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Phase-Resetting Curves Determine Synchronization, Phase
Locking, and Clustering in Networks of Neural Oscillators
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Networks of model neurons were constructed and their activity was predicted using an iterated map based solely on the phase-resetting
curves (PRCs). The predictions were quite accurate provided that the resetting to simultaneous inputs was calculated using the sum of the
simultaneously active conductances, obviating the need for weak coupling assumptions. Fully synchronous activity was observed only
when the slope of the PRC at a phase of zero, corresponding to spike initiation, was positive. A novel stability criterion was developed and
tested for all-to-all networks of identical, identically connected neurons. When the PRC generated using N � 1 simultaneously active
inputs becomes too steep, the fully synchronous mode loses stability in a network of N model neurons. Therefore, the stability of
synchrony can be lost by increasing the slope of this PRC either by increasing the network size or the strength of the individual synapses.
Existence and stability criteria were also developed and tested for the splay mode in which neurons fire sequentially. Finally, N/M
synchronous subclusters of M neurons were predicted using the intersection of parameters that supported both between-cluster splay
and within-cluster synchrony. Surprisingly, the splay mode between clusters could enforce synchrony on subclusters that were incapable
of synchronizing themselves. These results can be used to gain insights into the activity of networks of biological neurons whose PRCs can
be measured.

Introduction
We hypothesize that the phase-resetting curve (PRC) contains all
information required to predict the activity of a synaptically cou-
pled network of oscillatory neurons. The PRC tabulates transient
changes in period produced by an action potential in the presyn-
aptic neuron as a function of the phase at which the perturbation
is applied. We determine which aspects of the PRC are critical for
generating a fully synchronous mode (Fig. 1A), a splay mode in
which neurons fire sequentially (Fig. 1B), and clustering modes
that exhibit synchrony within a cluster but phase locking at non-
zero phase between clusters (Fig. 1C).

Many examples of synchrony and phase locking can be found
in the CNS. Central pattern generators for repetitive motor neu-
ron behavior frequently exhibit approximate splay modes (Mul-
loney and Hall, 2007; Smarandache and Mulloney, 2008), includ-
ing antiphase (Stein et al., 1997). Transiently synchronized
assemblies of neurons are believed to underlie cognitive func-
tions (Buzsáki, 2006). Pathological synchrony could lead to epi-
leptic seizures (Huguenard and McCormick, 2007; Traub and
Jefferys, 1994) and tremor (Hammond et al., 2007), and there is
consistent evidence for a reduction of synchronization in schizo-
phrenia (Uhlhaas and Singer, 2006). A better understanding of
how the phase resetting of the component oscillators controls
network activity may shed light on many biological processes

involving neural synchronization. For example, we show how a
fully synchronous cluster at one frequency can break into two
clusters in antiphase, which doubles the frequency that could be
observed using the local field potential or EEG.

We assume only that each component of the network is a
pacemaker (Winfree, 1967), that the effect of one perturbation
dies out before the next one is received, and that the perturba-
tions received by an oscillator in a closed circuit are similar to
those used to generate its PRC. Much theoretical work (Ermen-
trout and Kopell, 1990, 1991; Van Vreeswijk et al., 1994; Ermen-
trout, 1996; Li et al., 2003; Netoff et al., 2005a) is based on the
assumption of weak coupling, which implies that many cycles of
the oscillation are required for synchronization or phase locking.
Neural synchrony is frequently achieved rapidly, even within a
single cycle (Singer, 1999); in these cases, strong coupling is
required.

We propose two ways to extract information from the PRCs:
an iterative map and an analytical method. The iterative map uses
the PRCs and firing times in the previous cycle to predict firing
times in the next (and subsequent) cycle(s) of the network. The
analytical method directly calculates the phasic relationships and
stability of oscillatory modes that are exhibited by the network
from the PRCs. Both methods are tested on networks of model
neurons that encompass generic excitability and PRC types. The
simple, homogeneous model networks used herein to establish
proof of principle do not capture all the complexities of neural
dynamics; the point of these examples is that if the appropriate
PRCs can be obtained, no further information is required to un-
derstand network synchronization properties due to reciprocal
pulsatile coupling of intrinsic oscillators [see Nowotny et al.
(2008) for other mechanisms of synchronization]. The solutions
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for homogeneous networks approximate those of mildly hetero-
geneous networks, and we suggest that modulation of the PRC in
such networks may be a viable strategy to promote or discourage
synchronization.

Materials and Methods
Simulations. Two neural models were chosen as exemplars of different
excitability types as originally described by Hodgkin (1948). Neurons
with Hodgkin’s type I excitability exhibit a gradual transition from qui-
escence to repetitive spiking as the magnitude of an applied depolarizing
current step is increased. At the onset of spiking, the frequency is arbi-
trarily low. Oscillators with type I excitability act as integrators [Izhikev-
ich (2007), Chapter 1] and generally have only advances due to brief
excitations and delays due to brief inhibitions (Ermentrout, 1996). Neu-
rons with Hodgkin’s type II excitability exhibit an abrupt transition from
quiescence to repetitive spiking as the magnitude of an applied depolar-
izing current step is increased. Spiking cannot be sustained below a
threshold frequency. Oscillators with type II excitability act as resonators
[Izhikevich (2007), Chapter 1] and can exhibit both advances or delays in
response to either excitation or inhibition depending upon the timing of
the input (Ermentrout, 1996). The Wang and Buzsáki (WB) model as
commonly parameterized is type I. Although the Morris–Lecar (ML)
model can be parameterized in either regime, here we have used type II
parameters. All networks were comprised of identical, identically con-
nected neurons for simplicity, but the methods can accommodate heter-
ogeneity (Maran and Canavier, 2008).

The differential equations for the Wang and Buzsáki (1996) and Mor-
ris and Lecar (1981) networks were simulated using a variable step size
implicit fifth-order Runge–Kutta method (Hairer and Wanner, 1991).
The current balance equation for each WB model neuron is as follows:

CdV/dt � �INa � IK � IL � Isyn � Istim,

where the capacitance C � 1 �F/cm 2, V is the cell membrane voltage in
millivolts, and t is time in milliseconds. The leak current is given by IL �
gL(V � EL). The sodium current is given by INa � gNam�

3 h(V � ENa). The
steady-state activation m� � �m/(�m � �m), where �m( V) � �0.1(V �
35)/{exp[�0.1(V � 35)] � 1} and �m( V) � 4exp[�(V � 60)/18]. The
rate equation for the inactivation variable h in the expression for sodium
current is as follows:

dh/dt � �{�h(V)(1 � h) � �h(V)h},

where � � 5. (The symbol was changed from � to � to avoid confusion
with the symbol for phase.) The rate constants for the inactivation vari-

able h are given by �h( V) � 0.07exp[�(V �
58)/20] and �h( V) � 1/{exp[�0.1(V � 28)] �
1}. The potassium current is given by IK �
gKn 4(V � EK), where the activation variable n
satisfies the following equation:

dn/dt � �{�n(V)(1 � n) � �n(V)n},

where the rate constants for n are �n( V) �
�0.01(V � 34)/{exp[�0.1(V � 34)] � 1} and
�n( V) � 0.125exp[�(V � 44)/80]. The rever-
sal potentials ENa, EK, and EL were set to 55,
�90, and �65 mV, respectively. The maximal
sodium ( gNa), potassium ( gK), and leak ( gL)
conductances were set to 35, 9, and 0.1 mS/cm 2,
respectively. Istim is the applied current and was
set at 0.5 �A/cm 2. Unless otherwise stated, the
values for the various parameters were equal to
those given above.

