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Establishment of a Scaffold for Orientation Maps in Primary
Visual Cortex of Higher Mammals
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In higher mammals, environmentally driven patterns of neural activity do not play a role in the establishment of orientation specificity
and maps. It has been proposed that specific long-range interactions provide the scaffold for developing orientation maps. Our model
aims at explaining how such a scaffold could develop in the first place. Broad spontaneous activity waves and locally evoked spatially
periodic response pattern are used. The model is discussed in relation to biological evidence, and experiments to test the model are
proposed. We show that reliable orientation specificity cannot be a result of haphazard cortical wiring, as has been proposed.
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Introduction

Decades of neurophysiological studies have established orienta-
tion specificity as an important aspect of primary visual cortex
organization in higher vertebrates (Hubel and Wiesel, 1974a;
Baker and Issa, 2005). Although many models for the ontogenesis
of this organization have been proposed [for reviews, see Erwin et
al. (1995) and Swindale (1996)], no consensus has been reached
as to the nature of this mechanism. A common hypothesis is
based on the reshaping of afferent receptive fields (aRFs). Alter-
natively, selectivity might be established through appropriately
structured intracortical connections alone (von der Malsburg,
1995; Durack and Katz, 1996). In this scenario, direct afferents of
neurons would not need such specificity before birth. This role
would instead be taken by elongated intracortical receptive fields
(iRFs), neurons becoming selective to the orientation of the cor-
tical activity patterns that result from visual stimuli retinotopi-
cally projected to the cortex. This intracortical scaffold would
then fixate the distribution of orientation specificity over the
cortical surface, leading to stable maturation of orientation maps
(OMs) after eye opening (Shouval et al., 2000).

To the best of our knowledge, only one previous model aimed
to explain the development of the intracortical connection scaf-
fold. Ernst et al. (2001) proposed that random strengthening of
neurons could lead to orientation selectivity. However, their sim-
ulation results were contaminated by assuming circular bound-
ary conditions for the retina (our unpublished observations).
Here we test the “random wiring” hypothesis and conclude that
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horizontal connections developed according to our model pro-
vide a much more robust scaffold for orientation selectivity.

The learning proposed here, following a sketch by von der
Malsburg (1995), is based on elongated spontaneous waves of
activity, as observed in the retina (Wong, 1999; Liets et al., 2003).
Retinal waves were already used by others in aRF-based models
(Elliott and Shadbolt, 1999; Miikkulainen et al., 2005). The prob-
lem with the retinal waves, however, is that they are spatially too
broad in relation to cortical aRFs to account for the differentia-
tion of the latter (Miller, 1994). This problem does not occur in
our model, because intracortical connections can gather infor-
mation from a larger field of view. Additionally, our hypothesis
can be applied to an immature cortex, whereas other models
often need to assume for it a perfect architecture (e.g., Linsker,
1986a,b,c; Miller, 1994; Grossberg and Seitz, 2003; Miikkulainen
et al., 2005).

We assume that the cortex can generate activity that is locally
patchy (spatially periodic), as in young ferrets (Chiu and Weliky,
2001). We show in simulations that this assumption combined
with Hebbian learning of iRFs on broad cortical activity waves
(projected from the retina or generated spontaneously) generates
a scaffold for an orientation map. This mechanism lays the foun-
dation for further development after eye opening, a process we
discussed by referring to Shouval et al. (2000) but do not
simulate.

We review the biological evidence for our assumptions avail-
able thus far and call for further studies in this fascinating field.

Materials and Methods

Architecture. We apply the approach sketched in von der Malsburg
(1995), representing activity patterns in a cortical patch of a diameter of
~12 mm. We imagine that patch to be subdivided into an array of “mini-
patches,” which in turn are composed of minicolumns (Fig. 1 A) [mini-
columns are defined and discussed by Rockland and Ichinohe (2004)].
The minipatch size approximately corresponds to that of the cortical
point image (Swindale, 1996): the group of neurons [also called a “reti-
notopic column,” (Lund et al., 2003) ] whose aRFs all overlap one retinal
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Figure 1.  The architecture and activity. 4, A cortical patch is represented at two levels of
detail. Coarse scale (“minipatches”), Neighboring units are chosen such that they respond to
separate, neighboring parts of the visual field. A single minipatch represents mean activity ( Ij’.”)
over ~3mm? of the cortical plane. Fine scale, Only the “central minipatch” (see the central part
of the picture) is simulated in minicolumnar detail (for clarity, a reduced number of minicol-
umns is shown). f,, activity of minicolumn k. The grid presented here (1 mm spacing) will be
used in all pictures of the cortical surface. B, An example of minipatch activity (“fine pattern”) is
shown in the center. The columnar activity has the shape of blobs. On the coarse scale, we
assume spontaneous activity in the form of arcs (wavefronts of spreading activity).

point. Because it can code for more than one cycle of orientations, the
thus defined minipatch may be somewhat larger than a hypercolumn as
defined by Hubel and Wiesel (1974b). On this scale one can also assume
retinotopy, which because of retinal scatter (Buzas et al., 2003) does not
necessarily hold on a finer scale. Retinotopy means that neighboring
minipatches respond to the activation of neighboring, nonoverlapping
regions of retinal ganglion cells. (We ignore global geometric effects
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resulting from variation of the magnification factor, which would de-
form a straight retinal bar into a curve in cortex. Being interested only in
the representation of orientation, we always represent straight retinal
bars as straight bars in modeled cortex.)

