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The Consequences of Response Nonlinearities for
Interpretation of Spectrotemporal Receptive Fields
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Neurons in the central auditory system are often described by the spectrotemporal receptive field (STRF), conventionally defined as the
best linear fit between the spectrogram of a sound and the spike rate it evokes. An STRF is often assumed to provide an estimate of the
receptive field of a neuron, i.e., the spectral and temporal range of stimuli that affect the response. However, when the true stimulus–
response function is nonlinear, the STRF will be stimulus dependent, and changes in the stimulus properties can alter estimates of the sign
and spectrotemporal extent of receptive field components. We demonstrate analytically and in simulations that, even when uncorrelated
stimuli are used, interactions between simple neuronal nonlinearities and higher-order structure in the stimulus can produce STRFs that
show contributions from time–frequency combinations to which the neuron is actually insensitive. Only when spectrotemporally inde-
pendent stimuli are used does the STRF reliably indicate features of the underlying receptive field, and even then it provides only a
conservative estimate. One consequence of these observations, illustrated using natural stimuli, is that a stimulus-induced change in an
STRF could arise from a consistent but nonlinear neuronal response to stimulus ensembles with differing higher-order dependencies.
Thus, although the responses of higher auditory neurons may well involve adaptation to the statistics of different stimulus ensembles,
stimulus dependence of STRFs alone, or indeed of any overly constrained stimulus–response mapping, cannot demonstrate the nature or
magnitude of such effects.
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Introduction
A common goal in sensory neuroscience is to characterize a

neuron in terms of a function that it computes on its input or on
the input to the organism as a whole. This goal has often been
pursued using a systems identification approach (de Boer, 1967;
de Boer and de Jongh, 1978). In higher auditory centers, such
reverse correlation analysis typically involves estimation of the
spectrotemporal receptive field (STRF), which can be defined as
the best-fit linear model between the spectrogram of the sound
and the neuronal response it evokes (Aertsen et al., 1981; Egger-
mont et al., 1983; Palm and Pöpel, 1985; Eggermont, 1993;
Theunissen et al., 2000).

Early research using reverse correlation methods focused on
estimation of the Wiener–Volterra kernels using white noise as
the driving stimulus (Marmarelis and Marmarelis, 1978). How-
ever, in higher levels of the auditory system, white noise tends to
be ineffective at eliciting neuronal responses (Wang et al., 2005).
This has led auditory researchers to use other stimuli, such as

dynamic random chords (DRCs) (deCharms et al., 1998;
Schnupp et al., 2001; Rutkowski et al., 2002; Linden et al., 2003),
natural sounds (Aertsen et al., 1981; Theunissen et al., 2000; Ma-
chens et al., 2004), and a family of stimuli whose basic element is
a ripple, a sound modulated sinusoidally in both the temporal
and spectral domains (Kowalski et al., 1996a,b; Calhoun and
Schreiner, 1998; Klein et al., 2000; Escabı́ and Schreiner, 2002;
Miller et al., 2002; Qiu et al., 2003; Fritz et al., 2005). For many of
these stimulus classes, the power at any two points in spectrotem-
poral space is uncorrelated by design, which simplifies estimation
of the STRF. For the others, such as natural sounds, the impact of
the correlations is removed at the analysis stage (Theunissen et
al., 2000). However, in contrast to white noise, these stimuli are,
with the exception of the DRC, not spectrotemporally indepen-
dent; they contain non-zero third- or higher-order cross-central
moments between points in spectrotemporal space.

This lack of full spectrotemporal independence is not an issue
when the true underlying response function (RF) is linear. How-
ever, neuronal firing, and hence the computation performed by
neurons, involves rectifying and saturating nonlinearities dic-
tated by spiking mechanisms. Other significant nonlinearities
have been directly demonstrated in the auditory cortex of bats
(Suga et al., 1978), rodents (Sahani and Linden, 2003; Ahrens et
al., 2008), cats (Calhoun and Schreiner, 1998), songbirds (Nagel
and Doupe, 2006), and primates (Barbour and Wang, 2003) and
in the inferior colliculus of barn owls (Peña and Konishi, 2001).
When the RF is nonlinear, the linear fit between non-

Received April 19, 2007; revised Oct. 7, 2007; accepted Nov. 8, 2007.
This work was supported by Gatsby Charitable Foundation Grants GAT2579/GAT2623 (J.F.L.) and GAT2868

(G.B.C. and M.S., via the Gatsby Computational Neuroscience Unit). We thank M. Ahrens and L. A. Anderson for their
useful discussions regarding this work, R. Egnor for helpful comments on this manuscript, and M. Brainard, A. J.
Doupe, C. Hampton, R. Egnor, and M. Hauser for providing natural stimuli.

*M.S. and J.F.L. contributed equally to this work.
Correspondence should be addressed to Jennifer F. Linden, UCL Ear Institute, University College London, London

WC1X 8EE, UK. E-mail: j.linden@ucl.ac.uk.
DOI:10.1523/JNEUROSCI.1775-07.2007

Copyright © 2008 Society for Neuroscience 0270-6474/08/280446-10$15.00/0

446 • The Journal of Neuroscience, January 9, 2008 • 28(2):446 – 455



independent stimuli and the neuronal response can reflect statis-
tical properties of the stimuli used in the fit rather than properties
of the RF. This fact is well known in theory; in practice, its con-
sequences for STRF analysis are not always fully appreciated. In
particular, it is often assumed that STRFs always provide a reli-
able estimate of the receptive field of a neuron, but this is not
necessarily the case.