The synaptic current is given by Isyn �
gsyns(V � Esyn), where gsyn is the maximum syn-
aptic conductance and Esyn is equal to �75 mV
for inhibitory synaptic connectivity and equal
to 0 mV for excitatory synaptic connectivity.
The rate of change of the gating variable s is
given by the following equation:

ds/dt � �T(Vpre)(1 � s) � s/�syn,

with T(Vpre) � 1/[1 � exp(�Vpre/2)], where Vpre is the voltage of the
presynaptic cell, � � 6.25 ms �1 is the rate constant of the synaptic
activation (Bartos et al., 2001), and �syn is the synaptic decay time con-
stant and was set to 1.0 ms.

The current balance equation for each ML model neuron is as follows:

CdV/dt � �ICa � IK � IL � Isyn � Istim,

where the capacitance C � 20 �F/cm 2, V is the cell membrane voltage in
millivolts, and t is time in milliseconds. The calcium current is given by
ICa � gCam�( V)(V � ECa). The leak current is given by IL � gL(V � EL).
The steady-state activation is as follows:

m�(V) � 0.5[1�tanh{(V � V1)/V2}],

where V1 � �1.2 mV and V2 � 18 mV. The potassium current is given by
IK � gKw(V � EK). The rate equation for the activation variable w in the
expression for the potassium current is as follows:

dw/dt � �(w�(V) � w)/�w(V),

where � was set to 0.04 with the steady-state activation amplitude as
follows:

w�(V) � 0.5[1�tanh{(V � V3)/V4}]

and activation rate as follows:

�w(V) � 1/cosh{(V � V3)/2V4},

with V3 � 2 mV and V4 � 30 mV. The reversal potentials ECa, EK, and EL

were set to 120, �84, and �60 mV, respectively. The maximal potassium
( gK) and leak ( gL) conductances were set to 8.0 and 2.0 mS/cm 2, respec-
tively. For calcium, the maximal conductance ( gCa) was set to 4.4 mS/
cm 2 and Istim was set at 100.0 �A/cm 2. Unless otherwise stated, the
values for the various parameters for the type II excitability regime were
equal to those given above and were taken from Rinzel and Ermentrout
(1998). The synaptic coupling current was the same as in the case of the
WB model, except that the synaptic decay time constant �syn was set to
10.0 ms.

Generation of the PRC. PRC computation is illustrated in Figure 2 A.
The presynaptic model neuron is initialized at its spiking threshold when
the coupling is turned on for a single cycle of the presynaptic neuron at

(A)  SYNCHRONY   (B)  SPLAY   (C)   2 CLUSTERS OF 2

Figure 1. Firing modes in an all-to-all four-neuron network. Only the most commonly observed, rotationally symmetric modes
are shown. A, Fully synchronous mode (one cluster of four neurons). B, Splay mode in which all neurons fire in a sequential
manner. C, Two clusters of two neurons in antiphase with each other. The vertical dashed lines indicate the intervals between
firing times.
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different phases in the cycle of the postsynaptic
model neuron. The action potential threshold is
set to �14 mV in this study because the synaptic
conductance trace began to noticeably increase
above zero at that potential. Zero phase is de-
fined as an upward crossing of the threshold
potential. The PRCs were generated for each
neuron by stimulating a single repetitively fir-
ing neuron by driving the synaptic conductance
in that neuron with a single action potential
from an identical neuron. This type of PRC is
often called a spike response curve (Acker et al.,
2003). The single action potential in the presyn-
aptic model neuron triggers a change in synap-
tic conductance (Fig. 2 A, bottom trace). This
serves as a perturbation and is used to generate
the PRC. In the open loop condition (i.e., when
there is only a single unidirectional coupling)
the phase at which a stimulus is received is � �
ts/Pi, where Pi is the intrinsic period and ts is the
time between the last action potential in the
model neuron for which the PRC is being gen-
erated and the action potential initiation in the
presynaptic model neuron. The normalized
change in the length of the cycle containing the perturbation and the one
following it are called the first-order resetting, f1(�) � (P1 � Pi)/Pi, and
second-order resetting, f2(�) � (P2 � Pi)/Pi, respectively. P1 is the length
of the cycle containing the perturbation and P2 is the length of the sub-
sequent cycle (Fig. 2 A, B).

Iterative pulse-coupled maps with no predetermined firing order. In this
section, we describe a type of map (Canavier et al., 1999) that cannot be
easily analyzed because it does not assume a firing pattern, but instead
polls the phases of each oscillator to determine which one will fire next.
Given the current phase of each oscillator (neuron) and its period, one
can easily determine which neuron(s) will fire next. Given the phase-
resetting behavior of each neuron in response to the firing of every other
neuron, one can then determine how the phases of each neuron are
altered by each firing, so one can determine the future sequence of firing
for all time, in the absence of noise. The determination of each firing
event is considered one map iteration. The map may produce different
firing patterns depending upon how it is initialized. We refer to this
method as iterative rather than analytical to distinguish it from maps
constructed assuming a fixed, predetermined firing order (see next sec-
tion). The firing intervals can be specified by subtracting the starting
phase from the ending phase, adding any resetting presumed to occur
during the interval, and multiplying by the intrinsic period. With a single
input per cycle, the interval between the firing of a spike (or burst) and
the receipt of the next input is called the stimulus interval (ts). In the kth
cycle it is defined as follows:

ts[k] � Pi[�[k] � f2(�[k � 1])],

where Pi is the intrinsic period of the neuron, �[k] is the input phase, and
f2(�[k � 1]) is the second-order reset due to an input in the previous
cycle. The time between when the input arrives and the time that the
neuron next fires is called the recovery interval. In the kth cycle it is
defined as follows:

tr[k] � Pi[1 � �[k] � f1(�[k])],

where f1(�[k]) is the first-order reset due to an input in the current cycle.
The first-order resetting is included in the recovery interval, whereas the
second-order resetting is included in the stimulus interval. If multiple
inputs arrive during a cycle, the first-order resetting is taken at the time
that each input arrives. There are two ways to handle second-order re-
setting. One is to discard all second-order resetting except the one due to
the most recent input. This preserves the assumption that the effect of
one input dies out before the next is received and can be justified on the
basis that in general only inputs arriving late in the cycle produce signif-
icant second-order resetting if the duration of the input is short com-

pared with the cycle period. However, this approach destroys the sym-
metry required for synchrony to be observed (see Appendix 3) and was
only used when summing the second-order resetting caused a problem
emulating a splay mode.