The activity of minicolumns forms a “fine pattern,” similar to those
seen in optical image recordings (although the latter are limited to the
outer cortical layers). Only the central minipatch is simulated in fine
spatial detail, down to the level of single minicolumns. Activity in the rest
of the cortical patch is sampled coarsely, with each sample representing
the average activity of a whole minipatch. The coarse activity patterns
over the patch would correspond approximately to surface EEG record-
ings. Samples of fine and coarse patterns are shown in Figure 1B.

We take the minipatch diameter (2Ar) to be of a value appropriate for
higher mammals, i.e., 2 mm [compare the adult cat’s cortical point image
size of ~2.7 mm, or the monkey’s of 1-10 mm (Swindale, 1996)]. As-
suming one minicolumn to have a diameter of ~60 wm, we simulate 17
minicolumns per millimeter. Taking a finer grain [minicolumn diameter
in cat’s V1 is 56 wm, but in monkey it is half as wide (Buxhoeveden and
Casanova, 2002)] does not affect the qualitative results of our simulation,
only the smoothness of our maps.

Assumptions. Primary visual cortex is considered at a time when pat-
terned cortical waves of activity are present. We do not model afferent
inputs explicitly. Rather, we generate the activity pattern they would
evoke on the cortical level directly. Retinal waves were shown to start in
core spots and diffuse over larger parts of the retina [see movies from
Feller et al. (1996) and Syed et al. (2004)]. We assume that cortical acti-
vation is guided by a similar mechanism, although within the simulated
patch only part of the diffusing activity can be seen. Taking into account
rapid habituation of young cortical neurons, we assume activity to have
the form of wavefronts (corresponding to the rim of the retinal activity
patches), i.e., arcs of different curvature.

Cortical circuits are assumed to be mature enough to create fine pat-
terns, whereas long-range horizontal connections (which are mainly ex-
citatory) are not yet clustered. These assumptions are shared by a major-
ity of OM ontogenesis models (von der Malsburg, 1973; Miikkulainen et
al., 2005). We simulate activity pattern formation within the central
minipatch with excitatory short-range connections and surround inhi-
bition, using periodic boundary conditions to allow creation of fine pat-
terns undisturbed by boundary effects. As to long-range connections, we
consider only those that end in the central minipatch. They carry the
global signal of other minipatches throughout the cortical patch and have
uniform density initially.

Evaluation of assumptions. The assumption that most distinguishes
our model from others is that prenatal development is based on coarse
and not a fine structure of input activity. The first candidate for coarse
patterns spotted by experimentalists was retinal wave activity (Meister et
al., 1991; Torborg and Feller, 2005). Its role in establishing ocular dom-
inance columns was recently demonstrated in ferrets (Huberman et al.,
2006).

The retinal waves were reported to disappear by the time the first crude
clustering of cortical horizontal connections is completed (Sengpiel and
Kind, 2002). However, it was shown that retinal activity is not necessary
to sustain bursting activity in the LGN (Weliky and Katz, 1999) or the
cortex (Chiu and Weliky, 2001). It is possible that higher structures learn
to maintain wave-like activity later in development, contributing to the
ontogenesis of OMs.

An alternative source of coarse pattern of activity are ponto-geniculo-
occipital (PGO) waves, as discussed in Miikkulainen et al. (2005). These
waves, normally appearing during rapid eye movement sleep, were
shown to counteract the effects of monocular occlusion (Marks et al.,
1995). The planar layout of PGO waves s, to the best of our knowledge,
not yet known, but they seem to activate the visual system in a manner
similar to visual input.

Additionally, coarse patterns of cortical activity may be generated
through closed eyelids, as investigated by Akerman et al. (2004). This
could work for cats or ferrets, which open their eyes long after birth.
However, this cannot be the only source of coarse patterns, because these
animals develop OMs even when reared in the dark (White et al., 2001).

The spatial patterns of cortical activity at early developmental stages
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are not known yet. Chiu and Weliky (2001) recorded cortical activity in
the ferrets at a time when horizontal connections undergo first cluster-
ing, 2 weeks before eye opening. However, they used a single row of
microelectrodes spanning 3.2 mm, approximately corresponding to the
width (full-width at half-maximum) of spontaneous activity assumed in
our model. Thus, they were able to record the response on a local scale,
but not on a coarse scale, which remains to be disclosed.

