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Nonlinearities and Contextual Influences in Auditory
Cortical Responses Modeled with Multilinear
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The relationship between a sound and its neural representation in the auditory cortex remains elusive. Simple measures such as the
frequency response area or frequency tuning curve provide little insight into the function of the auditory cortex in complex sound
environments. Spectrotemporal receptive field (STRF) models, despite their descriptive potential, perform poorly when used to predict
auditory cortical responses, showing that nonlinear features of cortical response functions, which are not captured by STRFs, are
functionally important. We introduce a new approach to the description of auditory cortical responses, using multilinear modeling
methods. These descriptions simultaneously account for several nonlinearities in the stimulus–response functions of auditory cortical
neurons, including adaptation, spectral interactions, and nonlinear sensitivity to sound level. The models reveal multiple inseparabilities
in cortical processing of time lag, frequency, and sound level, and suggest functional mechanisms by which auditory cortical neurons are
sensitive to stimulus context. By explicitly modeling these contextual influences, the models are able to predict auditory cortical re-
sponses more accurately than are STRF models. In addition, they can explain some forms of stimulus dependence in STRFs that were
previously poorly understood.

Key words: neural coding; stimulus–response function; complex sounds; hearing; spectrotemporal receptive field; auditory cortex

Introduction
The spectrotemporal receptive field (STRF) (Aertsen et al., 1980)
is widely used to characterize responses of primary auditory cor-
tex (A1) neurons (deCharms et al., 1998; Depireux et al., 2001;
Miller et al., 2002; Linden et al., 2003; Tomita and Eggermont,
2005). Previously, however, it has been shown that the STRF,
when interpreted as a predictive model, is insufficient to account
for auditory cortical responses (Sahani and Linden, 2003a; Ma-
chens et al., 2004), indicating that neurons in A1 respond non-
linearly to complex sounds. Nonlinearities have profound conse-
quences for the description of response properties. STRFs often
change with the choice of stimulus (Theunissen et al., 2000; Blake
and Merzenich, 2002; Valentine and Eggermont, 2004). Al-
though this might reflect adaptation to stimulus statistics, the
apparent lability of STRF structure could also arise from the ap-
proximation of a nonlinear stimulus–response function with a
linear function within different regions of stimulus space (Borst
et al., 2005; Christianson et al., 2008).

Thus, nonlinear models are required to gain a better under-
standing of auditory cortical responses to complex sounds. Here
we introduce a new class of such models, which are compact and
easy to estimate from limited experimental data. We show how
these models can capture and quantify, in neuronal responses to
complex stimuli, three distinct nonlinear phenomena docu-
mented in experiments with isolated stimuli.

First, although standard STRF models assume that firing rate
is related linearly to the sound level at every point in spectrotem-
poral space, this is not generally true (Phillips and Irvine, 1981).
Our “input nonlinearity” model captures neuron-specific non-
linear mappings between spectrotemporal energy and neuronal
responses to a complex sound.

Second, standard STRF models can describe time-frequency
inseparabilities (i.e., interdependencies in temporal and spectral
tuning properties), but not time-level or frequency-level insepa-
rabilities, such as loudness-dependent latency (Phillips, 1989), or
frequency-dependent tuning to loudness (Sutter, 2000). The in-
put nonlinearity model allows us to estimate inseparabilities in all
pairs of the three stimulus parameters, and thus to analyze how
these inseparabilities affect neuronal responses to dynamic com-
plex sounds.

Third, suppressive phenomena such as two-tone and forward
suppression are observed at all stages of the auditory pathway,
including the auditory cortex (Brosch and Schreiner, 1997; Bar-
tlett and Wang, 2005). Such phenomena are not modeled well
with STRFs, and have therefore rarely been studied using com-
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plex sounds (but see Bar-Yosef et al., 2002). Extending the input
nonlinearity model to the “context model,” we represent local
contextual effects as the modulation of the effective sound level at
a point in the spectrogram by the energy that falls within a short
spectrographic window preceding that point. Thus, this spectro-
graphic window is used to provide a local adaptive context for
each element of the sonogram.

Each of these nonlinear models can be formulated and effi-
ciently estimated using a common flexible framework based on
multilinear analysis. These models improve on the predictive
performance of STRF models by a factor of �1.4. Moreover, for
each neuron, the nonlinear models produce quantitative descrip-
tions of the three phenomena described above. In addition, the
context model sheds some light on the origin of the suppressive
regions commonly observed in STRFs, and provides an explana-
tion for certain systematic changes observed in STRFs measured
under different stimulus conditions (Blake and Merzenich,
2002). Thus, the models offer far more insight into auditory cor-
tical response properties than has previously been available from
STRF analysis.

Materials and Methods
The DRC stimulus
The dynamic random chord (DRC) stimuli used in these experiments
have been described previously (Linden et al., 2003). Each stimulus was a
series of 20-ms-long random chords (i.e., combinations of randomly
selected tone pulses) played without intervening gaps. The center fre-
quencies of the tone pulses were chosen from 24 or 48 different possibil-
ities (in the range of 25–100 kHz or 2–32 kHz, respectively, depending on
the approximate tuning of the neuron), spaced 1/12 octave apart. The
number of tones constituting each chord was random, with an average of
two tone pulses per octave per chord. Tone pulses were gated on and off
with 5 ms cosine ramps to reduce spectral splatter. The peak level of each
pulse was chosen randomly from 10 different intensity levels, 5 dB sound
pressure level (SPL) apart in the range 25–70 dB SPL. The frequency and
intensity of each tone pulse were selected independently. Each of the two
stimuli was 60 s long, comprising 3000 different random chords. Exactly
the same stimulus was repeated 10 (high frequency) or 20 (low fre-
quency) times, with no intervening gap. All analyses are based on the final
9 or 19 repetitions, so as to avoid artifacts caused by strong adaptation at
the onset of stimulation.

Experimental methods
The experimental methods were similar to those described by Linden
et al. (2003). Surgical procedures conformed to protocols approved
by the University of California at San Francisco’s Committee on An-
imal Research and were in accordance with United States federal
guidelines for care and use of animals in research. Mice and rats were
anesthetized and maintained at a surgical plane of anesthesia with
ketamine and medetomidine or pentobarbital, and extracellular re-
cordings were made in early auditory cortical areas [A1 of rats, and A1
and anterior auditory field (AAF) of mice]. Recordings targeted
thalamorecipient layers III/IV (Smith and Populin, 2001) by cortical
depth (350 – 600 �m below the dural surface) and by the polarity and
size of stimulus-evoked local field potentials. The recordings were
later bandpass filtered and then analyzed using Bayesian spike-sorting
techniques (Lewicki, 1994) (user interface software by M. Kvale, Uni-
versity of California San Francisco, CA) to extract responses from
single units or small clusters of neurons.

