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Neurobiology of Disease

Brain-Derived Neurotrophic Factor Expression and
Respiratory Function Improve after Ampakine Treatment
in a Mouse Model of Rett Syndrome

Michael Ogier,! Hong Wang,' Elizabeth Hong,? Qifang Wang,' Michael E. Greenberg,? and David M. Katz!
'Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, and ?Departments of Neurology and
Neurobiology, Harvard Medical School, Boston, Massachusetts 02115

Rett syndrome (RTT) is caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). Although
MeCP2 is thought to act as a transcriptional repressor of brain-derived neurotrophic factor (BDNF), Mecp2 null mice, which develop an
RTT-like phenotype, exhibit progressive deficits in BDNF expression. These deficits are particularly significant in the brainstem and
nodose cranial sensory ganglia (NGs), structures critical for cardiorespiratory homeostasis, and may be linked to the severe respiratory
abnormalities characteristic of RTT. Therefore, the present study used Mecp2 null mice to further define the role of MeCP2 in regulation
of BDNF expression and neural function, focusing on NG neurons and respiratory control. We find that mutant neurons express signif-
icantly lower levels of BDNF than wild-type cells in vitro, as in vivo, under both depolarizing and nondepolarizing conditions. However,
BDNF levels in mutant NG cells can be increased by chronic depolarization in vitro or by treatment of Mecp2 null mice with CX546, an
ampakine drug that facilitates activation of glutamatergic AMPA receptors. Ampakine-treated Mecp2 null mice also exhibit marked
functional improvement, characterized by restoration of normal breathing frequency and minute volume. These data demonstrate that
BDNF expression remains plastic in Mecp2 null mice and raise the possibility that ampakine compounds could be of therapeutic value in
the treatment of RTT.
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Introduction

Rett syndrome (RTT) is an X-linked neurodevelopmental disor-
der caused by mutations in the methyl-CpG-binding protein 2
gene (MECP2) (Amir et al., 1999). Six to 18 months after birth,
RTT patients begin a neurological decline characterized by re-
gression of acquired skills, behavioral disturbances with autistic
features (Hagberg et al., 1983), motor stereotypies, seizures, au-
tonomic dysfunction, and severely disordered breathing (Shah-
bazian and Zoghbi, 2002). Respiratory abnormalities in RTT in-
clude alternating periods of hyperventilation and breath holds
and forced and apneustic breathing (Weese-Mayer et al., 2006,
and references therein) and may contribute to up to 26% of
deaths in RTT (Kerr et al., 1997). The primary cause of these
breathing alterations is unknown, and current hypotheses in-
clude cortical dysfunction (Elian and Rudolf, 1991; Marcus et al.,
1994), brainstem immaturity (Julu et al., 2001), decreased nor-
adrenergic transmission in ponto-medullary respiratory net-

Received April 24, 2007; revised Aug. 3, 2007; accepted Aug. 20, 2007.

This work was supported by grants from the National Heart, Lung, and Blood Institute; the Rett Syndrome
Research Foundation; and the National Institutes of Health to D.M.K. and M.E.G. We gratefully acknowledge Dr.
Diana Kunze for critical review of this manuscript and David T. Hellard for technical help.

Correspondence should be addressed to Dr. David M. Katz, Department of Neurosciences, Case Western Reserve
University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106. E-mail: david.katz@case.edu.

DOI:10.1523/JNEUR0SCI.1869-07.2007
Copyright © 2007 Society for Neuroscience ~ 0270-6474/07/2710912-06$15.00/0

works (Viemari et al., 2005), and hyperexcitability in pontine and
vagal afferent pathways (Stettner et al., 2007). There is no treat-
ment currently available for respiratory dysfunction in RTT.

Recent studies suggest that alterations in brain-derived neu-
rotrophic factor (BDNF) signaling contribute to RTT pathophys-
iology. For example, Mecp2 null mice exhibit progressive deficits
in BDNF levels after birth (Chang et al., 2006; Wang et al., 2006),
and genetic restoration of BDNF in the forebrain improves so-
matomotor function and extends lifespan (Chang et al., 2006).
Moreover, neural structures important for cardiorespiratory
control, including the nodose cranial sensory ganglia (NGs) and
brainstem, exhibit the earliest and most significant known defi-
cits in BDNF expression in the Mecp2 null mouse brain (Wang et
al., 2006). Because BDNF is required for the development of NG
and brainstem respiratory neurons, as well as breathing (Katz,
2005), we hypothesize that BDNF deficits contribute to the RTT-
like respiratory phenotype of Mecp2 null mice.