We show here in simulation that simple, biologically plausible
nonlinearities can interact with higher-order central moments in
non-independent stimuli to produce STRFs with spurious recep-
tive field elements. Moreover, we illustrate the fact that even
STRFs estimated with spectrotemporally independent stimuli are
dependent on the power of the stimulus. Finally, we demonstrate
using natural sounds that these effects can lead to STRFs that
appear to adapt to reflect stimulus structure, without any actual
change in the underlying response function. Thus, the STRF of a
nonlinear neuron does not necessarily reflect excitatory and in-
hibitory components of the underlying RF, and the structure and
extent of the STRF may be stimulus dependent even when the
true response function of the neuron is not.

Materials and Methods
Stimuli. All stimuli were created in “frames” of spectrograms consisting
of 80 frequency bins and 30 time bins. For each type of stimulus, 75,000
spectrograms were created.

Dynamic random chord stimuli. As an example of spectrotemporally
independent (and therefore also uncorrelated) stimuli, we used a DRC
stimulus, one frame of which is shown in Figure 1a. DRC frames were
generated directly in spectrotemporal space by randomly selecting 20%
of the bins of the spectrogram to have zero intensity and assigning the
non-zero bins to have one of five evenly distributed intensities with uni-
form probability. A DRC stimulus is spectrotemporally independent, in
that the mean power in any given bin of the spectrogram is independent
of the mean power in the other bins. In other words, knowing the power
in any number of the spectrogram bins does not allow prediction of the
power in any other spectrogram bin.

Ripple stimuli. As an example of uncorrelated but not independent
stimuli, we used an ensemble of ripples. Each ripple spectrogram in the
ensemble was assigned 1 of 128 temporal modulations (with frequencies
evenly distributed from 0 through to the maximum possible), and 1 of
255 frequency modulations (again evenly sampled between 0 and the
maximum possible), multiplied by a randomly assigned sign; an example
of one such spectrogram is shown in Figure 1b. Such ensembles of ripples
are spectrotemporally uncorrelated; that is, the power in any given spec-
trogram bin cannot be predicted from the power in any other single bin.
However, these stimuli are not independent; because ripples are periodic,

the power in a given spectrogram bin can be predicted from the power in
two other bins along the same line through the spectrogram.

Natural stimuli. Four classes of natural sounds were used in this study:
environmental sounds from the Pittsburgh database (Smith and Lewicki,
2006), speech sounds from the TIMIT (for Texas Instruments and Mas-
sachusetts Institute of Technology) speech database (Garofolo et al.,
1993), a selection of tamarin vocalizations (all either contact calls or
combination long calls) provided by R. Egnor and M. Hauser (Harvard
University, Cambridge, MA), and Bengalese finch songs provided by C.
Hampton and M. Brainard (University of California at San Francisco,
San Francisco, CA). All sounds were resampled to a sampling rate of 16
kHz and passed through a filter bank consisting of 80 gamma-tone band-
pass filters with center frequencies linearly distributed between 100 and
7000 Hz. The spectrogram was then given by the Hilbert envelopes of the
filter-bank output, decimated to a sampling rate of 1 kHz. The stimuli
were subdivided into spectrogram elements, each 80 frequency bins by 30
time bins, and then a random subset of 75,000 were chosen for use in the
study.

Natural stimuli, unlike DRC stimuli and ensembles of ripple stimuli,
may have (second-order) correlations. The problem of robustly compen-
sating for the effects of these correlations on STRF estimation has been
addressed in previous studies (Theunissen et al., 2000; Woolley et al.,
2006). Because our primary interest was in the effects of higher-order
statistics on STRF analysis, we chose to avoid the issues associated with
second-order structure by numerically whitening natural stimuli before
use. After this process, the off-diagonal elements of the autocorrelation
matrix were all five or more orders of magnitude smaller than the diag-
onal elements, although any higher-order statistical structure was
preserved.

Simulation of response. Spectrograms were each recast into a vector and
became rows in a 75,000 � 2400 stimulus matrix S. This was then mul-
tiplied by one or more similarly vector-recast RF matrices w� (2400 � 1),
and the results were combined according to the rules below to give a
75,000 � 1 response vector r�. In Figures 9 and 10, this was taken to be the
response of the neuron. In other simulations, a final response �� (75,000 �
1) was obtained by drawing 20 samples from an inhomogeneous Poisson
distribution with mean parameter r� and then averaging across the
samples:

�� �
1

20�i�1

20
�� i; �� i � Poisson�r��.

For simulation of a linear RF neuron, S was multiplied by a single RF w�
(2400 � 1):

r� � Sw� .

For the linear model in Figure 9, r� was taken to represent the response,
even if some entries were negative, thus preserving true linearity. In
simulations with noise, the stimuli were offset so that r� was never nega-
tive, and Poisson noise was added, as above.

Three basic nonlinear RFs were modeled. A “multiplicative RF” was
modeled using the linear responses to two distinct Gaussian receptive
fields in spectrotemporal space. The outputs of the linear projections
were rectified and multiplied pointwise (indicated by the Schur product
�) to give the response vector r�:

r� � �Sw� 1����Sw� 2��.

A “divisive inhibition RF” was modeled using the linear response to two
distinct receptive fields. Both receptive fields were Gaussian in temporal
extent. The excitatory receptive field was a squared Gaussian in spectral
extent, whereas the inhibitory receptive field was quadratic (see Fig. 4a).
As with the multiplicative model, the output of each projection was
rectified and then combined pointwise (with pointwise division indi-
cated by the symbol �):

r� � �Sw� 1�� � �1 � a�Sw� 2���.

