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Brief Communications

Behavioral Detectability of Single-Cell Stimulation in the
Ventral Posterior Medial Nucleus of the Thalamus

Birgit C. Voigt,"> Michael Brecht,'> and Arthur R. Houweling'-
'Bernstein Center for Computational Neuroscience, Humboldt University, 10115 Berlin, Germany, and 2Erasmus Medical Center, Department of
Neuroscience, 3000 CA Rotterdam, The Netherlands

In mammals, most sensory information passes through the thalamus before reaching cortex. In the rat whisker system, each mac-
rovibrissa is represented by ~250 neurons in the ventral posterior medial nucleus (VPM) of the thalamus and ~10,000 neurons in a
cortical barrel column. Here we quantify the sensory impact of individual thalamic neurons in the rat VPM. We first trained animals to
report microstimulation of VPM. All animals learned to report microstimulation currents of 2-5 pwA. We then evoked action potentials
(APs) in single thalamic neurons close to the microstimulation site using juxtacellular stimulation, adding on average 17.8 APs to 2.6
spontaneous APs during 200 ms current applications. A population analysis revealed that animals responded equally often in single-cell
stimulation trials as in catch trials without stimulation, suggesting that APs of single thalamic cells in VPM lead to either no or only a very
weak perceptual effect. These results are surprising given the relatively small number of VPM neurons and our previous observations that
single neurons in other parts of the vibrissal system do have an impact on perception or motor output. Our findings therefore suggest that

neural representations in whisker thalamus are more distributed than in other whisker-related structures.
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Introduction
The relationship between neural activity and perception is a key
topic in neuroscience. It has been intensely investigated to what
extent sensory processing is localized to brain areas and specific
neural circuits. Electrical recordings have shown that large
groups of neurons distributed across areas are associated with
sensory detection (de Lafuente and Romo, 2006). At the same
time, microstimulation experiments have established a direct
link from local neural activity in cortex to perception of a sensory
stimulus (Salzman et al., 1990; Romo et al., 1998; Afraz et al,,
2006), suggesting that small neuronal populations can have an
impact on sensory decision-making (Murasugi et al., 1993; Hu-
ber et al., 2008). Microstimulation, however, has the drawback
that the number of activated cells is unknown (Tehovnik, 1996),
as are their firing pattern and identity. Therefore, the sensory
impact of individual neurons has remained unknown until re-
cently. Using the juxtacellular stimulation technique, we showed
that inducing ~14 action potentials (APs) in a single neuron in
rat barrel somatosensory cortex can lead to a behavioral effect in
a simple detection task (Houweling and Brecht, 2008).

In the present study, we extended this single-cell stimulation
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approach to the ventral posterior medial nucleus (VPM), which
is the main thalamic target of whisker input (Lund and Webster,
1967; Erzurumlu et al., 1980) arriving from the contralateral
brainstem principal trigeminal nucleus (Ma, 1991). Individual
whiskers are represented in VPM by anatomical structures called
barreloids (Van der Loos, 1976). The 250-300 VPM cells that
constitute a barreloid (Land et al., 1995) connect to ~2500 layer
4 neurons of a barrel in the primary somatosensory cortex S1
(Woolsey and Van der Loos, 1970; Jones and Diamond, 1995;
Bruno and Sakmann, 2006). VPM neurons respond more vigor-
ously and reliably to whisker deflections than do barrel cortex
neurons (Simons and Carvell, 1989; Brecht and Sakmann,
2002a,b), and their activity covaries with the behavioral state of
the animal (Nicolelis and Fanselow, 2002; Castro-Alamancos,
2004).

Given these anatomical and physiological observations, one
might expect that single VPM neurons exert a powerful sensory
effect. Here we test this hypothesis by stimulating single thalamic
neurons in the awake head-fixed rat and measuring its impact on
detection behavior.