The map representing an ideal pulse-coupled system was implemented
using code written in C (see nonlinear.c, available at www.jneurosci.org as
supplemental material). The map requires the first- and second-order
PRCs, the intrinsic period of each neuron, and the initial values of the
phase of each neuron as well as the stored value of the saved second-order
resetting. The map updates the phases only at the times associated with
each episode of neural firing. To determine how to update the phases,
first it must be determined which neuron(s) will fire next. This is accom-
plished by finding the minimum of the expression [Pij(1 � �j)], where Pij

is the intrinsic period of the jth neuron and �j is its phase. Once the next
firing time was established, the phases of the firing and nonfiring neurons
were updated differently. The phase of the firing neuron(s) was first set to
zero, then any saved second-order resetting was subtracted from the
phase of the firing neuron(s) (see below for the implications of negative
phase) and the saved second-order resetting was cleared. Then any first-
order resetting of the firing neuron due to any other neurons that were
firing simultaneously was also subtracted. The phases of all the nonfiring
neurons that the firing neuron(s) projects to were incremented by the
appropriate amount based on the time elapsed to the next firing time,
and then the first-order resetting due to the firing neurons was subtracted
from the incremented phase. The saved second-order resetting was in-
cremented to reflect these firings. This map can be quantified (Canavier
et al. 1999) as a modified Winfree (2001) model:

d�j/dt � � � f1(�j[k])�(�j,n[k]) � �f2(�j,n[k � 1]�[0]),

where � is a normalized frequency of one cycle per period, �j,n[k] is the
phase at which the jth neuron receives the nth input in the current cycle,
�j,n[k � 1] is the phase at which the jth neuron received the nth input in
the previous cycle, f1(�[k]) is the first-order reset due to the input in the
current cycle, and f2(�[k � 1]) is the second-order reset due to the input
in the previous cycle. The first-order resetting is added at the time the
input is received as indicated by the � function. When the phase reaches
one it is reset to zero, and as the � function indicates, the second-order
resetting is added at that time.

For sufficiently weak coupling strength, it is appropriate to simply add
the resetting due to simultaneous inputs. On the other hand, in a network
of strongly pulse-coupled oscillators, the phase resetting due to simulta-
neous inputs does not add linearly (Fig. 3C1). However, the simulta-
neously active synaptic conductances do add linearly. To account for
this, the PRCs corresponding to each possible number (up to N � 1) of
simultaneously active synapses were generated in the open loop config-
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Figure 2. Generation of the phase-resetting curve. A, The voltage waveform represents a regular spiking WB model neuron
with intrinsic period Pi. The lower trace corresponds to the postsynaptic conductance resulting from a spike in the presynaptic
model neuron. The change in the period Pi as a result of the perturbation received from the stimulus presynaptic action potential
at a phase � � ts/Pi is used to generate the phase-resetting curve. P1 represents the period of the cycle in which the stimulus is
received. The following cycle period is represented by P2. B, Example of first-order ( f1(�)) and second-order ( f2(�)) phase-
resetting curves. The parameter values for the WB model neuron considered are as follows: gsyn � 0.35 mS/cm 2, �syn � 1 ms, Iapp

� 2.0 �A/cm 2, and otherwise as in Materials and Methods.
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uration (Fig. 3A1) and indexed by the total conductance observed during
N simultaneous inputs [fi(�, Ngsyn)]. When simultaneous inputs were
detected in the iterated map of the closed loop network of four neurons
(Fig. 3A2), the amount of resetting corresponding to the correct number
of simultaneously active synapses was applied. The PRCs corresponding
to the simultaneous inputs up to the maximum observed in the mode
shown are illustrated in Figure 3, B1 and C1. The corresponding iterated
maps are shown in Figure 3, B2 and C2, with the phase of each oscillator
shown in a different line style. In between firing times, the phase is
incremented steadily and forms a line segment with a slope of one. The
firing time of a neuron is indicated by the vertical lines indicating that the
phase has been reset to zero immediately after a phase of one is achieved.
The first-order resetting for each neuron is indicated by a step change
connecting two line segments with a slope of one indicating an instanta-
neous reset due to the firing of a presynaptic neuron. In each of these
cases the iterative map incorporates both first- and second-order resets,
although only the PRCs for first-order resetting are shown. The magni-
tude of the second-order resets is small and is represented by small neg-
ative excursions in Figure 3, B2 and C2. Figure 3C2 shows a mode with
two clusters of two, where the red color actually indicates the sum of the
second-order resetting due to the previous firing of the two neurons in

the other cluster and the first-order resetting
due to the other neuron in the same cluster.

The examples illustrate that the number of
inputs received simultaneously in such a net-
work can vary. In the fully synchronous mode
(data not shown) three inputs are received si-
multaneously. Figure 3B2 shows a splay mode
(Fig. 1 B) in which a single input is received at a
time, corresponding to the PRC (Fig. 3B1) for
type I neurons with excitatory synaptic connec-
tions with synaptic conductance strength of
0.01 mS/cm 2. A mode with two clusters in an-
tiphase (Fig. 1C) is shown in Figure 3C2 corre-
sponding to the PRC (Fig. 3C1) for type II neu-
rons with inhibitory synaptic connections. In
this mode, a single input is received from the
other member of the cluster when the cluster
fires, but two simultaneous inputs are received
when the other cluster fires. Only two distinct
traces are visible because the two traces in each
cluster overlap. PRCs with synaptic conduc-
tance strength of 0.08 and 0.16 mS/cm 2 corre-
sponding to a single input and two inputs re-
spectively are shown in Figure 3C1. Note the
large difference in shape indicating highly non-
linear summation of the resetting. The worst
case scenario for delays is that a delay applied
early in the cycle can result in a negative phase at
the time a second closely spaced input is received.
Since a negative phase does not actually corre-
spond to a point on the limit cycle in this case (Oh
and Matveev, 2009), the resetting assigned to the
second pulse is arbitrary. If an input was received
while the phase of a neuron was negative, we
choose to assign the nearest value for resetting, i.e.,
the resetting at a phase of zero. This can be a
source of error near synchrony (see Appendix 3).

