1987; Biederman and
Cooper, 1992). In mammals, the medial temporal lobe memory
system is critical for storing memories of familiar stimuli
(Eichenbaum, 2004; Squire et al., 2004), so structures within the
medial temporal lobe, such as the hippocampus and entorhinal
cortex, may contain neural substrates for encoding invariant
memory representations. Supporting this, neurons in the human
hippocampus and entorhinal cortex can respond invariantly to

images of specific people and objects (Fried et al., 1997; Kreiman
et al., 2000; Quiroga et al., 2005).

The rodent hippocampus contains neurons called place cells,
which are thought to encode memories of specific spatial loca-
tions, because each place cell fires selectively whenever the rat
returns to a familiar location in space (O’Keefe and Dostrovsky,
1971; O’Keefe and Nadel, 1978; Thompson and Best, 1990; Wil-
son and McNaughton, 1993). Some place cells seem to encode
scale-invariant memory representations of familiar locations, be-
cause they can rescale their firing fields when the spatial environ-
ment is resized (Muller and Kubie, 1987; O’Keefe and Burgess,
1996; Sharp, 1999; Huxter et al., 2003). Hence, as in humans,
neurons in the rodent hippocampus demonstrate a capacity for
invariant memory coding.

Hippocampal place cells receive input from neurons called
grid cells in the dorsomedial entorhinal cortex (dMEC) (Fyhn et
al., 2004; Hafting et al., 2005). Here, we present a computational
theory proposing that the hexagonal firing fields of dMEC grid
cells are moiré interference patterns, or “moiré grids,” formed
from smaller “theta grids” which are hypothesized to be a pri-
mary source of theta rhythm in the EEG. Simulations show that
this theory can account for the dorsoventral topography of grid
field sizes in dMEC (Hafting et al., 2005; Sargolini et al., 2006a)
and may also explain why grid cells in layers II and III of dMEC
exhibit different phase relationships with the theta EEG (Hafting
et al., 2006). We show that moiré grids formed by theta grids can
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serve as scalable basis functions for constructing size-invariant
memory representations, and this may explain how hippocampal
place cells rescale their firing fields when a familiar spatial envi-
ronment is resized. We also show that if a visual image is con-
structed from a basis set of moiré grids, then the image can auto-
matically be represented at many different sizes within the visual
field. In conclusion, we hypothesize that moiré interference be-
tween grid fields is a fundamental computational principle un-
derlying the construction of size-invariant memory representa-
tions by the nervous system and that small grid fields that
produce theta oscillations are the elementary building blocks for
constructing such representations in the rodent hippocampus.

Materials and Methods
All simulations were performed using the Matlab programming language
(MathWorks, Natick, MA). Firing rate maps of simulated grid cells and
place cells were represented by a square matrix of pixels, with each pixel
representing the firing rate of the simulated cell at a fixed location.

Definitions of grid field parameters. As a rat navigates through an open-
field environment, grid cells in dMEC fire at multiple vertex locations,
which form a hexagonal lattice that tiles the surface of the environment
(Hafting et al., 2005). Such a hexagonal lattice can be characterized by
three parameters (Fig. 1): the distance between adjacent grid vertices (�),
the rotational orientation of the grid (�), and the spatial phase of the grid
(x0, y0). In the rat brain, different grid cells are tuned to different values of
these parameters. The firing field of any particular grid cell maintains
stable values of these parameters over time within an unchanging spatial
environment (Hafting et al., 2005).

Cosine grating model of theta grids. The model presented in this study
proposes that grid cells in dMEC are formed by moiré interference be-
tween smaller grid fields, referred to as theta grids because they are hy-
pothesized to produce theta oscillations. We simulated theta grids by
summing three cosine grating functions oriented 60° apart, which may be
regarded as a simple Fourier model of the hexagonal lattice. This cosine
grating model of theta grids was used for computational efficiency and is
not intended to represent an accurate biological model of how theta grids
are generated in the rat brain. The biological network for generating theta
grids is likely to incorporate an attractor network for path integration
(Fuhs and Touretzky, 2006; McNaughton et al., 2006), as explained in the

Results and Discussion sections. To implement the cosine grating model
used in our simulations, we use the Cartesian coordinate vector r � (x, y)
to denote an arbitrary spatial position (one square pixel) within a simu-
lated firing rate map. The firing rate of a theta grid G at each spatial
location r was simulated as a sum of three cosine gratings as follows:

G�r� � g��
k�1

3

cos��k � �r � c���, (1)

where the spatial phase of the grid (Fig. 1) was given by c � (x0, y0). The
three cosine gratings were oriented along three vectors �1, �2, and �3,
which were 60° apart from one another, and these gratings were rotated
with respect to the grid field orientation parameter � (Fig. 1) by angles of
� � 30°, � � 30°, and � � 90°. The three vectors had equal length ��i� �
�, and the length of the vectors determined the vertex spacing of the theta
grid, �, according to the relation �� � 4�/3 1/2. Here, g was a monoton-
ically increasing gain function given by g(x) � exp[a(x � b)] � 1 with
a � 0.3 and b � �3/2. The summation of the three cosine functions had
a minimum value of �3/2 and a maximum value of 3, so after passing
through the gain function, the value of G(r) ranged from 0 to �3 (in
arbitrary units). The purpose of the gain function was to disallow nega-
tive outputs, because neurons cannot have negative firing rates. The exact
choice of gain function is unimportant for the moiré scaling effects re-
ported here.

Spatial resolution of simulated rate maps. Each square pixel in the firing
rate maps corresponded to a square region of physical space. Simulations
of moiré grids (see Figs. 4, 5) used pixels measuring 0.1625 cm on each
side. Simulations of place cells and grid cells (see Figs. 6 –9) used pixels
measuring 0.65 cm on each side. Experimental firing rate maps of real
place cells were plotted using pixels that measured 3.25 cm on each side;
these experimental firing rate maps had to be resampled at a higher
resolution to match the resolution of simulated grid fields before weight-
ing coefficients for the model could be fitted to experimental data by
Equation 16.

Smoothing of moiré grid fields. Our theory assumes that theta grids
change their vertex spacings as a function of running speed to keep the
frequency of theta rhythm constant at all running speeds (see Eqs. 8 –10).
However, for simplicity, our simulations of place cell rescaling assumed
that theta grids have a constant vertex spacing (as if the rat was always
running at the same speed) for fixed values of k in Equations 17 and 18. A
problem that arises from this simplification is that when a population of
moiré grids is resized in unison by adjusting k, the high-frequency com-
ponents of the moiré grids become shifted in phase relative to one an-
other. The low-frequency components of the moiré grids remain in sta-
ble alignment after rescaling, but because the place map is simulated by
summing individual pixels in Equation 15, and these pixels have a smaller
spatial resolution than the high-frequency components that become re-
aligned, the individual pixels of the moiré grids may no longer sum with
one another to produce an output function that has been previously
stored by weighting coefficients that were assigned with a different value
of k. This problem can be regarded as an artifact of our simplifying
assumption that theta grids have constant vertex spacings at all running
speeds, because in the case in which theta grids change their vertex spac-
ing as a function of running speed, the vertex spacing (and possibly
spatial phase) of theta grids would vary on each traversal of the environ-
ment. Hence, moiré grids (and place cells formed from them) would not
always fire at the same rate on each traversal through a given spatial
location, because the high-frequency component of the grids would be
aligned differently on each traversal at different running speeds. This
variability would average out over multiple traversals, but it does not
average out in our simulations, because we have abolished variability by
assuming a constant running speed. To solve this problem, firing rate
maps of moiré grid cells, Mi(r), were low-pass filtered by two iterations of
smoothing with a square convolution kernel (denoted by K in Equations
11, 13, 17, and 18) measuring 2.0 cm on each side. Smoothing the moiré
grids in this way is tantamount to averaging over the variability in the
spacing and phase of theta grids that would normally occur over different
traversals of the environment at different running speeds.

Figure 1. Simulated grid fields. Example of a simulated grid cell firing field generated by the
cosine grating model that was used in our simulations. Hot colors correspond to grid vertices at
which the firing rate of the cell is high, and cold colors indicate regions of low firing (the firing
rate scale is arbitrary). The hexagonal grid pattern can be characterized by three parameters:
grid spacing (�), angular orientation (�), and spatial phase [c � (x0, y0)].
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Experimental place cell recordings. Target firing rate maps for our sim-
ulations were obtained by recording place cells from the CA1 region of
the hippocampus in freely foraging rats (provided by A.C.W. and H.T.B.)
using methods that have been reported previously (Moita et al., 2004).
Briefly, male Long–Evans rats weighing 350 – 400 g were reduced to 85%
of their ad libitum weight through limited daily feeding. Under deep
isoflurane anesthesia, microdrives consisting of six tetrode bundles made
from 0.0007�� microwire (Kanthal, Palm Coast, FL) were stereotaxically
implanted into the dorsal CA1 layer of the hippocampus (coordinates,
3.3 mm posterior, �3.0 mm lateral, and 1.7 mm ventral to bregma). After
recovery, place cells were recorded while rats foraged for food pellets in
open-field environments of varying shapes and sizes (see Results). Posi-
tion data were sampled at 30 Hz by a video tracking system that moni-
tored light-emitting diodes fixed to the rat’s head, and single-unit spikes
were recorded using multichannel data acquisition and cluster analysis
software (Neuralynx, Tucson, AZ). Firing rate maps for each place cell
were computed by binning spatial position data into square pixels mea-
suring 3.25 cm on each side. Experimental procedures were approved by
the University of California, Los Angeles Animal Care and Use Commit-
tee in accordance with federal regulations.

Results
Grid cells in dMEC exhibit vertex spacing lengths that range ap-
proximately between 30 and 100 cm (Hafting et al., 2005; Sargo-
lini et al., 2006a), but our model predicts that dMEC grids are
built from much smaller grid fields, referred to as theta grids,
which we hypothesize to be responsible for producing theta os-
cillations. Hence, our model posits that at least two different
types of grid fields are encoded in the rat brain: dMEC grids and
theta grids. Before explaining how these two different grid pop-
ulations are related to one another, it is necessary to review some
general mathematical principles governing moiré interference
between hexagonal grid fields.

Moiré interference between grid fields
Suppose that a target neuron receives convergent input from a
pair of two different grid cells, each encoding a different grid field.
The total input to the target cell would be greatest at spatial loca-
tions at which the vertices of the two input grids overlap. Conse-
quently, the target cell would fire in a spatial pattern defined by
the regions in which the two input grid fields intersect. It is dem-
onstrated below that the intersection between two hexagonal
grids forms a moiré interference pattern, which we shall refer to
as a moiré grid, that replicates the hexagonal lattice on a larger
spatial scale. Such moiré interference patterns emerge when any
two periodic lattices are combined (regardless of their geometry),
so the hexagonal lattice is not unique in this regard. But in the
present analysis, we shall consider only the case of the hexagonal
lattice, because this is the geometric pattern that is generated by
grid cells in the rat brain. The size of moiré grid is determined by
the parameters of the input grids in accordance with mathemat-
ical scaling laws that have been reviewed by Amidror (2000).
Here, we present specific formulations of these scaling laws that
are specialized for describing hexagonal moiré grids.