Materials and Methods

Experimental procedures. Male Wistar rats (n = 9; postnatal days 2939 at
the day of surgery) were handled and habituated to the experimental
setup for 2—5 d before surgery. Animals were implanted under ketamine/
xylazine anesthesia (100 and 5 mg/kg, i.p., respectively; supplementary
injections of ketamine or ketamine/xylazine administered as needed)
with a metal bolt for head fixation and a recording chamber (posterior,
3.0 mm; lateral, 2.75 mm relative to bregma) for chronic access to VPM.
Opver several days, animals were habituated to head fixation and a water
restriction schedule with access to water ad libitum for 1 h/d. Animals
were then trained to report a 200 ms train of microstimulation pulses
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Analysis. We restricted the analysis of behav-
ioral responses to those single-cell stimulation
and catch trials in which animals were consid-
ered attentive, as judged by their performance

s g [
[ee} 20
oo ®

sdy poAd

10

2mV 0

20 nA|100 m5|—|

Figure 1.

according to mapping with a hand-held probe.

applied to VPM (40 cathodal pulses at 200 Hz, 0.3 ms pulse duration)
through a tungsten microelectrode and presented at random intervals
(Fig. 1A). Tongue-lick responses were rewarded with a drop of sugar
water and counted as a hit if they occurred within 100-1200 ms after
stimulus onset. Results were similar if the response window was taken
shorter (0.5s) orlonger (2 s). The time of the first lick after stimulus onset
was taken as the reaction time.

Once animals performed at current intensities below 5 uA on 2 con-
secutive days, we switched to single-cell stimulation experiments, as de-
scribed previously (Houweling and Brecht, 2008). Briefly, during single-
cell stimulation trials, a 200 ms square-wave current pulse was injected
into a neuron through a glass pipette, and current strength was adjusted
(range, 3-39 nA; median, 12 nA) to elicit a maximal number of APs
without damaging the neuron. Single-cell stimulation trials, catch trials
without current injection, and microstimulation trials were randomly
interleaved and presented at random intervals (Poisson process; mean,
3's) (Fig. 1 B). Microstimulation currents were adjusted (range, 3—-7 uA;
mean *= SD, 5.4 * 1.5 uA) such that animals performed close to the
detection threshold, resulting in an average microstimulation hit rate of
87%. To encourage animals to use a nonconservative response criterion,
we only mildly punished licks in the interstimulus interval with an addi-
tional 1.5 s delay to the next stimulus presentation. The average inter-
stimulus interval therefore depended on the frequency of interstimulus
licks and measured 7.9 = 5.8 s over all recording sessions.

The glass pipette for juxtacellular single-cell stimulation and recording
was glued to a tungsten microelectrode used for microstimulation with
the tips separated by 57 = 18 um. This distance is smaller than the
diameter of a barreloid [~75-275 wm (Haidarliu and Ahissar, 2001)]. It
is therefore likely that, in many instances, both electrodes were situated in
the same barreloid.
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Juxtacellular single-cell stimulation in VPM thalamus. A, Behavioral setup. Awake head-fixed animals were trained
to report electrical stimulation applied to VPM through a tungsten microelectrode. Animals were rewarded with a drop of sugar
water if they interrupted a light beam (dashed line) by licking in response to stimulation. During single-cell stimulation experi-
ments, a glass pipette was used to stimulate a single thalamic neuron close to the microstimulation site. B, Single-cell stimulation
detection task. Juxtacellular single-cell stimulation (40% probability), microstimulation (40%), and catch trials without current
injection (20%) were presented in a random order (Poisson process; mean, 3 ). If the first of usually multiple tongue licks occurred
during the response window (0.1-1.2 s after stimulus onset), the animal was rewarded. Licks before stimulus presentation were
mildly punished with an additional delay of 1.5 s to the next stimulus presentation. C, Single-cell stimulation trial. Top trace,
Juxtacellular recording of APs. Arrowheads mark stimulation onset and offset artifacts. Bottom trace, Current injection waveform.
D, Spontaneous (filled circles) and evoked (open circles) APs during a 38-min-long single-cell stimulation experiment. Spontane-
ous firing rates were quantified during a 1 period before each stimulation. APs during 200 ms current injections are indicated as
both a rate (left y-axis) and a number (right y-axis). This cell had a single-whisker receptive field corresponding to whisker C4

in microstimulation trials. Specifically, single-

cell stimulation trials and catch trials were in-
cluded if the animal responded in both the pre-
ceding and the succeeding microstimulation
trial or if the animal responded in a micro-
stimulation trial that immediately preceded or
succeeded the respective trial. A cell was in-
cluded in the dataset if at least five single-cell
stimulation trials and five catch trials fulfilled
this criterion. Reported single-cell stimulation
and catch trial response rates refer to these in-
cluded trials. AP rates/numbers, however, were
calculated over all trials. Because animals were
awake and displayed movements during the
task, single-cell stimulation experiments were
typically of short duration (median, 9 min;
maximum, 98 min). An average of 22 * 18
single-cell stimulation trials and 12 = 8 catch
trials were included per cell. All reported values are expressed as mean *
SD if not indicated otherwise.