Figure 1. a, b, Examples of single frames of both the DRC stimulus (a) and the ripple stim-
ulus (b). For STRF estimations, 75,000 frames of each stimulus were used. In the case of the DRC
stimulus, each of these frames was randomly generated; in the case of the ripple stimulus, each
frame had different modulation patterns along the time and frequency axes.
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The constant a was set to 7.5. Last, a “threshold RF” neuron was simu-
lated by subtracting 0.3 times the maximum value of the linear projection
and then rectifying to give the mean rate:

r� � �Sw� � 0.3max(Sw� )��.

Estimation of STRFs. All simulations used stimuli with well conditioned
autocorrelation matrices, and so STRFs could be estimated by simple
linear regression:

ŵ � �STS��1ST�� .

The auto-correlation matrix ST S differed from a scaled identity matrix
only because of finite-sample effects.

In plots of RFs and STRFs, black denotes the minimum response, and
white denotes the maximum response.

Analytic form of the STRF for multiplicative RF. The effects of RF non-
linearity are much simpler to describe analytically for the multiplicative
model than for the other models used in our simulations. Therefore, we
use the multiplicative RF here to illustrate quantitatively how overesti-
mation of the true receptive field may arise from dependence of the STRF
on higher-order statistics of the stimulus. Note that the multiplicative
model can be viewed as a component of the second-order term in a
Volterra expansion, and thus this derivation is partially relevant to any
analysis of nonlinear data.

Let s� be a single N � 1 stimulus frame (corresponding to a row of the
stimulus matrix S defined above), which evokes a (scalar) mean response
r in a multiplicative model as defined above, with N � 1 RF components
w� 1 and w� 2. To avoid effects attributable to finite sampling and noise, we
consider expectations with respect to both response variability and the
stimulus ensemble. These expectations will be denoted by angle brackets
���. Without loss of generality, we assume the stimulus set has been nor-
malized such that �s� s�T� � I and � s� � � 0�.

In the multiplicative model, the expected value of the STRF estimate is
given by

ŵ � �s� � r	 � �s� � ��s�Tw� 1�� � �s�Tw� 2����. (1)

This expectation over all stimuli can be replaced by the average over only
those stimuli for which s�Tw� 1 
 0 and s�Tw� 2 
 0 (that is, those stimuli that
evoke non-zero response under the multiplicative model), multiplied by
a coefficient � giving the fraction of such stimuli in the overall ensemble.
Writing ���� for the restricted average and focusing on the ith element of
ŵ, we have

ŵi � ��si��s�Tw� 1� � �s�Tw� 2����

� ��si��
j

N

sjw1j
���

k

N

skw2k
���

� ��
j

N �
k

N

w1j
w2k

�sisjsk	�. (2)

Thus, each element ŵi of the STRF estimate ŵ depends on the third-order
conditional statistic �sisjsk��, as well as on w� 1 and w� 2.

We are interested in determining under what conditions ŵ might
overestimate the receptive field of a neuron. Formally, by receptive field,
we mean the “dimensional support” of the model (which we will abbre-
viate to “support”): the stimulus dimensions that can influence the re-
sponse of the model. In this context, when we say i is within the support
of the model, we mean that at least one of w1i

and w2i
is non-zero, and so

we want to determine the conditions under which both w1i
and w2i

are 0,
but ŵi is non-zero. Accordingly, we partition each stimulus into two
components:

si
I � � si if i is in the model support

0 otherwise (3)

si
O � � 0 if i is in the model support

si otherwise

Substituting si � si
I � si

O into Equation 2, we obtain the following:

ŵi � ���si
I � si

O���
j

N

�sj
I � sj

O�w1j
���

k

N

�sk
I � sk

O�w2k
���

� ���si
I � si

O���
j

N

sj
Iw1j

���
k

N

sk
I w2k

���

� ���
j

N �
k

N

w1j
w2k

�si
Isj

Isk
I 	�� � ���

j

N �
k

N

w1j
w2k

�si
Osj

Isk
I 	��. (4)

By construction, si
I, and therefore the first term in the final expression of

Equation 4, is zero when i is not in the dimensional support of the model.
Therefore, for points outside the support, we have

ŵi � ��
j

N �
k

N

w1j
w2k

�si
Osj

Isk
I 	�. (5)

Thus, unless the restricted statistic �sisjsk�� is zero for all i outside and j, k
inside the support, estimated weights outside the support may be non-
zero. If the stimulus is not independent, the statistic cannot be guaran-
teed to vanish.

Note that the definition of ���� means that non-zero elements of s�I are
not independent of one another within the restricted set of stimuli, even
if they were in the overall ensemble. Intuitively, knowledge of one point
in the support and the fact that a response was elicited puts constraints on
the possible values of other points in the support. One might therefore be
concerned that, even for independent stimuli, the restricted statistic
might not vanish. However, as long as it is true that si

O for i outside the
support is independent of sj

I for j inside the support, the value of si
O will

also be independent of the response (which depends only on s�I) and thus
independent of sj

I even after restriction to stimuli that evoke responses.
Thus, for weights ŵi outside the support,

ŵi � ��
j

N �
k

N

w1j
w2k

�si
O	��sj

Isk
I 	� (6)

� ��
j

N �
k

N

w1j
w2k

� 0 � �sj
Isk

I 	�

� 0.