The length scaling rule
Consider two hexagonal basis grids that have the same angular
orientation but different vertex spacing lengths (Fig. 2). If the
vertex spacing length of one basis grid is denoted �, then the
spacing of the other grid can be denoted as � � ��, where � is a
constant representing the difference in spacing lengths between
the two grids (expressed as a percentage of the first grid’s spacing
length). The intersection of two such grids forms a moiré grid
with the same angular orientation as the basis grids but a larger

vertex spacing length, S�, where S is a scaling factor given by the
following:

S �
1 � �

��� . (2)

We refer to Equation 2 as the length scaling rule, because it de-
fines the vertex spacing of the moiré grid as a function of the

Figure 2. The length scaling rule. a, Two basis grids with identical angular orientation but
different vertex spacings, � (red) and ���� (green), intersect to form a moiré grid shown in
black to the right of the basis grids. The vertex spacing of the moiré grid is S�, where S is a scaling
factor that depends on �. In this example, � � 0.15 and S � 7.66. b, Another example of a
moiré grid formed by the length scaling rule, with �� 0.10 and S � 11.0. c, The scaling factor
S depends on �, which determines the difference between the spacings of the two basis grids
(see Eq. 2).
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difference between the vertex lengths of the basis grids. The man-
ner in which moiré grids are produced by the length scaling rule is
very similar to the manner in which beat frequencies are pro-
duced by interference between sinusoids (Burgess et al., 2005;
McNaughton et al., 2006). Just as two sinusoids with slightly
different frequencies can sum to produce a lower beat frequency,
Equation 2 states that two grid fields with slightly different vertex
spacings can sum to produce a larger grid field (a moiré grid).
Thus, grid fields can be regarded as two-dimensional (planar)
analogues of one-dimensional (linear) sinusoids. As explained
below, this kinship between grid fields and sinusoids links our
moiré model of grid cells with previous “dual oscillator” models
of hippocampal processing (O’Keefe and Recce, 1993; Lengyel et
al., 2003; Burgess et al., 2005; O’Keefe and Burgess, 2005).

Moiré interference between grid fields is most robust when
there is only a small difference between the vertex spacings of the
basis grids (that is, when ��� is near zero); the moiré effect breaks
down as ��� grows large (just as sinusoidal beat interference
breaks down when the difference between input frequencies is
too large). Figure 2c shows that the vertex spacing of the moiré
grid can vary over several orders of magnitude as � varies within
a small range of values surrounding zero, and S approaches in-
finity as the vertex spacings of the basis grids approach equiva-
lence (that is, as � vanishes). The spatial phase of the moiré grid is
determined by the phases of the two basis grids, but the vertex
spacing of the moiré grid is unaffected by the spatial phases of the
basis grids.

The rotational scaling rule
The length scaling rule alone does not provide a complete de-
scription of moiré interference between planar grid fields, be-
cause interference patterns can also be produced by rotating grid
fields against one another (an operation which is not possible
with sinusoids). When two hexagonal basis grids with identical
vertex spacing � are rotated against one another by an angle 	,
they intersect to form a moiré grid with vertex spacing S�, where
S is a scaling factor given by the following:

S �
1

2 sin�min		,60
 � 	�

2 � . (3)

We refer to Equation 3 as the rotational scaling rule, because it
defines the scale of the moiré grid as a function of the rotation
angle between two basis grids with identical vertex spacings. Be-
cause this function is periodic at regular intervals of 60°, the
moiré pattern formed when the grids are rotated against each
other by an arbitrary angle 	 is identical to the moiré pattern
formed when the grids are rotated against each other by 	 � N60°
for any integer N. Thus, when analyzing the moiré interference
patterns that are formed by rotating two hexagonal grids against
one another by an angle 	, it is only necessary to consider angles
on the interval 0° 
 	 � 60°. The angular orientation of the
moiré grid formed by rotational scaling is rotated by 30° from the
angle that is intermediate between the angles of the two basis
grids:

� � 30
 �
�1 � �2

2
, (4)

where � is the orientation of the moiré grid, and �1 and �2 are the
orientations of the two basis grids that form the moiré grid. The
spatial phases of the basis grids are absent from the equations

above because the phases of the basis grids do not influence the
vertex spacing or orientation of the moiré grid (they affect only
the phase of the moiré grid). A relationship similar to the rota-
tional scaling rule was first derived by Lord Rayleigh for parallel
line gratings (Stecher, 1964). For the case of hexagonal grids, the
rotational scaling principle can be derived by intuitive geometric
arguments like those outlined by Oster (1969) or by methods
based on Fourier spectra (Amidror, 2000).

Figure 3d shows how the scale S of the moiré grid varies as a
function of the rotation angle 	 between the basis grids in accor-
dance with the rotational scaling rule. This relation increases
monotonically without bound as 	 approaches integer multiples
of 60°. The smallest value of S occurs when 	 � 30° � N60° for
integer N, where the scaling function becomes nondifferentiable
(for example, see Fig. 3d, the singular point at S � 30°). At these
singular points, the moiré magnification factor is equal to S �
1/[2sin(30°/2)] � (2 � 3 1/2) 1/2  1.93, an irrational number that
we refer to as �. Because the scaling factor is irrational when S �
�, the moiré grid becomes an aperiodic tessellation of the plane
that never exactly repeats itself (Fig. 3c).

In summary, a pair of basis grids with the same vertex spacing
and different angular orientations can be combined using the
rotational scaling rule to produce a moiré grid with vertex spac-
ing ranging between �� and �, where � is the vertex spacing of
both basis grids. The spatial phase and orientation of the moiré
grid are jointly determined by the phases and orientations of the
two basis grids, but the vertex spacing S of the moiré grid is
unaffected by the spatial phases of the basis grids, and depends
only on the angle of rotation between them.

Generalized moiré scaling law
The length and rotational scaling rules can be combined into a
single generalized scaling law that covers all cases in which two
basis grids intersect to form a moiré grid, regardless of whether
the basis grids differ in their vertex spacing, angular orientation,
or both. In general, when two hexagonal basis grids with different
vertex spacings, � and � � ��, are rotated against one another by
an angle, 	, they intersect to form a moiré grid with vertex spac-
ing S�, where S is a scaling factor given by the following:

S �
1 � �

��2 � 2�1 � cos ���1 � ��
. (5)

Variables � and � in Equation 5 are the same as defined above,
and � � min {	, 60° � 	} to abbreviate the minimum angle term
from Equation 3. The angular orientation of the moiré grid is as
follows:

� � arctan
sin �2 � �1 � ��sin �1

cos �2 � �1 � ��cos �1
, (6)

where �1 and �2 are the orientations of the two basis grids as in
Equation 4. Nishijima and Oster (1964) have provided a deriva-
tion of this generalized scaling rule for the case of straight-line
gratings, and the results for hexagonal grids turn out to be similar.
It can be verified algebraically that in the special case when the
two grids have identical orientation (that is, 	 � �1 � �2 � 0),
Equation 5 reduces to the length scaling rule of Equation 2. Sim-
ilarly, in the special case when the two grids have identical spacing
(that is, � � 0), Equation 5 reduces to the rotational scaling rule
of Equation 3, and Equation 6 is equivalent to Equation 4 (taking
into account that � � N60° represents the same grid orientation
for all integer N because of hexalateral symmetry).
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Small grid fields produce theta oscillations
The moiré scaling principles outlined above have two important
implications for spatial information processing by the grid cell
network. First, output from grid cells in dMEC could converge on
downstream target neurons to form moiré grids that have much
larger vertex spacings than dMEC grid cells (because moiré grids
always have larger vertex spacings than the input grids from
which they are formed). Second, and perhaps more importantly,
dMEC grids might themselves be moiré grids that are formed by
summing together much smaller input grids. In this section, we
show that small grid fields can produce the movement-related
theta oscillations that are known to exist in the hippocampus and
entorhinal cortex. We shall hypothesize that these theta grids are
the elementary building blocks for constructing spatial memory
representations.

Theta grids
Theta rhythm is a 6 – 8 Hz oscillation that synchronizes neural
activity in the hippocampus and entorhinal cortex as a rat navi-
gates through a spatial environment (Vanderwolf, 1969; Mitchell
and Ranck, 1980). We hypothesize that this movement-related
theta rhythm is produced by small hexagonal grid fields, similar
to dMEC grids but with smaller vertex spacing lengths, which we
shall refer to as theta grids. To understand how such miniature
grid fields could cause theta oscillations during movement, con-
sider a grid field with a small vertex spacing length of � � 5.0 cm,
and suppose that a rat traverses this grid field at a constant run-
ning speed of 35 cm/s. If the rat runs along a straight path that is
perfectly aligned with a row of grid vertices, then it would pass
through 35/5 � 7 grid vertices per second. If a burst of neural
activity occurs at each vertex crossing, then the bursts would
occur at a frequency of 7 Hz, which is within the frequency range
of theta rhythm. More generally, the burst frequency f that would
be produced as the rat runs along a row of grid vertices would be
as follows:

f � V/�, (7)

where V is the running speed of the rat (in cm/s), and � is the
vertex spacing of the grid field (in cm). Equation 7 provides an
exact description of the burst frequency only when the rat runs
along a straight path that is perfectly aligned with a row of grid
vertices. If the rat runs along any other path through the grid,
then the burst frequency would be lower than that specified by
Equation 7. There are some paths along which vertices might be
encountered much less frequently (for example, straight paths
rotated exactly 30° from the alignment of the grid field) or even
not at all (such as a curved path that avoids grid vertices by
weaving in between them), and hence the burst frequency would
be much slower than that specified by Equation 7. But a freely
behaving rat would be unlikely to travel continuously along such
a “vertex-sparse” path for an extended period of time. As long as
the diameter of the grid vertices is not too small, most linear (or
gently curved) paths through the grid would pass through a ver-
tex at irregularly but similarly spaced intervals, and the mean
interval distance would be very close to �. Thus, Equation 7 pro-
vides a good estimate for the frequency of theta bursts that would
be produced as a rat runs across a theta grid, even when the rat is
not running straight along a row of vertices.