Notation
In this study, bold letters such as w represent arrays: these may be
vectors, matrices, or higher-order Cartesian tensors. Bold super-
scripts are used with arrays of weights and stimuli to indicate the
corresponding dimensions. Thus wtf represents an array of STRF
weights that span time-lag and frequency. Elements in the array are
italicized and subscripted. Thus, wjk

tf is the element at time lag j and
frequency bin k in the matrix wtf. To simplify notation, we have

adopted modified versions of operators from multilinear algebra. The
symbol V generalizes the vector outer product, such that, for exam-
ple, if b, c, and d are all vectors, then a � b V c V d is a three-
dimensional array, with elements aijk � bicjdk. The symbol � general-
izes the inner product, so that all indices shared between arguments
on the left and right sides of the operator are summed (or contracted);
which indices are shared will be clear from the context. Standard
matrix multiplication is shown without an explicit operator.

Model estimation
To capture the response properties of auditory cortical neurons, predic-
tive models may be used to approximate the neural stimulus–response
function (i.e., the transformation from stimulus to neuronal firing rates).
A widely used model is based on the STRF, here denoted wtf, where the
superscripts denote time-lag and frequency, respectively. Such models
predict the time-varying firing rate of a neuron, r(i) (where i indexes time
bins), from the stimulus s(i, k) (denoting the power in time bin i and
frequency bin k of the spectrographic representation of the sound)
through the following formula:

r̂�i� � c � �
j�1

J �
k�1

K

wjk
tfs�i � j � 1,k�. (1)

The parameters of the model, i.e., the constant c and the elements of the
STRF matrix wtf, should be chosen so as to make the predicted firing rate
r(i) as close as possible to the observed firing rate r̂(i). One approach is to
present the same stimulus s multiple times; the mean firing rate over
repeated trials will then be approximately Gaussian distributed around
the “true” mean stimulus-dependent firing rate. The parameters c and
wtf can then be found by least-squares linear regression, minimizing the
squared error � � �i(r(i) � r̂(i)) 2, which is equivalent to maximum-
likelihood estimation under the Gaussian assumption.

One danger of maximum likelihood regression is overfitting. That is,
the parameters that minimize the squared error on one set of training
data may do so by capturing stimulus-unrelated variability in those mea-
surements, and therefore perform poorly when predicting responses to a
novel set of test data. If this happens, the features exhibited by the best-fit
model cannot be presumed to reflect actual structure in the neural re-
sponse function.

Overfitting may be contained by regularization methods, in which
extra terms are introduced to the objective function (or equivalently, a
prior belief about the parameter properties is expressed) so as to penalize
solutions that have, for example, many large parameter values, or large
variation in parameter values. These extra terms, for example, describing
the scale of the smoothness, are often set by hand. Here, we used a
data-driven method called automatic smoothness determination (ASD)
to estimate optimal values for the scale of the smoothness and the mag-
nitude of the model parameters (Sahani and Linden, 2003b).

Bilinear models
Separable STRF models. A linear spectrotemporal receptive field wtf is
called separable if, in its matrix form, it can be written as the outer
product of two vectors, wtf � wtw f T

; or, in terms of the components, wjk
tf

� wj
twk

f . Functionally, this implies that the relative response of the neu-
ron to tones of different frequencies, given by a vector wf, is preserved
across time-lag, with the absolute responses scaled by a different (possi-
bly negative) factor at each time, given by the vector wt, or equivalently,
that the temporal response profile at all frequencies is identical up to a
per-frequency scale factor. Mathematically, the predicted firing rate in
time bin i is, up to an additive constant (discussed later) as follows:

r̂�i� � �
j�1

J �
k�1

K

wj
twk

f s�i � j � 1,k�. (2)

Thus, although the separable model is nonlinear in the parameters taken
all together, it is linear in each of the vectors wt and wf alone. Such a
model is called bilinear. A graphical illustration of a bilinear model is
shown in Figure 1 A.
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Many STRFs in the auditory system appear to be well modeled as
separable (Linden et al., 2003; Simon et al., 2007), but even when this is
not the case, a bilinear model may be used to approximate the full insep-
arable linear (in wtf) relationship. Here, we discuss this bilinear approx-
imation to the STRF as a preliminary to the more extensive multilinear
models introduced later.

One way to fit a bilinear model is to estimate the full receptive field wtf,
and then examine the singular value decomposition (Strang, 1988) of the
resulting matrix. The component vectors corresponding to the largest
singular value give the best separable approximation to the full STRF
matrix in the least-squares sense; that is, they minimize the term �jk �wjk

tf

� wj
twk

f � 2. However, even when wtf is itself found by least-squares regres-
sion, this cost function is different from the following bilinear model
error:

� � �
i

�r�i� � r̂�i��2 � �
i

�r�i� � �
jk

wj
twk

f s�i � j � 1,k��2.

(3)

We derive algorithms to minimize this model error (possibly with addi-
tional regularization terms) directly. It is helpful to simplify notation as
follows. Consider an expanded three-dimensional stimulus array, aug-
mented by the addition of a time-lag dimension: Mijk

itf � s(i � j � 1, k).
This change of notation allows us to write the bilinear spike rate predic-
tion as follows:

r̂�i� � �
jk

wj
twk

f Mijk
itf , (4)

or

r̂ � �wt � wf� � Mitf, (5)

where the second form adapts the tensor notation of multilinear algebra
as described above. Here, because Mitf shares time-lag and frequency
indices ( j and k) with (wt V wf), the sum implied by the � operator is over
those two dimensions, with the third index i remaining, corresponding to
the bin-by-bin predictions collected in the vector r̂. If we now write the
vector norm as �a� � �a � a � (�i�ai�

2) 1/ 2, the squared-error cost func-
tion becomes � � �r � (wt V wf) � Mitf� 2.

In the following we will use component notation, tensor notation or
both as needed to aid clarity.

Parameter estimation. At a local minimum of the error, we have the
following:

��

�wj
t � 0, (6)

and

��

�wk
f � 0. (7)

Differentiating and rearranging yields the following fixed point condi-
tions:

�
ik

Mijk
itf wk

f r�i� � �
ij�k�k

Mij�k�
itf wj�

t wk�
f Mijk

itf wk
f , (8)

or

�wf � r)�Mitf � ((wt � wf) � Mitf) � (wf � Mitf), (9)

and

�
ij

Mijk
itf wj

tr�i� � �
ij�jk�

Mij�k�
itf wj�

t wk�
f Mijk

itf wj
t, (10)

or

�wt � r) � Mitf � ((wt � wf) � Mitf) � (wt � Mitf). (11)

Defining A � wf � Mitf and B � wt � Mitf, and noting that both A and
B are matrices, we obtain the matrix equations A Tr � A TAwt and
B Tr � B TBwf, which can be solved to give wt � (A TA) �1A Tr and wf

� (B TB) �1B Tr. It should come as no surprise that these each resem-
ble the solution to a linear regression problem, as the bilinear model
is linear in each parameter vector separately. However, the matrix A
(B) is itself a function of wf (wt), and so these equations do not give a
closed-form solution to the optimization problem. Instead, the equa-
tions are applied iteratively, alternating between updates for wt and
for wf. Each iteration decreases the squared error and, because �
cannot drop below zero, the iterations must converge to an optimum
in the parameter space.