Results
Multiplicative interactions
The STRF is often taken to represent the receptive field of a neu-
ron or, in other words, is often considered to be an accurate
estimate of the dimensional support (see Materials and Meth-
ods), herein referred to simply as the support, of the RF of the
neuron. More precisely, it is assumed that significant weights in
the STRF appear only at those time–frequency points that con-
tribute causally to the output of the response function. For a
linear response function (Fig. 2a), both spectrotemporally inde-
pendent (DRC) (Fig. 2b) and non-independent but uncorrelated
(ripple) (Fig. 2c) stimuli provide a consistent estimate of the sup-
port; that is, no spectrotemporal points appear in the STRFs that
do not contribute to the RF in the large data limit. In the case of a
nonlinear RF, for example with a multiplicative interaction (Fig.
2d), independent stimuli can still be used to obtain a conservative
estimate of the RF support (Fig. 2e). This is a corollary of inde-
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pendence; if one point is independent of another point, then it
will also be independent of any function of that other point. Thus,
regardless of the nature of the RF, points outside the support of
the RF will be uncorrelated with the response of the neuron,
which is, by definition, a function only of points within the sup-
port. Therefore, in the large data limit, the STRF will have zero
values outside the support when estimated with a spectrotempo-
rally independent stimulus.

However, this is not the case for ensem-
bles of ripple stimuli, which are spectro-
temporally uncorrelated but not indepen-
dent. The STRF estimated using ripple
stimuli shows significant sidebands of ex-
citation (Fig. 2f) that do not correspond to
any feature in the true RF. Although the
uncorrelated nature of the ripple ensemble
guarantees that points outside the support
are not correlated with any single point
within the support, it does not prevent
points outside the support of the RF from
effectively being correlated with higher-
order cross moments of the stimulus
within the support. Thus, if the RF de-
pends on these higher-order moments, the
stimulus outside the support may be cor-
related with the response of the neuron.
Intuitively, in the case of this particular
nonlinearity, the RF selects for stimuli that
have power present simultaneously in
both RF elements. Because the individual
ripples are periodic in structure, the ripple
ensemble possesses non-zero third-order

moments; specifying that two points are peaks, for example,
means that peaks will repeat along the line drawn through the two
points at integer multiples of the distance between them. The net
result is that points outside the support of the RF then become
correlated with combinations of points inside the support, result-
ing in the appearance of the sidebands in this case. This intuition
is formalized in Materials and Methods, in which the analytic
form of the STRF for a multiplicative model is derived, showing
its dependence on a third-order statistic of the stimulus (Eq. 5).

A closer arrangement of the RF components may produce a
single STRF feature with exaggerated support. A physiologically
plausible example is shown in Figure 3a, in which two closely
spaced RF components staggered in time and frequency are mul-
tiplied together. Compared with that estimated using the DRC
(Fig. 3b), the STRF estimated using an ensemble of ripple stimuli
is elongated in both the temporal and the spectral domains (Fig.
3c). The same principle as underlies the effect in Figure 2f causes
this phenomenon, but the closer spacing of the RF components
means that the sidebands are not visibly separated from the cen-
tral region.

Divisive inhibition
Similar effects can be observed using an RF model intended to
simulate the inhibitory sidebands observed in two-tone mapping
studies [e.g., in auditory cortex (Sutter et al., 1999; Kadia and
Wang, 2003)]. Rather than explicitly modeling two-tone interac-
tion nonlinearities, we use coextensive fields of excitation and
inhibition (inspired by the results of Wehr and Zador, 2003),
with the excitation dropping off more sharply than the inhibition
(Fig. 4a). The inhibition acts divisively; similar divisive interac-
tions are thought to play a critical role in regulating activity in
visual cortex networks (Heeger, 1992; Chance and Abbott, 2000).
The STRF estimated for this model using the DRC stimulus has
inhibitory regions on either side of an excitatory main peak (Fig.
4b), which resemble the inhibitory sidebands described in two-
tone mapping studies of the central auditory system (Sutter et al.,
1999; Kadia and Wang, 2003). In the STRF estimated using an
ensemble of ripples, however, additional banding is visible (Fig.
4c), extending well beyond the support of the model. Intuitively,

Figure 3. The effects of Figure 2 can influence STRF interpretation in a number of different
ways. a– c, For this model sweep-sensitive neuron, with multiplicative RF components that are
temporally offset and spectrally adjacent (a), the STRF estimated using an ensemble of ripples
greatly overestimates the extent of spectrotemporal tuning (b vs c).

Figure 2. a– c, A linear RF formed by the addition of two Gaussian receptive fields (a) is correctly estimated using DRC (b) and
ripple (c) stimuli. d, e, However, for a multiplicative RF (d), only the DRC estimate provides the expected STRF consisting of an
approximation of the sum of the RF components (e). f, The ripple STRF includes prominent sidebands that have no basis in the true
RF.
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the lateral-inhibition-like function of the
model selects for those ripples that have a
frequency modulation pattern matching
the spacing of the surrounds, and the re-
sulting dominance of ripples with this fre-
quency modulation causes additional
banding to emerge in the STRF.

Thresholding
Multiplicative nonlinearities are not re-
quired to produce this sort of effect. Even a
thresholding output nonlinearity (Fig.
5a), fundamental to the spiking response,
can lead to an overestimation of support in
the STRF when the stimulus is not spectro-
temporally independent (Fig. 5c). The
STRF for the rectified bimodal linear RF in
Figure 5c is very similar to the STRF for the
multiplicative nonlinearity of Figure 2f and for essentially the
same reason; the rectification ensures that the majority of spec-
trograms that actually elicit responses are those that have power
corresponding to both peaks in the linear RF. In addition to the
side bands, another feature of the ripple-estimated STRF shared
between the two cases, but more obvious in Figure 5c, is the
increased size of the STRF elements corresponding to the true RF
components. This again arises from structure in the ripple stim-
ulus. A high threshold requires that the majority of the receptive
field be stimulated to elicit a response. Because individual ripples
are continuous, any stimulus that elicits a response and hence has
power throughout the extent of the receptive field will also have
power immediately outside the border of the receptive field.
Thus, the set of all response-eliciting ripples have power extend-
ing beyond the support of the RF, and this is reflected in the
STRF.