In contrast to the iterative pulse-coupled
map described in this section, the next several
sections will describe analytical methods to de-
termine the existence and stability of the fully
synchronous mode, the splay mode, and for
phase-locked synchronous clusters. The analyt-
ical methods for the determination of stability
results require the construction of discrete
maps. Discrete maps based on a fixed firing or-
der may be iterated, but it is not necessary to do
so because they are analytically tractable; their
fixed points and the stability of those fixed

points can be calculated using algebraic methods.
Stability criterion for synchrony in an all-to-all network. In order for a

synchronous mode to exist, all oscillators must have the same network
period when they receive an input from all their presynaptic neurons at a
phase of zero. Since this condition is automatically satisfied in an net-
work of all-to-all identical, identically connected neurons, existence of
the fully synchronous mode is guaranteed (see synchronymode.c, avail-
able at www.jneurosci.org as supplemental material). However, the only
previous stability criterion (Goel and Ermentrout, 2002) for the fully
synchronous mode in a pulse-coupled N neuron network assumes that
the inputs are always staggered and remain in the same order as syn-
chrony is approached, and assumes that the phase resetting at phases of
zero and one is zero. As synchrony is approached in reality, the inputs
begin to overlap and arrive simultaneously, and the phase resetting at
zero is not generally zero. For strong coupling, the approximation of
linear summation of resetting due to multiple inputs becomes poorer as
N is increased. Therefore, the PRC must be parameterized by both the
phase (�) and conductance ( gsyn), where fi

�(�, gsyn) refers to the slope of
the ith-order PRC at a phase of �. A stability criterion for an all-to-all
cluster of N neurons was developed by extending an existing proof for the
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case of two neurons (Dror et al., 1999; Oprisan et al., 2004) to the N
neuron network. A perturbation is assumed in which only a single neu-
ron is perturbed away from synchrony in a system (Fig. 4) that has been
linearized about the fixed point of the map at synchrony. This leaves a
subcluster of N � 1 neurons synchronized. The stability result depends
critically on the sign and slope of the applicable PRCs and is derived in
Appendix 1. In Figure 4, tr1[k] and trN�1[k] represent the recovery inter-
vals in kth cycle for the single neuron and the (N � 1) group of neurons,
respectively. Similarly, ts1[k] and tsN�1[k] represent the stimulus inter-
vals for the single neuron and the (N � 1) group of neurons, respectively.
In general, increasing the conductance does not change the sign of the
PRC at zero (corresponding to synchrony); however, it does in general
increase the slope. If second-order resetting is ignored, a necessary, but
not sufficient, condition for synchrony in the case of two clusters is that
all the applicable PRC slopes be the range 0 –2. Thus the largest possible
slope will likely be the most destabilizing one, hence the choice of the
largest possible (N � 1) subcluster for the most destabilizing perturba-
tion, as it will in general produce the slope [f1

�(�, (N � 1)gsyn)] with the
greatest absolute value. However, depending upon how the PRC changes
with increasing conductance, other possible perturbations into different
size clusters may also need to be examined in a similar manner.

The following criterion includes the effect of second-order resetting,
which can be important at synchrony (Oprisan and Canavier, 2001;
Oprisan et al., 2004) and produces the following characteristic quadratic
equations whose roots (	) must all have an absolute value less than 1 to
guarantee stability:

	 2 � 	[(1 � f1
�(0 �, gsyn))(1 � f1

�(1 �, (N � 1)gsyn)) �

f2
�(0 �, gsyn) � f2

�(1 �,(N � 1)gsyn)] �

f2
�(0 �, gsyn)f 2

� (1 �, (N � 1)gsyn) � 0

and

	 2 � 	[(1 � f1
�(0 �, (N � 1)gsyn))(1 � f1

�(1 �, gsyn)) �

f2
�(0 �, (N � 1)gsyn) � f2

�(1 �, gsyn)] �

f2
�(0 �, (N�1)gsyn)f2

�(1 �, gsyn) � 0.

The roots (	) are also the eigenvalues of the linear system and matrix M
described in Appendix 1. For completeness, there are two characteristic
equations because there are two possible ways the firing order can be
perturbed, with either the small or the large cluster leading. The leading
cluster is assigned a phase of 0 approached from the right and the other a
phase of 1 approached from the left. The sum of the first- and second-
order resetting is presumed to have a continuous derivative at 0 and 1,
but the first- and second-order resetting curves themselves do not have a
continuous derivative at zero and at one (Goel and Ermentrout, 2002). In
practice, if the coupling is approximately pulsatile in nature and dies out
within one cycle of the oscillation, the first-order resetting disappears as
a phase of one is approached, from the left, and second-order resetting
dies out as a phase of zero is approached from the right. If the magnitude
of the resetting is quite small in these regions, then it is reasonable to
assume the slope is quite small as well:

f2
�(0 �, (N � 1)gsyn) � f2

�(0 �, gsyn) � f1
�(1 �, gsyn) �

f1
�(1 �, (N � 1)gsyn) � 0,

which reduces the expression above for the eigenvalues to 	 � 1 � f1
�(0 �,

gsyn) � f2
�(1 �, (N � 1)gsyn) and 	 � 1 � f1

�(0 �, (N � 1)gsyn) � f2
�(1 �,

gsyn). However, if the derivative of the sum of the first- and second-order
resetting is indeed continuous at 0 and 1, coupled with the assumption
that the four quantities given above tend to 0, then a single eigenvalue is
obtained: 1 � f1

�(0 �, gsyn) � f1
�(0 �, (N � 1)gsyn).

Stability criterion for splay mode. This proof was first presented by Goel
and Ermentrout (2002) as a proof for the stability of synchrony. Here we
rederive and reinterpret it as a proof for the stability of the splay mode.
First we assume that the oscillators are firing in a sequential order such
that no two neurons are synchronized (Fig. 5). As in the iterative map
described above, for each neural firing time we add the first-order reset-
ting due to the input (phase after the firing indicated by �̂), then we
advance the phases of the nonfiring neurons to the next firing time. The
indices are switched as in Goel and Ermentrout (2002) on each cycle such
that the phase of neuron to fire next (the largest phase) is always labeled
�N�1 and the smallest is labeled �1. A variable is not wasted on the firing
neuron because it is always 1 before the firing and 0 afterward. If the
phase of the oscillators are such that 1 � �N�1 � �N�2 �…� �2� �1 �
0, then their phases in the (k � 1)th cycle can be written in terms of their
phases in the kth cycle assuming that the phase after an input �̂i is a
monotonically increasing function of the phase before the input �i so
that the firing order remains constant. We then assume a fixed point of
the mapping, which we indicate by dropping the indices for cycle number
and using an asterisk instead: �i