The background rate. Because neurons often fire in the absence of a
stimulus, a complete predictive model must include a constant term. As
in the linear case, this can be introduced cleanly into the multilinear
framework by augmenting the stimulus appropriately. If there are T time
points in the stimulus, and the time-lag index ranges from 1 . . . J and the
frequency index from 1 . . . K, so that Mitf is T 	 J 	 K, we consider a T 	
(J � 1) 	 (K � 1) array Qitf with

Qijk
itf � � Mijk

itf j � J k � K
1 j � J � 1 k � K � 1
0 otherwise.

(12)

Then, with wt and wf also augmented to contain J � 1 and K � 1 ele-
ments, respectively, the model r̂ � (wt V wf) � Qitf becomes equivalent to
a model with background rate, r̂ � c�(wt V wf) � Mitf with c � wJ�1

t wK�1
f .

Multilinear models
We have seen that a separable STRF may be viewed as a bilinear predictive
model. Shortly, we will see that more complex models, incorporating
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Figure 1. A, A bilinear STRF. The STRF (right) is equal to the outer product of two vectors,
one describing the temporal response (left) and the other describing the spectral response
(middle). B, Schematic of the fully separated input nonlinearity model wt V wf V wl. The
response to latency, frequency and sound level is assumed to be fully separable. C, Schematic
of the input nonlinearity model wtf V wl. The full spectrotemporal component (left) and the
sound-level component (middle) produce a response function (right) that is separable in
sound-level and time, sound-level and frequency, but not in time and frequency. Note that
there are weights (not shown) in the interior of the cube.
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nonlinear level sensitivities and acoustic-context-dependent sensitivi-
ties, can be also be expressed in a multilinear form. However, before
going on to develop these models, it is useful to discuss some general
aspects of parameter estimation in the multilinear setting (Ahrens et al.,
2008).

The general predictive form of a multilinear model can be written as
follows:

r̂�i� � �
jk. . .m

ajbk. . .zmQijk. . .m, (13)

or r̂ � (a V b V . . . V z) � Q, where a, b, . . . , z are parameter vectors and
Q is a fixed multidimensional array that depends only on the stimulus.

Alternating least squares. As in the case of the bilinear model discussed
above, the squared error � � �r � (a V b V . . . V z) � Q� 2 can be
minimized by cycling through a set of update equations, each of which
resembles the solution to a linear regression problem:

A � �b � c � . . . � z� � Q a � �ATA��1ATr
B � �a � c � . . . � z� � Q b � �BTB��1BTr

···
Z � �a � b � . . . � y� � Q z � �ZTZ��1ZTr

. (14)

Each of these updates minimizes the squared error with respect to one
parameter vector, while holding the others fixed. Thus, the algorithm, a
variant of alternating least squares, is guaranteed not to increase the
squared error at any step and, hence (as the error is bounded below by
zero), to converge.

Control of overfitting. As the number and length of the parameter vec-
tors in any model increases, so does the danger of overfitting. As de-
scribed above, regularization is the practice of adding terms to the cost
function to be optimized, so as to discourage overfitting. Here, we adopt
a Bayesian perspective, in which the simple cost function corresponds to
the (log) likelihood of the parameters given the data, and the regulariza-
tion terms express our prior beliefs about their forms or values.

The objective function used is of the form �r � � � a TDaa � b TDbb
�. . . . Viewed probabilistically, the squared-error term � corresponds to
a Gaussian likelihood. Although a likelihood based more directly on a
mean of Poisson terms may be a better model for empirical firing rate
data, the Gaussian assumption makes fitting algorithms more tractable
and is appropriate in the regime of many observations or moderate to
high firing rates, where the trial-averaged Poisson-based likelihood ap-
proaches the Gaussian form. The additional terms of the objective func-
tion express zero-mean Gaussian priors on each parameter vector, with
covariances Da

�1, etc. The priors are zero-mean because we have no
reason to expect a priori parameters of any particular sign. The covari-
ance matrices are chosen to favor smaller parameter values (commonly
referred to as “shrinkage”) as well as smoothness in the parameter
vectors.

The alternating least squares algorithm of Equation 14 can be adapted
to minimize �r through a small modification. Given a matrix A as defined
in Equation 14, the update for a becomes a � (A TA � Da) �1A Tr, and
similarly for the other parameter vectors. For fixed prior covariances,
these updates are guaranteed to converge, as before.

To obtain appropriate prior covariance matrices D(�), we adapted the
ASD scheme of Sahani and Linden (2003b). In this scheme, each prior
covariance matrix is parametrized by two parameters �1,2

(�) , describing the
degree of shrinkage and smoothing; optimal values of the parameters are
found through an automatic procedure. Here, we used this procedure
within the first few iterations of the alternating least squares framework.
If ASD updates are used at every step, the objective function varies be-
tween iterations (because the D matrices change), and convergence of the
fitting procedure is no longer guaranteed. For this reason, the covariance
parameters were only updated during the first three iterations. Once
these covariance parameters were fixed, the remaining iterations were
again guaranteed to converge.

Estimation error. Error bars for the parameters were obtained by a
bootstrap procedure (Effron and Tibshirani, 1993). Parameters were refit
10 times, in each case using a equinumerous training set randomly re-

drawn, with replacement, from the available data. The error bars in all
figures indicate the SDs of these 10 estimates.

The input nonlinearity model
In this and the next sections we develop predictive auditory models that
express various nonlinear stimulus dependencies in multilinear form,
allowing them to be fit using the methods described above.

Stimulus representation. An auditory STRF model is linear in the sono-
gram. Consequently, the predictions of the model, and the parameter
values obtained, depend on whether the input stimulus s(i, k) represents
the intensity, the power or the log intensity of the stimulus at the given
time and frequency. Indeed, the best predictions may be obtained not
from any of these external representations, but rather from something
closer to the rate-level function of the cell, or some other cell-specific
mapping. Here, we consider a generalized model in which a suitable
nonlinear transform of the stimulus can be found directly from the data.
Based on the STRF model of Equation 1, such a model has the following
form:

r̂�i� � c � �
jk

wjk
tfg�s�i � j � 1,k��, (15)

where g is a function to be learned. The mapping g is an “input nonlin-
earity,” which transforms the representation of sound level in the spec-
trogram before it is spectrotemporally filtered by wtf. This form is linear
in wtf, but g has not yet been parameterized so as to make estimation
possible. One natural parameterization, common in the regression liter-
ature, is as a linear combination of a fixed set of basis functions {gl}, so
that g(x) � �l wl

1gl(x), for some parameter vector wl.
For the stimulus considered here, the level of each tone pulse was

drawn from a set of 10 distinct possible values. Thus, a natural set of basis
functions comprises 10 indicator functions, each taking the value 1 for a
single possible input sound level, and 0 otherwise. This leads to a simple
interpretation of wl

1 as the net effective input correponding to a pulse at
the lth intensity level. However, the mathematical development that fol-
lows is applicable to any choice of basis and, thus, similar methods could
be used with other stimuli, even if not discretized in level (Ahrens et al.,
2008).

