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Human Insula Activation Reflects Risk Prediction Errors As
Well As Risk
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Understanding how organisms deal with probabilistic stimulus-reward associations has been advanced by a convergence between
reinforcement learning models and primate physiology, which demonstrated that the brain encodes a reward prediction error signal.
However, organisms must also predict the level of risk associated with reward forecasts, monitor the errors in those risk predictions, and
update these in light of new information. Risk prediction serves a dual purpose: (1) to guide choice in risk-sensitive organisms and (2) to
modulate learning of uncertain rewards. To date, it is not known whether or how the brain accomplishes risk prediction. Using functional
imaging during a simple gambling task in which we constantly changed risk, we show that an early-onset activation in the human insula
correlates significantly with risk prediction error and that its time course is consistent with a role in rapid updating. Additionally, we show
that activation previously associated with general uncertainty emerges with a delay consistent with a role in risk prediction. The activa-
tions correlating with risk prediction and risk prediction errors are the analogy for risk of activations correlating with reward prediction
and reward prediction errors for reward expectation. As such, our findings indicate that our understanding of the neural basis of reward

anticipation under uncertainty needs to be expanded to include risk prediction.
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Introduction

In the context of uncertain rewards, our understanding of ex-
pected reward (average reward anticipated) in the brain has been
advanced considerably by quantitative models of reward process-
ing (Sutton, 1988; Montague et al., 1996). Reinforcement learn-
ing models suggested that reward-related processing required
two signals: a reward prediction signal and a reward prediction
error signal. The resulting quantitative framework has proven
crucial for understanding reward processing in the dopaminergic
system, both in terms of action selection and for learning uncer-
tain reward distributions.

One can envisage an analogous quantitative framework for
estimating risk, where errors in risk prediction are used to update
future estimates of risk. Here, we use this framework to investi-
gate risk processing in the brain. Specifically, the framework pre-
dicts the existence of two risk-related signals, risk prediction and
risk prediction error. Informally, risk prediction is the risk that is
associated with an uncertain outcome and is measured as reward
variance (or its square root, SD). If the risk prediction is mis-
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judged, errors arise, referred to as risk prediction errors, which
may be used to improve future estimates of risk prediction.

There exist many reward learning approaches that accommo-
date risk indirectly. Examples include nonlinear transformation
of rewards [the expected utility approach (Koenig and Simmons,
1994)], max/min policies [robust control (Heger, 1994)], and
sign-based weighting of prediction errors [effectively inducing
loss aversion (Mihatsch and Neuneier, 2002)]. Here, we consider
direct tracking of the risk of predicting rewards, as in Kalman
filtering, but allowing risk to change stochastically, or to be un-
known [as in the study by Stroud and Bengtsson (2006)]. The
generalized autoregressive conditional heteroscedasticity model
of Engle (1982, 2002) is a canonical example. There, changes in
risk are driven by squared (reward) prediction errors. This model
has proven very successful for tracking risk in financial
€CONOMICs.

A framework with direct risk prediction has not been applied
widely yet. However, direct risk prediction has been shown to be
reflected in the bodily states of professional financial traders (Lo
and Repin, 2002). In addition, recent behavioral evidence shows
that human subjects adjust their learning rate to changing risk,
implying that they must somehow be tracking risk (Behrens et al.,
2007; Preuschoff and Bossaerts, 2007). But the neurobiological
foundations of such risk processing remain unknown.

We hypothesized a system in the brain that encodes both risk
prediction and risk prediction errors, in analogy with the dopa-
mine system, which encodes both reward prediction and reward
prediction errors. We predicted that this system may be insula, as
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insula activation correlates with a broad
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Nineteen subjects played a simple card
game (see Fig. 1 A) while their brain activity
was recorded using functional magnetic
resonance imaging (fMRI) (Preuschoff et
al., 2006). Throughout the experiment, we
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manipulated risk and, hence, induced risk
prediction errors. We found activations in
insula that correlated with risk prediction

error

Figure 1.
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A, Time line for a single trial. Within a trial, predictions and prediction errors arise twice: before and when the first

and, separately, with risk prediction errors.