The fact that Mecp2 null mice exhibit decreased BDNF expres-
sion contrasts with the prevailing view that Mecp?2 is a transcrip-
tional repressor of Bdnf (Chen et al., 2003). One model proposed
to explain this apparent discrepancy is that decreased neuronal
activity in Mecp2 null mutants (Dani et al., 2005) reduces activity-
dependent BDNF expression, thereby masking any effect of de-
repression (Chang et al., 2006). To test this hypothesis, we exam-
ined BDNF expression in NG neurons cultured under
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depolarizing and nondepolarizing conditions. Because the NG com-
prises a single neuronal cell type (sensory neurons) and exhibits the
Mecp2 null BDNF phenotype in vitro as in vivo (Wang et al., 2006), it
provides a simple model for exploring mechanisms that underlie
BDNF regulation by MeCP2. Our data indicate that Mecp2 null cells
exhibit significantly lower levels of BDNF expression than wild type,
under both depolarizing and nondepolarizing conditions. However,
BDNF levels in mutant cells can be elevated to wild-type resting
levels by depolarizing stimuli in vitro. Similarly, we find that treat-
ment of Mecp2 null mice with the ampakine drug 1-(1,4-
benzodioxan-6-yl-carbonyl)piperidine (CX546), which enhances
activation of glutamatergic AMPA receptors (Nagarajan etal., 2001),
elevates NG BDNF levels in vivo. Moreover, ampakine treatment
significantly improves respiratory function in Mecp2 null mice,
suggesting that this class of compounds may be of therapeutic
value in RTT.

Materials and Methods

Animals. Mecp2"™™ % mice (Chen et al., 2001), developed by Dr. R.
Jaenisch (Whitehead Institute, Massachusetts Institute of Technology,
Cambridge, MA) and obtained from the Mutant Mouse Regional Re-
source Center (University of California Davis, Davis, CA), were main-
tained on a mixed background (129Sv, C57BL/6, BALB/c). Male Mecp2
nulls (Mecp2~ ") were generated by crossing heterozygous Mecp2"™!=/a
knock-out females with Mecp2™™="/*¢ wild-type males (Mecp2™”). All
experimental procedures were approved by the Institutional Animal
Care and Use Committee at Case Western Reserve University.

Cell cultures. Wild-type and Mecp2 null mice were killed with CO, on
postnatal day 35 (P35). The NGs were removed, digested in 0.1% colla-
genase (Sigma, St. Louis, MO) in Earle’s balanced salt solution (Invitro-
gen, San Diego, CA) for 70 min at 37°C, triturated in culture medium (see
below) containing 0.15% BSA, and plated at a density of one NG per well
into 96-well flat-bottom ELISA plates coated with poly-p-lysine. Cul-
tures were grown for 3 d in DMEM/F-12 medium supplemented with 5%
fetal bovine serum (Invitrogen) and 1% penicillin-streptomycin—neo-
mycin, with or without 40 mm potassium chloride (KCI) or 1.5 uM tetro-
dotoxin (TTX).

Ampakine treatment. Beginning on P25, wild-type and Mecp2 null
littermates were acclimatized to the injection protocol to reduce stress,
first by handling for 10 min/d for 3 d, followed by saline injections (0.9%
NaCl, i.p., b.i.d.) at 8:00 A.M. and 8:00 P.M. for an additional 3 d. Sub-
sequently, mice were assigned either to drug treatment (40 mg/kg CX546
in 16.5% 2-hydroxypropyl-B-cyclodextrin, i.p., b.i.d.) or vehicle injec-
tions (cyclodextrin alone). On the day of their last injection, mice were
trained in the plethysmograph recording chamber for 1 h. Eighteen to
24 h after their last injection, on P35, mice were returned to the chamber
for recording of respiratory activity.

Plethysmography. Breathing was recorded in unrestrained mice using a
whole-body flow plethysmograph (Buxco II; Buxco Research Systems,
Wilmington, NC) in which a constant bias flow supply connected to the
animal recording chamber ensured continuous inflow of fresh air (1
L/min). Ambient temperature was maintained between 23 and 25°C.
Breathing traces were analyzed using Biosystem XA software (Buxco
Research Systems). After the recording sessions, mice were euthanized
with CO, and tissue was processed for BDNF immunoassay.