Given this basis parameterization, Equation 15 can be rewritten as
follows:

r̂�i� � c � �
jkl

wjk
tfw1

l gl�s�i � j � 1,k��. (16)

If we now define a four-index array, Mijkl
itfl � gl(s(i � j � 1, k)), and

consider a separable STRF model wjk
tf � wj

twk
f , the model can be written in

the following multilinear form:

f B
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Figure 2. Schematic of the context model for a DRC stimulus. The sound level components
are not shown. A, The context part of the model, dependent on time-frequency (i, f ) and
parametrized by (	, 
, �). A weighted sum of the tone pulses (or, for a general sound, time-
frequency elements) in the box acts to modulate the effective sound level of the target tone,
indicated by the arrow. B, The time-frequency part of the model, equivalent to the domain of
action of the STRF. A weighted sum of the amplitudes of the tone pulses in the box after
modulation by context (A) predicts the spike rate, indicated by the downward pointing arrow.
Inset, The axes labels for A and B.
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r̂�i� � c � �
jkl

wj
twk

f wl
1Mijkl

itfl (17)

or

r̂ � �wt � wf � wl� � Qitfl, (18)

with a four-dimensional array Qitfl defined by augmenting Mitfl in a
manner analogous to Equation 12. This parameter grouping is illustrated
in Figure 1 B.

Grouping stimulus dimensions. The unseparated form Equation 16 is
itself a bilinear model, with linear dependence on each of the STRF
parameters wjk

tf, that is, it can be written r̂ � (wtf V wl) � Qitfl, as illustrated
in Figure 1C. It is therefore possible to apply the multilinear estimation
framework directly, without forcing the time-frequency component
of the model to be separable. Formally, this may be done by considering
the “rasterized” or “unrolled” vector form of the matrix wtf, often written
vec(wtf), while similarly unrolling the corresponding dimensions of the
array Qitfl.

This model has many more parameters than the fully separated, trilin-
ear version (Eqs. 17, 18), and is thus considerably more prone to overfit-
ting, making regularization yet more crucial. In this case, the automatic
smoothness determination procedure (Sahani and Linden, 2003a) ob-
tains separate smoothing parameters for the time-lag and frequency di-
mensions, even though they are combined into a single vector.

Although this model corresponds well to the standard STRF represen-
tation, it is clearly not the only way in which parameters of the trilinear
model may be grouped. Instead, a neuron might be better described as
having an inseparable frequency-level receptive field, described by a ma-
trix wfl. In this case, the model is r̂ � (wt V wfl) � Qitfl. This model is able
to capture inseparable frequency-level components of the response func-
tion, as are often seen in static receptive fields, but are ignored in linear

STRF models. However, the model assumes that the time component of
the response function is separable from the frequency-level component.

A neuron might also have an inseparable time-sound level compo-
nent, in which case the appropriate model might be r̂ � (wtl V wf) � Qitfl,
which is able to capture inseparable time-level properties of the response
function (i.e., changes in sound level tuning at different lag times).

For any given neuron, we can consider each of these possible models,
evaluating the performance of each by cross-validation and choosing the
most predictively successful model to characterize the cell.

Indeed, it is possible, in principle, to dispense with separability alto-
gether, fitting a linear model with a three-dimensional parameter array
wtfl. In practice, however, the number of parameters implied by this
model (the product of the numbers of time lags, of frequency bins, and of
level basis functions) makes it impractical to estimate without consider-
able overfitting.

Adaptation and two-tone interaction: the context model
Documented nonlinear effects in the auditory pathway include two-tone
suppression, where the response evoked by a tone is affected by a simul-
taneously presented tone at a different frequency (Sutter and Schreiner,
1991), and forward suppression, where the tone-evoked response is
modulated by earlier tones at the same frequency (Brosch and Schreiner,
1997).

These and other contextual effects are partly modeled by the standard
STRF; however, this framework forces the contextual influence to be
additive. Here, we consider multilinear models that also describe multi-
plicative contextual effects. In particular, we consider models in which
the context of a tone pulse in the DRC, or, more generally, of the energy
at a point in the spectrogram, which we call a time-frequency element,
may be viewed as multiplicatively modulating its effective “level”; that is,
the stimulus in time bin i at frequency k has an effective strength given by
the following:

g�s�i,k�� � �c2 � Context�i,k��. (19)

Here, g is a nonlinear function of the type considered previously (Eq. 15).
Context(i, k) is a function mapping the stimulus context around the
time-frequency point under consideration to a multiplicative factor.

We assume that the contextual modulator Context(i, k) is itself a mul-
tilinear function of the same form as the input nonlinearity model, but
indexed relative to the time and frequency being modulated, as sketched
in Figure 2. That is, we write the contextual modulation as follows:

Context�i,k� � �
m�1

M �
n�1

N

�m,n�
�1,��

�
p�1

P

wm
� wn

�wp
�hp�s�i � m � 1,k � � � 1 � n��,

(20)

where � � (N � 1)/2 is the maximal absolute frequency difference
considered between the contextual and modulated time-frequency ele-
ments, and the exclusion of (m, n) � (1, �) is needed because a time-
frequency element cannot be in its own context [that is, s(i, k) is not part
of the expression for Context(i, k)]. The vectors w� and w� contain
weights that depend on the relative time differences m � 1 . . . M and
frequency differences n � 1 . . . N, respectively. The vector w� transforms
the contextual sound energy in terms of a set of P basis functions hp(s),
which are here chosen to be identical to the gl(s) used in the input non-
linearity model, although they may differ in general.

In the tensor notation used previously, Context(i, k) � (w� V w� V
w�) � M��� (i, k), where M��� (i, k) is a stimulus array that depends on the
(i, k) position of the time-frequency element being modulated, and (if the
bases {gl} and {hp} are the same)

�M����i,k�
mnp � � 0 if �m,n� � �1,��
Mim�k���1�n� p

itfl otherwise (21)

for 1 � m � M; 1 � n � N; 1 � p � L, with Mitfl defined as in Equations
17 and 18. M��� (i, k) will be referred to the “contextual subunit” of the
time-frequency element at time i and frequency k (Fig. 2).
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Figure 3. Lower bounds on predictive power for neurons in rodent auditory cortex. A, Pre-
dictive power of the wtf V wl input nonlinearity model versus that of a well fit linear (STRF)
model. B, Predictive power of the wtf V wl V w� V w� V w� context model versus that of
the linear model. C, Predictive power of the wtf V wl V w�V w�V w� context model versus
that of the wtf V wl input nonlinearity model. Negative predictive power means that the
prediction is worse than predicting a constant mean firing rate. The input nonlinearity model
performs better on most neurons than the STRF model, and the context model performs better
than both on the majority of neurons, despite having the largest number of parameters. D,
Predictive power of the wt V wf V wl V w� V w� V w� context model versus that of the
STRF model. The cross-validation performance of the fully separated context model is higher
than that of all the other models.
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The contextual influence modulates the effectiveness of the stimulus
s(i, k) according to Equation 19. The modulated sound strengths are then
combined according to the noncontextual multilinear form. Thus, the
full model becomes the following:

r̂�i� � c � �
jkl

wj
twk

f wl
lMijkl

itfl �c2 � Context�i � j � 1, k��

� c � �
jkl

wj
twk

f wl
lMijkl

itfl �c2 � �
mnp

wm
� wn

�wp
��M����i � j � 1, k�
mnp�. (22)

The first term in the sum reflects the input nonlinearity model, and the
second term reflects the contextual modulation of the input to that
model. To render this in the standard multilinear form, we define a
seven-dimensional array Qitfl���:

Qijklmnp
itfl	
� � (23)

�
Mijkl

itfl �M	
��i � j � 1, k�
mnp

1

Mijkl
itfl

0

if � j, k, l � � � J, K, L�
and (m, n, p)�(M, N, P)
if � j, k, l � � � J � 1, K � 1, L � 1�
and �m, n, p� � �M � 1, N � 1, P � 1�
if � j, k, l � � � J, K, L�
and �m, n, p� � �M � 2, N � 2, P � 2�
otherwise.