Materials and Methods

A total of 19 subjects participated in the study
(10 male, 9 female; 1830 years of age; mean age,
21.4 years). All participants gave full informed
consent. The study was approved by the Califor-
nia Institute of Technology Institutional Review
Board.

Experimental paradigm. In each trial, two
cards were drawn consecutively from a ran-
domly shuffled deck of 10. Before seeing ei-
ther card, players guessed whether the second
card would be higher or lower than the first.

card is revealed and before and when the second card is revealed. In this trial, the subject guesses that the second card will be
lower. The first card drawn is a 3. The second card is a 2. Hence, the subject wins $1.00. The solid black line in the second panel
tracks the risk prediction, which is measured here as expected variance (its square root is the SD). The actual size-squared of the
reward prediction error (red dashed line) is a little smaller than expected; therefore, the risk prediction error (third panel) is
negative. At the second card, the reward prediction error is much larger than expected. B, The subject guesses that the second
card will be lower. The first card drawn is an 8. The second card is a 2. Hence, the subject wins $1.00. The size-squared of the
reward prediction error at the first card is smaller than expected; therefore, the risk prediction error is negative. At the second
card, the reward prediction error is smaller than expected. Therefore, the risk prediction error is negative. €, The subject guesses
that the second card will be lower. The first card drawn is a 10. The second card is a 2; hence, the subject wins $1.00. The
size-squared of the reward prediction error at the first card is much larger than expected; therefore, the risk prediction error is
positive and large. Because no uncertainty remains about the outcome after card 1, the risk prediction is zero, and there are no
prediction errors at the time of card 2. Note that the risk prediction associated with the first card is the same across all trials
because no information is available about the first card. The risk prediction of the second card is a function of the first card and
therefore varies across trials.

Subjects made one dollar if they were right;

they lost one dollar otherwise. We then dis-

played the first card followed ~7 s later by the second card. To ensure
that subjects paid attention, we then asked subjects to confirm
whether they won or lost.

Within each trial, predictions occur twice: once before the first card,
and again before the second card. Both these predictions generate corre-
sponding prediction errors, once when the first card is revealed, and
again when the second card is revealed. This is illustrated for three exem-
plary trials in Figure 1. At the beginning of a trial, the player has an
estimate of the average number on the first card, and thus of the average
expected reward after seeing the first card. Likewise, the player has an
estimate of the variability of the number on the first card and, hence, a
prediction of the risk of forecasting the reward to be expected based on
the number on the first card. Once the first card is revealed, the average
expected reward and the risk prediction are compared with the actual
values (the actual expected reward after display of the first card, and the
deviation of actual expected reward from its a priori average). These
comparisons result in a reward prediction error and in a risk prediction
error. The player then estimates the reward revealed through the second
card and the corresponding prediction risk, which again results in errors
once the second card is revealed. See Figure 2, Appendix, and supplemen-
tal material (available at www.jneurosci.org as supplemental material)
for formal definitions and qualitative illustration of all variables as a
function of the probability of winning after seeing card 1.

Subjects were given written instructions for the game and completed a
brief training session outside the magnet. Before each session, subjects
were given an initial endowment of $25.00. One dollar was at stake in
each trial. Failure to place a bet resulted in an automatic loss. Subjects
also lost $0.25 if they failed to report or incorrectly reported the outcome

of their bet at the end of each trial. Accumulated gains were shown only at
the end of each session. A total of three sessions with 30 trials per session
were played by each subject. During scanning, trials were randomly or-
dered. At the end of the experiment, subjects selected one of the three
sessions at random, which determined their final payoff.

fMRI acquisition. Each scanning session started with a localizer scan
and T1-weighted anatomical scans (256 X 256 matrix; 176 1-mm sagittal
slices). While subjects performed the gambling task, functional images
were acquired using a Siemens TRIO 3.0T full-body MRI scanner using
T2*-weighted PACE EPI (repetition time, 2000 ms; echo time, 30 ms;
64 X 64;3.28125 X 3.28125 mm?; 32 3.0-mm slices; no gap; field of view,
210). For each subject, three functional runs were collected (392—-400
scans each).