*. At such a fixed point, each neuron
receives inputs at the same phases in each cycle, which corresponds to a
periodic mode in the network comprised of the oscillators that generated
the PRCs used for the map. We then linearize about this fixed point,
ignoring second-order resetting, as explained in Appendix 2, and obtain
a set of linear equations that describe how a perturbation vector �[k]
from the fixed point evolves:

�	k � 1] � S�[k],

where �[k] � [��N�1[k], ��N�2[k],…, ��2[k], ��1[k]] T and S is the
following matrix:

�
f1
�(�N�1

* ) � 1 1 � f1
�(�N�2

* ) 0 � 0
f1
�(�N�1

* ) � 1 0 1 � f1
�(�N�3

* ) � 0
� � � � �
� � � � 1 � f1

�(�1
*)

f1
�(�N�1

* ) � 1 0 0 � 0
�

For a rotationally symmetric system in which each neuron receives
exactly the same input, we obtain the single matrix shown above (see
Appendix 2). If not, then the matrices corresponding to each firing time
until the pattern repeats (N matrices) must be multiplied in the correct
order (data not shown). The splay mode of both the PRC-based map and
the corresponding periodic mode in the full network is locally stable if all
the eigenvalues of S have an absolute value less than one so that the

N-1N-1

1

1

2

N-1N-1

1

trtrN-1N-1[k][k]

tsts1[k][k]

tstsN-1N-1[k][k]

trtr1[k][k]

Figure 4. Presumed firing pattern for stability proof. A perturbation of a single neuron away
from the synchronous firing is assumed, and an iterated map based on the perturbation from
synchrony on one cycle (ts).
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perturbation �[k] from the fixed point decays to zero. Note that the
matrix S, and therefore the stability, depends only upon the slopes of the
first-order PRCs at the locking points, indicated by f1

�(�i
*).

Existence criterion for splay mode. For simplicity, we restricted our
analytical predictions of existence to symmetric splay modes in which the
firing intervals between successive firing of neurons in the circuit were
equal. To find the periodic modes after all transients have died out, we
use the assumed fixed point of the mapping described in the previous
section. The first input for each neuron in Figure 5 is received at �1

*, the
second at �2

*, and the last at �N�1
* . Pi is the intrinsic period. The steady

firing intervals can be written as follows:

ts1[�] � Pi{�1
* � f2(�N�1

* )}.

For i from 2 to N � 1, tsi[�] � Pi {�i
* � �i�1

* � f1(�i�1
* )} and

tsN[�] � Pi{1 � �N�1
* � f1(�N�1

* )}.

The first interval includes the second-order resetting from the previous
cycle. Subsequent intervals calculate the elapsed time between inputs and

account for the first-order resetting due to the
input received at the start of the interval. If a
value is assumed for �N�1

* , then all other �i
*

required for equally spaced intervals can be it-
eratively calculated, by first calculating tsN and
finding the value of �1

* that makes ts1[�] �
tsN[�]. Then the values of the �i

* that make
tsi[�] equal to tsN[�] and ts

1
[�] are found. Only

sets of �i
* in which all �i

* are less than 1 are
considered. The equation for tsN�1[�] can be
used to calculate a value of �N�1

* that is com-
pared with the originally assumed value. The
difference between the assumed and calculated
values of �N�1

* can be plotted, and the zero
crossings of this difference identify the unique
set �i

* of which satisfies all periodicity criteria
that guarantee the existence of the mode. This
procedure for identification of splay modes was
implemented in C (see splaymode.c, available at
www.jneurosci.org as supplemental material).

Prediction of clustering. To understand how
synchronized clusters and subclusters form, the

synchrony within a cluster and the splay phase mode locking between
clusters were considered separately (Fig. 6). First the stability of syn-
chrony within a cluster is determined for an M-dimensional network.
Next the existence of a between-cluster splay mode in an N/M-
dimensional network is determined by modifying the existence criteria
given above for the splay mode such that the first interval includes the
first-order resetting due to the M � 1 other neurons within the cluster
firing simultaneously at a phase of zero (see clustermode.c, available at
www.jneurosci.org as supplemental material), producing the resetting
with an additional argument that indicates the summed conductance of
these inputs, f1(0, (M � 1)gsyn):

ts1[�] � Pi[�1
* � f2(�N�1

* ) � f1(0, (M � 1)gsyn)].

The stability of the between-cluster mode is determined by applying the
stability criterion at the phases determined by the existence criterion. The
prediction is based on the intersection of the predicted between- and
within-cluster modes.

Results
Iterative maps prove that PRC contains sufficient
predictive information
The iterative prediction method throws away all information
about the set of coupled nonlinear differential equations except
for the PRCs and the intrinsic periods. For illustrative purposes
we examined model networks of four identical, identically cou-
pled neurons to test this hypothesis, although the iterative
method can accommodate heterogeneity (Maran and Canavier,
2008). In a four-neuron network, some modes that can often be
observed (Fig. 1) are the fully synchronous mode (one cluster of
four neurons), splay firing mode, and two clusters of two neurons
in antiphase. Not all networks exhibit each of these modes, and
there are many other possible firing modes. If the iterative map
successfully predicts the modes exhibited by the full system of
differential equations under the assumption of ideal pulse-
coupled oscillators, then we can be certain that the PRCs of the
component neurons do indeed contain all the information re-
quired to predict the activity of the closed loop network. The
output of the iterative map is the number identifying the neu-
ron(s) that just fired and the elapsed time (firing interval) since
the last neuron(s) fired. This output was used to quantify the
comparison to the solution of the systems of differential
equations.

The most complex network activity that we observed was for a
four-neuron network of type I WB neurons coupled via inhibi-

Within Cluster

Between 
  Cluster

Figure 6. Cluster mode prediction: within- and between-cluster interactions. Left, Sche-
matic of four-neuron network with two clusters of two neurons each. Synchrony is observed
within each cluster, and antiphase, which is an example of a splay mode, is observed between
clusters. Within-cluster interactions are characterized by determining the stability of synchrony
in an isolated two-neuron network (rectangle) with gsyn set to the value for a single synapse.
Right, Between-cluster interactions are determined by collapsing the neurons within each rect-
angle to a single oscillator, and determining the existence and stability of a splay mode between
two such oscillators using twice the conductance for a single synapse. This method generalizes
to more clusters and to larger clusters.