Then, with wt. . . w� correspondingly augmented with one or two addi-
tional dimensions each, we obtain the expression r̂ � (wt V wf V wl V w�

V w� V w�) � Qitfl� ��, with the constants in Equation 22 recovered as the
following:

c � wJ�1
t wK�1

f wL�1
l wM�1

	 wN�1
� wP�1

� (24)

c2 � wM�2
� wN�2

� wP�2
� . (25)

Note that the parameter vectors w�, w�, and w� associated with the
contextual subunit are independent of the time-lag j and the frequency k.
As such, the action of the contextual subunit may be interpreted as an
adjustment of the stimulus that happens before the action of an input
nonlinearity model, and independent of the frequency. However, the
parameters determining the contextual effects are estimated simulta-
neously with the others; algorithmically, there is no hierarchy.

We may regroup some of the parameter vectors as before, for example,
assume all components are separable, or group time and sound level
together so that the parameters are wtl V wf V w� V w� V w�.

Because the different components of the models interact multiplica-
tively, there is an ambiguity of scale in the parameters. For example, if wl

were multiplied by a constant factor and wt divided by that same factor,

an identical model would result. We resolve this
ambiguity in the input nonlinearity part of the
model by rescaling all parameter vectors but the
first so that the maximal absolute-value of the
vector components is 1. The first parameter vec-
tor then has an unconstrained, but well defined
y-axis with units of spikes per second. The con-
text part of the model can be separately rescaled
relative to c2; we resolve this by dividing by this
constant so that c2 � 1 and then scaling w� and
w� to have maximal absolute-values of 1,
thereby assigning the scale of the context terms
to w�.

The dimensionalities used in this study are as
follows: wt, t ranged from 0 to 10 (in units of 20
ms time bins; i.e., J � 11); wf, there were either
24 or 48 frequency bins in the stimuli, so that
K � 24 or 48; wl, the stimuli contained 10 sound
levels, so L � 10; w�, the contextual subunit was
defined to stretch from 0 to 10 time bins into the
past, so that M � 11; w�, the contextual subunit
was defined to stretch 5/12 octaves to either side
of a target tone (or less, if the target tone ap-
peared near to the spectral boundary of the stim-

ulus), and because the frequency bands in the stimulus were 1/12 octaves
apart, N � 11; w�, the stimuli contained 10 sound levels, so P � 10.

Results
Neural recordings
The neuronal population consisted of 147 units, 97 from mice
and 50 from rats. Of these, 39 recordings (21 in rats and 18 in
mice) were made under stimulation by higher-frequency sounds
(25–100 kHz), and 108 (76 in mice and 32 in rats) were made
under stimulation by lower-frequency sounds (2–32 kHz). In
mice, about half of the recordings came from A1, and the other
half came from the AAF; all of the recordings in rats were from
A1. In all of the recordings used for analysis, an estimate of the
repeatable stimulus-locked signal power (Sahani and Linden,
2003a) was at least one SD greater than zero. Results based on
subsets of these data have been reported previously (Linden et al.,
2003; Sahani and Linden, 2003b).

Performance of the models
The predictive performance of the STRF and multilinear models
fit to each recording in the population was evaluated by cross-
validation. The 60 s stimulus presentation time was first divided
into 10 segments of equal size. The models were then trained
using data from nine of these segments and tested on the remain-
ing one; this procedure was repeated 10 times, once for each of
the 10 possible test segments. The predictive power of a model
was defined to be the average predictive power on the 10 cross-
validation datasets (Sahani and Linden, 2003a). Predictive power
is a measure of performance that takes into account trial-to-trial
variability of the neuronal response; its expected value for the
“perfect” model is 1, and for a model predicting only the mean
firing rate it is 0. Figure 3 shows these predictive powers for the
fully separated input nonlinearity and context models, compared
with a well-fit STRF model (estimated by automatic smoothness
determination) (Sahani and Linden, 2003b).

The predictive power obtained by cross-validation is a lower
bound on the true predictive power achievable by the model. As
finite data are used for training, the estimated parameters are
inevitably overfit to the training data, which leads to suboptimal
predictive performance on the test segment. (Negative predictive
powers on test data are also possible; this means that the model
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Figure 4. Interpolation of the predictive power to the zero noise limit for the pooled population. Open circles and white line,
Upper bound predictive powers. Closed circles and black line, Lower bound predictive powers. The input nonlinearity model is the
wtf V wl model and the context model is the wtf V wl V w� V w� V w� model (see Materials and Methods). Note that both
bounds for the multilinear models might be underestimated because their objective function may have multiple local minima.
Nevertheless, the input nonlinearity model performs better than the STRF model and the context model performs better than
both. All three models sometimes predict negative firing rates; when those negative rates are set to zero, the predictive power
bounds of the models increase by between 1 and 2%.
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prediction is less accurate than a constant prediction of the mean
firing rate would be.) A complementary upper bound on the
predictive power can be obtained by fitting the unregularized
model to the entire dataset and computing the resultant predic-
tive power directly on the training data. This overestimates the

true value, because the modeling of noise in
the training data cannot be distinguished
from accurate prediction. The “true” pre-
dictive power of the model, i.e., the predic-
tive power it would have when trained on
an infinitely large dataset, lies between
these upper and lower bounds (Sahani and
Linden, 2003a). These bounds become
tighter as the trial-by-trial variability of the
response, the noise power, decreases. Thus,
following Sahani and Linden (2003a), we
consider the population as a whole, and ex-
trapolate both the upper and lower bounds
to the point of zero noise using polynomial
fits, whose order is chosen by leave-one-
out cross-validation. This yields relatively
tight bounds on the performance expected
of the model if it were applied to a hypo-
thetical neuron drawn from a similar pop-
ulation but with a completely stimulus-
determined response. The extrapolation is
shown in Figure 4.

Using this analysis, we find that the pre-
dictive power of the input nonlinearity
model wtf V wl (0.27– 0.40, expressed as a
fraction of the predictable signal power) is
modestly larger than that of the STRF
model (0.23– 0.37). The predictive power
of the context model is substantially higher
(0.32– 0.52), with the midpoint between
the bounds being �1.4 times that of the
STRF model. This finding demonstrates
that taking into account local acoustic con-
text (based on a spectrographic window
stretching over recent history and nearby
frequencies) through the structure of the
context model allows the multilinear de-
scription to capture more of the dynamic
behavior of auditory cortical neurons than
the linear STRF-based descriptions.