Data processing and analysis. Data were processed and analyzed using
BrainVoyager v1.26. Preprocessing included motion correction (six-
parameter rigid body transformation), slice timing correction, linear
drift removal, high-pass filtering, normalization to Talairach space, and
spatial smoothing with a full width at half maximum Gaussian kernel of
8 mm. For each subject, a separate linear model was constructed that
included regressors for reward prediction, risk prediction, and their re-
spective errors as described below as well as for wins and losses and visual
and motor activation. Each regressor modeled the blood oxygen level-
dependent response to the specified events by applying a convolution
kernel to a boxcar function. Temporal autocorrelations were corrected
using a first-order autoregression. For each subject, contrasts were cal-
culated at every voxel in the brain. In a random-effects analysis, a one-
sample  test determined where the average contrast value for the group
as a whole (n = 19 subjects) differed significantly from zero. A signifi-
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Figure 2.  Reward predictions, risk predictions, and corresponding errors as a function of

the probability of winning after display of the first card. Top row, Reward predictions (blue)
and reward prediction errors (red) before and at the first (left) and second (right) card. Bottom
row, Risk prediction (blue) and risk prediction errors (red) before and at the first (left) and
second (right) card. Left column, Before the first card is seen, both reward prediction (top) and
risk prediction (bottom) are constant across all trials independent of the probability of winning
after the first card. The error at the first card is a function of the first card or probability of
winning. The reward prediction error is linear and the risk prediction error is quadratic (U-
shaped) in the probability of winning. Right column, Before the second card is seen, the reward
prediction is linear in the probability of winning, whereas the risk prediction is quadratic
(inversely U-shaped). Both errors are a function of the probability of winning as well as the
outcome (dashed line, win; dotted line, loss). The red point in each plot depicts the error in the
numerical example of Figure 14. See also Appendix.

cance ( p < 0.0005) and cluster size (=5 voxels) threshold was applied to
all statistical maps.

To identify the regions of interests (ROIs), we proceeded as follows.
We divided the period between display of cards 1 and 2 into two
consecutive epochs, a short epoch (1 s from card 1) followed by along
epoch (6 s) modeling the remainder of the period. Both epochs were
modeled with three predictors: a constant, a linear function of the
probability of reward, and a quadratic function of the probability of
reward; these predictors are referred to as Oth-, first-, and second-
order predictors. The first- and second-order predictors were meant
to capture expected reward (which increases linearly in probability of
reward) (see Fig. 2 and Appendix) and risk prediction or risk predic-
tion errors (which change nonlinearly with probability of reward)
(see Fig. 2 and Appendix). Note that, in theory, the first- and second-
order predictors are orthogonal (reward probability and squared re-
ward probability are orthogonal), but minor correlation was present
in our setting because of the finite number of samples and hemody-
namic response function smoothing. However, this correlation will
be fully accounted for when we present time courses (see below).
Activation after display of card 2 was modeled using a constant term,
terms indicating a win and a loss, respectively, and, to capture activa-
tion potentially related to risk prediction errors, a term that changed
quadratically in the (previous) probability of winning (see Fig. 2 and
Appendix). All variables after display of card 2 are block variables
with duration of 1 s. All models (including the ROI models described
below) included regressors to account for possible confounds includ-
ing visual and motor activation, instruction screen, final score, initial
endowment screen, and responses given at the answer screen.

For the second step of our analysis, we used as regions of interest
the clusters in bilateral anterior insula, the activity of which after card
1 correlated significantly with the second-order term of the above
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model (i.e., with the square of reward probability). Two pairs of
(bilateral) regions were obtained, one for each epoch (short, 1 s epoch
and longer epoch covering the remainder of the period between cards
1 and 2). We emphasize that the regions of interest were obtained only
from activations after card 1 and before card 2. However, had we also
obtained regions of interest for the short epoch after card 2, they
would not have been much different from those in the corresponding
epoch after card 1) (Fig. S2, available at www.jneurosci.org as supple-
mental material).