Chiu and Weliky (2001) observed spatially periodic organization of
spontaneous activity, similar to the fine patterns assumed in our model.
They also provide evidence that this activity is generated by intrinsic
circuits within the cortex, in accordance with our assumption that short-
range interactions are responsible for the creation of fine patterns.

Despite theoretical assertions (Carreira-Perpifidn and Goodhill,
2004), there is little experimental evidence for the existence of Mexican
hat-like interactions in adult animals. An alternative mechanisms for the
creation of periodic patterns was proposed by Pinto and Ermentrout
(2001) (see also Kang et al., 2003), with inhibition acting on a shorter
range than excitation. For this scenario to work, inhibitory signals have to
propagate faster than excitatory signals. Either fast or longer range inhi-
bition could possibly be found in very young animals that develop OMs.
Recent studies of inhibitory currents in the young cortex of ferrets (Chen
et al., 2005) confirm the existence of inhibitory connections at this early
stage of development and their two-fold shrinkage in more mature ani-
mals (=P38). A study of GABAergic (inhibitory) neurons in cats pro-
vides evidence for short-range influences already in the youngest ani-
mals, as well as a lack of clustering of those cells (Albus and Wahle, 1994),
as in our model.

Ontogenesis, as proposed here, could take place before orientation
maps can actually be detected. Orientation selectivity can be recorded in
ferret single cells at a time when retinal waves are still present (Krugetal.,
2001). It is possible that the orientation bias is already present in the
horizontal connections before the orientation map can be observed (pre-
sumably because high visual responsiveness of neurons in superficial
layers is required for optical recording). It would be interesting to record
the response to direct electric stimulation using an oriented excitation
pattern that would skip the immature parts of the visual system.

At this developmental stage, long-range horizontal connections could
be provided by transient layers: the cortical subplate and the marginal
zone (L1), as proposed by Galuske and Singer (1996) and Schmidt et al.
(1999). The role of subplate neurons in the functional maturation of
orientation columns was recently demonstrated in cats by Kanold et al.
(2003). They have shown that subplate ablation prevents formation of
orientation maps.

Connections spanning up to 10 mm were recorded in L1 of P1 cats
(Galuske and Singer, 1996) at a time when retinal waves are still detect-
able. Localization of elongated iRF in L1 agrees also with dark rearing
experiments in ferrets, in which OMs were visible despite severe disrup-
tion of L2/3 connectivity (White etal., 2001). In cats, most of the L1 fibers
vanish by the end of the critical period (Galuske and Singer, 1996),
which, according to our hypothesis, could explain why orientation maps
deteriorate in the absence of visual input.

Layers providing the horizontal input into the simulated central mini-
patch do not need to develop fine activity patterns themselves. If locally
periodic activity is confined to other layers (e.g., L2/3), the absence of
early terminal clustering in retrograde labeling studies is not a problem
for our model.

Dynamics. Activity f, of the central minipatch is governed by the fol-
lowing differential equations:

d
Tg(t) = — filt) + g(t) (1)

with an initial condition drawn from a uniform distribution f,(0) € (0, 1)
and

(1) = S(U(1) + m(1), (2)

where
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S(x) = (3)
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and f, stands for the activity of the minicolumn k, ij (1) is the activity of
jth minipatch, j, is the central one, g(¢) is the gain of activity arising from
synaptic input coming through short-range connections (characterized
by matrix W), or from neighboring minipatches. The influence of neigh-
boring minipatches on the central one is represented by the matrix M.
We call M;; the intracortical receptive field (iRF) of a minicolumn k. All
the random phenomena that add to the synaptic input are modeled by
Gaussian noise 1(). They represent spontaneous activity from LGN and
other brain structures.

The gain function is a standard sigmoidal S(x) with output range (0, 1).
Activity f,(t) can be interpreted as population response, i.e., the ratio of
neurons in the vertical minicolumn that are active at a certain point in
time.

Analogously, fjw () stands for the population response of a minipatch.
Significant activation of the whole minipatch is caused by broad cortical
waves.

We model local interactions with a “Mexican hat” function (see As-
sumptions):

I ([Fx=72 I [7i—72
Wy=|—=-¢e" 7 — e o 2 85, 5
M ( 2o ¢ Ty mo; ¢ 2 (5)

where matrix Wy, is the strength of interaction between minicolumns [
and k; ] and J; encode the strength of excitation and inhibition, respec-
tively; o, and o, the range of their influence; and ||7, — 7| stands for
Euclidean distance between minicolumns k and I. Multiplication by the
cortical surface element 88, corresponding to a size of one minicolumn,
ensures that fine patterns remain unaltered when the number of repre-
sented minicolumns is modified.

8S = g(&)z (6)
B Ar
or = a1 (7)

where #,, is the number of minicolumns within the radius Ar of the
minipatch.

The initial state of the iRF-matrix, when connections are not yet clus-
tered, is defined as follows:

M
M, ;+,(0) = P (8)

where My; represents the strength of synaptic connection from minipatch
j to minicolumn k; ¢, is a constant (c,, > 0, because the interactions are
mainly excitatory), and n,, is the number of minipatches. By definition,
the central minipatch does not influence itself through long-range con-
nections (Mij =0).