Figure 5 shows four examples of how
the predictions for the STRF and the con-
text models differ. The context model gen-
erally predicts the PSTH more accurately,
especially at stimulus-evoked peaks in the
firing rate.

Input nonlinearity model
Sensitivity to sound level
We used the input nonlinearity model wtf

V wl to study the sensitivity of neuronal
responses to sound level within the DRC
spectrogram. Figure 6A shows the model
parameters and predictive performance for
one such model. The inferred level-
sensitivity parameter, wl, exhibits a mild
threshold, and remains fairly linear (in log-
arithmic terms) above �45 dB SPL. Note

that this inferred level dependence may not be the same as the
usual rate-level function, for two reasons. First, the rate-level
function is conventionally measured using isolated tones pre-
sented in silence. Level sensitivity in the context of a complex
sound may be quite different (Dean et al., 2005). Second, the
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Figure 5. PSTH and cross-validation predictions for four example cells which illustrate a range of predictive power increments
of the context model over the STRF model. Within each panel: top, real PSTH (gray), STRF, and context model predictions (white
and black); bottom, spike rate during each trial. Grayscale indicates number of spikes in each 20 ms bin. On the right the
cross-validation predictive powers are shown. The context model generally predicts the PSTH more accurately than the STRF
model, especially at the peaks of the PSTH (e.g., bottom). The top shows a case in which the context model’s prediction quality is
roughly the same as that of the STRF model.
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estimate of wl is made in the context of sub-
sequent integration through the time-
frequency weights wtf. Estimates of the two
parameter vectors are interdependent.
Similarly, the weights wtf learned through
this model are sometimes different from
those of the STRF (Fig. 6E).

Figure 6C shows some more examples
of level-sensitivity profiles wl learned using
different neuronal responses. These are il-
lustrative of the variety of shapes seen in the
population. To summarize the observed
distribution, 5 prototypical profiles were
designed by hand, and each learned profile
classified according to the prototype with
which its dot-product was greatest. The re-
sults are shown in Figure 6D. Note that the
profiles were chosen to illustrate the range
of shapes observed; we did not see evidence
of clustering in the data.

Inseparabilities
As described in Materials and Methods, the
parameters of the input nonlinearity model
may be grouped in several different ways.
These groupings can be used to assess sev-
eral forms of inseparability that may be
present in the stimulus-response functions.
Time-frequency inseparabilities in the
STRF have been studied extensively (Ko-
walski et al., 1996a,b; Depireux et al., 2001;
Linden et al., 2003) and related properties
(such as temporal symmetry) (Simon et al.,
2007) have been documented previously.
The opportunity exists to extend such stud-
ies to new forms of interaction.

The optimal form of inseparability for
each neuron was assessed by comparing the
cross-validation predictive powers of the
variously grouped models. Thus, a cell
would be classified as having a frequency-
level inseparable receptive field if the wfl V
wt model performed better on cross-
validation data than the wtf V wl, wtl V wf,
wt V wf V wl and the STRF models. There
are two caveats to this classification. First,
more than one inseparable model could
perform better than the fully separated one,
suggesting that all three stimulus dimen-
sions might interact in that neuron’s re-
sponse function. As the full model (with no separated parame-
ters) could not be fit reliably with the data available we did not
explore this three-way interaction further. The second caveat is
that the different models have different numbers of parameters,
and are thus differently prone to overfitting. Thus, although the
fully separated wt V wf V wl model performs best on cross-
validation data for many neurons (Fig. 7C), it is not possible to
say whether this reflects genuine separability, or simply greater
reliability in the estimates of a smaller number of parameters.

With these caveats, Figure 7C shows the proportion of neu-
rons best described by each of the configurations of the input
nonlinearity model. These results suggest that frequency-level
and time-level interactions, as well as the more widely studied

time-frequency interactions, are present in the responses of many
neurons to complex sounds.

The wtf V wl model
Separabilities in time and frequency have been extensively docu-
mented. The input nonlinearity model also recovers such
inseparabilities in a number of neurons in the population (Fig.
7C). For these neurons, then, the form of frequency integration
varies with lag time.

The wfl V wt model
We also observed several cells with frequency-level inseparabili-
ties (Fig. 7C). Such inseparabilities are consistent with previous
reports of frequency response areas derived using isolated tone
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the wtf V wl model has the highest predictive power, and indeed, the wtf receptive field can be seen to be inseparable, because
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comparison, the STRF estimated on the same data, which in this case differs little from wtf. C, Various wl from the population.
Gray areas indicate 1 SE. D, Number of cells whose wl fits are best approximated by each of five idealized shapes. The shapes were
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which is linear in sound pressure, was found to produce better STRF results across the population of cells than a linear function in
dB.) The wtf receptive field shows a peak response at a larger lag time than suggested by the STRF. The predictive power of the
input nonlinearity model was 1.6 times that of the STRF model, on both training and cross-validation data.
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pips, which can have quite complex and asymmetric shapes. A
frequency-level inseparability indicates that sound level is pro-
cessed differently for different frequencies; or alternatively, that
frequency integration depends on sound level. Figure 7A shows
an example of such a cell.

The wtl V wf model
Finally, we found a substantial number of cells whose optimal
inseparability was in time and sound level (Fig. 7C). This form of
inseparability indicates that during the processing of a complex
stimulus, sound level integration depends on lag time. Figure 7B
shows an example of such a neuron. The time-level receptive field
is clearly inseparable, showing a fast response to loud sounds,
without any suppression. Prolonged suppression occurs only for
sounds of intermediate loudness. In other words, the response to
sound is monotonic at short lag times, but nonmonotonic at
larger lag times. Thus, for this cell, the temporal processing of
sounds is critically dependent on the sound level.

The context model
The context model (see Materials and Methods) (Fig. 2) can be
viewed as combining two input nonlinearity models. One (Fig. 2,

A) determines the modulation of the effec-
tive sound level of a time-frequency element
of the stimulus by its local context; the other
(Fig. 2, B) determines the predicted firing
rate using these modulated values. The algo-
rithm used to estimate the parameters fits
both models simultaneously, allowing the
parameters (A) to affect the estimate of the
parameters (B) and vice versa.

More specifically, the context model ex-
tends the input nonlinearity model through
the term w� V w� V w�. Thus, the effective
intensity of a time-frequency element (i.e.,
the stimulus power s(i, k) in some time bin i
and frequency bin k) is modulated by each
time-frequency element that precedes it
(within a window of times and frequencies)
in a way that depends on their separation in
time through w�, their separation in fre-
quency through w�, and on the level of the
modulating time-frequency element
through w�.

The context effect
Because the emphasis of this section is on the
form of the context terms, only fully sepa-
rated context models are shown in Figure 8.
As illustrated in that figure, w� is negative
across most frequency differences, whereas
w� and w� are generally positive. Thus, the
context term w� V w� V w� is generally
suppressive over most time-frequency
differences.