When the rat is standing still, Equation 7 implies that theta
rhythm should fall silent, because f � 0/� � 0. In agreement with
this, movement-related theta rhythm in the hippocampus usually
falls silent when the rat stops running (Vanderwolf, 1969). How-

Figure 3. The rotational scaling rule. a, Two basis grids with identical vertex spacing � and
orientations which differ by angle 	 intersect to form a moiré grid shown in black to the right of
the basis grids. The vertex spacing of the moiré grid is S�, where S is a scaling factor that
depends on 	. In this example, 	 � 6° and S � 9.55. b, Another example of a moiré grid
formed by the rotational scaling rule, with 	 � 12° and S � 4.73. c, When 	 � 30°, the
scaling factor becomes irrational (S ��), and the moiré grid becomes an aperiodic tessellation
of the plane. d, The scaling factor S depends on the separation angle, 	, between the orienta-
tions of the basis grids (see Eq. 3); note the irrational singular point at 	 � 30°, at which the
scale of magnification is S � �.
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ever, Equation 7 would predict that the frequency of theta rhythm
should be proportional to the rat’s running speed with unit slope,
so that when the rat runs twice as fast, the theta frequency should
also double (because twice as many vertex points would be
crossed in the same amount of time). Contradicting this predic-
tion, the frequency of theta rhythm does not double when the
rat’s running speed doubles; instead, theta rhythm maintains a
nearly constant frequency of �6 – 8 Hz across all running speeds.
A slight increase in the theta frequency is reported as running
speed increases (Whishaw and Vanderwolf, 1973; Rivas et al.,
1996; Maurer et al., 2005), but the slope of this increase is much
smaller than the unit slope predicted by Equation 7. Thus, exper-
imental data contradicts our hypothesis that theta oscillations are
rhythmic bursts produced as the rat traverses through small grid
fields. This contradiction may be resolved by postulating that the
vertex spacing of theta grids varies systematically with running
speed.

Speed-dependent vertex spacing of theta grids
Theta grids can maintain a constant burst frequency by adopting
a variable vertex spacing that is directly proportional to the rat’s
running speed. The vertex spacing of the theta grid must be larger
when the rat is running quickly, and smaller when the rat is
running slowly, so that the frequency of theta rhythm remains at
a constant value. On first consideration, this idea might seem
inconsistent with our hypothesis that dMEC grids are moiré grids
constructed from theta grids. After all, grid cells in dMEC have
stable vertex spacings at all running speeds, so how could they be
formed from theta grids with vertex spacings that vary with the
rat’s running speed?

Consider the case of two theta grids, G1 and G2, which have the
same angular orientation but different vertex spacings, so that the
vertex spacing of a moiré grid formed by these two theta grids
would be determined by the length scaling rule (Eq. 2). Suppose
that the vertex spacing of G1 varies with running speed so that the
frequency of vertex crossings on G1 (that is, the frequency of theta
rhythm) remains constant for all running speeds. We may rear-
range Equation 7 to estimate the vertex spacing of G1 as follows:

��V� � V/f1 , (8)

where �(V) is the speed-varying vertex spacing of theta grid G1,
and f1 is the constant frequency of vertex crossings (theta bursts)
produced by G1. Now suppose that the theta grid G1 intersects
with another theta grid, G2, to form a moiré grid. For simplicity,
we shall assume that G2 always has the same angular orientation
as G1, so that the spacing of the moiré grid is given by the length
scaling rule (differing orientation is addressed in Appendix A).
We shall denote the vertex spacing of G2 as �(V)[1 � �(V)],
where �(V) is the difference between the vertex spacing of G1 and
G2, expressed as a percentage of the vertex spacing of G1. This
formulation is similar to that used in the length scaling rule
above, except that �(V) is now dependent on running speed, a
modification that makes it possible to form stable moiré grids
from speed-varying theta grids.

The vertex spacing of the moiré grid formed by G1 and G2 is
given by S�(V), where the scaling factor S is computed from the
length scaling rule (Eq. 2). It can be shown algebraically by com-
bining Equations 2 and 8 that S�(V) has zero slope (and thus the
vertex spacing of the moiré grid is the same for all running
speeds) as long as the following is true:

��V� � �
1

1 � f1�M/V
, (9)

where �M � S�(V) is a constant value denoting the fixed vertex
spacing of the moiré grid, and f1 denotes the fixed frequency of
vertex crossings on G1 (the theta frequency). Hence, a pair of
theta grids with speed-dependent vertex spacings can combine to
form a moiré grid with a speed-independent vertex spacing, so
long as the relative vertex spacings of the theta grids obeys the
relation specified in Equation 9. If f1 is a fixed frequency which
remains constant at all running speeds, then Equation 9 implies
the following:

f2 �
f1

1 � ��V�
� f1 � V/�M , (10)

where f2 is the frequency of vertex crossings on grid G2. Hence, if
f1 is constant for all running speeds, then f2 must vary with run-
ning speed to form a moiré grid with a stable vertex spacing �M.
The approximation in the second step of Equation 10 is quite
good, so f2 increases almost linearly with V with a very small slope
that is inversely proportional to �M. It is interesting to speculate
that Equation 10 might explain why the frequency of theta
rhythm is sometimes observed to increase very slightly with the
rat’s running speed (Whishaw and Vanderwolf, 1973; Rivas et al.,
1996; Maurer et al., 2005). If so, then the frequency of theta
rhythm recorded in dorsal dMEC (where grid cells have small
�M) might be expected to increase more steeply with running
speed than theta rhythm recorded in ventral dMEC (where grid
cells have larger �M). A biologically plausible mechanism for im-
plementing Equation 9 will be suggested later (see below, A bio-
logical mechanism for grid field rescaling). It should be noted
that Equation 9 is not the only solution for keeping �M constant at
all running speeds while the vertex spacing of theta grids varies.
As outlined in Appendix A, other solutions are possible when
theta grids differ in their angular orientation instead of their ver-
tex spacing.

Alignment of theta grids with the spatial environment
Hafting et al. (2005) have shown that dMEC grids maintain a
stable spatial alignment with familiar visual landmarks. If dMEC
grids are moiré grids formed from smaller theta grids, then does
this imply that the theta grids must also remain in stable align-
ment with landmarks? No, not if theta grids change their vertex
spacing with running speed to keep the frequency of theta rhythm
constant. A moiré grid always has two distinct spatial frequency
components: a low-frequency component (the moiré grid itself,
which we equate with dMEC grids) and a high-frequency com-
ponent (the underlying theta grids). The low-frequency compo-
nent (the moiré grid) can continuously remain in stable align-
ment with the environment (as dMEC grids appear to do) while
the high-frequency theta grids shift their alignment with the en-
vironment by dynamically altering their vertex spacing or spatial
phase. For example, if the rat’s running speed differs on two
independent traversals through an environment, then the vertex
spacings of theta grids would also be different on each traversal,
and theta bursts must therefore occur at different locations with
respect to stationary landmarks.

Clearly, the moiré grid must somehow establish and maintain
a stable relationship with familiar spatial landmarks, but how can
this stability be achieved if theta grids (from which moiré grids
are formed) do not maintain a stable alignment with these same
landmarks? There are three relationships to consider in answer-
ing this question: the alignment of theta grids with landmarks, the
alignment of theta grids with moiré grids, and the alignment of
moiré grids with landmarks. Importantly, it is possible for each of
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these three relationships to vary independently of one another.
We shall propose later that theta grids are produced by a path
integration network (see below, A biological mechanism for grid
field rescaling). Prior path integration models have proposed that
the integrator can periodically reset its position estimate with
respect to visual landmarks, to correct for the accumulation of
integration errors over time (Skaggs et al., 1995; Samsonovich
and McNaughton, 1997). In a similar way, the theta grid path
integrator might periodically reset all three relationships in the
moiré network (theta grids to landmarks, theta grids to moiré
grids, and moiré grids to landmarks) to correct for the accumu-
lation of integration errors over time. But in between such “reset”
events, theta grids could alter their alignment to both the envi-
ronment and the moiré grids, without upsetting the alignment
between the environment and the moiré grids. Therefore, in its
current form, our theory does not offer specific predictions about
the stability of the alignment between theta grids and the envi-
ronment over time.

Sensitivity of the moiré scaling mechanism
The slopes of the moiré scaling functions are quite steep (Figs. 2c,
3d), so small fluctuations in the spacing or orientation of theta
grids would cause large fluctuations in the size of moiré grids
produced by the theta grids. This might be problematic in a bio-
logical network, because small levels of input noise could cause
large fluctuations in the scale of the spatial representation pro-
duced by the network. Clearly, the accuracy of the spatial rela-
tionships between theta grids would have to be maintained
within very strict tolerances to produce moiré grids with stable
vertex spacings, and this is potentially a serious limitation of our
model.

Simulations of dMEC grid fields
We shall now present simulations to demonstrate that key firing
properties of dMEC grid cells can be accounted for by the hy-
pothesis that dMEC grids are moiré grids formed from smaller
theta grids. For simplicity, our simulations shall assume that
theta grids have constant vertex spacings (as if the rat is always
traveling at a constant running speed), because this makes it eas-
ier to visualize the moiré interference principles that we wish to
demonstrate. Thus, running speed will not be included as a vari-
able in the model equations. However, it should be understood
that the principles of moiré interference that we describe in our
simulations are not altered by this simplifying assumption, and in
the rat brain, theta grids may have vertex spacings that vary with
running speed to keep the theta frequency nearly constant (as
specified by Equations 8 and 9 and in Appendix A).

Simulating layer II grid cells by the length scaling rule
Grid cells in layer II of dMEC are topographically organized so
that cells in dorsal regions of dMEC have small vertex spacings of
�30 cm, and the spacing grows progressively larger at more ven-
tral locations, reaching a maximum of �100 cm in the most
ventral portion of dMEC (Hafting et al., 2005; Sargolini et al.,
2006a). Layer II grid cells also exhibit phase precession with re-
spect to the locally recorded theta EEG (Hafting et al., 2006), so
that as the rat traverses each grid vertex, the grid cell fires at a late
phase of the theta EEG cycle as a rat enters the vertex and at an
early phase as the rat leaves the vertex. This is similar to theta
phase precession that is observed for place cells in the hippocam-
pus (O’Keefe and Recce, 1993; Skaggs et al., 1996; Maurer et al.,
2006).

O’Keefe and Burgess (2005) have hypothesized that both of

these properties of grid cells (the dorsoventral topography of
their grid spacings and their theta phase precession behavior) can
be accounted for by interference between sinusoids of differing
frequency. Burgess et al. (2005) extended this idea into two di-
mensions, showing that these grid cell firing properties can be
similarly accounted for by interference between hexagonal grid
fields with different vertex spacings. Here, we shall demonstrate a
similar result, by showing that these grid cell firing properties are
inherent to moiré grids that are formed using the length scaling
rule of Equation 2.