Coarse patterns. The creation of fine patterns is triggered by broad
waves, when these pass through the central minipatch. Therefore, we
consider only those patterns, which pass through the central minipatch.
These waves have an arc-like shape.

Each minipatch activity ( ]GM) represents an average activity over its
hexagonal area. The algorithms describing coarse patterns are defined
first in the finely sampled Cartesian plane (here sampled at 0.025 mm)
and then averaged over relevant hexagons (Fig. 2, top).

Spontaneous patterns of activity are defined as rings of amplitude 1
with Gaussian edges:

R—AR<p <R+ AR

1
“(R-AR—pE
CROARTE R AR
fMp)y=1¢ = P 9)
—(p—R—AR)?
e 2 p=R+ AR
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where p is the distance from ring center, R
stands for ring’s radius, 2AR for its width, and
@ is a Gaussian smoothing constant (Fig. 2, top
left). The center of the ring is located at distance
R, = R from the center of the simulated cortex
and at angle @, from the horizontal.

Angle values of coarse patterns used in the
simulation were generated randomly from uni-
form distribution spanning the whole plane [®,
€ (0° 360°); note that the angles ®, and @, +
180° correspond to the same orientation but dif-
ferent curvature of spontaneous activity]. As-
suming that probability of wave generation
grows linearly with distance (probability is pro-
portional to the surface of the ring), we chose a
probability distribution p(R) = 1/10R mm ~
for the ring radius (R = R,, R = 20 mm). While
choosing the width of activity patterns, we relied
on the calculations provided by Miller (1994).
Miller estimated the half-width correlation
function of cortical patterns evoked by retinal
waves to be at least two to four times larger than
a single aRF. A minipatch in our model covers
more than a single RF, because it represents
neurons with partially overlapping RFs. We es-
timate Miller’s activity pattern to cover ~1-2
minipatches and choose appropriately 2AR = 3
mm, 20, = 1 mm. Exemplary coarse patterns
are shown in Figure 2.

Learning. In addition to stimulating the emergence of fine patterns,
coarse activity triggers plasticity in synapses of horizontal connections
(represented by matrix M), which leads to their clustering. We do not
investigate short-range connection changes, having assumed they are
small enough to sustain stable fine patterns.

We found that the model does not depend strongly on the choice of a
learning rule. We settled for the simplest (and computationally least
expensive), Hebbian learning:

de,j#ju Ei#jnf?d
T:hfk' ijfﬁMkj “H(fi—f"") (10)

Figure2.
pattern (top right). Our simulated coarse patterns correspond to wavefronts of spreading activity. The edge curvature depends on
the location of the activity center (R,, ®,) and its radius (R = R,) at the time it reaches the simulated cortical patch. The arcis
assumed to have a flattened Gaussian profile of width 2AR and smoothing constant o,. Representative coarse patterns used in
learning are shown below, from the lowest R value to the highest R value used in the simulation. The values of R and @, are as
follows, from left to right: {0.2 mm, 129, {3.5 mm, 9°}, {5.3 mm, 251°}, {6.0 mm, 360°}, {9.1 mm, 122°}, and {20.0 mm, 88°}.

e ={ 4 220 an

where M = M(t), f = f(t), f*' = fM(1), and h defines the learning rate. The
activity threshold f° determines when a minicolumn is active enough to
strengthen its connections, as in the BCM learning rule (Bienenstock et
al., 1982). Instead of modeling depression directly [H(x < 0) would be set
to —1], we keep the sum of all the synaptic weights connecting to a
minicolumn constant. This normalization is enforced by the bracketed
expression in Equation 10, ensuring convergence to a state, where

i

Evaluating orientation maps. To evaluate orientation maps, we pause
learning and test the response of minipatches to oriented bars. In vivo,
stimuli need to activate photoreceptors. Here, we can impose visual re-
sponsiveness and simulate the transfer of impulses by filtering the stim-
uli. We do not assume an ON/OFF mechanism working at this develop-
mental stage; thus, our filtering will represent linear response to an
overall RF stimulation.

The bars are defined as rectangles of a given width (Ayp), length (Axp),
and orientation (¥ = {0, 30°.. ., 150°}). The filtering is performed with
a disk filter corresponding to the cortical point size (r; = 0.5 mm). They
are cast onto a hexagonal grid the same way the spontaneous activity
patterns are (see above and Fig. 2, top).

We calculate the stable response to stimuli of different orientations
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Cortical activity and coarse patterns. Cortical activity (top left) is averaged over hexagonal areas resulting in a coarse

(f*#) as an average response over 100 ms starting 400 ms after stimulus
onset. We use a vector sum to find the preferred orientation:

M= Dt = D et (13)
Dp Dp

and a modified circular variance (Swindale, 1998) to estimate orientation
selectivity:

L2 1Sapren
E¢B‘Z¢H| E@Bf‘l’n .
The similarity between two maps is calculated as an average circular

difference between preferred orientations ®°™1, ®°™:2 of every minicol-
umn k:

(14)

D cos(2(DOM — POMy)
oM _

s " , (15)

where 1 stands for the number of minicolumns.