General effects of nonlinearities
In all Figures 2–5, other patterns can be seen in the STRFs, in
addition to the specific features we have described. (This is true
not only for the ripple-estimated STRFs but also for the DRC-
estimated STRFs, which show an apparently noisy background.)
Such effects are not entirely attributable to noise in the simulated
responses; they remain present even when noise is excluded from
the simulations. Rather, these patterns, like the specific features
described previously for each model, arise from an interaction
between the RF nonlinearity and the statistics of the stimulus
used to estimate the STRF. (In the case of the DRC-estimated
STRFs, some part of the noisy-looking background derives from
non-zero moments in the stimulus that occur because the stim-
ulus is finite in length.) These patterns are generally sensitive to
minor changes in the model parameters, and their origin is diffi-
cult to describe more intuitively than with reference to the inter-
action between nonlinearities and stimulus statistics (e.g., see the
analytic form of the STRF for the multiplicative RF in Materials
and Methods).

Non-intuitive consequences of linear regression in
high-dimensional spaces
The fact that nonlinearities in response functions can lead to
differences in STRFs estimated using different stimuli has long
been acknowledged in the literature (Marmarelis and Marmare-
lis, 1978; Aertsen and Johannesma, 1981; Theunissen et al., 2000;
Escabı́ and Schreiner, 2002). Indeed, for one-dimensional regres-
sion, the point is obvious; because the linear fit is only an approx-

imation to the true nonlinear generating function, the fit will
depend on the range and distribution of data to be fit (Fig. 6).

Related and equally intuitive observations apply to response
prediction. Again, in one dimension, the slope of a line fit to a
nonlinear function over a set of points that fall within a particular
data range is generally more useful for predicting the value of the
function at other points within the same range than the slope of a
line fit to data in a different range would be. Likewise, in our
simulations, ripple-estimated STRFs always predicted responses
to novel instances of ripple stimuli better than did DRC-
estimated STRFs, and DRC-estimated STRFs always predicted
responses to novel instances of the DRC stimulus better than did
ripple-estimated STRFs.

However, the most important implication of our simulations
has no analogy in one-dimensional regression and is therefore

Figure 4. Divisive inhibition can cause overestimation of support. a, In this model RF, the maximum spectral extents of the
regions of inhibition (dashed red line) and excitation (solid blue line) were identical, although the profiles had different shapes; in
the temporal dimension, both extents and profile shapes were the same. b, Inhibitory sidebands are clearly apparent when an
STRF is estimated using the DRC stimulus. c, In the STRF estimated with the ensemble of ripples, an alternating pattern extends
beyond the simple sidebands and outside the support of the model.

Figure 5. a, b, A rectifying nonlinearity (a) applied after a simple bimodal linear RF does not
have any impact on the estimation of an STRF using the independent DRC stimulus (b). c,
However, with the ripple stimulus, the receptive field of the neuron is overestimated, and
sidebands appear.
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less intuitive. Suppose a linear function (such as an STRF) is fit to
nonlinear data (such as nonlinear neuronal responses) in a very
high-dimensional space (such as spectrotemporal space, in which
each time–frequency element represents a different dimension).

Suppose also that the points at which the
data have been measured (e.g., stimuli
used to elicit neuronal responses) are such
that there are third- or higher-order statis-
tical relationships between the values of
the different input vector elements at those
points (such as there are between spectro-
temporal elements within the ensemble of
ripple stimuli). Then the optimal linear fit
may have non-zero weights even in di-
mensions to which the true data-
generating function is insensitive; in the
particular case of the nonlinear neuron,

this means that the STRF may have non-zero weights outside the
support of the RF of the neuron (Figs. 2–5). This overestimation
of RF support will not impair the power of the STRF to predict
responses to novel stimuli, as long as those novel stimuli fall
within the same region of stimulus space in which the fit was
performed.

Representation dependence
Coordinate independence is a property not simply of the stimu-
lus itself but also of its representation. An ensemble of ripple
stimuli, for example, although not independent in spectrotem-
poral space (Fig. 7a), becomes only a set of discrete points in
modulation transfer function space (Fig. 7b), in which signals are
represented by the modulation of their envelopes in the temporal
and spectral domains (Kowalski et al., 1996a,b; Calhoun and
Schreiner, 1998). A linear combination of ripples with indepen-
dently chosen temporal and spectral frequencies is thus indepen-
dent in modulation transfer function space, so although an en-
semble of ripples overestimates the true support of a nonlinear
RF in the spectrotemporal domain (Fig. 7c,e), when the STRF is
transformed into modulation transfer function space, it provides
a conservative estimate of the support in the modulation transfer
function domain (Fig. 7d,f). As many previous authors have
noted, ensembles of ripples are therefore ideal stimuli for studies
of neuronal response properties in modulation transfer function
space (Kowalski et al., 1996a,b; Calhoun and Schreiner, 1998).

In contrast, unless the powers of individual elements in a DRC
stimulus are chosen from a Gaussian distribution, the modula-
tion content of the DRC stimulus at different modulation fre-
quencies is not independent and shows periodic structure much
as the ripples do in spectrotemporal space. Thus, a modulation
transfer function estimate derived from a DRC is not guaranteed
to provide a conservative estimate of the true modulation transfer
function for a nonlinear neuron.