BDNF reverse transcription-PCR. Total RNA was isolated from intact
P35 NG using the RNeasy Mini kit (Qiagen, Valencia, CA). For each
sample, 500 ng of total RNA was digested with DNase I (Invitrogen,
Carlsbad, CA) and reverse transcribed by oligodT priming using Super-
ScriptlII (Invitrogen). The amount of each Bdnf transcript present in the
sample was measured by quantitative real-time PCR (qRT-PCR) using
SYBR Green detection (Applied Biosystems, Foster City, CA). Bdnf
mRNA levels were normalized to B-tubulin III mRNA levels to adjust for
small differences in input RNA. The following primers were used for qRT-
PCR: Bdnf exon 8 (coding exon), forward (F) 5'-gatgccgcaaacatgtctatga-3’
and reverse (R) 5'-taatactgtcacacacgctcagetc-3'; Bdnf exon 1, F 5'-
cactgagcaaagcecgaacttcte-3’ and R 5’ -tcacctggtggaacattgtgge-3'; Bdnf exon 2,
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Figure1.  Mecp2 null mutation is associated with decreased expression of specific Bdnftran-
scriptsin nodose neurons. Bdnftranscript levelsin intact NG from wild-type and Mecp2 null mice
were determined using qRT-PCR. The Bdnf gene has a complex structure in which multiple
promoters drive the expression of different mRNA isoforms containing alternative noncoding 5
exons spliced toacommon downstream coding exon [exon 8; nomenclature of Liu etal. (2006)].
Total Bdnf mRNA levels (Exon 8), as well as transcripts containing exons 2, 4, and 5 were
markedly decreased in mutant NG compared with wild type, whereas transcripts containing
exon T were expressed at levels that were not significantly different from wild type. Results are
the mean == SEM (n = 4).***p < 0.001, ANOVA | with post hoc Tukey's test.

F 5'-agcggtgtaggctggaatagactc-3" and R 5'-ggtggaacttctttgcggcttac-3'; Bdnf
exon 4, F 5'-cgccatgcaatttccactatcaataatttaac-3" and R 5'-cgecttcatgeaac-
cgaagtatg-3"; Bdnf exon 5, F 5'-gatccgagagctttgtgtggac-3" and R 5'-gecttcat-
gcaaccgaagtatg-3'; B-tubulin 111, F 5'-cgacaatgaagccctctacgac-3" and R 5'-
atggtggcagacacaaggtggttg-3'.

BDNF immunoassay. BDNF protein levels in intact NGs or in cultured
NG cells were measured by ELISA using the BDNF Emax Immunoassay
System (Promega, Madison, WI). Protein extracts from one intact NG or
from an equivalent number of cultured cells were used for ELISA.

MeCP2 and B-tubulin III double staining. Mice were killed with CO,
and perfused with 4% paraformaldehyde, and the head was sectioned at
10 wm with a cryostat. Sections were stained with rabbit polyclonal anti-
MeCP2 (Upstate Biotechnology, Lake Placid, NY) and chicken poly-
clonal anti-B-tubulin IIT (Aves Labs, Ft. Lauderdale, FL).

Statistical analysis. Differences between wild-type and mutant mice,
and between vehicle-treated and CX546-treated mice, were tested using
an unpaired t test or ANOVA I with Tukey’s multiple comparison post
hoc analysis. A p value <0.05 was considered statistically significant. Data
are presented as mean = SEM.

Results
Bdnf gene expression is reduced in Mecp2 null cells in vivo
We previously found that BDNF protein content of peripheral
and CNS tissues is markedly reduced in Mecp2 null mice by 5
weeks of age (Wang et al., 2006; see also Chang et al., 2006). To
determine whether these deficits are reflective of decreased Bdnf
gene expression, we compared Bdnf mRNA levels in wild-type
and mutant animals, using the NG as a model. This analysis re-
vealed that on P35, total Bdnf mRNA was reduced by 50% in the
Mecp2 null NG compared with wild-type controls (Fig. 1), paral-
leling the deficit in BDNF protein (Wang et al., 2006). However,
not all Bdnf transcripts were similarly affected. For example, al-
though Bdnf splice variants containing exon 2, 4, or 5 were all
decreased by ~50% in mutant tissue compared with wild type,
transcripts containing exon 1 were unchanged. These data indi-
cate that MeCP2 function is required to maintain normal levels of
BDNF expression by regulating specific isoforms of Bdnf mRNA.
The marked deficit in BDNF content found in P35 Mecp2 null
NG neurons in vivo is maintained in dissociate cell culture (Wang
etal., 2006), suggesting that it may be a cell-autonomous effect of
MeCP2 loss. However, MeCP2 expression in peripheral neurons
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has not previously been described. There-
fore, initial studies examined the localiza-
tion of MeCP2 immunoreactivity in the
NG and found robust expression in all
neurons at PO through P35 (Fig. 2 and data
not shown).