We decided to base our calculations on 50 trials (a number realistic in
terms of animal experiments), averaging responses to each stimulus over
trials before evaluating the map. A larger number of repetitions leads to
higher similarity between investigated maps. Consequently, one finds
significant correlations stemming from the slightest intracortical anisot-
ropy, something that would never be revealed in real experiments.

Choice of parameters. In our simulations, we adopted parameters from
Ernst et al. (2001). Values of J;;, ], 0y, and o, were set to fit a realistic
spatial scale (Table 1). To keep the number of system parameters low, in
contrast to their approach, we did not simulate spatial variability in the
connection strengths. Our calculations confirm that modifying intracor-
tical synaptic weights with a noise of reasonable amplitude does not
influence the results of our simulation. Strong noise dominates the dy-
namics, letting activity blobs form only in certain places, as in Ernst et al.
(2001). In our simulation, the corresponding effect is achieved by plas-
ticity of long-range connections.

The relaxation constant 7in Equation 1 is set to 5AT, where AT = 1is
the time step used to solve the above equations numerically (Euler
method). This time unit can be interpreted as 1 ms, which implies that
minicolumn activity would decay within 10 ms. Following Ernst et al.
(2001), we do not consider synaptic delays, because we are interested in
stable activity rather than modeling activity’s emergence.
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Table 1. Parameters of the simulation

Variable Value Unit
Ar 1 mm
Je 4085 mm?
J; 6085 mm?
oF 0.13 mm
o, 0.24 mm
s 0.6 mv~!
(o 0.5

h 10”7

o 0.7

Cy 1

The time evolution of fine pattern depends on the strength of short-
range connections W (Eq. 5), steepness s of sigmoid function (Eq. 3), and
the input ™ = S My f;\" (Eq. 4). Increasing any of those parameters
accelerates establishment of blobby activity (supplemental Fig. S1A, B,
available at www.jneurosci.org as supplemental material). Phase space
analysis has shown that the input noise variance 037 (Eq. 4) has no effect
on emergence, but its increase inhibits the stabilization of fine patterns
(supplemental Fig. S1C, available at www.jneurosci.org as supplemental
material).

After arbitrarily choosing o, to be 50% of the maximum long-range
input value (c,,), we set the parameter s such that the fine pattern is visible
within 200 ms from the input onset and stabilizes within the next 100 ms
(supplemental Fig. S1 A, available at www.jneurosci.org as supplemental
material). At the chosen working point, fine patterns develop even when
I is negligible, according to our assumption that all activity waves mod-
eled are strong enough to induce this dynamics.

Results

At the beginning of our simulation, blobs of activity form in
random places. Growth of a typical fine pattern is shown in Fig-
ure 3.

Simulated bursts of spontaneous coarse activity lead to Heb-
bian plasticity of long-range connections between active loci in
fine and coarse patterns. The speed of learning is controlled by
the rate constant / in Equation 10 or the time interval T over
which a single pattern activates the central minipatch. Develop-
ment of intracortical receptive fields for T=2sand h = 10" is
shown in Figure 4 after different numbers n; of stimuli.

Atan early stage, iRFs are flat, covering the whole patch (Fig. 4,
top), and it is hard to detect elongated iRF (note the change of
scale in the top right panel). Only after some time, elongated iRFs
become visible (Fig. 4, bottom right), having lost connections
from nonrelevant minipatches. All iRFs connect strongest to the
closest neighbors, also the symmetric ones (Fig. 4, bottom left).

At a late stage of simulation, synapses originating from any
remote minipatch are clearly clustered, as in anterograde labeling
in vivo (Galuske and Singer, 1996). See Figure 5 for an example
and supplemental Fig. S2 (available at www.jneurosci.org as sup-
plemental material) for all iRFs.

Elongated iRFs cause symmetry breaking in minipattern gen-
eration, blobs form faster (10 ms on average) in response to ori-
ented stimuli, and it is possible to define a mapping between
coarse and fine patterns.

An OM established after n,. = 2500 is presented as a polar map
in Figure 6. Exemplary tuning curves from the extreme cases of
low and high orientation selectivity ( L) are shown at the bottom.
The map resembles experimental findings: it contains regions of
continuous change of orientation (linear zones), saddle points,
fractures, and pinwheels. The map is periodic with a period of ~1
mm, having a bandpass rather than a low-pass spectrum (see
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supplemental Fig. S3, available at www.jneurosci.org as supple-
mental material). Singularities are embedded in the area of lower
orientation selectivity, and the strongest and most reliable re-
sponses come from linear zones, in accord with experimental
findings.