We obtained new f3 values for the regions activating in the short
epoch after card 1 by taking the original general linear model and
replacing the Oth-, first-, and second-order predictors by one regres-
sor for each level of probability of winning. We could thus verify that
the activations encoded risk prediction errors by comparing the acti-
vation patterns (estimated s as a function of probability of reward)
with the expected patterns (see Fig. 2 and Appendix). If these regions
indeed encode risk prediction errors, they should also activate after
display of card 2, when another risk prediction error emerges (Fig. 1).
To verify this, we likewise replaced the Oth-, first-, and second-order
predictors in the 1 s epoch after display of card 2 with regressors for
each level of probability and checked whether the activation patterns
as a function of probability were as predicted and whether their mag-
nitudes were comparable with those from the 1 s epoch after card 1.
This is a true out-of-sample test, because we verify the patterns and
magnitudes after card 2 in regions of interest that were obtained only
from activations after card 1. We summarize the findings with respect
to risk prediction error by plotting the 8 estimates against the risk
prediction error (see Fig. 3B). B Values for probabilities of winning
that correspond to the same risk prediction error are pooled. We also
obtained new 3 estimates for the regions of interest in insula for the
second, longer epoch in the interval between cards 1 and 2. One new
B estimate was computed for each level of reward probability. The
resulting patterns suggested that the activations encoded risk predic-
tion and, hence, corresponded to the activations reported elsewhere
in the literature, as we explain below.

Subsequently, adjusted time courses for the regions of interest were
computed (see Fig. 4 and Figs. S1, S2, available at www.jneurosci.org as
supplemental material). These are time courses corrected for the effects
(confounds) of all predictors except the second-order predictors. They
were obtained as errors of a reduced model that included all regressors
except for second-order predictors. Any effect not included in the re-
duced model shows up in the error term, although any effect included in
the reduced model will not show up. For activations related to risk pre-
diction, time courses were grouped into high (corresponding to proba-
bilities of reward p between 0.3 and 0.7), medium (0 < p < 0.3 0r 0.7 <
p < 1) orlow (or no risk: p = 0 or p = 1) anticipated risk, and time-
locked to card 1. For the activations reflecting risk prediction errors at
display of card 1, time courses were grouped into high (corresponding to
p=0orp=1),medium (0 <p<0.30r0.7<p<1),andlow (0.3 <p<
0.7) risk prediction errors, and time-locked to card 1. Adjusted time
courses of activations at display of card 2 and correlating with risk pre-
diction errors were grouped into low (<0), medium (between 0 and 1),
and high (>1).

Results

Activation in anterior insula correlates with risk prediction
Between placing the bet and seeing the first card, risk predic-
tion is constant across all trials and subjects. This reflects the
fact that the information about the outcome of the gamble at
the time of bet does not change across trials. However, be-
tween the first and second card, risk prediction depends on the
first card and therefore varies across trials, which allows us to
identify a neural risk prediction signal. Risk prediction indeed
modulates bilateral anterior insula activation (see Table S3,
available at www.jneurosci.org as supplemental material).
This finding is consistent with previous studies that have iden-
tified uncertainty-related activation in insula (Elliott et al.,
2000; Critchley et al., 2001; Ernst et al., 2002; Paulus et al.,
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2003; Hsu et al., 2005; Huettel et al.,
2005, 2006; Grinband et al., 2006).

Activation in anterior insula correlates
with risk prediction errors

The risk prediction before the first card is
followed by a risk prediction error when
the first card is revealed. The subsequent
estimate of risk prediction, before the sec-
ond card is displayed, is followed by a risk
prediction error when the second card is
revealed. Both risk prediction errors cor-
related significantly with activity in bilat-
eral anterior insula [Fig. 3A and Fig. S2
(available at www.jneurosci.org as sup-
plemental material)]. Increasing risk
prediction errors were reflected in in-
creasing activation (right insula, Fig. 2 B)
(p<0.001; 7% = 0.65). Importantly, Fig-
ure 3 B also shows that the activation lev-
els for risk prediction errors recorded af-
ter the first card are equivalent to those
recorded after the second card. That is,
the relative magnitudes of the activations
after the first and second card corre-
spond to the relative magnitudes of the
risk prediction errors. The average acti-
vation at zero risk prediction error con-
stitutes an outlier. In one important
sense, it should be, as it is the average
activation across all the trials where there
is no risk after seeing the first card: the
subject knows for certain that she will
win or lose. That is, there is no risk pre-
diction error, because there is no risk. In
contrast, in all other trials, there is risk
(and the risk prediction error is always
nonzero).