The w� parameters illustrated show their
greatest suppression for lags of 20 –100 ms,
depending on the neuron. The w� values
show greatest suppression when the modu-
lating tone is at the same frequency as its
target. This suppression falls off with greater
frequency separation, vanishing at a separa-
tion of about half an octave (or more in some
cells; data not shown). The sound level rep-

resentation of the context w� is generally monotonic, and some-
times different from wl.

Figure 8C demonstrates the context model for one neuron, for
which context tones just before the target tone can have an exci-
tatory effect (w� is negative at 	 � 20 ms; with w� generally
negative this together implies excitation). Figure 8A, which dis-
plays the context model parameters for a different neuron, shows
two slightly excitatory humps at the edges of w�. This structure of
w� was also observed for other neurons, especially in a few cases
when the range of 
 was extended (data not shown).

The context model and STRF models
Suppressive stimulus effects can be captured by linear models
through negative regions in their temporal or spectrotemporal
receptive fields. The context terms of the context model provide
an additional way to create suppressive effects. We wondered if
the suppressive regions seen in STRFs might be better accounted
for by the contextual component of the context model than by
negative weights in wtf. To measure this, we fit multilinear mod-
els with context terms (that is, the fully separated context model)
and without context terms (the fully separated input nonlinearity
model) to the data, and examined the relative amount of suppres-
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sion as reflected by wt, for each neuron in the
population. Figure 9 shows the relative sup-
pression min(wt)/(max(wt) � min(wt)) for
both models. There is a marked decrease in the
relative amount of observed suppression when
the contextual terms are present, and some-
times the suppression disappears. This sug-
gests that the suppressive regions seen in the
STRFs are, at least in part, attributable to con-
textual effects, rather than to additive
suppression.

Figure 10 illustrates a mechanism that may
be responsible for this effect. The PSTH of a
hypothetical neuron, modeled by a context
model (Fig. 10A) responding to a stimulus
similar to the DRC used in the experiments,
was fit with both an STRF model (Fig. 10B,
top) and a context model (A, dashed line, B,
bottom). The original context model con-
tained no additive suppression, as there is no
trough in wt, but it does contain multiplicative
stimulus interactions (through w� and w�).
The fitted STRF model, however, contains a
clearly visible suppressive region following the
excitatory peak. This again shows that the sup-
pressive regions in STRFs fit to experimental
data may reflect multiplicative stimulus interac-
tions (forward suppression, two-tone interac-
tions) rather than genuine additive suppression.

Simulation of STRF features changing with
spectral density
STRFs fit to data collected using different
stimulus classes are generally not the same
(Theunissen et al., 2000; Rotman et al., 2001;
Bar-Yosef et al., 2002; Valentine and Egger-
mont, 2004; Woolley et al., 2006). We used the
context model to help understand certain sys-
tematic stimulus-dependent changes in STRFs
related to the spectral density of a sound. The
dependence of the STRF on the spectral den-
sity of a DRC can be summarized as follows
(Blake and Merzenich, 2002): a higher spectral
density leads, on average, to a lower excitatory
peak in the STRF, and in some cells, the sup-
pressive region only appears at higher spectral
densities. Could these experimental results be
explained by the context model? We used the
context model of Figure 8B (fit on real data at
a single spectral density) with five stimuli of
varying spectral density, to generate five sim-
ulated PSTHs. Then we fit STRF models for
these five stimuli and simulated PSTHs. This
process is summarized in Figure 11A.

The five STRFs show phenomena similar to
those observed experimentally, as shown in
Figure 11B. First, there is spectral narrowing at
higher spectral densities. Second, the excita-
tory peak becomes lower at higher spectral
densities, whereas the suppressive depth stays roughly constant,
as summarized in Figure 11C. This graph is qualitatively the same
(a monotonic decrease in peak value, and a roughly constant
suppression) as the experimental observations of Blake and Mer-

zenich (2002). Thus, the context model is a candidate for explain-
ing the changes in STRFs at various stimulus densities.

In addition the behavior shown in Figure 11, there are context
models (both fit to real data and constructed by hand) that can be
used to generate data for which STRFs would have other forms of

Figure 8. A, A fully separated context model for a rat auditory cortical neuron. Shaded regions indicate one SE. The x-axes
of the top row are as in the input nonlinearity model: lag time t, frequency f, and sound level l. Units of wt are spikes per
second; wf and wl have no units as they have been normalized. The bottom row shows the context components with the
following axes: time difference between context and target tones 	, frequency difference between the tones 
, and sound
level of the context tone �. Because c2, w� and w� have been normalized, the scale of the context terms is contained in w�;
this scale reflects the fractional change in the effective sound level induced by a tone in the context (after weighting by the
other contextual terms). The bottom right displays the predictive powers of the STRF model, the fully separated input
nonlinearity model, and the context model shown. The white and black bars show the predictive power on training data and
cross-validation data, respectively. B, A context model for a mouse auditory cortical neuron. The context effect follows a
faster time course than the example in A. C, A context model for a rat auditory cortical neuron. In this case, the context could
have a facilitatory effect on the target time-frequency element. Such behavior was relatively rare in our population. IN, Input
nonlinearity model; ctxt, context model.

1938 • J. Neurosci., February 20, 2008 • 28(8):1929 –1942 Ahrens et al. • Nonlinear Responses Modeled with Multilinear Methods



dependence on the spectral density of the stimulus. For example,
the STRFs may show no suppressive region at low spectral den-
sity, and a deepening suppressive region at higher spectral den-
sity, which is similar to the experimentally observed appearance
of suppressive regions at higher spectral density. There are also
context models for which STRF fits would change very little with
spectral density. Cells with similar response properties have also
been reported experimentally.

Discussion
We have constructed a class of models that describe the transfor-
mation between a sound and the firing rate of a neuron in the
auditory cortex. These models were used here to analyze re-
sponses to DRC stimuli, but are applicable to the analysis of
responses to arbitrary sounds. The models make possible novel
analyses of auditory cortical responses to complex sounds, and
also unify measurement of many different response properties
that were previously analyzed separately, such as the rate-level
function, the STRF, and contextual effects.

What is gained by this unification? Why should we not, for
instance, measure the rate-level function and the STRF separately
instead of estimating the input nonlinearity model? First, the
stimulus conditions under which rate-level functions are typi-
cally measured (tones in silence) are different from those used for
STRF estimation (continuous complex sounds); the state of the
auditory system is thus likely to be different in the two cases. The
present approach allows us to estimate sensitivities to different
stimulus dimensions simultaneously, from a single (complex)
stimulus, thus obtaining a more coherent picture of the function
of the auditory system in a single context. Second, the terms in the
models depend on one another. For example, a complex sound
contains energy at different sound levels. An STRF fit to such data
carries with it an implicit model for sound level sensitivity; this
model is typically the identity function, and so entries of the STRF
are weighted proportional to sound level (in, say, decibels SPL).
To the extent that this assumption is not the most appropriate,
the STRF estimate will be affected. Estimating neuronal sound

level sensitivity directly, using the input nonlinearity model, pro-
duces models that describe the system more accurately, as dem-
onstrated by the improvement in model predictive power, and
the weights wtf in the input nonlinearity model are sometimes not
equal to those in the STRF. Similarly, for time-level inseparable
cells, fitting a time-level receptive field would be impossible with-
out a model for frequency integration, poor with a suboptimal
model of it, and not general if one made frequency integration
irrelevant by using a fixed spectral content in the experiment. A
third and final example of the benefits of a unified model, as
demonstrated in Results, is that the context terms of the context
model have important effects on the inhibitory region of the
spectrotemporal receptive field, something that would not be
evident if an STRF and a two-tone receptive field were measured
separately.