To simulate a population of layer II grid cells using the length
scaling rule, a set of moiré grids was produced from “sibling
pairs” of theta grids. The firing rate of the ith moiré grid cell at
spatial location r was given by the following:

Mi�r� � �Gi�r� � Gi��1 � �i�r� � M�� � K, (11)

where Gi(r) and Gi((1 � �i)r) are the ith pair of sibling theta
grids, M � 4.0 is an activation threshold, []� denotes threshold-
ing such that the expression inside the brackets is taken to be zero
for negative values, * is the convolution operator, and K is a
kernel for smoothing the moiré grid field (see Materials and
Methods). The ith theta grid cell Gi(r) was simulated by the co-
sine grating model described in the Materials and Methods sec-
tion, and its sibling Gi((1 � �i)r) was derived by scaling Gi(r)
about the origin of the coordinate axis. Both of the sibling theta
grids, Gi(r) and Gi((1 � �i)r), had the same angular orientation
�i, so that the orientation of the moiré grid Mi(r) was also equal to
�i. In simulations presented here, the vertex spacing of the first
theta grid Gi(r) was always � � 5.0 cm, and the spacing of the
second theta grid was given by � � �i� (with �i � 0). Thus, the
vertex spacing of each Mi(r) was determined solely by its �i

parameter.
Figure 4 (top row) shows five examples of simulated moiré

grid fields Mi(r) spanning a range of vertex spacings from 40 to 80
cm along the dorsoventral axis of dMEC. To obtain this gradation
of grid spacings, the value of the �i parameter was incrementally
changed along the interval 0.1429 � �i � 0.0667, which pro-
duced moiré grid spacings in the range 40 
 Si� 
 80 cm when
� � 5.0 cm (this can be verified from Equation 2). These simula-
tions suggest that the topography of vertex spacings for layer II
grid cells may arise because the �i parameter is graded along the
dorsoventral axis of dMEC. That is, ventrally located grid cells
receive inputs from pairs of theta cells with very similar vertex
spacings (�i very near to zero), thereby producing large moiré
grid fields. In contrast, grid cells in dorsal layer II receive input
from pairs of theta grids with less similar vertex spacings (�i

larger but still near zero), thereby producing small moiré grid
fields. This explanation is very similar to O’Keefe and Burgess’
(2005) hypothesis that the topography of grid spacings in dMEC
arises from a dorsoventral gradient of frequency pairings between
sinusoidal oscillators, except that here, theta grid vertex spacings
are substituted for sinusoidal frequencies.

The moiré grid vertices produced by the length scaling rule
have a grainy appearance, which is caused by the high spatial
frequency of the underlying theta grids from which the vertices
are formed. Figure 4 (second row) shows a magnified view of a
single grid vertex, to illustrate how the vertex is produced by
moiré interference between the underlying pair of theta grids.
Figure 4 (third row) shows a magnified view of the sibling theta
grids that form the vertex, with Gi(r) plotted in red and Gi((1 �
�i)r) plotted in green; black regions in this plot show the points of
overlap between the theta grids, which are locations where the
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grid cell Mi(r) would fire action potentials.
The phase relationship between theta
rhythm and the firing of layer II grid cells
can be inferred from this plot by assuming
that the peaks and troughs of the theta
EEG correspond to the peaks and troughs
of the theta grid plotted in green, Gi((1 �
�i)r). The black spots at which the grid cell
fires can be seen to precess backward in
phase through one cycle of the theta
rhythm on each traversal of a grid vertex in
any direction. To better illustrate this, Fig-
ure 4 (fourth row) shows horizontal cross
sections through the grid vertex at varying
distances from the vertex center (a, b, and
c). In cross section, the two theta grids be-
come a pair of detuned sinusoids (red and
green), and the moiré grid vertex becomes
a sequence of small bumps that together
form a larger bump (black). The phase
precession phenomenon emerges from
interference between the sinusoids, ex-
actly as in dual oscillator models of phase
precession by place cells while rats are run-
ning on a linear track (O’Keefe and Recce,
1993; Lengyel et al., 2003; O’Keefe and
Burgess, 2005). Hence, the length scaling
rule can properly be regarded as an exten-
sion of these dual oscillator models into
two dimensions (Burgess et al., 2005).

Figure 4 (bottom row) plots the phase
of theta rhythm at which the grid cell fires
( y-axis) for each horizontal position
along the grid vertex (x-axis). Time
progresses either from left to right or right
to left along the x-axis, depending on
which direction the rat is moving (right-
ward vs leftward, respectively). The phase
plot is negatively sloped with respect to
position when the rat travels rightward
(gray triangles), and positively sloped
when the rat travels leftward (black trian-
gles), so grid cell spiking always precesses
backward through the phase of theta
rhythm. It can also be seen in the two-
dimensional theta grid plot (Fig. 4, row 3)
that backward phase precession occurs re-
gardless of the angle at which the cross sec-
tion is taken through the grid vertex. It
must be assumed that the local theta EEG in layer II measures
vertex crossings on the larger theta grid (green) and not the
smaller one (red), because if the theta EEG were produced by
vertex crossings on the smaller theta grid, then grid cell spikes
would shift in the wrong direction through the theta phase (for-
ward instead of backward), in conflict with experimental data. To
account for this, it may be assumed that all of the grid cells within
a local region of layer II receive shared input from a common
“master” theta grid, so that their membrane potentials oscillate
synchronously to produce a field potential that is observable as
theta rhythm in the EEG. In addition to input from the master
grid, each grid cell may also receive input from a secondary theta
grid with a smaller vertex spacing than the master grid, which
would interfere with the master grid to form a moiré grid. Unlike

the master grid, which is shared among all grid cells, the second-
ary theta grid would be different for each dMEC cell. Thus, the
secondary grids would not oscillate in synchrony and would not
be detectable by EEG. The secondary theta grid signal might ar-
rive through unique synaptic inputs to each grid cell or it might
somehow be encoded by intrinsic oscillatory membrane proper-
ties that are unique to each grid cell, as in previous implementa-
tions of dual oscillator phase precession models (Lengyel et al.,
2003).

Simulating layer III grid cells by the rotational scaling rule
Grid cells in layer III of dMEC seem to differ from grid cells in
layer II in two major respects. First, the dorsoventral gradation of
grid spacings is poorly organized, so that neighboring layer III

Figure 4. Simulations of layer II grid cells. Top row, Five moiré grid fields, Mi(r), produced by the length scaling rule (Eq. 2); the
spacing difference (�i) between theta grids is shown above each plot, and the vertex spacing (Si�) of each moiré grid is shown at
the top left corner of each plot (the hypothetical gradation of �i along the dorsoventral axis of dMEC runs from left to right). Second
row, A magnified inset of one moiré grid vertex and three different horizontal cross sections (a, b, and c) through the vertex. Third
row, Magnified insets of the theta grids, with Gi(r) plotted in red, Gi((1 ��i)r) plotted in green, and Mi(r) plotted in black. Fourth
row, Simulated firing rates ( y-axis) of the moiré grid cell (black) and theta grids (red and green) along three horizontal cross
sections (columns a, b, and c). Fifth row, The phase of theta rhythm at which Mi(r) peaks on each cycle, with left-to-right traversals
shown by gray arrows and right-to-left traversals shown by black arrows; the slopes of these plots show that phase precession
occurs as the rat traverses the vertex in either direction (theta EEG is assumed to correspond to the green grid; see Results,
Simulating layer II grid cells by the length scaling rule).
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grid cells can have very different vertex spacings even though they
are located at the same dorsoventral coordinate position (Sargo-
lini et al., 2006a). Second, layer III grid cells often do not show
theta phase precession during traversal of a grid vertex (Hafting et
al., 2006). These firing properties suggest that layer III grid cells
are not formed by the length scaling rule. It is demonstrated
below that these firing properties layer III grid cells might instead
be explained by the rotational scaling rule.

To simulate a population of dMEC grids using the rotational
scaling rule, moiré grids were again produced from sibling pairs
of theta grids, except that this time, the sibling theta grids differed
in their angular orientations rather than their vertex spacings. It

was mathematically convenient to obtain
each sibling pair of theta grids by rotating
a common “parent” theta grid by the same
angle �i in opposite directions (thus, the
orientation of the parent grid was inter-
mediate between the orientations of the
siblings). Using this formulation, the ori-
entation �i of the moiré grid always re-
mained constant when the angle between
the theta grids was adjusted by changing
�i. By Equation 4, the orientation of the
parent grid must equal �i � 30° to produce
a moiré grid with orientation �i. Hence,
the orientations of the two siblings were
� � 30° � �i and � � 30° � �i, and the
rotation angle between the two theta grids
that formed the moiré grid was as follows:

	i � 2�i . (12)

Using this method for obtaining theta grids,
the firing rate of the ith moiré grid cell at
location r was given by the following:

Mi�r� � �Gi�R���i�r� � Gi�R���i�r�

� M�� � K, (13)

where Gi(R(��i)r) and Gi(R(��i)r) are
the ith pair of sibling theta grids, and all
other terms are exactly as in Equation 11
above. The siblings Gi(R(��i)r) and
Gi(R(��i)r) were derived by rotating a
common parent grid Gi(r) by equal angles
in opposite directions using the following
rotation matrix:

R��i� � � cos �i sin �i

�sin �i cos �i
�.

(14)

Both theta grids had the same vertex spac-
ing, which was always equal to � � 5.0 cm.
The parent grid Gi(r) was simulated using
the cosine grating model (see Materials
and Methods), and the orientation of the
ith parent grid was defined as �i � 30°, so
that the orientation of the ith moiré grid
Mi(r) would be equal to �i in accordance
with Equation 4.

Figure 5 (top row) shows five examples
of simulated moiré grid fields Mi(r) span-
ning the range of vertex spacings from 40
to 80 cm. To obtain this gradation of grid

spacings, the value of the �i parameter was incrementally
changed along the interval 3.58° � �i � 1.79°. It can be verified
from the rotational scaling rule (Eq. 3) that this range of separa-
tion angles between theta grids produces moiré grid spacings in
the range 40 
 Si� 
 80 cm when � � 5.0 cm. Hence, unlike in
layer II, in which grid cell spacings were controlled by the �i

parameter, the vertex spacing of layer III grid cells was controlled
by the �i parameter. If the �i parameter is graded along the dor-
soventral axis of dMEC, but the �i parameter is not, then this
could explain why layer II grid spacings are topographically or-
ganized along the dorsoventral axis, whereas layer III grid spac-

Figure 5. Simulations of layer III grid cells. Top row, Five moiré grid fields, Mi(r), produced by the rotational scaling rule (Eq. 3);
the separation angle (	i) between theta grids is shown above each plot, and the vertex spacing (Si�) of each moiré grid is shown
at the top left corner of each plot. Second row, A magnified inset of one moiré grid vertex, with three different horizontal cross
sections (a, b, and c) through the vertex. Third row, Magnified insets of the theta grids, with Gi(R(��i)r) plotted in red,
Gi(R(��i)r) plotted in green, and Mi(r) plotted in black. Fourth row, Simulated firing rates ( y-axis) of the moiré grid cell (black)
and theta grids (red and green) along three horizontal cross sections (columns a, b, and c). Fifth row, The phase of theta rhythm at
which Mi(r) peaks on each theta cycle for left-to-right traversals (gray arrows) and right-to-left traversals (black arrows). Lateral
phase shifting can be seen by comparing across columns a, b, and c. In column b, the rat passes slightly below the center of the
vertex, so Mi(r) fires at a slight phase shift from the middle of the theta cycle; in column c, the rat passes farther below the center
of the vertex, so Mi(r) fires at a large phase shift from the middle of the theta cycle; in column a, the rat passes above the center of
the vertex (farther from the center than in b but not as far as in c), so Mi(r) fires at a moderate phase shift from the middle of the
theta cycle (note that in a, the direction of the phase shift is opposite from b and c, because the rat is passing above the vertex center
rather than below it). Theta EEG is assumed to correspond to the green grid as in Figure 4.
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ings are not as rigidly organized along the dorsoventral axis (Sar-
golini et al., 2006a).