Figure 4 shows how the revelation of
the first card is immediately followed by
activation that reflects the risk prediction
error. Activation correlating with the risk
prediction after seeing the first card (and
referring to prediction of the outcome
revealed through the second card)
emerges later (~5 s delay), in an area in
insula that is slightly more superior and
anterior. The time courses in previous
studies suggest that the onset of
uncertainty-related activation is delayed
with respect to the risk onset (Huettel et
al., 2005). In accordance with these re-
sults, we find here that the risk prediction
signals in bilateral insula area show a late
onset. Figure 5 shows the time courses for
activation in anterior insula related to

risk prediction error and time-locked at display of card 2.
Trials with zero risk after display of card 1 and, hence, zero risk
prediction error at card 2, are not included (they constitute the
outlier in Fig. 3B). At the peak of the response, activations
stratify significantly by level of risk prediction error. Modulo
the usual delay in hemodynamic response, the activation ef-

fects appear to be immediate.
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Figure 3. A, Activation in bilateral insula correlates positively with risk prediction error as of display of both cards 1 and 2
(random effects, df = 18; p << 0.0005). B, Activation levels in right insula show a significant linear relationship with the level of
risk prediction error at the time of the first card (blue) as well as the second card (red). Furthermore, the functional relationships
are comparable at the firstand second card. The variable on the horizontal axis is: sign(RPE)*sqrt(|RPE|) (RPE, risk prediction error;
sqrt, square root function; sign, sign function). This transformation makes the magnitudes of the RPE comparable with that of
reward prediction errors.
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Figure 4.  Top, Activation in bilateral insula correlates with both risk prediction (blue) and risk prediction error (red). Risk

prediction is reflected in an area slightly more superior and anterior than risk prediction error. Note, that both the red and blue
clusters reflect positive correlations (random effects, df = 18; p << 0.0005). Different colors were chosen for better visualization.
Bottom, Adjusted time courses in right insula at the first card. Before the first card, risk prediction is constant across all trials (Fig.
1). The risk prediction error at the first card is a function of the subject’s bet and the first card. It is reflected in the time course
immediately after the first card is shown (bottom right panel). Preceding the second card, a second estimate of risk prediction
arises, which is reflected in the time course after the first card but only after a short delay (bottom left panel).

Pattern of activation in anterior insula when ignoring risk
prediction errors

Previous studies (cited above) of insula activation in the context
of uncertainty only reported signals that increased in the level of
uncertainty. These studies do not report a risk prediction error,
not only because it was not hypothesized, but also because of its
peculiar timing. To determine whether our activations were con-
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idly changing uncertain environments.
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Confirming this view, the response to risk
prediction errors emerged immediately af-
ter risk was realized and remained active
only briefly.

The risk anticipation signal, in contrast,
was delayed. With peak activation at ~8 s
after display of card 1, and accounting for
the usual 4 s lag until maximal hemody-
namic response, activation related to risk
prediction appears to emerge with a delay
of about 4 s. One cannot exclude the possi-
bility, however, that the activation is time-

-2 0 2

Figure 5.
card 2. Location of activation is displayed to the left (Fig. 3). The risk prediction error is reflected in the time course immediately
after the second card is shown. Trials in which all risk is resolved at the first card (i.e., first card = 1 or 10) are excluded, because
there is no risk prediction and therefore no risk prediction error.

sistent with the earlier accounts of uncertainty-related activations
in insula, we replaced our model with one similar to previous
studies. Specifically, we included only risk prediction at the two
stages of the trial as predictors, leaving out risk prediction errors.
We used a block regressor (a “boxcar” function over the length of
the interval between card 1 and card 2 with height modulated by
the square of the reward probability) equivalent to those of pre-
vious studies to try to pick up uncertainty activations without
regard to their exact timing. Insula activations in response to this
regressor were positive and therefore consistent with earlier ac-
counts in the literature, albeit less significant ( p < 0.05, uncor-
rected). The lower significance is attributable to the fact that there
is no risk prediction error at stimulus presentation in previous
studies and, hence, no potential confounding factor. The only
exception is the study by Critchley et al. (2001), who also reports
activation at lower significance levels.