To test the hypothesis that differences in
BDNF content between wild-type and
Mecp2 null cells result from different levels of
activity (Chang et al., 2006), BDNF levels
were compared in P35 NG neurons from
wild-type and Mecp2 null mice grown in dis-
sociated culture for 3 d under control (non-
depolarizing) and depolarizing (40 mm KCI)
conditions. Under control conditions, NG
neurons exhibit resting membrane poten-
tials of approximately —70 mV and are not
spontaneously active (Schild and Kunze,
1997; Brosenitsch et al., 1998). However, to eliminate any possible
depolarizing influence of voltage-gated sodium channels, some cul-
tures were grown in the presence of 1.5 um TTX [NG neurons also
express TTX-insensitive Na channels; however, these activate at sub-
stantially more positive membrane potentials (Schild and Kunze,
1997)]. In both control and TTX-treated cultures, Mecp2 null neu-
rons exhibit 40—-50% less BDNF than wild-type neurons (Fig. 3A), as
in vivo, without any change in cell survival (Fig. 3B).

To further test the role of membrane depolarization in the
BDNF phenotype of Mecp2 null neurons, NG cultures were
grown in the absence and presence of a depolarizing concentra-
tion of KCI (40 mm). In both wild-type and mutant cultures, KCI
depolarization resulted in a significant increase in BDNF protein
compared with unstimulated controls (Fig. 3C), with no change
in cell survival (Fig. 3D). However, even under depolarizing con-
ditions, mutant cells expressed significantly lower levels of BDNF
than wild-type cells. These data indicate that Mecp2 is required
for normal levels of BDNF expression in NG neurons under both
resting and depolarizing conditions. In addition, these experi-
ments show that chronic depolarization of mutant neurons can
stimulate BDNF protein expression to wild-type resting levels.
This observation is consistent with previous observations show-
ing increased expression of Bdnf exon 4 mRNA in cultured new-
born Mecp2 null cortical cells after KCI treatment (Chen et al.,
2003).

Figure 2.

Ampakine stimulation of BDNF expression in vivo
The fact that depolarization of Mecp2 null NG neurons could
increase BDNF expression in vitro raised the possibility that neu-
ronal activation could rescue the BDNF deficit in vivo. To ap-
proach this issue, we examined the effect of an ampakine drug,
CX546, on BDNF protein expression in the NG in intact P35
wild-type and Mecp2 null mice. Ampakines are fast-acting mole-
cules that acutely lengthen the duration of AMPA receptor-
mediated inward currents and thereby increase the activity of
neurons that express AMPA receptors (Nagarajan etal., 2001). As
a result, repeated ampakine treatment leads to an increase in
activity-dependent expression of BDNF, in vivo and in vitro (Lau-
terborn et al., 2000, 2003; Rex et al., 2006).

P35 wild-type and Mecp2 null littermates were treated for
3 d with CX546 (40 mg/kg in cyclodextrin, i.p., b.i.d.) or ve-
hicle. Twenty-four hours after the last injection, respiratory
activity was measured (see below), the mice were killed, and
the NG was removed for BDNF ELISA. NG BDNF content in
vehicle-treated Mecp2 null mice was significantly reduced

Ogier et al. @ Ampakines and Breathing Deficits in Rett Syndrome

Mecp2*¥

Mecp2+

Mecp2

MeCP2 protein is expressed in nodose neurons. Left, Double immunostaining for MeCP2 (green) and 3-tubulin 11l
(red) in the newborn wild-type (Mecp2 ) mouse NG. nX, Vagal nerve. Right, Higher magnification of the same section shown on
theleft, illustrating the concentration of MeCP2-immunoreactive protein in heterochromatin foci. The inset shows that the MeCP2
antibody used in these studies does not produce any specific staining in the NG from a Mecp2 null mouse (Mecp2 ). The asterisk
represents an anatomical landmark shared by both panels.
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Figure 3.  BDNF levels are depressed in P35 Mecp2 ~” NG neurons under resting and dep-
darizing conditions. 4, €, Summary data showing that BDNF content is decreased by 40 -50%in
NG cultures from Mecp2 null mutants, regardless of the activity state of the cells [i.e., electrically
silent (4; treated with TTX) or chronic depolarization (C, treated with KCI)]. Results show that KCI
treatment can increase the BDNF level in mutant cells as in wild-type controls. B, D, Neuron
survival was unaffected by either TTX (B) or KCI (D). Results are the mean = SEM (n = 6).
**p <0.01, ANOVA | with post hoc Tukey's test.

compared with vehicle-treated wild-type controls, as de-
scribed previously in naive untreated animals (wild type,
170 = 14 pg BDNF/ml vs mutant, 72 * 3 pg BDNF/ml; n = 6;
p < 0.001, ANOVA I). Treatment of wild-type mice with
CX546 had no effect on NG BDNF content. However, treat-
ment of Mecp2 null mice resulted in a significant 42% increase
in BDNF protein content compared with vehicle-treated mu-
tants (wild-type CX546, 167 = 5 pg BDNF/ml vs mutant,
CX546 114 = 4 pg BDNF/ml; n = 6; p < 0.001, ANOVAT).