Figure 5 (second row) shows a magnified view of a single grid
vertex, and Figure 5 (third row) shows a magnified view of the
sibling theta grids that form the vertex, with Gi(R(��i)r) plotted
in red and Gi(R(��i)r) plotted in green; black regions show the
points of overlap between the theta grids, which are locations at
which the grid cell Mi(r) would fire action potentials. The phase
relationship between theta rhythm and the firing of layer III grid
cells can be inferred from this plot by assuming that the peaks and
troughs of the theta EEG correspond to the peaks and troughs of
Gi(R(��i)r), the grid plotted in green. Notice that the black
spots, at which the grid cell fires, remain at the same phase within
the theta rhythm on each traversal of a grid vertex in any direction
(although there is a lateral shift of the black spots, addressed
further below). To better illustrate this, Figure 5 (fourth row)
shows horizontal cross sections through the grid vertex at varying
distances from the vertex center (a, b, and c). In cross section, the
two theta grids become a pair of sinusoids with the same fre-
quency (red and green), and the moiré grid vertex becomes a
sequence of small bumps that together form a larger bump
(black). Figure 5 (bottom row) plots the phase of theta rhythm at
which the grid cell fires ( y-axis) at each position within the grid
vertex (x-axis) as the rat traverses the vertex in either direction.
The phase plot is always flat for both left-to-right traversals (gray
triangles) and right-to-left traversals (black triangles), showing that
the grid cell fires at the same theta phase throughout each traversal in
either direction; thus, phase precession does not occur.

Lateral phase shifting: a novel prediction of the model
Although phase precession does not occur for grid cells formed
by the rotational scaling rule, the phase at which the grid cell fires
does depend on where the rat passes through the vertex. Figure 5
shows that when the rat passes near the center of the vertex (row
b), the grid cell fires at a constant phase near the middle of the
theta cycle. When the rat passes through the edges of the vertex,
the grid cell fires early in the theta cycle at one edge and late in
theta cycle at the other edge (rows a and c). Consequently, the
grid cell exhibits lateral phase shifting from the left to the right
edges of the grid vertex, rather than from the front to the back of
the vertex as in classical phase precession.

This lateral phase-shifting effect is a prediction of the model
that can be tested by recording grid cells from dMEC in an open-
field environment. If some dMEC grid cells are formed by the
rotational scaling rule, then these cells should exhibit lateral
phase shifting of their spikes with respect to the local theta EEG.
Hence, whenever the rat passes through a grid vertex on one side
(e.g., the left edge), the grid cell’s spikes should occur at a partic-
ular phase within the theta cycle (e.g., early). If the rat passes
through a vertex of the same grid cell on the opposite side of its
center (e.g., the right edge), then the grid cell’s spikes will occur at
the opposite phase within the theta cycle (e.g., late). If this pre-
diction were to be verified, it would provide very strong evidence
that some dMEC grids are indeed formed by the rotational scal-
ing rule and thereby support our hypothesis that theta rhythm is
produced by grid fields with small vertex spacings.

Simultaneous forward and lateral phase shifting
Some dMEC grids might be moiré grids which are formed by the
generalized scaling rule of Equation 5, so that they are con-
structed from theta grids that differ both in their orientation and
their vertex spacing (rather than just one or the other, as in Figs.
4 and 5). In such cases, grid cells would simultaneously exhibit

standard phase precession (as in Fig. 4) as well as lateral phase
shifting (as in Fig. 5). Hence, grid cells in dMEC might exhibit
both forward and lateral phase shifting at the same time, rather
than just one or the other, depending on how they are formed
from theta grids.

Building place cells from grid cells
Place cells in the hippocampus receive inputs from grid cells in
dMEC (Fyhn et al., 2004), so place cells could form their location-
specific firing fields by summing inputs from dMEC grid cells
(Fuhs and Touretzky, 2006; McNaughton et al., 2006, Solstad et
al., 2006). To simulate location-specific firing in place cells re-
ceiving convergent input from a population of moiré grid cells,
we used a two-stage feedforward model (Fig. 6a). In the first
stage, sibling pairs of theta grids were combined to form moiré
grid cells, Mi(r). In the second stage, outputs from Mi(r) were
linearly summed to create a place cell firing field according to the
following equation:

P�r� � ��
i�1

N

wiMi�r� � P��

, (15)

where r � (x, y) denotes an arbitrary Cartesian position within a
simulated firing rate map, P(r) is the output of the model, which
corresponds to the mean firing rate of a simulated place cell at
location r, Mi(r) is the mean firing rate at location r of the ith
moiré grid cell, N is the number of grid cells projecting onto the
simulated place cell, and w1, w2, � � �, wN are the weighting coeffi-
cients of synaptic inputs onto the place cell from each grid moiré
cell. For place cell simulations presented here, the activation
threshold P was set equal to 25% of the maximum value of
�i � 1

N wiMi(r) over all locations r.
Input to the feedforward model was provided by a basis set

consisting of moiré grid cells, Mi(r). Moiré grid cells can be gen-
erated using either the length scaling rule to simulate layer II grid
cells (Eq. 11) or the rotational scaling rule to simulate layer III
grid cells (Eq. 13). For simplicity, place cell simulations presented
here used a basis set of moiré grids formed only by the length
scaling rule (Eq. 11). Parameters of the simulated grid cell popu-
lation Mi(r) were assigned randomly from distributions match-
ing the spatial tuning properties of real grid cells in layer II of
dMEC. Thus, grid orientations were distributed uniformly in the
range 0° 
 � � 60°, and spatial phases of each grid field were
uniformly distributed throughout the plane. Vertex spacings of
the population Mi(r) were distributed uniformly in the range
30 � Si� � 80 cm; this was achieved by setting � � 5.0 cm (as in
Fig. 4) and randomly assigning vertex spacing differences from
the interval 0.2 � �i � 0.0667. The number of grid cells in the
population (N) was varied in different simulations to study how
the size of the basis set influenced the fitting accuracy of the
model.

The weighting coefficients w1, w2, � � �, wN were chosen to
minimize the mean square error between the output of the
model, P(r), and a target function, T(r), which was the firing rate
map of a real hippocampal place cell. An approximation of the
best fit for the coefficients was obtained by ignoring the nonlin-
earity in Equation 15 and setting w1, w2, � � �, wN as follows:

�w1
·
·
·

wN

� � �m1 , · · ·, mN�†t, (16)

where † denotes Moore–Penrose pseudoinverse, t is a column
vector obtained from T(r) by concatenating the firing rate values
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for all of the spatial pixel bins that were visited by the rat, and
[m1, � � �, mN] is a matrix with each column mi obtained from
Mi(r) in the same manner as t. The solution for the optimal
weight vector is unique as long as the matrix is full rank, which is
typically the case when there are more spatial pixels than the
number of grid cells. In this solution, each weight wi can be either
positive or negative. In a biologically plausible implementation of
the model, inhibitory projections from grid cells onto place cells
would be mediated by an intermediate layer of feedforward in-
hibitory interneurons. However, for simplicity, the implementa-
tion used here consists of a single feedforward layer in which
synaptic weights can assume both positive and negative values
derived directly from Equation 16.

Simulation results
Figure 6b shows examples of path plots
and firing rate maps from real CA1 place
cells recorded in three different spatial en-
vironments: a rectangle, a circle, and a
square. The firing rate map of each place
cell was used to derive a target vector, t,
from which the weighting coefficients of
the model were derived using Equation 16.
Before fitting, the target firing rate map t
of each place cell was resampled at a higher
pixel resolution to accurately represent
the high spatial frequencies of the theta
grids that provided input to the first stage
of the model (see Materials and Methods).
Figure 6c shows simulated firing rate maps
produced by the model using different
numbers of basis grids at the input stage:
N � 100, 50, 10, or 5 grid cells. When the
size of the basis set was small, the model
produced only a crude approximation of
the firing rate map of the place cell. How-
ever, as the size of the basis set increased,
simulated firing rate maps became more
similar to the target maps.

Scale-invariant place fields
When the boundaries of a familiar spatial
environment are expanded or contracted,
place cells can sometimes rescale the size
and position of their firing fields to match
the new dimensions the environment
(Muller and Kubie, 1987; O’Keefe and
Burgess, 1996; Sharp, 1999; Huxter et al.,
2003). This suggests that some place cells
may encode the same relative position
within a familiar environment, regardless
of the size of the environment. That is,
some place cells may encode scale-
invariant representations of specific loca-
tions within a familiar environment.

This rescaling phenomenon is illus-
trated by place cell recording data shown
in Figures 7a and 8a. Place cells were re-
corded from dorsal CA1 while rats foraged
in an apparatus called the yin–yang maze
(an adjustable cylinder with flexible walls
that could be expanded or contracted to
adjust the maze diameter during the re-
cording session without removing the rat

from the maze) (Figs. 7d, 8d). Figure 7a shows three place cells
that were recorded during contractions of the maze; these cells
were recorded while the maze was set to a large diameter (150
cm), and then the maze was contracted to the small diameter (75
cm) without removing the rat, and the same place cells were
recorded again in the smaller maze. Figure 8a shows similar data
from three place cells that were recorded during expansions of the
maze (first in the small maze and then in the large maze). It can be
seen from Figures 7a and 8a that when the maze was resized, the
size and position of place cell firing fields changed nearly propor-
tionally along with the size of the maze, as in previous studies
showing that CA1 place cells can rescale the size of their firing
fields when the dimensions of a familiar environment are altered

Figure 6. Building place cells from grid cells. a, Diagram of the two-stage model of place cells. b, Path plots (left) and firing rate
maps (right) for three real place cells that were recorded in rectangular, circular, and square environments. c, Simulated firing rate
maps produced by the two-stage model (see Eq. 15) with different numbers of grid cells in the basis set (N � 100, 50, 10, or 5).
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(Muller and Kubie, 1987; O’Keefe and Burgess, 1996; Sharp,
1999; Huxter et al., 2003).

How can place cells rescale their firing fields in response to
resizing the dimensions of a familiar environment? One theory
has proposed that place cells may receive inputs that encode
“boundary vectors” representing distances between the rat and
the boundaries of its environment (O’Keefe and Burgess, 1996;
Barry et al., 2006). This theory can account for a variety of differ-
ent place cell responses that are observed when boundaries are
inserted, removed, or resized in a familiar environment. How-
ever, if place cells derive their location-specific firing properties
by summing inputs from grid cells (rather than boundary vec-
tors), then an alternative explanation for place field rescaling may
be required. Two such alternative explanations will be considered
below.