The input nonlinearity
Finding an appropriate single input nonlinearity for all neurons
can raise the average predictive power of an STRF model (Gill et
al., 2006). However, our data revealed various shapes of wl. Thus,
estimating the input nonlinearity adds neuron-specific detail and
provides a better understanding of how populations of neurons
respond to level in complex sounds.

Separability of receptive fields
Using the input nonlinearity framework, we found frequency-
level and time-level inseparabilities during processing of complex
sounds in significant proportions of our neuronal population.
Attention has previously been focused on time-frequency insep-
arabilities (Kowalski et al., 1996a; Depireux et al., 2001; Miller et
al., 2002; Linden et al., 2003; Simon et al., 2007). The present
models open up the possibility of exploring the properties of the
other two types of inseparable receptive field.

Time-frequency inseparable receptive fields may underlie fre-
quency sweep direction selectivity (deCharms et al., 1998). The
inseparabilities in the other pairs of variables may reflect other
functions. For example, cells with a time-sound level inseparable
receptive field may respond to sounds with increasing or decreas-
ing levels, which feature, for instance, in vocalizations (particu-
larly speech). Without multilinear models, such effects are very
hard to study in the context of complex sounds.

Stimulus context
Including local stimulus context allows us to predict auditory
cortical responses more accurately than before. The context
model should also be applicable to precortical auditory struc-
tures, where contextual influences of the sort described first arise.

The context terms reveal forward suppression in auditory cor-
tical responses to complex sounds, lasting �200 ms, with a fre-
quency width of about half an octave in most cells. Some neurons
also show forward excitation through positive humps at the edges
of the frequency-difference term of the context model. These
results are consistent with those of previous physiological studies
using two-tone paradigms in A1 (Calford and Semple, 1995;
Brosch and Schreiner, 1997), and with previous psychophysical
studies (Moore, 1980, 1997; Jesteadt et al., 1982). The dominance
of forward suppression over forward excitation is consistent with
recent subthreshold studies (Wehr and Zador, 2005). Again, the
current models show the impact of such effects in the responses
to complex sounds. Longer time scales of adaptation also exist in
A1 (McKenna et al., 1989; Ulanovsky et al., 2003; Bartlett and
Wang, 2005), but were not studied here.

We also find that the context model has implications for the
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Figure 9. Depth of trough of wt of the fully separated input nonlinearity and context models.
Values on the axes are min(wt)/(max(wt) � min(wt)), for the input nonlinearity model and for
the context model.
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interpretation of results of previous STRF
studies. Most notably, (1) the suppressive
region of wt is reduced when contextual ef-
fects are modeled explicitly (Fig. 9), and (2)
the context model can account qualitatively
for previous observations of stimulus-
density-dependent STRFs, such as spectral
narrowing and the changing ratio between
the maximum and minimum values of the
STRF (Fig. 11). These two observations are
linked, as the average stimulus power in the
context of a time-frequency element in-
creases with spectral density. Thus, with in-
creasing spectral density of the stimulus,
the impact of the contextual subunit on the
PSTH increases, and therefore the differ-
ence between a fitted STRF and the wt V wf

component of a context model will also in-
crease. One way in which the STRF may
depart from wt V wf is through the appear-
ance of the deepening suppressive region
(Fig. 10), in line with the first observation
above; another way may be through an ide-
alized version of the systematic changes
found by Blake and Merzenich (2002), such
as spectral narrowing, in line with the second observation.

Interestingly, Blake and Merzenich found that STRF models
with a more pronounced suppressive region were on average less
predictive than STRF models where no suppressive region was
observed. If, as our results here suggest, suppressive regions in the
STRF are often signatures of significant contextual effects, then
this observation may simply reflect the greater nonlinearity of
cells that show them. An explicitly nonlinear approach (such as
the context model) may well not show such an effect. (Alterna-
tively, deeper suppressive regions may be associated with lower
firing rates, leading to noisier STRFs and lower predictive power.)
Thus, we suggest that the previously reported changes in STRF
structure with stimulus spectral density arise as a result of linear
approximation of nonlinear cortical response functions (Chris-
tianson et al., 2008) that are better described by the context
model.

The models
The input nonlinearity model is a form of Hammerstein cascade
(Narendra and Gallman, 1966; Hunter and Korenberg, 1986);
however its development in the multilinear setting, and related
advances in estimation, are more recent (Ahrens et al., 2008). We
are unaware of previous discussions of alternative grouping of
stimulus dimensions facilitated by the multilinear view. The
higher-order nonlinear models (e.g., the context model) are
novel. Multilinear regression models have not received extensive
attention in the statistics literature (but see Paatero, 1999). The
fully inseparable model r̂ � wtfl � M is a generalized additive
model (Breiman and Friedman, 1985; Hastie and Tibshirani,
1999), but its parameters are too numerous to make it useable
(Aertsen and Johannesma, 1980). Other multilinear methods
have been useful in various settings in the statistics and machine
learning setting (Harshman and Lundy, 1994; Tenenbaum and
Freeman, 2000; Vasilescu and Terzopoulos, 2005).

Previously proposed nonlinear models for auditory pro-
cessing (Fishbach et al., 2001) tend to be designed to mimic the
known physiology of the auditory system and often do not
allow for straightforward parameter estimation. The statistical

ease of estimating multilinear models directly from neuronal
data makes them more similar to models based on Volterra-
Wiener expansions (Marmarelis and Marmarelis, 1978).
However, prohibitive amounts of data are typically needed to
estimate the large number of parameters of the latter class of
models, so that in general they can only be fit by restricting
their parameter space or focusing on a single stimulus dimen-
sion (Young and Calhoun, 2005). The data requirements of
other nonlinear approaches (Brenner et al., 2000) also make
them difficult to apply to auditory cortical data.

Other forms of the multilinear model, perhaps similar to the
context model, should allow for the study of within-stimulus
interactions and stimulus-specific adaptation in a variety of sen-
sory systems (Ahrens et al., 2006). In the present case, multilinear
methods provide a highly efficient description of auditory corti-
cal response functions; note that the fully separated context
model, although better able to predict neural responses, has fewer
parameters than an inseparable linear STRF model. Multilinear
models provide a firm statistical foundation for analyzing non-
linear neuronal response properties; allow response parameters
to be learned directly from the data rather than being hand-
tuned; and reveal a rich variety of input nonlinearities, insepara-
bilities, and context effects in auditory cortical responses to com-
plex sounds, thereby introducing new possibilities for data
analysis and extending existing understanding of auditory pro-
cessing of complex sounds.
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