Power dependence
Even when the stimulus used is independent for the coordinates
chosen, nonlinearities in the RF can affect the estimated STRF in
a stimulus-dependent manner (Marmarelis and Marmarelis,
1978; Eggermont, 1993). This effect can confound the interpre-
tation of apparent excitatory and inhibitory components in the
STRF. Figure 8a illustrates a model neuron that has overlapping
excitatory and inhibitory regions, in which the excitatory region
is generated by a multiplicative nonlinear component and the
inhibitory one is generated by a linear component. At low levels
of stimulus power (Fig. 8b), the linear term dominates, and the
STRF is inhibitory. At intermediate values, the region can essen-
tially disappear entirely from the STRF as the two terms cancel
each other out (Fig. 8c). Eventually, the multiplicative term dom-
inates, and the STRF is entirely excitatory (Fig. 8d). In the case of

Figure 7. a, b, The periodic structure of a ripple stimulus in spectrotemporal space (a)
simplifies to a single point in modulation transfer function space (b), up to a symmetry about
the origin imposed by a real-valued signal. c–f, The true support of the nonlinear RF (c) from
Figure 2c is overestimated in spectrotemporal space when using an ensemble of ripple stimuli
(e), but when transformed into modulation transfer function space, the estimate is conservative
(d, f ). (Note that c and d show the spectrotemporal and modulation transfer function repre-
sentations of the true support of the multiplicative RF, not the DRC estimate of this support.)

Figure 6. The best-fit linear regression (red line) to parabolic data (black dashed line) depends on the subset of the data used
in the fit (black solid line).
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the multiplicative model, this effect arises
from the fact (as seen in Eq. 4 in Materials
and Methods) that, even for independent
stimuli, there is a dependence of the STRF
on non-negligible third-order statistics be-
tween points within the support. Although
here we illustrate this effect with differing
levels of stimulus power, it is also theoret-
ically possible to see similar effects using
different classes of independent stimuli
that have the same power. For example,
while recording responses of owl monkey
auditory cortical neurons, Blake and Mer-
zenich (2002) varied the power and spec-
trotemporal density of DRC stimuli and
thus manipulated a combination of stim-
ulus power and stimulus statistics. They
observed emergent inhibition overlapping
an excitatory region in their STRFs, which
our simulations closely resemble. Thus,
even when estimated using independent
stimuli, STRFs are stimulus dependent, al-
though independence does guarantee that
the changes resulting from differences in
the power or the nature of the stimulus
used will still be constrained to a conserva-
tive estimate of the dimensional support.

Natural stimuli
It is not immediately clear that the above
results hold in the case of natural stimuli, which, although not
spectrotemporally independent, typically possess more compli-
cated higher-order statistics than those considered thus far. To
address this issue, we estimated STRFs for all of our model RFs
using a variety of natural stimulus ensembles. The highly corre-
lated structure of natural stimuli itself presents problems for
STRF estimation (Theunissen et al., 2000), so some form of reg-
ularization is typically used during estimation of the STRFs for
real neuronal responses. In simulations, however, we could avoid
issues associated with regularization completely by using whit-
ened versions of the natural stimuli that were in fact uncorrelated.
This whitening allowed us to focus specifically on the effects of
interactions between response nonlinearities and higher-order
statistical dependencies in the stimuli. To avoid confounding the
effect of signal statistics with the effect of noise, no noise was
included in the model responses for the simulations shown, al-
though inclusion of noise did not have a major influence on the
results.

As expected, STRFs estimated for the linear model using whit-
ened natural stimuli show complete recovery of the underlying
RF, regardless of the stimulus ensemble used (Fig. 9a– e). How-
ever, for the multiplicative model, differences between the STRFs
estimated with the different stimuli become apparent (Fig. 9f–j).
In particular, the STRF estimated using ambient environmental
sounds (Fig. 9g) displays smearing in the frequency dimension,
which contrasts with the temporally elongated features of the
STRFs estimated using Bengalese finch song (Fig. 9h) and tama-
rin calls (Fig. 9i). (These effects are consistent with the dominant
features of the sounds: ambient environmental sounds include
many brief spectral stacks, and Bengalese finch song and tamarin
calls are composed of more elongated narrowband sounds.) Sim-
ilar trends are observed in the STRFs estimated for the threshold
model (Fig. 9k– o). For the divisive inhibition model (Fig. 9p–t),

the inhibitory sidebands select against activation by spectrally
elongated sounds, and so the frequency smearing vanishes in the
case of the ambient environmental sounds (Fig. 9q). However,
temporal elongation is still apparent near 4 kHz for the STRF
estimated with finch song (Fig. 9r) and at lower frequencies for
the STRF estimated using tamarin calls (Fig. 9s). In general,
speech STRFs show fewer effects, although the speech STRF for
the divisive inhibition model has a pronounced and temporally
elongated low-frequency RF component (Fig. 9t).

The effects illustrated in Figure 9 are less dramatic than those
shown previously using ripple stimuli. It must be reiterated, how-
ever, that even these more subtle effects are attributable entirely
to higher-order stimulus statistics and are not a result of either
noise or regularization. Moreover, the effects depend on an in-
teraction between the model and higher-order stimulus statistics.
Changes in the RF model parameters can lead to dramatic results
(Fig. 10). Results with ripple stimuli provide an intuitive expla-
nation for this strong dependence on the RF nonlinearity. In
ripple STRFs, structure outside the RF support is far more pro-
nounced for the divisive inhibition model (Fig. 4c) than for the
multiplicative model (Fig. 2f). This is because the inhibitory side-
bands of the divisive inhibition RF are strongly selective for a
particular category of ripples (those with frequency modulations
fitting the off– on– off spacing of the model) and hence for those
higher-order statistics. The RF models used in this study were
chosen for their simplicity and were not designed to select for any
features present in the natural stimuli, so it is not surprising that
interactions between these RF nonlinearities and higher-order
statistics of natural stimuli are relatively subtle (Fig. 9). However,
recordings in the auditory cortex of marmosets (Wang et al.,
2005) suggest that neurons in the central auditory system can be
highly selective for complex stimuli. In fact, the observation that
independent stimuli can drive auditory neurons poorly is one of

Figure 8. a, An RF with an inhibitory linear component and an excitatory multiplicative component, in which spectrotemporal
extents of the two components are the same. b, At low stimulus powers, the linear component dominates, and the peak is
inhibitory. c, d, As the stimulus power is increased, the influence of the multiplicative term begins to dominate; the peak
diminishes (c) and becomes strongly excitatory (d). For this example, background firing was simulated by adding a constant to r�
(see Materials and Methods); orange represents this baseline response, with black being drops below this rate and white denoting
increases in rate.