Figure 5. Mapping that results from assumed splay mode firing pattern: The dashed vertical lines indicate the firing times
within an assumed sequential firing order in a network of N neurons. Successive firing intervals denoted here as tsi (stimulus
intervals), for i � 1 to N. For i � 1…N � 1, �i[k] and �̂i[k] indicate the phase of the nonfiring oscillator in the kth cycle before
and after firing.
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tion, and the iterative method was quite
successful at predicting closed loop net-
work activity using PRCs generated in the
open loop. Therefore, the iterative predic-
tions for that system are described first and
in detail. Figure 7 plots the predicted and
observed firing intervals between succes-
sive firings of any neuron(s) in the net-
work as the parameter space of the net-
work was explored by increasing the
synaptic conductance from very weak val-
ues to rather strong ones. Simultaneous
firings are counted as a single event, hence
a rotationally symmetric mode such as the
fully synchronous mode (open blue dia-
mond), two clusters of antiphase (open
red circles), or the ideal splay mode in
which all firing intervals are equal (not ob-
served for this network) would contain a
single firing interval. At weak coupling
strengths, the interval for the two cluster
antiphase mode is approximately half of
that of the fully synchronous mode, and
that of the ideal splay mode would be a
quarter of the fully synchronous mode (see
firing intervals delimited by vertical
dashed lines in Fig. 1).

If more than one type of symbol is ob-
served at a given conductance, this indicates bistability. For ex-
ample, at the weakest conductance values, the fully synchronous
mode is bistable with the two clusters of two neurons in antiphase
mode. Each mode has a basin of attraction, or set of initial con-
ditions that leads to that mode. In the case of the differential
equations, the initial conditions are the state space of the coupled
system, whereas in the iterative map, only the phases of each
oscillator (and the stored second-order resetting) need be initial-
ized. Different initial conditions can lead to different oscillatory
modes. An exhaustive search of initial conditions was not per-
formed, but instead the search focused on initial conditions likely
to lead to the three simple modes shown in Figure 1. The analyt-
ical predictions (see section on analytical methods) of stable and
unstable modes can be used to compute the phase of each neuron
at the time that a reference neuron reaches threshold, and these in
turn can be used to initialize both the iterative map and the full
system of differential equations exactly in the predicted mode.
Therefore, every predicted mode was specifically tested for stabil-
ity. In addition, these conditions were used to test for the pres-
ence of the mode at nearby parameter values where the mode was
not predicted. Initializing the oscillators exactly at synchrony was
not counted as a test of stability—the mode had to be robust to at
least a very small perturbation to be considered stable. Initial
conditions between the map and the differential equations could
be compared by selecting initial conditions along the unper-
turbed limit cycle at a given phase.

The closed blue diamonds represent nearly synchronous
modes in which the firing times of all four neurons are not exact
(note that in Fig. 7B a clear bifurcation into slightly different
alternating intervals is observed, denoted as near synchrony). The
closed red circles represent two clusters of two neurons. The short
closed red intervals indicate that the two neurons within each
cluster are not exactly in phase with each other, which was de-
noted as near antiphase cluster. If the variation in the firing in-
terval between any two neurons in the network is 
10% of the

network period, we label the mode near synchrony. In the near
antiphase mode, the same criterion is applied within each cluster,
and furthermore the difference between the midpoints of the
firing intervals in each cluster must be half the network period.
Finally, the closed green squares represent a near splay mode in
which the four intervals in Figure 1B are not exactly equal to each
other. The periodic modes were captured well by the iterative
map, although the near synchronous mode persists at larger con-
ductance values in the full system of differential equations (Fig.
7B) than in the iterative map (Fig. 7A) and there were some small
discrepancies in the prediction of the generalized splay mode.
The yellow stars represent intervals from complex periodic
modes with a period of many cycles, or in some cases aperiodic
modes. Even these modes were accurately captured by the itera-
tive map. The correspondence of Figure 7A with Figure 7B argues
that, in the network chosen for this example, the open loop PRCs
contain all the information required to predict closed loop net-
work activity.

In addition to type I neurons connected via inhibition, we also
examined type I neurons connected via excitation and type II
neurons connected by either inhibition or excitation. In these
networks we only observed the simple modes described in Figure
1, hence we summarize the predictions of the iterative map for
only these modes in Figure 8. The left-hand panels show the PRC
for a representative conductance value. The center trace shows
the iterative predictions, and the right-hand trace shows the ob-
servations of the full system of differential equations. Results for
networks comprised of type I oscillators connected via reciprocal
inhibition are shown in Figure 8A. Figure 8A1 shows a typical
PRC for the type I inhibition that was used to generate the itera-
tive map results shown in Figure 7A. Figure 8, A2 and A3, shows
expanded views of the low end of the conductance range from
Figure 7, A and B, respectively, with only the two simplest modes
shown. These modes are those of clusters of two neurons each in
antiphase with the other cluster but in exact synchrony within
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Figure 7. Iteratively predicted versus observed firing intervals showing all observed modes. These results are for a four-neuron
network with type I excitability and inhibitory synaptic connectivity. A, The firing intervals produced by the iterative map. B, Firing
intervals produced by integrating the full system of differential equations. The modes labeled antiphase clusters or near antiphase
clusters refer to two clusters in antiphase or near antiphase, whereas the synchronous and nearly synchronous modes refer to a
single cluster.
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each other (open red circles), and of one cluster of four neurons
in exact synchrony with each other. These modes are repeated
here to facilitate comparison with the other networks examined.
At low conductance values, these two modes are bistable, but first
the fully synchronous mode then the two clusters in antiphase
mode disappear as conductance is increased in both the iterated
map (Fig. 8A2) and the full system of differential equations (Fig.
8A3).

In contrast to the bistable system in Figure 8A which also
produced complex modes for some initial conditions (Fig. 7), the
differential equations describing the remaining three networks
that were examined produced only a single mode no matter what
initial conditions were given, and this mode corresponded to the
mode predicted by the iterated map in every case. For a four-

neuron network comprised of oscillators
with type II excitability and mutual excita-
tion, only the fully synchronous mode was
predicted (Fig. 8B2) and observed (Fig.
8B3). This mode retained stability until
the conductance became so strong (3.75
mS/cm 2, data not shown) that the as-
sumptions were violated because the oscil-
lators became stuck at a depolarized fixed
point. Both PRCs that supported the fully
synchronous mode (Fig. 8A1,B1) had an
initial positive slope (a phase of zero cor-
responds to synchrony). In the four-
neuron network comprising oscillators
with type I excitability coupled by mutual
excitation, only a splay mode was pre-
dicted (Fig. 8C2) and observed (Fig. 8C3).
Within a certain conductance regime
i.e., for gsyn from 0.09 to 0.17 mS/cm 2,
the splay mode was only accurately pre-
dicted by the iterative map if only
second-order resetting due to the last in-
put in each cycle was considered. In this
regime, the network period ranged be-
tween 6.34 ms to 2.2 ms, considerably
shorter than the intrinsic period of �30
ms, and the assumption that each neu-
ron return to the limit cycle between in-
puts is therefore severely challenged, es-
pecially since the times between inputs
are reduced to within 1.0 –2.0 ms while
the synaptic time constant is in the same
range, 1 ms. Here, the PRC saturates at
large conductance values (Prinz et al.,
2003; Oprisan et al., 2004) and the splay
mode is never observed to lose stability.