Place field rescaling by weight refitting
One possibility is that place cells might rescale their firing fields
by “refitting” the weighting coefficients of their grid cell inputs.
That is, each place cell might change the strengths of its synaptic
inputs from grid cells when the environment is resized, thereby
producing a rescaled version of its original place field. To inves-
tigate whether such weight refitting can account for place field
rescaling, firing rate maps from recording sessions in the yin–
yang maze were used to generate target vectors, t, for fitting the
weight coefficients of our feedforward model (exactly as in the
simulations of Fig. 6c above). Because each place cell was re-
corded twice in the yin–yang maze (once in the large and once in
the small maze configuration), there were two different target
vectors for each cell: tS (small maze) and tL (large maze). Fitting
the model to these two target vectors (using Equation 16) yielded
two different sets of weighting coefficients for each place cell:
wS � (w1

S, w2
S, � � �, wN

S ) (small maze) and wL � (w1
L, w2

L, � � �, wN
L )

(large maze). Input to the model was provided by a fixed basis set
of N � 200 simulated grid cells with randomly chosen parameters
as in simulations above.

Figures 7b and 8b show examples of the model’s output, which
very accurately reproduced the target maps of cells recorded in
both the small and large maze configurations, using a separate
weight vector (wS and wL) for each size of the maze. These simu-
lations results suggest that in principle, it is possible for place cells
to rescale their firing fields by refitting their weighting coeffi-
cients when a familiar environment is resized. However, there is a
drawback to this weight-refitting model of place field rescaling: it
has one free parameter (the weight coefficient) for each grid cell
in the basis set. For large basis sets, the number of free parameters
in the model could grow dauntingly large, and it is unclear how a
place cell could recompute its input weight vector to encode ar-
bitrary changes in the size of an environment over a continuous
range. We shall now propose an alternative model of place field
rescaling which exploits moiré grid fields. Unlike the weight-
refitting method, the moiré scaling model proposed below has
only three free parameters no matter how many grid cells there
are in the basis set.

Moiré model of place field rescaling
Consider a place field P(r) that is constructed from a basis set of
moiré grids Mi(r), as specified by Equation 15. If all of the moiré
grids Mi(r) in the basis set are rescaled in unison by a common
scaling factor k about a common scaling origin (xS, yS), then P(r)
will be rescaled by the same factor k about the same scaling origin
(xS, yS). Therefore, a biological mechanism for rescaling the pop-
ulation of moiré grids would automatically provide a biological
mechanism for rescaling place fields.

Recall that in the two-stage moiré model of place cells that was
presented above (Fig. 6a), the first stage of the model combined

Figure 8. Place field expansions in the yin–yang maze. The yin–yang maze was expanded
from the small (75 cm) to the large (150 cm) configuration during the recording session. a,
Firing rate maps are shown for three different place cells recorded before and after maze ex-
pansion. b, Simulated firing rate maps constructed from a basis set of 200 grid cells, using
different weight vectors (wS and wL) for the small and large rate maps. c, Simulated firing rate
maps produced by the moiré model (200 grid cells); coefficients were fit to the small (preex-
pansion) firing rate map (gray background), and the large map was then derived by increasing
k from 1.0 to 2.0 without changing the coefficients. d, Overhead view shows how the maze was
expanded during the recording session.

Figure 7. Place field contractions in the yin–yang maze. The yin–yang maze was contracted
from the large (150 cm) to the small (75 cm) configuration during the recording session. a,
Firing rate maps are shown for three different place cells recorded before and after maze con-
traction. b, Simulated firing rate maps constructed from a basis set of 200 grid cells, using
different weight vectors (wS and wL) for the small and large rate maps. c, Simulated firing rate
maps produced by the moiré model (200 grid cells); coefficients were fit to the large (precon-
traction) firing rate map (gray background), and the small map was then derived by reducing k
from 1.0 to 0.5 without changing the coefficients. d, Overhead view shows how the maze was
contracted during the recording session.
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pairs of theta grids to produce moiré grids in accordance with the
length scaling rule (Eq. 11). Each moiré grid cell Mi(r) was
formed by summing input from two theta grids, Gi(r) and Gi((1
� �i)r). The vertex spacing of Gi(r) was fixed at � � 5.0 cm, and
the vertex spacings of Mi(r) were determined by �i. An interesting
property of moiré grids constructed in this way is that if all of the
�i parameters are divided by the same scaling factor k, then the
vertex spacings Si� of all of the moiré grids Mi(r) become rescaled
in unison, approximately by the factor k. This principle can be
implemented in our model by a slight modification of Equation
11, in which we substitute �i with �i/k as follows:

Mi�r� � �Gi�r� � Gi��1 � �i/k�r� � M�� � K. (17)

After this modification, the vertex spacing of Mi(r) is still given by
Si�, but now Si is obtained by substituting �i/k for �i in the length
scaling rule (Eq. 2). When moiré grids are generated using Equa-
tion 17, the spatial scale of all Mi(r) can be regulated in unison by
a single scaling parameter k.

Rescaling of Mi(r) by k is approximate and not exact, as ex-
plained in Appendix B. Figure 9 shows how adjusting the value of

k affects the vertex spacings of moiré grids
produced by Equation 17. Adjusting k
does not alter the orientations or the rela-
tive phases of Mi(r), as long as the scaling
axis is fixed at the same point for all Mi(r).
In Figure 9, the scaling origin is located at
the center of each square plot. Hence, ad-
justing the parameter k can rescale the en-
tire population of moiré grids in unison. If
we simulate a place cell P(r) as a sum of
weighted inputs (Eq. 15) from scalable
moiré grid cells Mi(r) that are generated
by Equation 17, then the simulated place
field will also rescale along with k. Hence, a
place field constructed from a scalable ba-
sis set of moiré grids can be rescaled by
setting only three free parameters: the
scaling factor k and the x and y coordinates
of the scaling origin (xS, yS). Unlike the
weight-refitting model, the number of free
parameters for rescaling does not increase
with the size of the basis set.

A two-stage moiré interference model
was used to simulate the rescaling of place
fields in experiments with the yin–yang
maze (Figs. 7c, 8c). Input to the first stage
of the model was provided by N � 200
pairs of theta grids, with each pair interfer-
ing to form a unique moiré grid Mi(r) as
described by Equation 17; the scaling pa-
rameter was initially set to k � 1.0. The
resulting population of moiré grids Mi(r)
was assigned weighting coefficients wi us-
ing the pseudoinverse method defined by
Equation 16 to obtain the optimal fit of the
model’s output to a target vector t. The
target vector t was derived from the firing
rate map of a real place cell recorded in the
yin–yang maze before the maze was re-
sized. Thus, for place cells recorded during
contraction sessions in the yin–yang maze
(Fig. 7a), t was derived from the rate map
of the place cell in the large cylinder before

contraction of the maze, and for cells recorded during expansion
sessions (Fig. 8a), t was derived from the rate map of the place cell
in the small cylinder before expansion of the maze. Before fitting,
the target firing rate map t of each place cell was resampled at a
higher pixel resolution to accurately represent the high spatial
frequencies of the theta grids that provided input to the first stage
of the model (see Materials and Methods).

After fitting the weight coefficients, the model’s output P(r)
was computed with the moiré scaling factor set to k � 1.0 (the
same scaling factor that was used during fitting sessions). The
output of the model accurately reproduced the original target
firing rate maps of the place cells before resizing of the maze (Figs.
7c, 8c). To simulate the shrinking of place fields in response to
contraction of the yin–yang maze, the moiré scaling factor was
reset to k � 0.5 without changing the weight coefficients of the
moiré grids. This caused all of the moiré grids Mi(r) to shrink in
unison by a factor of two (as illustrated in Fig. 9), and conse-
quently, the simulated place field P(r) shrunk by the same
amount (Fig. 7c). When simulated place fields P(r) were con-
tracted in this way, the shrunken output functions of the model

Figure 9. Grid field rescaling. Three moiré grid fields (middle column, gray background) were simulated by the length scaling
rule with the scaling parameter set to k � 1 (Eq. 17). When the scaling parameter was reduced to k � 0.5, grids rescaled by
approximately halving their vertex spacings (left column). When the scaling parameter was increased to k � 2.0, grids rescaled by
approximately doubling their vertex spacings (right column). The vertex spacing of the grid field is shown in the top left corner of
each plot; rescaling is approximate rather than exact as explained in Appendix B.
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produced good approximations of the actual firing rate maps that
were observed for these same cells when they were recorded in the
small cylinder after maze contraction (Fig. 7, compare a, c), al-
though the weight coefficients of the model were fit only to the
firing rate map in the large maze and not the small maze. The
growth of place fields in response to expansion of the maze was
simulated in a similar manner, except that the moiré scaling fac-
tor was changed from k � 1.0 to k � 2.0. As shown in Figure 7c,
this caused the output function of the model to grow by a factor of
two, and the resulting expanded firing rate maps were similar to
the real firing rate maps observed for these cells after the yin–yang
maze was expanded (Fig. 8, compare a, c).

A biological mechanism for grid field rescaling
Our mathematical model of place field rescaling postulates that
dMEC grid cells can alter their grid spacings by adjusting a nu-
merical scaling parameter k. However, can this mathematical
model be translated into a biological model? What would the
parameter k correspond to in the brain of the rat? To answer this
question, we must first address how theta grids might be formed
in the rat brain.

In our simulations, theta grids Gi(r) and Gi((1 � �i/k)r) were
modeled as a sum of three cosine gratings oriented at 60° angles
from one another (see Materials and Methods), but this cosine
grating model was chosen for computational efficiency and was
not intended to provide an accurate description of how real theta
grid cells produce their hexagonal firing fields in the rat brain. It
has been proposed that the hexagonal grid fields in dMEC are
produced by a recurrent attractor network that performs path
integration of the rat’s movements through space (O’Keefe and
Burgess, 2005; Fuhs and Touretzky, 2006; McNaughton et al.,
2006). This attractor network can be conceptualized as a sheet of
neurons with either spherical (Fuhs and Touretzky, 2006) or
toroidal (McNaughton et al., 2006) topology, and the stable states
of the attractor network are formed by a “bump” of neural activ-
ity that is pushed across the sheet by a velocity signal that is
exactly proportional to the speed and direction of the rat’s move-
ments through space. The vertex spacing of a grid field produced
by such an attractor network would be controlled by the input gain
of the velocity signal that pushes the bump (Maurer et al., 2005). For
example, if the input gain of the velocity signal were reduced by
one-half, then the same velocity input would only push the attractor
bump one-half as far, and this would consequently double the vertex
spacing of the grid field produced by the network.