Discussion

We found two signals in bilateral anterior insula: one reflecting
risk prediction and one reflecting risk prediction error. The two
signals were not only spatially separated but also temporally (Fig.
4). Different levels of risk prediction were best dissociated with a
short delay after the risk cue (first card), whereas different levels
of risk prediction error were well discriminated immediately after
either card was shown.

These findings support our hypothesis that there are two sig-
nals in anterior insula, a late-onset risk prediction signal followed
by a fast-onset risk prediction error signal at the time of the
outcome. Although previous studies have documented risk-
related activations in insula (Elliott et al., 2000; Critchley et al.,
2001; Ernst et al., 2002; Paulus et al., 2003; Hsu et al., 2005;
Huettel et al., 2005, 2006; Grinband et al., 2006), the neural re-
sponses to risk prediction errors have not been reported, nor has
their occurrence been differentiated from that of the risk predic-
tion signals.

The time courses of the two signals support the hypothesis
that they play a distinct role in risk processing. Risk prediction
may act as an anticipatory signal before risk is realized; corre-
spondingly, we found that the neural response to risk prediction
was delayed after the risk cue and remained active at the time of
the outcome. In contrast, the risk prediction error may mediate
learning. Speed is important, to enable quick adaptation to rap-

4
time [s]

Adjusted time course in right anterior insula around display of the second card, time locked to the presentation of

{0 locked to the resolution of uncertainty (i.e.,
display of card 2). To discriminate between
the hypothesis of activation with a fixed de-
lay, and one time-locked to the outcome,
one would need an experimental design
where the time between cards 1 and 2 is
varied substantially.

The relationship between risk processing
and emotions in insula
The insula has been implicated as a critical structure in linking
affective processing with motivation, decision making, and be-
havior. Specifically, insula activation has been reported for a wide
variety of negatively and positively valenced affective processes,
including integration of body states and emotions (interocep-
tion) (Mesulam, 1998), hunger (Craig, 2002), craving and addic-
tion (Naqvi et al., 2007), empathy for pain (Singer et al., 2004),
and social rejection (Eisenberger et al., 2003). Anatomically, the
insula is well positioned to play an integrative role in linking
affective value with adaptive behavior, because it possesses bidi-
rectional connections with numerous structures implicated in
reward and decision making, including orbitofrontal cortex,
amygdala, anterior cingulate, and nucleus accumbens (Reynolds
and Zahm, 2005).

Altogether, this suggests that the insula plays a crucial role in
integrating bodily states and affective value and forms part of a
functionally specialized network for reward-related adaptive be-
havior (Critchley et al., 2001; Craig, 2002; Bechara and Damasio,
2005). Consistent with this view, and with a previous report that
changes in bodily states of professional financial traders reflect
risk (Lo and Repin, 2002), we found neural signals that correlated
with risk prediction errors. Our evidence suggests that anterior
insula is not just a crude relay of the information carried by bodily
states, but that it transmits this information in a precise, quanti-
tative manner. Defects in the functioning of insula would hinder
this transmission and, therefore, may lead to anomalous attitudes
in a context of uncertainty, consistent with recent evidence (Be-
chara and Damasio, 2005). This view is further corroborated by
studies that have suggested the involvement of insula in risk aver-
sion (Kuhnen and Knutson, 2005; Rolls et al., 2008) and anxiety
(Stein et al., 2007). Our evidence that at least one brain structure
resolves risk beyond a simple high/low classification is predicted
by modern decision theory, according to which risk needs to be
precisely measured to determine the correct value of an uncertain
outcome (Markowitz, 1991) and to correctly update estimates of
expected reward (Preuschoff and Bossaerts, 2007).

Learning
Although forms of reward prediction learning have been found
for a diversity of species, including bees (Real, 1991) and nonhu-



2750 - J. Neurosci., March 12, 2008 - 28(11):2745-2752

man primates (Schultz, 2004), the extent of risk prediction learn-
ing across species is not known. In humans, risk prediction learn-
ing must somehow take place, because bodily states (Lo and
Repin, 2002) and learning rates (Behrens et al., 2007) have been
shown to correlate with risk prediction.