Finally, in the four-neuron network
comprised of oscillators with type II ex-
citability with mutual inhibition, the
only mode predicted (Fig. 8 D2) and ob-
served (Fig. 8 D3) was a mode composed
of two clusters of two neurons that were
synchronized with the other neuron in
its cluster but in antiphase with the neu-
rons in the other cluster. Neither of the
PRCs with an initial negative slope (Fig.
8C1,D1) could support the fully syn-
chronous mode, and yet in the final case
shown, the two neurons within each

cluster were synchronized. The result is surprising because a
single isolated cluster of two cannot synchronize itself (data
not shown), hence the interaction between clusters must
somehow stabilize within-cluster synchronization. The good
correspondence between the predicted and actual modes in all
cases suggests that for these model networks, all information
required to predict network activity is indeed contained
within the PRCs. The determinant of whether the coupling can
be approximated as pulsatile is the duration of the synaptic
input compared with the network period. The network period
for type I neurons ranged from 2 to 31 ms compared with a
synaptic time constant of 1 ms. The network period for type II
neurons ranged from 82 to 86 ms compared with a synaptic
time constant of 10 ms.

P
ha

se
 R

es
et

tin
g

f1

T
y
p

e
 I
 -

 I
n

h
ib

it
io

n
P

ha
se

 R
es

et
tin

g
T
y
p

e
 I
I 
- 

E
x
c
it
a

ti
o

n

0.0 0.5 1.0
−0.04

−0.02

0.00

f1

F
ir
in

g
 I
n

te
rv

a
l 
(m

s
)

 PRCs Iterative Predictions Observed

0.10

0.0 0.5 1.0
−0.02

P
ha

se
 R

es
et

tin
g

T
y
p

e
 I
I 
- 

In
h

ib
it
io

n

f1

0.02

0.06

0.0

F
ir
in

g
 I
n

te
rv

a
l 
(m

s
)

T
y
p

e
 I
 -

 E
x
c
it
a

ti
o

n

0.0 0.5 1.0
−0.6

−0.4

−0.2

P
ha

se
 R

es
et

tin
g

f1

(A1) (A2) (A3)

(B1) (B2) (B3)

(C1) (C2) (C3)

(D1) (D2) (D3)

0.0 0.5 1.0

0.02

0.06

0.10

0.14

Phase (φ)

Synchrony
Antiphase Clusters
Splay

0.0 0.1 0.2
0

10

20

30

0.0 0.1 0.2
0

40

80

0.0 0.1 0.2
0

40

80

0.0 0.1 0.2
0

2

4

6

0.0 0.1 0.2
0

2

4

6

F
ir
in

g
 I
n

te
rv

a
l 
(m

s
)

0.0 0.1 0.2
0

10

20

30

conductance (mS/cm2)

F
ir
in

g
 I
n

te
rv

a
l 
(m

s
)

0.0 0.1 0.2
0

40

80

conductance (mS/cm2)

0.0 0.1 0.2
0

40

80

Figure 8. Iterative map prediction versus the observed network behavior in four-neuron all-to-all networks. Typical PRCs are
shown in the leftmost column corresponding to a synaptic conductance strength of 0.10 mS/cm 2. Iterative map predictions are
shown in the center column. The observed network dynamics resulting from integrating the full systems of differential equations
are shown on the rightmost column. The open colored marker symbols indicate the firing intervals between spikes specific to a
mode. A, WB model neurons (type I excitability) with inhibitory coupling. B, ML model neurons (type II excitability) with excitatory
coupling. C, WB model neurons (type I excitability) with excitatory coupling. For gsyn from 0.09 – 0.17 mS/cm 2, all second-order
resetting except that due to the most recent input was ignored (filled green squares indicate the different implementation of the
iterated map). This modification was required (in this regime only) for correct predictions. D, ML model neurons (type II excitabil-
ity) with inhibitory coupling.
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Analytical criteria also prove that PRC
contains sufficient
predictive information
Having shown using iterative maps that
the PRCs in different cases indeed contain
sufficient information to predict network
activity, we next used analytical existence
and stability criteria to gain insight into
why certain modes were exhibited by indi-
vidual networks at the given parameter
settings whereas others were not. A stabil-
ity criterion for the fully synchronous
mode, as well as existence and stability cri-
teria for a symmetric splay mode, is given
in Materials and Methods. Each of the four
networks was analyzed throughout the pa-
rameter regimes given in Figure 8 to deter-
mine the parameter settings at which the
synchronous and splay modes would be
predicted to exist and be stable. Then, as
described in Materials and Methods, the
existence of two clusters of two was pre-
dicted by the intersection of parameter
values that support synchrony in a cluster
of two neurons as well as the antiphase
mode between two such clusters con-
nected via a double synapse, with the slight
modification as described in Materials and
Methods that the stimulus intervals con-
tain the first-order resetting due to the
other neuron in the cluster.

Figure 9 shows the results of the analyt-
ical predictions side by side with the obser-
vations. For the first case of a four-neuron
network with type I excitability and mu-
tual inhibition, the analytical predictions
(Fig. 9A2) perform somewhat better than
the iterative one (Fig. 8A2) in that the
point at which the fully synchronous mode
loses stability is better predicted by the an-
alytical method (compare with Fig. 9A3)
for reasons described in Appendix 3. The
two methods give the same performance
for the two clusters of antiphase mode,
which is explained in more detail below.
This is an informative example because the
two modes shown continue to exist but lose stability, and the
analytical method correctly predicts the point at which stability is
lost. The next two examples also show correct performance but
are not as illuminating because, as described above, a loss of
stability is not observed. As the synaptic conductance strength is
increased the synchronous mode and the splay mode, corre-
sponding to type II neurons and type I neurons respectively;
remain stable. This is because the PRCs saturate in both cases.
However, the existence criteria correctly predicted the firing in-
tervals in every case. The fully synchronous mode is correctly
predicted both analytically (Fig. 9B2) and iteratively (Fig. 8B2) in
every case (compare with Fig. 9B3) for the network with type II
excitability and mutual excitation. Similarly, the splay mode is
correctly predicted both analytically (Fig. 9C2) and iteratively
(Fig. 8C2) in every case (compare with Fig. 9C3) for the network
with type I excitability and mutual excitation.

The phase at which the inputs are received within a cycle are

denoted by filled circles on the PRCs. The analytical approach
(Fig. 9C2) predicts the observed mode (Fig. 9C3) quite well. The
slopes of the PRC at the indicated points on the PRC are �3.39,
0.741, and 0.736, respectively. A key observation that is relevant
to predicting clusters, which can only exist if the splay mode
between clusters exists and is stable, is that the inputs phase in
stable splay modes (dark filled circles) often, but not always, fall
in regions of positive slope on the PRCs (Fig. 9C1) that support
the splay mode. It is worth noting that in no case was a mode
predicted but not observed, for example the networks in Figure 9,
A, B, and D, in all cases predicted the splay mode to be unstable,
and it was not observed.