Ampakine treatment restores wild-type mean respiratory
frequency and minute volume in Mecp2™'~"** null mice

NG neurons secrete BDNF in an activity-dependent manner
(Balkowiec and Katz, 2000), and BDNF acutely modulates
glutamatergic transmission at second-order neurons in the
nucleus tractus solitarius (nTS) (Balkowiec et al., 2000), the
primary relay for peripheral afferent input to the brainstem
respiratory rhythm generating network. Therefore, we hy-

pothesize that BDNF deficits in NG neurons contribute to the
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pathogenesis of respiratory dysfunction in RTT by disrupting
synaptic modulation in nTS.

To examine whether or not ampakine enhancement of BDNF
expression in Mecp2 null NG neurons is associated with recovery
of neural function, we compared respiratory activity in wild-type
and mutant mice after treatment with CX546 in vivo as described
above. Respiratory function was monitored by whole-body
plethysmography 18-24 h after the last drug injection as de-
scribed in Materials and Methods. Analysis of naive untreated
wild-type and mutant animals revealed a highly disordered
breathing pattern in the mutants compared with wild-type con-
trols (Fig. 4). The mutant breathing pattern is characterized by a
highly variable frequency (coefficient of variation of breathing
frequency: wild type, 18.8 = 0.7% vs mutant, 22.0 = 1.2%; n = 6
for wild type and n = 7 for mutants; p < 0.05, unpaired ¢ test) and
occasional long breathing pauses compared with wild types, sim-
ilar to human RTT patients (Julu et al., 2001; Weese-Mayer et al.,
2006) and other models of RTT (Mecp2"™' =" null mice) (Vi-
emari et al., 2005; Stettner et al., 2007). More detailed analysis of
breathing parameters revealed that the phenotype observed in
mutant mice is associated with repetitive episodes of very high
breathing frequency (Fig. 4), resulting in a 23% increase in mean
respiratory frequency compared with wild-type controls (p <
0.001, unpaired t test; n = 6 for wild type and n = 7 for mutants),
similar to RTT patients (Weese-Mayer et al., 2006). Conse-
quently, the mean value for minute volume/weight (tidal vol-
ume/weight X breathing frequency) is also increased in mutants
(Fig. 4) (wild type, 0.97 = 0.11 ml/min/g vs mutant, 1.38 = 0.13
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Figure4.  Mecp2 null mice exhibit a Rett-like respiratory phenotype at 5 weeks of age (P35). Representative plethysmographic
recordings from wild-type (Mecp2 */?) and Mecp2 null (Mecp2 ") mice are shown. Each trace is 10 s quiet breathing in room air.
The bottom graphs are frequency histograms from control (compilation of 9776 breath cycles) and mutant (compilation of 6065
breath cycles) mice showing the higher incidence of fast breaths in mutant mice compared with controls, along with a shift to

higher values of minute volume/weight. BPM, Breaths per minute; MV, minute volume.
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ml/min/g; n = 6 for wild-types and n = 7 for mutants; p < 0.05,
unpaired t test). In contrast, there was no significant difference in
tidal volume/weight alone between wild-type and mutant ani-
mals (wild type, 5.4 £ 0.6 ul/g vs mutant, 6.4 = 0.5 ul/g; n = 6 for
wild types and n = 7 for mutants).

Three-day treatment with CX546 did not significantly affect
breathing frequency, tidal volume/weight, and minute volume/
weight in P35 Mecp2"™'~"** wild-type mice (vehicle vs CX546:
frequency, 179 = 3 vs 177 £ 6 breaths/min; tidal volume/weight,
6.1 = 0.4 vs 6.4 = 0.5 ul/g; minute volume/weight, 1.09 = 0.07
ml/min/gvs 1.14 = 0.09 ml/min/g; n = 8 for vehicleand n = 7 for
CX546). In contrast, ampakine treatment of mutant animals
sharply decreased the episodes of high breathing frequency, lead-
ing to restoration of wild-type mean breathing frequency (Fig.
5A,C) (wild-type CX546, 177 = 6 breaths/min vs mutant CX546,
176 = 8 breaths/min; n = 7 for wild types and n = 9 for mutants)
and minute volume/weight (Fig. 5B,D) (wild-type CX546,
1.14 * 0.09 ml/min/g vs mutant CX546, 1.13 * 0.07 ml/min/g;
n = 7 for wild types and n = 9 for mutants). However, ampakine
treatment did not decrease the higher variability in breathing
frequency characteristic of mutant animals (coefficient of varia-
tion of breathing frequency: wild-type CX546, 18.5 = 1.2% vs
mutant CX546, 23.4 £ 1.5%; n = 7 for wild types and n = 9 for
mutants). Tidal volume/weight was not affected in mutants by
ampakine treatment and was similar to wild type (wild-type
CX546 vs mutant CX546, 6.4 = 0.5 vs 6.5 = 0.3 pl/g; n = 7 for
wild types and n = 9 for mutants).