The distribution of preferred orientations is biased toward
90°, 30°, and —30°, corresponding to the symmetry axes of the
hexagonal grid. Establishment of a similar map has been pre-
dicted theoretically for a case when the number of complex vec-
tors determining map structure is restricted to three (Wolf,
2005). Less regular, more realistic maps are expected when the
number of modes (complex vectors) increases. We would expect
a similar result if our patch could be circular (if we used a finer
grid). As shown by Wolf (2005), a second kind of map might have
developed, in which there is a large overrepresentation of a single
orientation.

Stability

Once an orientation map develops, it becomes very stable. We
computed the correlation between subsequent OMs to reveal the
time span of ontogenesis (supplemental Fig. S4, available at ww-
w.jneurosci.org as supplemental material). For the chosen pa-
rameter set, n; = 1500 spontaneous bursts were sufficient to
establish a robust OM. Subsequent learning had little influence
on the OM shape. Similar stability may be achieved with simple
Hebbian learning ( f°7 = 0), provided that noise in the system is
not high (supplemental Fig. S4, available at www.jneurosci.org as
supplemental material). Thresholded learning prevents all the
neurons from developing the same iRF, e.g., in cases when a
similar pattern is repeatedly shown to the cortex.

Orientation selectivity

We performed a set of experiments to check how OM structure
would depend on the kind of stimuli used for its evaluation. For
comparison, we used an unorganized, “random,” system with
long-range connections drawn from a uniform distribution [M,;
€(0...1), My, = 0], normalized to comply with Equation 12.
Our map did not change with changing testing bar width [in the
range Ay, € (0.1, 6), Ax; = 20 mm)] or length [Ax; € (2.5, 13),
Ay = 1.5 mm]. In contrast, the OM in the “random” system
strongly depended on the stimuli used for evaluation (see supple-
mental Fig. S5, available at www.jneurosci.org as supplemental
material). All these maps were continuous (see supplemental ma-
terial, available at www.jneurosci.org), but their orientation se-
lectivity was much lower than in our system. In supplemental
material (available at www.jneurosci.org), we present maps eval-
uated in our two systems for the case when fine patterns are not
forced to form. The “random” system produces a chaotically ar-
ranged OM, whereas our map has the typical structure observed
in adult animals. That means that as soon as the intracortical
scaffold evolves in the way presented by our simulation, our as-
sumption on fine patterns is no longer necessary. Thus, our
model does not require a Mexican hat-like connectivity in adult
animals (see Discussion).

Our tests revealed that even in the “random” system, maps can
be positively correlated, especially when evaluated with broad
and long stimuli that stimulate major parts of iRFs. Could this
correlation suffice as a scaffold for OM maturation in later stages
of development? We performed one more comparison using
more realistic stimuli, by adding a noisy background to every
stimulus.

The resulting map in the “random” system, evaluated with
broad stimuli, was different every time the background was
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changed, although average similarity
among those maps was still positive. In
contrast, the OM in our model did not
change under the same conditions (Fig. 7).
However, when the stimuli were weak
compared with the noise in the back-
ground, neither system had a reliable ori-
entation map. We conclude that regular
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arrangement of intracortical connections
is a more reliable source of orientation-
specific  information than random
connectivity.

However, the influence of our scaffold
is limited to stimuli spanning a few neigh-
boring RFs, because the orientation selec-
tivity derives from interactions between neighboring mini-
patches (it is not feasible to use short stimuli, Ax; <2 mm, to
investigate our OMs). This requirement is described by Shouval
et al. (2000), whose model we propose as a natural continuation
of our simulation. Their definition of coaxial connectivity is
equal to the iRFs achieved in our simulation. They claim the axial
component alone is sufficient for the model to work, referring to
a smaller simulation (Goldberg et al., 1999).

The comodular component of connectivity in Shouval et al.
(2000) could be modeled in our simulation if the fine patterns
were regarded also in the neighboring minipatches. This would
lead to more evident clustering (available with retrograde trac-
ers). Laterally connected groups of neurons would share similar
orientation preference, as found in adult animals (Payne and
Peters, 2001; Chisum et al., 2003). This could be responsible for
clustering of L2/3 connections observed after eye opening, a pe-
riod we are not simulating here.

Figure 3.

Discussion

We have shown how intracortical connections may develop and
serve as a scaffold for OMs. We made two basic assumptions: (1)
Early cortical spontaneous activity can be described on a coarse
scale, having a width of atleast one orientation hypercolumn (=1
mm). Most of such coarse activity patterns are elongated on a
large scale; that is, they are several millimeters long. (2) These
patterns induce a spatially periodic activity on a fine scale (“fine
activity patterns”). Mexican hat connectivity within hypercol-
umns assures that periodic arrays of local patches are active at any
given time.

Combining the above assumptions with Hebbian plasticity,
one finds that a periodic set of patches within a hypercolumn
comes to receive long-range intracortical connections elongated
in one direction across cortex. Patches connect to neighbors with
similar angle of elongation. Thus, a patch becomes an orientation
column: it has a preferred orientation corresponding to the angle
of elongation of its long-range connections, and nearby patches
have similar preferred orientations.