Estimation of risk can play a dual role. The first is to guide
choice for all risk-sensitive agents. Such risk sensitivity is seen
in the behavior of many organisms (Caraco, 1982; Barnard
and Brown, 1985), including most humans (Weber et al.,
2004). The second role for estimates of risk prediction is to
modulate learning of expected rewards, even for risk-neutral
agents. Reward learning is typically associated with the sub-
cortical dopaminoceptive structures (McClure et al., 2003;
O’Doherty et al., 2003). It is not clear to what extent dopamine
modulates risk learning. Dopamine is usually associated with
positive aspects of learning, whereas risk could be considered
aversive. Still, a role for dopamine in aversive learning has
been suggested (Nader et al., 1997), and the view that risk is
aversive is not entirely correct. Risk may generate positive
value through discovery of new opportunities. This view is
made explicit in modern option valuation theory (Black and
Scholes, 1973). More importantly, other neurotransmitters,
specifically serotonin, noradrenaline, and acetylcholine, have
been suggested to be implicated in learning (Doya, 2002, Yu
and Dayan, 2003) and are known to modulate activation dur-
ing learning in insula (Berman et al., 2000).

In summary, we hypothesized and showed that insula activa-
tions in the context of a monetary gamble reflected both risk
prediction and risk prediction errors. These are crucial inputs for
the assessment of risk in a rapidly changing, uncertain world. Our
results suggest that the previous understanding that insula is in-
volved in crude, uncertainty-related phenomena such as com-
plexity, ambiguity, and risk needs to be expanded to allow for the
possibility that insula encodes precise quantitative information
about risk prediction emanating from changes in bodily states.
Most significantly, our findings indicate that the role of insula is
not limited to assessing uncertainty: the activations that correlate
with risk prediction errors suggest insular involvement in risk
prediction learning. Reward anticipation in the dopaminergic
system developed in an analogous way: it started with the idea of
encoding expected rewards, but it later needed to accommodate
reward prediction errors. The idea of a reward prediction error
has led to new insights into addiction, mental illnesses, and
pathological decision making (Montague et al., 2004). Analo-
gously, it is to be expected that the notion of risk prediction errors
and possible disruptions in risk prediction learning may also have
significant clinical implications.

Appendix

The mathematics of prediction errors, risk predictions, and
risk prediction errors

Definitions

In our gamble, let P, denote the expected reward conditional on
the number on card 1, and P, the actual reward, revealed on
display of card 2. Before display of card 1, the task is to predict P;;
after display of card 1 and before display of card 2, the task is to
predict P,.

Let P, be the prediction of P, i.e., P, = E[P,]. The prediction
error (as of display of card 1) equals P, — Py; the risk prediction
(before display of card 1) is the expected size-squared of this
prediction error, namely, the variance E[(P, — P,)?]. The risk
prediction error is the actual minus the expected size-squared:
(Pl - Po)z - E[(P1 - PO)Z]'
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Analogously, after display of card 1, P, is the prediction of P,:
P, = E[P,]. The prediction error at card 2 equals P, — P;. The risk
prediction (before display of card 2) is the expected size-squared
of this prediction error, namely, E[(P, — P,)?]. The risk predic-
tion error is the actual minus the expected size-squared:
(P, — Pl)2 — E[(P, — Pl)z]-

Examples
In the three exemplary trials in Figure 1, the subject bets that the
second card is lower.

Before display of the card 1, the odds that the subject wins or
loses ($1.00) are 50—50. This yields a reward prediction P, = 0 for
all trials (Fig. 1, top graph). To compute the prediction risk, first
consider all possible prediction errors that could obtain when
card 1 is displayed. If card 1 equals 1, then the subject loses for
sure and P; = —1;if card 1 equals 2, then the subject wins only if
card 2 is 1, which occurs with 1/9 probability; otherwise she loses;

8 7
so, P, = —1 + §( - 1) = s Analogously, if card 1 equals

9
4 10 then P 5 3 11357 LB p
3,4...10then P, = 9 9 9'9°9'gg 1+ Because Py =
0, the prediction errors are P, — P, = P}, and the possible size-
squared of these prediction errors are (P, — P,)? =

1 2 3 2 5 2 7 2
<9> ,<9) ,(9) ,(9) ,1. Because each value has equal likelihood,

1/5, the risk prediction (i.e., the expected size-squared of the

1

1 2
prediction error) before card 1 is E[(P, — P,)*] = 5{(9)

3 2 5 2 7 2
+ <9> + (9) + <9) + 1} = 0.41. This value is the same
for all trials; it is depicted by the black horizontal segment of the
middle graph in Figure 1 before display of card 1.