452 • J. Neurosci., January 9, 2008 • 28(2):446 – 455 Christianson et al. • Response Nonlinearities and STRFs



the primary motivations for the use of non-independent stimuli
in reverse correlation studies (Klein et al., 2000). Thus, it is a real
concern that the effects observed in STRFs estimated using natu-
ral stimuli would become much more pronounced in the pres-
ence of neuronal nonlinearities that selected strongly for natural
stimulus statistics.

Discussion
We have demonstrated through simulation that even simple, bi-
ologically plausible nonlinearities can have powerful effects on
STRF structure. For a neuron with a linear RF, the STRF will be an
accurate estimate of the support of the RF (i.e., the receptive field
of the neuron). However, when nonlinearities are present in the
RF, decorrelation of the stimulus will no longer ensure accurate
estimation of the support. Higher-order statistics of an uncorre-
lated but not independent (or neither uncorrelated nor indepen-
dent) stimulus can interact with the RF nonlinearities to produce
features in the STRF that do not correspond to any actual com-
ponent of the RF. This effect, in which the support of the STRF
can exceed that of the true RF, does not impair the performance
of the STRF on prediction of responses to stimuli similar to those
used for STRF estimation (although it may impair prediction of
responses to stimuli with distinctly different characteristics).

Rather, it impairs our ability to interpret
the STRF to derive parameters relating to
the true RF support. Thus, when estimated
with stimuli that are not independent,
STRFs cannot reliably be used to deter-
mine the spectrotemporal extent of recep-
tive fields for nonlinear neurons.

STRFs estimated with spectrotempo-
rally independent stimuli will not have fea-
tures that lie outside the support of the RF;
however, the estimate of RF support will
be conservative. Therefore, it is possible
for the extent of the receptive field to be
underestimated (Fig. 8). Moreover, for
STRFs estimated with either independent
or non-independent stimuli, the concept
of the “sign” of STRF components is prob-
lematic. In a nonlinear RF, the excitatory
or inhibitory action of stimulus power at
any time–frequency point can depend on
the total power in the stimulus; a linear
approximation to the RF (i.e., the STRF)
will therefore be stimulus dependent even
when estimated using independent stim-
uli, and interpretation of inhibition and
excitation will be limited to the specific
stimulus used for the STRF estimation.
Thus, for independent as well as non-
independent stimuli, stimulus depen-
dence of STRFs may arise through interac-
tions between constant RF nonlinearities
and the properties of the stimulus ensem-
ble. This fact is implicit in the previous
theoretical work on STRFs (Eggermont,
1993); here we have presented explicit ex-
amples of such interactions using biologi-
cally plausible nonlinearities. We also
made the previously unacknowledged
point that, for STRFs estimated with non-
independent stimuli, these interactions
can create features in the STRF that lie out-

side the true receptive field of a nonlinear neuron.
Many recent studies have demonstrated stimulus dependence

in STRFs estimated using different stimuli (Theunissen et al.,
2000; Blake and Merzenich, 2002; Escabı́ and Schreiner, 2002;
Valentine and Eggermont, 2004; Woolley et al., 2006) or stimulus
dependence in other measures of neuronal responses to different
complex sounds (Bar-Yosef et al., 2002; Nagel and Doupe, 2006).
There is therefore little doubt that central auditory neurons are in
fact nonlinear (but see below), but the nature of that nonlinearity
remains a topic of some debate. One possibility is that stimulus-
dependent changes in STRFs may reflect some underlying pro-
cess of adaptation; that is, a change in the stimulus causes an
otherwise predominantly linear mapping to adapt, nonlinearly,
to the altered context (e.g., as suggested by Woolley et al., 2006).
Another (or additional) possibility is that stimulus-dependent
changes in STRFs may arise not from changes in RF parameters
but instead from a stationary nonlinearity in the response func-
tion (e.g., as suggested by Theunissen et al., 2000; Escabı́ and
Schreiner, 2002; Valentine and Eggermont, 2004). [A similar
point has been raised recently in studies of adaptation of motion
detection in the fly visual system (Borst et al., 2005).] Adaptation
is ubiquitous in the brain and surely plays an important role in

Figure 9. a–t, The STRF of a model neuron varies with the stimulus used to estimate it. Although the STRF estimated for a
linear model (a– e) is invariant with the stimulus used, STRF estimates are stimulus dependent for the multiplicative RF (f–j), the
threshold RF (k– o), and the divisive inhibition RF (p–t). a, f, k, p, Support of the models. All time–frequency combinations that
can contribute to the response are shown in white. b, g, l, q, STRFs estimated using ambient environmental sounds. c, h, m, r,
STRFs estimated using Bengalese finch song. d, i, n, s, STRFs estimated using cotton-top tamarin vocalizations. e, j, o, t, STRFs
estimated using speech.
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neural processing, but the effects of stationary response function
nonlinearities described here complicate quantification of the
extent and form of adaptation. This does not mean that STRF-
like analysis is inappropriate for use in adaptation studies, how-
ever. To demonstrate adaptation, it is sufficient to show that the
parameters of the response function change as a function of time,
more gradually than the stimulus itself (Shechter and Depireux,
2006). Alternatively, it is possible to look at changes in STRFs
estimated using the same stimuli embedded within an adapting
context of other stimuli or task demands (Fritz et al., 2005), thus
avoiding the issue of stimulus-dependent estimation entirely. A
critical point not addressed by previous work, however, is that the
differences between STRFs resulting from static nonlinearities
may only indirectly reflect the nature of the underlying response
function. Thus, if changing the stimulus results in new areas of
the STRF displaying power, it does not necessarily mean that
additional portions of the receptive field have been “uncovered.”
Such variation might instead reflect only the interaction between
a constant nonlinear response and the statistics of the stimuli.