Our mechanism is not upset by round or strongly curved
stimuli, as generated by spots of spontaneous activity waves.
What we propose is not a complete model of OM development,
because given only such connectivity there would be no consis-
tent orientation selectivity for localized stimuli that activate only
one or two hypercolumns. We therefore assume that this connec-
tivity (the iRF) serves as a scaffold for subsequent development of
finer-scale feedforward connections (the aRF) that mediate finer
scale selectivity. Shouval et al. (2000) have shown how such elon-
gated iRFs could mediate learning of aRFs from natural images
after eye opening. Only experiments may verify whether short

0

Growth of a typical fine pattern. The generation of fine patterns is influenced by random activity [(1)]; hence, its
timing is not precisely determined. In most cases, fine patterns become visible within the first 200 ms and stabilize over the next
100 ms. First frame, initial activation by a spontaneous activity burst; middle frame, emergence of blobby activity (157 ms); last
frame, a stable pattern (200 ms).
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Figure 4.  Development of iRFs. The panels present iRFs of two minicolumns. The most

anisotropic iRF is only slightly structured after n, = 25 stimulus presentations (top right), but
becomes clearly elongated after a longer time of development (bottom right, n, = 2500). The
most symmetric iRFs cover the whole patch in the beginning (top left), and they contract in the
course of development (bottom left).

stimuli and long stimuli yield identical OMs before exposure to
natural vision. If they do, other means of bridging from iRFs to
aRFs must be sought.

We encourage research in the youngest animals using low-
frequency, slow-moving gratings to test whether the results pre-
dict a different time course of OM development than known so
far. With electrophysiology, it has been shown previously that
stimulation with very low-frequency gratings makes it possible to
observe orientation selectivity in ferrets 1 week earlier than stim-
ulation with sweeping bars (Chapman and Stryker, 1993; Krug et
al., 2001). As discussed in Usrey et al. (2003), not only varying the
stimuli, but also the anesthetics, may lead to different results than
presently known.

Under the current state of the art, there are several empirical
uncertainties for the presented scenario. The existence of the pos-
tulated coarse-scale activity patterns remains to be verified. Ret-
inal waves could be one source of patterns on the proper scale, but
these patterns disappear before OMs are visible in optical record-
ing. It is possible that orientation selectivity is encoded in long-
range horizontal connections before the visual system matures to
the level allowing OM detection. Alternatively, other possible
sources of large-scale patterns exist (see Materials and Methods,
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Figure5. Axonaltuft. Anexample of distribution of connections from a remote minipatch to
the central one (full representation is shown in supplemental Fig. S2, available at www.
jneurosci.org as supplemental material). Axon terminals are clearly clustered.
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Figure6. Orientation map established in the central minipatch at n, = 2500. The preferred
orientation is represented by color and by the orientation of line segments, their length repre-
senting the strength of orientation selectivity (L). Bottom, Typical orientation tuning curves
(left, high selectivity; right, low selectivity).

Evaluation of assumptions). In our model, the elongation of cor-
tical connections is the first step in OM development. We postu-
late that long-range connections, observed earlier in develop-
ment in L1 and/or the subplate (Galuske and Singer, 1996), may
show the necessary elongation at the appropriate time across
species.

Patchy axonal terminals observed in L2/3 of older animals
(Crair etal., 1998) imply periodic fine activity patterns to occur in
those layers. We used Mexican hat-like interactions to induce
patchy activity, but there is little evidence for this architecture in
adult animals. Inhibitory and excitatory interactions are said to
act on a similar spatial range (Kang et al., 2003). However, this
balance could be different in young animals; e.g., Chen et al.
(2005) recorded twofold shrinkage of inhibitory axons in postna-
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Figure7.  Can orientation specificity be set up by random horizontal connections? We com-

pared orientation specificity in our system after development of elongated intracortical recep-
tive fields to the behavior of a system having random intracortical connectivity. In every one of
40 experiments, we evaluated orientation maps using bar stimuli (Ay, = 2 mm, Ax; = 20
mm; see Materials and Methods) against a noisy background. The background was changed
between experiments, intensity values being drawn from a uniform distribution (0, 1), but
keeping the overall minipatch activity within the same range [’ € (0, 1)]. Pairwise similarities
between maps (s ™, x-axis) for these stimuli are shown as a histogram (the total number of
occurrences in the y-axis). For the “random” system, similarities are very dependent on the
background (white bars), whereas the orientation map in our system stays the same (black
bars).

tal ferrets. Once the scaffold is established, our model no longer
requires Mexican hat connectivity to induce periodic activity
(supplemental Fig. S6, available at www.jneurosci.org as supple-
mental material).