Discussion

Our results demonstrate that MeCP2 is re-
quired for normal levels of BDNF expres-
sion in nodose sensory neurons under
both resting and depolarizing conditions
in vitro. Moreover, chronic depolarization
in vitro, or ampakine treatment in vivo, can
elevate BDNF levels in Mecp2 null cells.
Furthermore, ampakine treatment results
in a restoration of wild-type breathing fre-
quency and minute volume/weight in
Mecp2 null mice.

Previous studies in cultured newborn
cortical neurons indicated that MeCP2 re-
presses Bdnfexpression at rest (Chen et al.,
2003) and that release from MeCP2-
mediated repression is required for nor-
mal levels of activity-dependent expres-
sion of BDNF (Martinowich et al., 2003;
Zhou et al., 2006). However, Mecp2 null
mice exhibit deficits in BDNF protein
(Chang et al., 2006; Wang et al., 2006) and
mRNA (present study) in vivo. Moreover,
reduced Bdnf gene expression has recently
been reported in the frontal cortex of RTT
patients (Deng et al., 2007). A proposed
explanation for these discrepancies be-
tween in vivo and in vitro studies is that
Mecp2 null cortical neurons are less active
in vivo than wild-type cells (Dani et al.,
2005), leading to a reduction in activity-
dependent BDNF expression that masks
any effects of BDNF derepression (Chen et
al., 2003; Chang et al., 2006; Sun and Wu,
2006). However, our data indicate that, as
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The fact that BDNF expression remains
plastic in Mecp2 null NG neurons and can
be increased by depolarizing stimuli in
vitro led us to test whether or not BDNF
levels could be increased in Mecp2 null
mice in vivo by the ampakine drug CX546.
Ampakines are a family of small molecules that trigger short-term
increases in the duration of AMPA-mediated inward currents
(Nagarajan et al., 2001). In addition, repeated treatment with
ampakines can increase the efficiency of long-term potentiation
in the hippocampus and facilitate memory processes (Ingvar et
al., 1997; Rex et al., 2006; Wezenberg et al., 2006). These long-
term effects of ampakine treatment result from their ability to
increase Bdnf mRNA and protein expression (Lauterborn et al.,
2000, 2003; Rex et al., 2006).

Our study reveals that chronic treatment with CX546 signifi-
cantly improves respiratory behavior in adult symptomatic
Mecp2 null mice. Indeed, drug treatment significantly decreased
breathing frequency and minute volume/weight, two parameters
that are markedly increased in RTT patients and may contribute
to severe hypocapnic alkalemia and hypoxemia (Southall et al.,
1988). The respiratory improvement was not an acute effect of
ampakine treatment, because CX546 has an extremely short half-
life (<1 h) (Hampson et al., 1998; Wezenberg et al., 2006) and
breathing was analyzed 18-24 h after the last drug injection.
Thus, improved breathing is attributable to long-term effects of
the ampakine treatment. Although mechanisms that underlie
improved respiration in ampakine-treated Mecp2 null mice re-
main to be defined, our data are consistent with a role for in-
creased BDNF expression in the NG. NG neurons project cen-
trally to the brainstem nTS, the primary site for afferent input to
the brainstem respiratory rhythm generating network, where
BDNF inhibits glutamatergic excitation of second-order vagal
sensory relay neurons (Balkowiec et al., 2000). In Mecp2 null
mice, BDNF is severely depleted in NG afferents and their pro-
jections to nTS (Wang et al., 2006), and activity of postsynaptic

mice. A, B, Representative histograms of breathing frequency (4) and minute volume/weight (B) from two mutant mice, one
treated with vehicle (9227 breath cycles) and one treated with (X546 (8393 breath cycles), showing that drug treatment (40
mg/kg, b.i.d for 3 d) decreases episodes of high breathing frequency and minute volume/weight. C, D, Summary data for
breathing frequency (€) and minute volume/weight (D) for all animals. Ampakine treatment completely restores wild-type
frequency and minute volume/weight in mutant animals and has no effect in wild types. Results are the mean = SEM (n = 8 for
vehicle-treated wild types; n = 7 for (X546-treated wild types; n = 8 for vehicle-treated mutants; n = 9 for (X546-treated
mutants). *p < 0.05; **p < 0.01, ANOVA | with post hoc Tukey's test. BPM, Breaths per minute.