Histology and identification of stimulation sites. During the last few days
of experiments with an animal, electrolytic lesions (10 nA, 10s, electrode
tip negative) were made through the microstimulation electrode directly
after single-cell stimulation experiments. After the final experiment, the
animal was perfused transcardially with 0.1 M PBS, followed by a 4%
paraformaldehyde solution. The brain was removed, stored overnight in
4% paraformaldehyde solution, and either transferred to a 10% sucrose
solution, embedded in gelatin, and sectioned frozen (80 wm thick), or
sectioned in 0.1 M phosphate buffer (200 wm). Coronal slices were Nissl
stained or stained for cytochrome oxidase (Wong-Riley, 1979) and ex-
amined for electrolytic lesions.

The following observations indicate that most of our experiments were
performed in VPM. Seven of nine identified electrolytic lesions were
located in VPM. The remaining two lesions were found in the ventral
lateral thalamus and at the border of ventral lateral thalamus and the
ventral posterior lateral nucleus, which relays information from body
and paws to cortex (Fabriand Burton, 1991). To verify that we stimulated
cells in whisker-related parts of the thalamus, we applied microstimula-
tion at intensities (8—15 uA) slightly higher than during psychophysical
experiments through the nearby microstimulation electrode. Such stim-
ulation evoked whisker movements at 20 of 21 tested sites. In some cells,
we also assessed receptive field properties and observed a clear difference
between principal and surround whisker responses as has been reported
in VPM (Brecht and Sakmann, 2002a). Finally, neurons typically dis-
played two modes of AP firing characteristic for thalamic neurons: burst
firing when the animal was inattentive, and tonic firing when the animal
performed the task (Weyand et al., 2001; Woody et al., 2003).
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Figure 2.

Behavioral responses during a single-cell stimulation experiment in VPM. 4, The thalamic recording site, marked by an electrolytic lesion (arrow). Coronal section, 3.6 mm posterior to

bregma. eml, External medullary lamina; PoM, posterior medial nucleus; Rt, reticular nucleus; VPL, ventral posterior lateral nucleus; VPM, ventral posterior medial nucleus. The dashed line indicates
the putative border between VPM and PoM. B, Action potential raster plot (black tick marks) and first lick responses (red squares) during single-cell stimulation trials (top trace), catch trials (middle
trace), and 28 randomly picked microstimulation trials (bottom trace). Stimulation currents were 16 nA for single-cell stimulation and 6 —7 A for microstimulation. Response rates (fraction of first
licks in the response window) for the three different trial types are indicated above each raster plot.

Results

Behavioral report of microstimulation in VPM

Animals were first trained to respond with a tongue lick to a 200
ms train of microstimulation pulses applied to the VPM at ran-
dom times (Fig. 1 A). Animals quickly acquired this task, typically
in the first session. Within a few days, current detection thresh-
olds decreased from 5-70 pA in the first training session to 2—5
pA. These values are comparable with the lowest cortical micro-
stimulation detection thresholds found in humans (Schmidt et
al., 1996), monkeys (Bartlett and Doty, 1980; de Lafuente and
Romo, 2005; Murphey and Maunsell, 2007), and rats (Butovas
and Schwarz, 2007; Houweling and Brecht, 2008). Once animals
responded consistently to microstimulation currents =<5 pA, we
started single-cell stimulation experiments.

Rats do not report single-cell stimulation in VPM

We closely approached a thalamic neuron nearby the micro-
stimulation site with a glass pipette and evoked short (200 ms)
trains of APs by juxtacellular stimulation (Houweling and Brecht,
2008). These single-cell stimulation trials were then randomly
interleaved with microstimulation trials and catch trials without
current injection (Fig. 1 B), which were used to measure chance
performance. Juxtacellular stimulation strongly modulated AP
firing in VPM neurons (Fig. 1C,D). We observed on average
20.4 * 10.2 APs during the 200 ms current injections, which
corresponded to an eightfold increase over the average VPM
spontaneous firing rate (2.6 = 1.3 APs/200 ms) and the addition
of 17.8 = 10.1 APs per stimulation trial.