At display of card 1. If card 1 equals 3 (Fig. 1A), the actual

2

5 ; this is
indicated by the first red spike in the middle graph of Figure 1A
after display of card 1. When card 1 equals 8 (Fig. 1 B), the size-
squared of the prediction error is the same (as when card 1 equals
3). See the red spike at card 1 in Figure 1 B. When the first card
equals 10, the size-squared of the prediction error is maximal,
namely 1 (red spike at card 1 in Fig. 1C). The risk prediction error
after display of card 1 is the difference between the actual size-
squared of the prediction error (indicated by the red spikes) and
the preceding risk prediction (black segment of middle graph
before card 1); the risk prediction errors are displayed as spikes in

the bottom graphs of Figure 1. For instance, in Figure 1A, the
2

, whereas the pre-

size-squared of the prediction error is (P, — Py)* =

size-squared of the prediction error equals <9

diction risk was 0.41, so the risk prediction error equals —0.01.
Because there are five different values of (P, — P,) %, there are five
different values of risk prediction errors; activations correspond-
ing to each value are indicated in red in Figure 3 B; notice that the
risk prediction error at display of card 1 is never zero.

Before display of card 2. Analogous computations can be made
for risk prediction before card 2 and risk prediction errors at card
2. The outcome P, is either —1 (subject lost bet) or +1 (subject
won). The reward prediction before card 2 is simply P, = E(P,)
and is indicated by the line segments between card 1 and card 2 in
the top graphs of Figure 1 A—C. The risk prediction can be ob-

5

tained by taking the prediction at card 1, e.g, P, = — 5

(Fig.1A), and weighing the two possible squared prediction
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5\* 5\°
errors, (1 + ) and( -1+ 9) , with the respective proba-

9
2+52+7
= ! 9 9

2
< — 1 + =] = 0.69. Additional calculations reveal that the

bilities, 5 and g, to obtain: E[(P, — P,)’]
9

prediction risk when card 1 equals 3 (Fig. 1 A) is the same as when

card 1 equals 8 (Fig. 1 B). The prediction risk is indicated with the

horizontal segments between card 1 and card 2 of the middle

graph of Figure 1A-C.

At display of card 2
The red spikes at display of card 2 denote the squared prediction
errors (i.e., the realized risks). The risk prediction errors at card 2
are obtained by comparing the squared prediction error at card 2
with the risk predicted before card 2 (but after card 1). They are
indicated with the spikes at card 2 in the bottom graph of Figure
1A-C.

For example, in Figure 1A, the squared prediction error is

5 2
(1 + 9) (= 2.42), and the risk prediction is 0.69, so the risk
prediction error is 2.42—0.69 = 1.73.

Additional comments

There are many more possible risk prediction errors at card 2
than at card 1. Importantly, the risk prediction error may equal 0;
this happens when the prediction at card 1 is perfect (as is the case
in Fig. 1C), and hence there is no prediction risk to start with.
Otherwise, the risk prediction errors are nonzero. That is, in our
setting, whenever there is risk, there will be a nontrivial risk pre-
diction error. Except when there is no prediction risk, at card 2,
there are two possible squared prediction errors for each level of
prediction risk, so there are in total nine possible levels of risk
prediction errors (two for each of the four levels of nontrivial
prediction risk and one when there is no risk). The activations
corresponding to these nine possible levels are indicated in blue
in Figure 3 B.

As a function of probabilities of reward conditional on card 1,
expected rewards P, increase linearly, whereas risks E[ (P, — P, )]
change nonlinearly. Likewise, risk prediction errors at card 1 and
card 2 are nonlinear (quadratic) in these probabilities (Fig. 2). As
such, brain regions potentially involved in tracking expected re-
wards can be identified by verifying that they generate activation
that increases linearly in probability of reward; to identify brain
regions potentially involved in encoding risks and risk prediction
errors, we looked for activation that changed quadratically with
reward probability.

See also supplemental material (available at www.jneurosci.
org as supplemental material) for general formulas.
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