Possibly, lack of Mexican hat interactions at the early time of
development can be the reason why some mammals do not de-
velop OMs. According to our model, the lack of fine patterns may
also be attributable to (1) heterogeneous distribution of neuronal
types, (2) low level of activity, or (3) strong noisy signals from
other areas (supplemental Fig. S1, available at www.jneurosci.org
as supplemental material). Comparative studies failed so far to
find the reason for the variety of orientation preference arrange-
ments in different species, but all of them were performed in
adult animals (Van Hooser et al., 2005). We would be very inter-
ested in discovering how local interactions change with age in
different species.

The role of horizontal connectivity in establishing and sus-
taining OMs has been predicted mathematically (Wolf, 2005)
and confirmed in multiple experiments. For example, in recovery
from retinal lesions, a part of a scotoma regains activity without
rejoining thalamic input (Eysel and Schweigart, 1999). The OM
of the reorganized cortex shows a close match to that obtained
before placing the lesion, despite the large shift in topography, a
finding which provides strong argument to the hypothesis that an
intracortical scaffold is responsible for the remapping.

Another interesting experiment revealed that silencing early
retinal activity in ferrets leads to RF enlargement of binocular
neurons (Huberman et al., 2006). Is generation of coarse activity
patterns affected in these ferrets, and do they lack the initial scaf-
fold for OMs? Is maturation of afferents in binocular neurons
impaired so that they still have to rely on (unstructured) intra-
cortical connections? We look forward to results of OMs studies
with retinal activity silencing.

The role of spontaneous activity in the establishment of OMs
is experimentally confirmed: normally structured OMs develop
in dark-reared ferrets (White et al., 2001) and binocularly de-
prived cats (Crair et al., 1998); identical OM structure is derived
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from contralateral and ipsilateral inputs in the absence of com-
mon visual experience (Godecke and Bonhoeffer, 1996; Lowel et
al., 1998). However, these observations can also be explained by
aRF models (Miller and Erwin, 2001). What is then the advantage
of an early establishment of orientation specificity by lateral
connections?

Our model presents the most natural way to understand how
orientation is arranged regularly before eye opening, whereas
many properties referring to aRF structure (e.g., spatial phase and
position) still vary randomly (DeAngelis et al., 1999). Until now,
aRF-based Hebbian models have been able to simulate ontogen-
esis of continuous OMs with neural sensitivity to maximally two
(orthogonal) spatial phases (Kayser and Miller, 2002). However,
those maps are low-pass, in contrast to experimentally described
bandpass maps. Such result is determined by regarding various
input phases (as explained by Kayser and Miller). In our simula-
tion, we achieve orientation specificity to afferent input of low
resolution, which uniformly activates the whole aRF. In other
words, the ontogenesis of complex cortical cells precedes the de-
velopment of phase-dependent simple cells. As a consequence,
bandpass maps emerge.

Low-pass OMs were recorded in the auditory cortex of ferrets
after early rerouting of visual afferents (Sharma et al., 2000). This
could indicate that those maps develop on the basis of an aRF-
based mechanism rather than through intracortical connections.

The most recent reviews on modeling visual cortex develop-
ment (Erwin et al., 1995; Swindale, 1996) have provided good
motivation for further work in the field. Most of the models
proposed since then are based on the idea of elongated aRFs.
Bartsch and van Hemmen (2001) simulated short-range axon
elongation, but they discuss neither the spatial phases nor the
final OM spectrum, the two problems arising in Hebbian aRF-
based learning. Other hypotheses are also further investigated,
e.g., elastic nets (Carreira-Perpinan et al., 2005) or diffusive sig-
naling (Bhaumik and Mathur, 2003). Ringach (2004) proposed
that aRF ontogenesis results from statistical sampling of retinal
ganglion cells. Authors rarely discuss the reason why proposed
mechanisms do not work in mammals lacking OMs (but see
Koulakov and Chklovskii, 2001).

In contrast to models proposed so far, we do not assume fine
cortical arrangement and mature retinotopy in the young brain;
therefore, our model is compatible with a large RF scatter (Buzas
etal., 2003) and the vivid plasticity of afferent RFs observed post-
natally (Hosoya et al., 2005). In addition, our model in its present
form leaves open the possibility that a mechanism could be de-
vised that would learn multiple spatial phases of a single orienta-
tion at a single location.

We have shown that random intracortical connectivity leads
to a map that is hardly orientation specific; it changes when stim-
uli parameters other than orientation are changed. Whether such
random scaffold suffices to set up a reliable OM after eye opening
remains a question.

We encourage research in very young animals before visual
experience. Comparing maps evaluated with broad gratings with
maps induced by short and narrow stimuli can determine
whether intracortical long-range connectivity is indeed responsi-
ble for OM establishment. Comparing anatomy and physiology
of young visual cortices may reveal the reason why some mam-
malian species do not have OMs. According to our hypothesis,
they should lack a mechanism leading to spatially periodic activ-
ity patterns. OMs in animals deprived of retinal waves could be
low-pass rather than bandpass, as in “rewired” ferret Al. Any
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other abnormality in those animals would give an interesting
insight into the role of intracortical scaffold in setting up the OM.
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