A representative single-cell stimulation experiment on a VPM
cell is displayed in Figure 2. The recording site was confirmed by
an electrolytic lesion (Fig. 2A). Juxtacellular stimulation added
onaverage 19.3 = 5.1 APs in this cell during the current injection
(Fig. 2B). Despite the strong AP modulation, response rates were

similar for single-cell stimulation trials (hits, 11%) and catch
trials without stimulation (false positives, 13%), whereas the an-
imal responded to a large fraction (67%) of microstimulation
trials.

Statistical comparisons of single-cell stimulation and catch
trial responses in individual cells have limited power given the
typically small numbers of trials. We therefore compared hit rates
and false-positive rates for our population of thalamic neurons
(n = 36) (Fig. 3). This revealed that animals did not respond
more often in single-cell stimulation trials (mean hit rate, 27.9%)
than in catch trials (mean false-positive rate, 27.9%; p = 0.507,
one-sided paired ¢ test).

Cells varied in the number of trials that could be recorded.
However, effect size (hit rate — false-positive rate) did not de-
pend on the number of trials (sum of single-cell stimulation and
catch trials) (r = 0.002; p = 0.989, Spearman’s rank correlation
test), indicating that detection of single-cell stimulation did not
improve with larger trial numbers.

To assess whether the strength of AP modulation affected the
detectability of single-cell stimulation, we calculated a modula-
tion factor for each cell (AP rate during stimulation divided by
prestimulus AP rate). Effect size showed a nonsignificant associ-
ation with modulation factor (r = —0.24; p = 0.160, Spearman’s
rank correlation test), indicating that single-cell stimulation re-
mained undetectable in cells with relatively strong AP modulation.

Our previous results in barrel cortex (Houweling and Brecht,
2008) showed that single-cell stimulation effects were larger than
average in animals that used a nonconservative response crite-
rion. In our thalamic experiments, effect size showed no correla-
tion with the overall response rate (pooled number of responses
in single-cell stimulation trials and catch trials) (r = 0.011; p =
0.951, Spearman’s rank correlation test). Thus, single-cell stimu-
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Figure3. Action potential initiation in single neurons in whisker thalamus does not lead to
a behaviorally detectable effect. Every circle represents the performance of an animal during
one single-cell stimulation experiment. Response rates in single-cell stimulation trials (hits) are
plotted versus response rates during catch trials (false positives) (n = 36 neurons, note 4 points
coincide at the origin).

lation was undetectable regardless of the animal’s response
criterion.

Juxtacellular stimulation activates single neurons in VPM
The following observations indicate that juxtacellular stimula-
tion evoked APs in single and not multiple neurons. (1) Juxtacel-
lular labeling typically stains single neurons in VPM (Pinault and
Deschénes, 1998). (2) We inspected each stimulation trial for the
presence of AP waveforms other than that of the stimulated neu-
ron. In 5 of 34 analyzed neurons, we observed a large secondary
AP waveform (>0.5 mV) during current injections. However,
these large secondary events were rare and accounted only for
0.2 = 0.8% of the APs during current injections across all exper-
iments (Fig. 4A). (3) In nine experiments, we also analyzed small
secondary AP waveforms with amplitudes between 0.25 and 0.5
mV (Fig. 4B). AP rates during spontaneous activity and juxtacel-
lular current injection were not significantly different for any of
these small secondary units ( p > 0.05, two-tailed binomial tests),
indicating that small nearby units were not affected by juxtacel-
lular stimulation.

Discussion

Microstimulation detection thresholds in whisker thalamus
and cortex are comparable

The thalamus has recently become a focus of psychophysical mi-
crostimulation studies. In the monkey lateral geniculate nucleus,
stimulation currents of 40 wA were detected by the animal (Pez-
aris and Reid, 2007). In the ventral caudal nucleus of humans,
Patel et al. (2006) reported microstimulation detection thresh-
olds as low as 5 pA. In our study, rats learned to report micro-
stimulation in VPM at currents of 2-5 wA. The similarity of
microstimulation detection thresholds in VPM with those in rat
barrel cortex (Butovas and Schwarz, 2007; Houweling and Bre-
cht, 2008) is somewhat surprising given the large differences in
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neural circuitry and numbers of neurons devoted to single
whiskers.