neurons is increased (D. D. Kline, personal communication)
compared with wild-type controls. Thus, we suspect that elevated
respiratory frequency in Mecp2 null mice may result, in part,
from increased excitability in nTS and that ampakine treatment
restores wild-type respiratory frequency by enhancing BDNF
modulation of primary afferent transmission. This possibility is
supported by recent findings that breathing dysfunction in
Mecp2 null mice results from enhanced excitatory (or decreased
inhibitory) neurotransmission affecting both vagal sensory and
brainstem respiratory cell groups. In particular, Stettner et al.
(2007) described hyperexcitability of pontine cell groups in-
volved in the regulation of postinspiratory discharge (Kolliker-
Fuse and lateral parabrachial nuclei) and a loss of desensitization
in vagal afferent control of breathing in Mecp2 null mice. It is also
possible that ampakine treatment has direct effects in the brain-
stem as well.

Neuropathological studies in RTT patients and Mecp2 null
mice indicate relatively subtle structural abnormalities, such as
decreased dendritic arbor complexity (Chen et al., 2001; Arm-
strong, 2002; Kishi and Macklis, 2004), that likely reflect disrup-
tions in transynaptic signaling rather than overt neuronal degen-
eration, raising the possibility that functional deficits in RTT may
be reversible. This possibility has recently been strengthened by
the demonstration that postnatal re-expression of Mecp2 in se-
verely symptomatic Mecp2 null mice is associated with symptom
reversal (Guy et al., 2007). Our findings demonstrate that ampa-
kine treatment of symptomatic Mecp2 null mice can significantly
improve respiratory function, raising the possibility that this class
of compounds may be of therapeutic value in the treatment of
RTT patients.



Ogier et al. @ Ampakines and Breathing Deficits in Rett Syndrome

References

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY
(1999) Rett syndrome is caused by mutations in X-linked MECP2, en-
coding methyl-CpG-binding protein 2. Nat Genet 23:185-188.

Armstrong DD (2002) Neuropathology of Rett syndrome. Ment Retard Dev
Disabil Res Rev 8:72-76.

Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous
brain-derived neurotrophic factor from primary sensory neurons de-
tected by ELISA in situ. ] Neurosci 20:7417-7423.

Balkowiec A, Kunze DL, Katz DM (2000) Brain-derived neurotrophic fac-
tor acutely inhibits AMPA-mediated currents in developing sensory relay
neurons. ] Neurosci 20:1904-1911.

Brosenitsch TA, Salgado-Commissariat D, Kunze DL, Katz DM (1998) A
role for L-type calcium channels in developmental regulation of transmit-
ter phenotype in primary sensory neurons. ] Neurosci 18:1047-1055.

Chang Q, Khare G, Dani V, Nelson S, Jaenisch R (2006) The disease pro-
gression of Mecp2 mutant mice is affected by the level of BDNF expres-
sion. Neuron 49:341-348.

Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-
CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in
mice. Nat Genet 27:327-331.

Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R,
Greenberg ME (2003) Derepression of BDNF transcription involves
calcium-dependent phosphorylation of MeCP2. Science 302:885-889.

Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB (2005)
Reduced cortical activity due to a shift in the balance between excitation
and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci
USA 102:12560-12565.

Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, Pevsner J,
Dissen GA, Sherman LS, Ojeda SR (2007) FXYD1 is an MeCP2 target
gene overexpressed in the brains of Rett syndrome patients and Mecp2-
null mice. Hum Mol Genet 16:640—650.

Elian M, Rudolf ND (1991) EEG and respiration in Rett syndrome. Acta
Neurol Scand 83:123-128.

Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological
defects in a mouse model of Rett syndrome. Science 315:1143—1147.
Hagberg B, Aicardi ], Dias K, Ramos O (1983) A progressive syndrome of
autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s

syndrome: report of 35 cases. Ann Neurol 14:471-479.

Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998) Facilitative effects
of the ampakine CX516 on short-term memory in rats: enhancement of
delayed-nonmatch-to-sample performance. ] Neurosci 18:2740—-2747.

Ingvar M, Ambros-Ingerson J, Davis M, Granger R, Kessler M, Rogers GA,
Schehr RS, Lynch G (1997) Enhancement by an ampakine of memory
encoding in humans. Exp Neurol 146:553-559.

Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerstrom IW, Engerstrom
L,Jamal GA, Hansen S (2001) Characterisation of breathing and associ-
ated central autonomic dysfunction in the Rett disorder. Arch Dis Child
85:29-37.