Although it has previously been proposed that dMEC grid
cells may be interconnected to form a path integration network,
our present model suggests that the attractor network might in-
stead be composed of “theta grid cells” with smaller vertex spac-
ings than dMEC grid cells; dMEC grids would then be formed by
moiré interference between theta grids produced by the output
from the attractor network. A dMEC grid would be formed by
moiré interference between two theta grids residing in different
attractor networks, N1 and N2, which produce a pair of theta grids
with slightly different vertex spacings. If the velocity signal that
pushes the bump through N1 has gain g1, then the velocity signal
that pushes the bump through N2 should have gain g2 � g1(1 �
�i/k) to implement the difference in vertex spacings. That is, the
gain of velocity signal that pushes the bump through the attractor
network of one theta grid should differ from the velocity gain of
the attractor network of the other theta grid by an additive factor.
If this additive factor is divisively modulated by k, then k will
rescale the spacing of the moiré grid formed by the theta grids,
subject to the constraints discussed in Appendix B. Hence, divi-

sive modulation of the velocity gain input to a path integration
network suggests a neurobiologically plausible way to implement
changes in the scaling factor k. If the gain of the velocity input
were modulated by running speed, then a similar mechanism
could account for modulation of the vertex spacing of theta grids
as a function of running speed as specified in Equations 8 and 9.

In addition to the scaling parameter k, the moiré scaling cir-
cuit would also need to set the x and y coordinates of the scaling
origin, (xS, yS). In the simulations of place field rescaling pre-
sented here (Figs. 7c, 8c), we assumed that the scaling origin was
centered in the middle of the yin–yang maze, because this was the
center point around which the apparatus was scaled during the
recording experiments. Our simulations took for granted that
the rat has some way of identifying this center point as the origin
of the scaling axis, and we did not explicitly model the process by
which this occurs. However, in real life, this is not a trivial prob-
lem, and mechanisms for identifying the scaling origin must be
considered in future studies. Additionally, our model does not
consider cases in which the size of the environment changes
asymmetrically along one dimension but not the other, in which
case place cells sometimes asymmetrically warp their firing fields
or split their fields into subfields that are attached to different
boundaries (O’Keefe and Burgess, 1996; Hartley et al., 2000;
Barry et al., 2006). These effects might be accounted for in our
model either by asymmetrically adjusting the different direc-
tional components of the velocity input to the attractor network
[a toroidal attractor model with independent representations of
the different directional velocity components has been proposed
(McNaughton et al., 2006)] or by affixing the alignment of dif-
ferent theta grids to different boundaries, much as boundary vec-
tors are proposed to be affixed to specific boundaries in previous
models of place fields rescaling (Barry et al., 2006).

Scale-free representations of visual images
Our simulations of place cell rescaling (Figs. 7, 8) demonstrated
that moiré grids can serve as scalable basis functions for con-
structing scale-free memory representations of a spatial location.
In this section, we shall illustrate the generality of this moiré
scaling principle by showing that it can be used to construct
size-invariant representations of a visual image. The simulations
presented in this section will also demonstrate that rescaling can
be implemented by the rotational scaling rule as well as the length
scaling rule.

In humans and nonhuman primates, the ability to identify
and remember familiar images involves the medial temporal lobe
memory system, which includes the hippocampus and entorhi-
nal cortex (Fried et al., 1997; Kreiman et al., 2000; Stark and
Squire, 2000; Brown and Aggleton, 2001; Manns et al., 2003;
Quiroga et al., 2005). Therefore, the primate entorhinal cortex
(in which grid cells are found in rats) may contain circuitry that is
important for constructing visual memory representations. Vi-
sual memories commonly exhibit robust scale invariance, so that
a resized version of a previously encountered visual stimulus can
easily be recognized as familiar, despite the fact that its size has
changed (Jolicoeur, 1987; Biederman and Cooper, 1992). We
speculate that scale-invariant memory representations of visual
images might be constructed from moiré grids in the medial
temporal lobe memory system, using principles similar to those
introduced above to simulate scale-invariant place fields.

Scale-free representation of a visual image by the moiré model
To build a memory representation of a visual image out of moiré
grids, we used a two-stage feedforward model (Fig. 10). Recall
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that in the place cell simulations above (Figs. 6 – 8), the output
function P(r) of the two-stage model defined the firing rate of a
simulated place cell at every location r within a spatial environ-
ment (Eq. 15). In the simulations of visual images described be-
low, the output of the model instead represents the grayscale
intensity of an image at every pixel location r within the visual
field (Fig. 10). Hence, in both versions of the model, r represents
a set of points on a two-dimensional surface: locations on the
floor of an environment for place cell simulations or pixels within
the visual field for image simulations.

In the place cell simulations above, the population of moiré
grids Mi(r) was produced from pairs of theta grids using the
length scaling rule (Fig. 6a, first stage of the two-stage model),
which we believe corresponds to the manner in which layer II grid
cells are formed in dMEC (Fig. 4). In the visual image simulations
presented below, the population of moiré grids Mi(r) was instead
produced from pairs of theta grids using the rotational scaling
rule (Fig. 10, first stage of the two-stage model at top right), which
we believe corresponds to the manner in which layer III grid cells
are formed in dMEC (Fig. 5). We used different scaling rules for
the place field and visual image simulations merely to demon-

strate that both the length and rotational scaling rules are capable
of producing scale-invariant memory representations.

To implement uniform rescaling of a population of moiré
grids Mi(r) produced by the rotational scaling rule, it is necessary
to modify Equation 13 by inserting a scaling factor k. This can be
achieved by substituting angle �i with �i/k to obtain the
following:

Mi�r� � �Gi�R���i/k�r� � Gi�R���i/k�r� � M�� � K,

(18)

where all terms other than k are identical to those in Equation 13
above. The substitution of �i with �i/k does not produce perfect
rescaling of the moiré grids Mi(r) in unison with k, but only
approximate rescaling (see Appendix B). To achieve perfect
rescaling, �i must be replaced with a function much more com-
plex than �i/k. However, for the simulations presented here, the
approximation �i/k was sufficient to produce very good results,
so we used �i/k for simplicity.

For visual image simulations, input to the model was provided
by a population of “visual grid cells” that tiled the visual field with
hexagonal lattices. To our knowledge, cells that tile the visual field
with hexagonal grids have not yet been observed in neurophysi-
ological studies of the visual system (although it is worth noting
that the retina itself is a hexagonal lattice of photoreceptors).
Thus, we cannot make any strong predictions about exactly
which neurons in the brain might correspond to the visual grid
cells in the image simulations presented here, other than to spec-
ulate that neurons with lattice-like receptive fields may exist in
some parts of the visual pathway that are involved in storing
scale-invariant memories of familiar images, possibly in entorhi-
nal areas that are homologous to dMEC in rats.

The target function for visual image simulations was a gray-
scale picture of a face measuring 272 � 272 pixels (Fig. 10). To
construct a memory of the target image out of grid fields, input to
the first stage of the model was provided by 3000 theta grids, with
each theta grid generated by the cosine grating model described
in Materials and Methods. The theta grids were grouped into
pairs that provided input to N � 1500 moiré grid cells, Mi(r),
whose activity levels were computed using Equation 18. The ver-
tex spacing length was identical (� � 4.6 pixels) for all 3000 theta
grids that provided input to the model. Hence, the vertex spacing
of each Mi(r) was determined solely by the angle of rotation
between the pair of theta grids that provided its input.

The vertex spacings Si� of moiré grids Mi(r) were uniformly
random in the range 15 � Si� � 120 pixels; this distribution of
vertex spacings for the moiré grids was achieved by randomly
assigning the sibling grid counter-rotation angles to values in the
range �min � �i � �max, where �min � 2.2° and �max � 17.7°. It
may be verified that Si� ranges between 15 and 120 pixels for these
parameter choices by assigning � � 4.6 pixels and substituting 2�min

or 2�max for 	 in the rotational scaling rule (Eq. 3); this produces Si�
between 15 and 120 pixels. The angular orientations of Mi(r) were
uniformly random in the range 0° 
 �i � 60°.

In the second stage of the model (Fig. 10, top right), the moiré
grids Mi(r) were linearly summed using the following equation:

��r� � �
i�1

N

wiMi�r�, (19)

where �(r) is the output of the model, which recalls a “memory”
of the stored grayscale image. Unlike place cell simulations (Eq.

Figure 10. Scale-invariant representation of a visual image by moiré grids. a, Two-stage
model for constructing image representations. b, The target image was a 272 � 272 pixel
grayscale image (bottom left). Weighting coefficients for a basis set of 1500 grid fields were fit
to the target image with k � 1.0. Then, a half-sized image was produced by setting k � 0.5,
and a double-sized image was produced by setting k � 2.0. In these simulations, moiré grids
were constructed using the rotational scaling rule, and the k parameter modulated the angle
between the sibling grid pair that formed each moiré grid.
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15), there was no thresholding of �(r) in the visual image simu-
lations. The population of moiré grids, Mi(r), was assigned
weighting coefficients wi using the pseudoinverse method (Eq.
16), as in place cell simulations above. Weights were chosen to
obtain the optimal fit of the output of the model to the grayscale
target image, from which the target vector t was derived. The
scaling parameter was set to k � 1.0 while fitting the target image
(Eq. 18). After the optimal weight coefficients had been com-
puted, the output of the model, �(r), produced an image that
clearly resembled the target image, as shown in Figure 10. The
graininess in the output image is caused by the high spatial fre-
quency of the input grids, just as the “speckles” in simulated place
cell firing rate maps were produced by the high-frequency theta
grids in place cell simulations above.

As in simulations with the place cell model, it was possible to
rescale the entire output image simply by adjusting the scaling
parameter k while the weighting coefficients wi remained fixed at
constant values. Figure 10 shows a double-sized output image
(544 � 544 pixels) that was produced by increasing the scaling
factor to k � 2.0 and a half-sized image (136 � 136 pixels) that
was produced by decreasing the scaling factor to k � 0.5. These
simulations demonstrate that if a visual image is encoded as a
linear combination of scalable moiré grids, then the image is
automatically represented across infinite range of different sizes
(the size range has a lower bound but no upper bound, as can be
seen from the scaling functions illustrated in Figs. 2c and 3d).
Even for very large basis sets that consist of thousands of grid cells
(as in our visual image simulations), the scale of the stored image
may be adjusted easily by setting only three parameters: the scal-
ing parameter k and the x and y coordinates of the scaling origin.

Discussion
Here, we have shown that pairs of hexagonal grid fields can in-
terfere with one another to form moiré grids that replicate them-
selves over a broad range of spatial scales. Grid cells in dMEC can
be simulated as moiré grids that are formed by inputs from
smaller theta grids (Figs. 2–5). Outputs from dMEC grid cells can
be combined to form yet larger moiré grids, suggesting that grid
cells with very large vertex spacings might be found downstream
from dMEC grid cells in the rat brain. Outputs from dMEC grid
cells can be summed to construct hippocampal place cells (Fig.
6), as shown in previous studies (McNaughton et al., 2006; Sols-
tad et al., 2006). The scaling properties of moiré grids may help to
explain how place cells rescale their firing fields when a familiar
environment is resized (Figs. 7–9), and we have shown that a
population of moiré grids can serve as a basis set for constructing
size-invariant representations of visual images (Fig. 10). Based on
these findings, we speculate that an important function of grid
cells might be to generate scalable basis functions that can serve as
building blocks for constructing size-invariant memory repre-
sentations of familiar stimuli.