Animals do not report action potentials in single

thalamic cells

In contrast with our recent single-cell stimulation experiments in
rat barrel cortex (Houweling and Brecht, 2008), we show here
that stimulation of single thalamic neurons does not lead to a
behaviorally reportable effect, although experimental conditions
were virtually identical. In both studies, microstimulation and
single-cell stimulation electrode tips were close (<100 wm), and
microstimulation currents were similar (thalamus, 5.4 = 1.5 pA;
cortex, 5.0 = 1.6 pA), as were single-cell stimulation currents
(thalamus, 14.5 *= 7.8 nA; cortex, 12.6 = 7.8 nA) and micro-
stimulation response rates (thalamus, 87 * 17%; cortex, 75 =
17%). We note, however, that a direct statistical comparison of
the single-cell stimulation effects in cortex versus thalamus leads
to a nonsignificant difference ( p = 0.126, two-sided unpaired ¢
test). This is not surprising given the low power of this statistical
test (B8 = 0.35, assuming no behavioral effect of stimulation in
VPM), which is attributable to the small average effect size
(~5%) in cortex and the relatively small number of thalamic cells
and trials.

There is of course a possibility that we missed a real but small
single-cell stimulation effect in VPM attributable to the finite
sample size or heterogeneities in the cell population. Recent evi-
dence suggests the existence of two parallel pathways in VPM
(Pierret et al., 2000) that convey functionally distinct sensory
signals (Yu et al., 2006).

Why is single-cell stimulation in whisker

thalamus undetectable?

Electrical stimulation of single tactile afferents from the hand
elicits sensations of pressure, touch, vibration, or tickle in hu-
mans (Vallbo et al., 1984). Thus, given the detectability of single-
cell activity both upstream and downstream of somatosensory
thalamus, it is quite unexpected that the animal does not detect
increased AP activity in single VPM cells. Moreover, the fact that
whiskers are represented by fewer neurons in a thalamic barreloid
than in the corresponding cortical barrel column argues that sin-
gle VPM cells are at least as informative to the brain as single
cortical cells. Detection of single-cell stimulation in barrel cortex
presumably requires activation of neurons downstream (second-
ary somatosensory cortex and perhaps frontal lobe), either di-
rectly by the stimulated neuron or indirectly through the trans-
synaptic activation of other neurons in the barrel column. One
possible explanation for the lack of single-cell stimulation effects
in VPM involves differences in the organization of local neural
circuits. Pyramidal cells in barrel cortex are densely intercon-
nected (Feldmeyer et al., 1999; Liibke et al., 2000), which may
allow the stimulated cortical neuron to activate surrounding neu-
rons. In contrast, VPM neurons lack local recurrent excitatory
connections and therefore a means for direct local amplification.
Another possibility is that thalamocortical synapses are too weak
and depressed for a single thalamic neuron to evoke downstream
spiking. Studies in cats (Alonso et al., 1996) and rats (Pinto et al.,
2000; Temereanca and Simons, 2003) suggest that sensory input
should drive a substantial number of thalamic neurons in syn-
chrony to transfer sensory information to cortex. Bruno and Sak-
mann (2006) estimated that a minimum of 30 VPM thalamic
neurons account for the subthreshold response in layer 4 neurons
of barrel cortex to a strong sensory stimulus (5.7° whisker deflec-
tion at 570°/s), whereas Liu et al. (2007) estimated that ~18 syn-
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chronously active cells in rat auditory thal-
amus saturate the neural response in
cortex. A third possible explanation for the
difference in single-cell stimulation effects
between thalamus and cortex relates to the
relatively high spontaneous firing rates in
VPM. Although we added on average
more APs in whisker thalamic neurons
(17.8 = 10.1) than in barrel cortical neu-
rons (13.6 * 6.3) (Houweling and Brecht,
2008), spontaneous firing rates in thalamic
neurons were also higher and the relative
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modulation of activity was therefore
stronger in cortical cells (factor of 25) than
in thalamic cells (factor of 8).

Overall, our findings suggest that sen-
sory encoding is less sparse in VPM thala-
mus than at other stages of the sensorimo-
tor loop. Thus, the “sensory weights” of
spikes in thalamus seem to be smaller than
those in cortex.
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