Katz DM (2005) Regulation of respiratory neuron development by neuro-
trophic and transcriptional signaling mechanisms. Respir Physiol Neuro-
biol 149:99-109.

Kerr AM, Armstrong DD, Prescott R], Doyle D, Kearney DL (1997) Rett
syndrome: analysis of deaths in the British survey. Eur Child Adolesc
Psychiatry 6:71-74.

Kishi N, Macklis JD (2004) MECP2 is progressively expressed in post-

J. Neurosci., October 3, 2007 - 27(40):10912-10917 = 10917

migratory neurons and is involved in neuronal maturation rather than
cell fate decisions. Mol Cell Neurosci 27:306-321.

Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM (2000) Positive
modulation of AMPA receptors increases neurotrophin expression by
hippocampal and cortical neurons. ] Neurosci 20:8-21.

Lauterborn JC, Truong GS, Baudry M, Bi X, Lynch G, Gall CM (2003)
Chronic elevation of brain-derived neurotrophic factor by ampakines.
J Pharmacol Exp Ther 307:297-305.

Liu QR, Lu L, Zhu XG, Gong JP, Shaham Y, Uhl GR (2006) Rodent BDNF
genes, novel promoters, novel splice variants, and regulation by cocaine.
Brain Res 1067:1-12.

Marcus CL, Carroll JL, McColley SA, Loughlin GM, Curtis S, Pyzik P, Naidu
S (1994) Polysomnographic characteristics of patients with Rett syn-
drome. ] Pediatr 125:218-224.

Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003)
DNA methylation-related chromatin remodeling in activity-dependent
BDNF gene regulation. Science 302:890—893.

Nagarajan N, Quast C, Boxall AR, Shahid M, Rosenmund C (2001) Mech-
anism and impact of allosteric AMPA receptor modulation by the ampa-
kine CX546. Neuropharmacology 41:650—663.

Rex CS, Lauterborn JC, Lin CY, Kramar EA, Rogers GA, Gall CM, Lynch G
(2006) Restoration oflong-term potentiation in middle-aged hippocam-
pus after induction of brain-derived neurotrophic factor. ] Neurophysiol
96:677-685.

Schild JH, Kunze DL (1997) Experimental and modeling study of Na+ cur-
rent heterogeneity in rat nodose neurons and its impact on neuronal
discharge. ] Neurophysiol 78:3198-3209.

Shahbazian MD, Zoghbi HY (2002) Rett syndrome and MeCP2: linking
epigenetics and neuronal function. Am ] Hum Genet 71:1259-1272.
Southall DP, Kerr AM, Tirosh E, Amos P, Lang MH, Stephenson JB (1988)
Hyperventilation in the awake state: potentially treatable component of

Rett syndrome. Arch Dis Child 63:1039-1048.

Stettner GM, Huppke P, Brendel C, Richter DW, Gartner J, Dutschmann M
(2007) Breathing dysfunctions associated with impaired control of
postinspiratory activity in Mecp2—/y knockout mice. J Physiol (Lond)
579:863-876.

Sun YE, Wu H (2006) The ups and downs of BDNF in Rett syndrome. Neuron
49:321-323.

Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Pena F, Zanella S,
Bevengut M, Barthelemy-Requin M, Herzing LB, Moncla A, Mancini J,
Ramirez JM, Villard L, Hilaire G (2005) Mecp2 deficiency disrupts nor-
epinephrine and respiratory systems in mice. ] Neurosci 25:11521-11530.

Wang H, Chan SA, Ogier M, Hellard D, Wang Q, Smith C, Katz DM (2006)
Dysregulation of brain-derived neurotrophic factor expression and neu-
rosecretory function in Mecp2 null mice. ] Neurosci 26:10911-10915.

Weese-Mayer DE, Lieske SP, Boothby CM, Kenny AS, Bennett HL, Silvestri
JM, Ramirez JM (2006) Autonomic nervous system dysregulation:
breathing and heart rate perturbation during wakefulness in young girls
with Rett syndrome. Pediatr Res 60:443—449.

Wezenberg E, Jan Verkes R, Ruigt GS, Hulstijn W, Sabbe BG (2006) Acute
effects of the ampakine farampator on memory and information process-
ing in healthy elderly volunteers. Neuropsychopharmacology 32:1272—
1283.

Zhou Z, Hong EJ, Cohen S. Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y,
Savner E, Griffith EC, Hu L, Steen JA, Weitz CJ, Greenberg ME (2006)
Brain-specific phosphorylation of MeCP2 regulates activity-dependent
Bdnf transcription, dendritic growth, and spine maturation. Neuron 52:
255-269.