What is theta rhythm?
Movement-related theta oscillations have long been known to
exist in the rat brain (Vanderwolf, 1969), and numerous theories
have been proposed to explain the functional significance of theta
rhythm (Buzsaki, 2005; Jensen and Lisman, 1996; Hasselmo and
Eichenbaum, 2005). Here, we have proposed that movement-
related theta rhythm is produced by small hexagonal grid fields
that provide the elementary building blocks from which scale-
invariant memory representations are formed. Our model can be
regarded as an extension of previous dual oscillator models,
which explain phase precession by place cells and grid cells as a

phenomenon that emerges from interference between sinusoids
(O’Keefe and Recce, 1993; Lengyel et al., 2003; O’Keefe and Bur-
gess, 2005). Like these previous models, our theory also explains
phase precession (as well as spatial tuning of place cells and grid
cells) by interference between periodic signals, but here the peri-
odic signals are planar grids rather than linear sinusoids (Burgess
et al., 2005).

O’Keefe and Burgess (2005) observed that the periodicity of
dMEC grids is similar to the periodicity of sinusoidal elements
that comprise dual oscillator models, and they predicted that
dMEC grid cells might therefore exhibit phase precession as the
rat traverses each vertex of a dMEC grid. This prediction was later
confirmed by data showing that grid cells in layer II of dMEC
exhibit phase precession (Hafting et al., 2006). In our model, this
phase precession was explained by the length scaling rule (Eq. 2),
which can be regarded as a planar extension of the dual oscillator
theory (Fig. 4). However, it has also been reported that some
dMEC grid cells, especially in layer III, do not exhibit theta phase
precession (Hafting et al., 2006). To account for these findings,
our model hypothesizes that some dMEC grids might be formed
from theta grids that differ in their angular orientation rather
than their vertex spacing (see the rotational scaling rule, Equation
3). This novel hypothesis generates an experimentally testable
prediction that some grid cells should exhibit a previously unob-
served form of lateral phase shifting along the dimension perpen-
dicular to the rat’s direction of travel (rather than parallel to the
direction of travel, as in classical phase precession). Thus, as a rat
passes through each vertex of a dMEC grid formed by rotational
scaling, the grid cell should fire at a phase of theta rhythm that
depends on the rat’s lateral position within the vertex (Fig. 5).
Such lateral phase shifting would only be observable in a two-
dimensional environment (an open field but not a linear track),
because it requires a degree of freedom along the dimension per-
pendicular to the rat’s direction of travel. Some dMEC grids
might be formed from theta grids that differ in both their vertex
spacing and angular orientation (see the generalized scaling rule
of Equation 5), and these cells would simultaneously exhibit stan-
dard phase precession and lateral phase shifting.

Attractor–integrator networks for producing theta grids
To reconcile the fact that dMEC grids have stable vertex spacings
with the fact that the frequency of theta rhythm is nearly constant
at different running speeds, our model proposes that the vertex
spacing of theta grids changes systematically with running speed.
It is therefore incumbent on our theory to propose a biological
mechanism for generating theta grids with speed-dependent ver-
tex spacings.

It has been hypothesized that grid cell firing fields in dMEC
are produced by an attractor network that performs path integra-
tion of the rat’s movements through its environment (O’Keefe
and Burgess, 2005; Fuhs and Touretzky, 2006; McNaughton et
al., 2006). Here, we have proposed an alternative hypothesis, that
dMEC grids are formed by moiré interference between theta
grids. However, theta grids might be generated by the same type
of attractor–integrator network that has previously been pro-
posed to generate dMEC grids, except that the grid fields pro-
duced by the path integrator would be smaller than previously
assumed, and their vertex spacings would vary with running
speed to keep the frequency of theta rhythm constant. The vertex
spacing of theta grids formed by such a path integration network
would depend on the gain function of the velocity input to the
integrator (Maurer et al., 2005; McNaughton et al., 2006). A unity
gain function would be required to produce theta grids with con-
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stant vertex spacings; any other gain function would produce
theta grids with variable vertex spacings. Hence, it is not at all
unreasonable to propose that a path integration network might
produce grid fields with variable vertex spacings. Our model spe-
cifically proposes that the gain function of the velocity input
obeys relationships similar to Equations 8 and 9 (or, alternatively,
mechanisms outlined in Appendix A), so that moiré grids formed
from theta grids will have constant vertex spacings at all running
speeds.

Where might the theta grid path integrator reside in the rat
brain? Production and synchronization of theta rhythm involves
an ascending pathway from the brainstem to the mammillary
nuclei, which then ascends through the medial septum and diag-
onal band to reach the hippocampus and limbic cortex (Vertes
and Kocsis, 1997; Pan and McNaughton, 2002). Hence, the mam-
millary complex seems well positioned to contain a theta path
integration network, because it receives afferent inputs from
brainstem and vestibular nuclei that encode velocity information
(Shibata, 1987; Gonzalo-Ruiz et al., 1992) and sends efferent out-
puts to the septohippocampal system that participate in regulat-
ing theta oscillations. Interestingly, the lateral mammillary nuclei
appear to contain critical components of an attractor network
that performs path integration of head-turning movements to
produce head-direction cells (Sharp et al., 2001). Neighboring
circuits in the medial and supramammillary nuclei might thus
contain similar path integration networks for producing theta
grids, which might explain why these areas play an important role
in generating the theta rhythm.

Grid field rescaling
Our model of place field rescaling (Figs. 7, 8) predicts that when
a familiar environment is resized, moiré grid cells should rescale
their grid spacings along with the size of the environment (Fig. 9).
However, contradicting this prediction, Hafting et al. (2005) have
reported that grid cells in layer II of dMEC did not rescale their
grid fields when rats were moved back and forth between large- (2
m) and small (1 m)-diameter cylinders with similar visual fea-
tures. Instead, layer II dMEC grid cells maintained the same ver-
tex spacing in both cylinders. However, layer III grid cells were
not recorded during these rescaling experiments, and because
grid cells in layers II and III have significantly different firing
properties (Hafting et al., 2006; Sargolini et al., 2006a), it is pos-
sible that layer III grid cells might show a stronger tendency than
layer II cells to rescale their grid fields when the size of the cylin-
der is altered. Indeed, recent experiments have reported that ma-
nipulations of the environment can in fact cause changes in the
vertex spacing of grid cells in layer III of dMEC (Fyhn et al., 2006).
It has also been reported that grid cells exist in other areas of the
rat brain in addition to dMEC (Sargolini et al., 2006b). If the rat
brain contains diverse grid cell populations residing in different
cortical layers and different anatomical regions, then some of
these populations may rescale their firing fields when an environ-
ment is resized (as in our simulations), whereas other popula-
tions might maintain fixed vertex spacings that do not rescale
with the environment (as reported by Hafting et al., 2005). In this
way, different grid cell populations might offer competing inter-
pretations of the same spatial environment to the hippocampal
network. Our model strongly predicts that some subpopulations
of grid cells should rescale in unison when a familiar environ-
ment is resized (Fig. 9), but the model does not predict that all
grid cells must behave in this manner, so the findings of Hafting
et al. (2005) do not strongly contradict the predictions of the
model.

Appendix
A. Constant dMEC grid spacings from speed-dependent theta
grid orientations
Moiré grids with constant vertex spacing can be constructed from
two theta grids with speed-varying vertex spacings. Equation 9
provides a way to do this in the special case in which the two theta
grids have identical orientations and different vertex spacings. In
the opposite case, in which the theta grids differ in their angular
orientation but not their vertex spacings, a constant moiré grid
spacing can be achieved if the angle between the theta grids varies
systematically with running speed. Suppose a moiré grid is pro-
duced by interference between two theta grids, G1 and G2, which
have identical speed-dependent vertex spacings �(V). If �(V) �
V/f, then theta oscillations produced by G1 and G2 will have the
same frequency f at all running speeds (similar to Eq. 8). Now
suppose that G1 and G2 have different angular orientations, de-
noted �1(V) and �2(V), which also depend on running speed.
The difference in angular orientations between the theta grids
may be denoted as 	(V) � ��1(V) � �2(V)�. The vertex spacing of
the moiré grid will be S�(V), where the scaling factor S is given by
the rotational scaling rule (Eq. 3). Although the theta grid vertex
spacings and orientations change with running speed, it can be
shown algebraically from Equation 3 that the moiré grid vertex
spacing remains constant at all running speeds as long as the
following is true:

	�V� � 2 arcsin� V

2f�M
�, (20)

where �M is the fixed vertex spacing of the moiré grid, and f is the
frequency of theta rhythm produced by vertex crossings on G1

and G2. Hence, the moiré grid can maintain a stable vertex spac-
ing if the angular orientation between the theta grids varies with
running speed in accordance with Equation 20. It is difficult to
envision a biologically plausible mechanism for rotating theta
grids as a function of running speed, so solutions that involve
changing the relative grid spacings (as in Eq. 9) may be preferable
to those that involve changing the relative grid orientation (as in
Eq. 20).

B. Approximate rescaling moiré grids by a divisive
scaling factor
For moiré grids constructed by the length scaling rule, k divisively
modifies �i, which is the difference between vertex spacings of the
theta grid pair (Eq. 17). To see how changing k will alter the vertex
spacing of a moiré grid constructed from theta grids, we may
replace �i with �i/k in the length scaling rule of Equation 2 to
obtain the following:

Si
k � 1 �

1

�i/k
� 1 �

k

�i
, (21)

where superscript k is added to Si on the left side to emphasize the
dependence on k. Now, we can express the proportional change
in S when k is modified:

Si
k

Si
k�1 �

1 � k/�i

1 � 1/�i
�

k/�i

1/�i
� k. (22)

Hence, S scales approximately in proportion with k, so that k
multiplicatively modifies the moiré grid spacings. The approxi-
mation step in Equation 22 is only valid when �i is small (that is,
when 0 � �i � 1), a condition which holds well enough in our
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place cell simulations to produce good rescaling results (Fig. 7c,
8c).

For moiré grids constructed by the rotational scaling rule, k
modifies the angle between theta grids (Eq. 18) so that when the
value of k is changed, all of the counter-rotation angles �i change
by the same factor. Then, the final output of the model in Equa-
tion 15 or 19 also changes its size by approximately the same
factor. To see why this method works, setting 	 � 2�i/k in Equa-
tion 3 yields the following moiré scaling factor:

Si
k �

1

2 sin��i/k�
(23)

where superscript k is again introduced to emphasize the depen-
dence on k. It can be shown algebraically that the following is
true:

Si
k

Si
k�1 �

sin��i�

sin��i/k�
, (24)

Notice that by this equation, Si
k/Si

k�1  k when the angle �i is
small, because sin x  x for small x. Thus, as long as a theta grid
pair starts out with a small counter-rotation angle �i before
rescaling (when k � 1), the spacing of a moiré grid constructed
from the theta grids will scale by a factor approximately equal to
k (specifically, Si

k/Si
k�1  k) when k is adjusted. The approxima-

tion is good enough in our visual image simulations to produce a
rescaled image (Fig. 10).
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