We should note here that there is still some debate in the
literature about whether STRFs tend to be stimulus dependent
and therefore whether central auditory neurons have nonlinear
response functions. Previously, for example, Klein et al. (2006)
examined the stability of STRFs estimated for auditory cortical
neurons using a variety of stimulus classes and concluded that
stimulus dependence of the STRFs was minimal (and therefore
that the neuronal response functions could reasonably be de-
scribed as linear). However, the stimuli they used were all derived
from ripple stimuli and may possess similar higher-order statis-
tics. More importantly, their analysis focused on gross-scale

structure of the STRFs, whereas our results suggest that nonlin-
earities may express themselves in a more subtle manner. The
DRC- and ripple-estimated STRFs of Figure 2, e and f, for in-
stance, have a correlation coefficient of 0.83; this contrasts with
the mean correlation coefficient of 0.64 for STRFs in the study by
Klein et al. (2006). Although the STRFs we estimate with DRC
and ripple stimuli are well correlated, the differences between
them would greatly complicate analysis of receptive field
structure.

The issues we described here are not exclusive to STRF analy-
sis. They are in fact general consequences of the fundamental
problem of model mismatch. Single- and two-tone frequency
response areas (FRAs) illustrate the same concept. The single-
and two-tone FRAs of a neuron are generally different, and the
fact that the single-tone FRA cannot predict two-tone interac-
tions does not mean that the response function of the neuron
changes with the number of tones presented, but rather that the
response function cannot be completely characterized in terms of
linear sums of the responses to single tones alone. STRF analysis
makes the explicit assumption that the true RF is linear. This is,
however, a very difficult assumption to verify in practice, and
thus great caution must be taken in interpreting STRFs. Funda-
mentally, the most useful interpretation of the STRF is predictive:
that is, it is the linear model that best predicts the response to the
chosen stimuli. Although it may be useful to compare STRFs
estimated with the same sound stimulus, it is difficult to derive
meaningful conclusions from the comparison of STRFs derived
using different stimulus sets. Similarly, extracting the true RF
from comparison of any collection of STRFs is a difficult prob-
lem, in which even the analysis of such basic details as the spec-
trotemporal extent of the RF support must be approached with
caution. Just as the single-tone frequency response function is not
the whole RF, the (perhaps misleadingly named) STRF is only an
accurate description of the receptive field in the case of a neuron
with a linear RF.

In light of the issues presented here, it may seem a reasonable
question to ask, why use STRF analysis at all? Just as single-tone
FRAs have not been invalidated as a tool for auditory neuro-
science by the biological implausibility of the assumption that
auditory neurons can be characterized by their responses to single
tones alone, STRF analysis is not invalidated by the overly con-
straining assumption that auditory neuronal response functions
are spectrotemporally linear. Indeed, in many circumstances, the
simplicity of the STRF, like the simplicity of the single-tone FRA,
can be an advantage for analysis. A generalized nonlinear model,
such as the Wiener–Volterra series, may seem preferable to
STRFs, but fitting increasing orders of complexity in such models
requires an exponentially increasing amount of data. More so-
phisticated approaches to modeling linear–nonlinear–Poisson
(LNP) neural responses (that is, response functions in which one
or more linear components are combined in a static nonlinearity)
have been proposed. These include “conditional whitening” in
the context of the spike-triggered covariance method (Rust et al.,
2005) and information maximization (Sharpee et al., 2004) (for
review, see Simoncelli et al., 2004). These methods might go some
way toward alleviating the problems discussed here, although
they cannot resolve the issues entirely (for a discussion, see
Schwartz et al., 2006). More significantly, the issue of model mis-
match remains for these methods, and it is not clear whether the
LNP assumptions are any easier to validate than those of STRF
models. In our view, the STRF is a good starting point for mod-
eling auditory neuronal responses, because the analysis makes a
simple assumption and requires a minimum amount of data. By

Figure 10. Minor changes in the model parameters can influence interactions with stimulus
statistics. a, b, The multiplicative RF used in this paper (a; only model support shown, as in Fig.
9) leads to spectral elongation in the STRF estimated using Bengalese finch song (b; same as in
Fig. 9). c, d, However, changing the locations of the RF components (c) leads to both more
pronounced spectral elongation and the appearance of a clear third peak in the STRF (d).

454 • J. Neurosci., January 9, 2008 • 28(2):446 – 455 Christianson et al. • Response Nonlinearities and STRFs



examining how the linear approximation to the RF changes with
modifications in the stimulus, it may be possible to explore the
nature of any underlying RF nonlinearities (Kvale and Schreiner,
1997; Blake and Merzenich, 2002). Moreover, by incorporating
specific nonlinearities into models that extend STRF analysis and
comparing the predictive power of those models with that of
STRFs, it is possible to improve our understanding of how audi-
tory neurons process complex stimuli (Ahrens et al., 2008). Thus,
STRF analysis is an important tool for characterizing auditory
neuronal responses, when used with full awareness of the possible
consequences of linear approximation to likely nonlinear neuro-
nal response functions.
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