One failure of the analytical (Fig. 9D2), but not the iterative
(Fig. 8D2), method is observed in the case of two clusters in
antiphase (Fig. 9D3) in the network with type II excitability and
mutual inhibition. The black open circles in Figure 9D2 are used
to indicate that this cluster mode is in agreement with the ob-
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Figure 9. Analytical prediction versus the observed network behavior in four-neuron networks. Typical PRCs are shown in the
leftmost column corresponding to a synaptic conductance strength of 0.10 mS/cm 2. Analytical predictions are shown in the center
column. The observed modes are shown once again on the rightmost column. The filled circles on the PRCs indicate the phase at
which inputs are received by each neuron of the network. The firing intervals between spikes specific to each mode are indicated
just as in Figure 8. The black open circles in D2 are used to indicate that the cluster mode is not in agreement with the observed
mode (D3) with regard to stability. This is analyzed further in Figure 10.
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served mode (Fig. 9D3) with respect to existence but not stability.
Thus, although the analytical approach that treats within- and
between-cluster interactions separately does not provide a com-
plete understanding of cluster formation, it nonetheless provides
significant boundaries on when cluster formation might be ex-
pected (see next section).

Further analysis of clustering in a four-neuron network
A positive PRC slope (Fig. 9A1,D1) at a phase of PN/2Pi (where
PN is the network period and Pi is the intrinsic period of the
component oscillators) determines the stability of the antiphase
cluster mode. Clustering is examined by treating a synchronous
subcluster of M neurons as a single oscillator with the same pe-
riod and PRC as a single component neuron, then finding the
splay modes for a network of N/M oscillators. In a network of N
neurons, within-cluster interactions of M neurons are analyzed
by studying the synchronous mode for M neurons, and between-
cluster interactions of N/M clusters are analyzed by studying the
splay mode for a network of N/M neurons. Figure 10 illustrates
the cluster prediction method. The top traces show bars that
correspond to the parameter regions in which within-cluster syn-
chrony is predicted to be stable (blue bar), between-cluster splay
is predicted to exist and be stable (green bar), and in which the
cluster mode is actually observed (red bar). The lower traces show
the largest eigenvalue for the stability prediction for within-
cluster synchrony (blue diamonds) and between-cluster splay
(green squares). Note that since we plot the absolute value of the
eigenvalues, the blue diamonds in Figure 10B1 corresponding to
the within-cluster synchronous mode reverse direction when the
eigenvalue passes through zero.

First we analyze the cluster mode exhibited in networks of type
I neurons coupled by mutual inhibition shown in Figures 8, A2
and A3, and 9, A2 and A3. The intersection of the parameter
values encompassed by both the green and blue bars is indicated
by the vertical dotted line and predicts the range of the observed

values (red bar) reasonably well. Fig. 10B1
shows that the absolute value of the largest
eigenvalue (�	max�) corresponding to both
the within-cluster and the between cluster
is 
1.0 and is to the left of the vertical
dotted line (for gsyn values from 0.0 mS/
cm 2 to 0.07 mS/cm 2). Therefore the clus-
ter mode is predicted to be stable by the
analytical approach until 0.07 mS/cm 2.
Beyond this the within-cluster synchrony
loses stability, and as a result the cluster
mode is predicted to lose stability. Note
that the red bar extends slightly to the right
of the dashed line, indicating that the clus-
ter mode persists for slightly stronger val-
ues than predicted, indicating that the
small maximal eigenvalues for the
between-cluster mode can somewhat
compensate for the destabilizing influence
of within-cluster eigenvalues with absolute
value greater than one. This effect is much
more striking in the clusters observed in
networks of type II neurons coupled by
mutual inhibition corresponding to Fig-
ure 8, D2 and D3. Figure 10A2 indicates
that the analytical approach does not pre-
dict the stability of the observed cluster
mode since the within-cluster synchrony

for the two-neuron network is unstable for all values of gsyn.
Figure 10A2 has no blue bar corresponding to the parameter
region that supports stable within-cluster synchrony, hence no
vertical line indicating the intersection of the blue and green bars.
This is because Figure 10B2 shows that the absolute value of the
largest eigenvalue (�	max�) corresponding to the within-cluster
interaction is �1.0 for gsyn values from 0.0 mS/cm 2 onwards. The
prediction that a two-neuron cluster is unstable is correct as
tested in the full system of differential equations (data not
shown). As a result, the cluster mode in a four-neuron network is
predicted to be unstable by the analytical approach. However, the
observed cluster mode in a four-neuron network is stable
throughout the given conductance range. This strongly suggests
that the between-cluster interaction contributes to stabilizing the
cluster mode. A small between-cluster eigenvalue again seems to
compensate for a within-cluster eigenvalue greater than one. In
contrast to the idea that neurons cannot synchronize if they do
not possess the correct PRC slope at zero, the splay mode between
clusters was sufficient to synchronize subclusters that were not
capable of synchronizing themselves. This is a striking and some-
what counterintuitive finding, with implications for synchroni-
zation under both physiological and pathological conditions. De-
spite the obvious over-simplification, the method was
successfully applied in networks of four and 12 neurons.

Clustering in a 12-neuron network
The above results are not specific to any particular network size.
As an illustrative example we use a 12-neuron network that is a
scaled up version of the four-neuron network with inhibitory
inputs to the type I neurons illustrated in Figures 7, 8A, and 9A.
In this network, we predicted and observed multistability be-
tween the fully synchronous mode (data not shown), two clusters
of six (Fig. 11A), and three clusters of four (Fig. 11B). Modes with
more than three clusters (Fig. 11C) were found but were always
unstable. In Figure 11, the blue bar shows the parameter range
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Figure 10. A1, A2, Qualitative cluster mode prediction. When the cluster mode is observed, predictions are made analytically
using within- and between-cluster interactions. The vertical dotted line indicates the intersection region where the within- and
between-cluster interactions agree with the observed cluster mode (red line). For the four-neuron network, the blue line indicates
stable synchronous mode in a two-neuron network corresponding to the within-cluster interactions. The green line indicates the
stability of splay mode (two clusters of two neurons) corresponding to the between-cluster interactions. B1, B2, The absolute
value of the largest eigenvalue (�	max�) for the synchronous mode in a two-neuron network (blue diamonds) and for the two
clusters of two-neuron mode (green squares) are plotted against the synaptic conductance strength). A value less than 1.0
indicates stable mode and a value greater than 1.0 indicates unstable mode.

Achuthan and Canavier • Phase-Resetting Curves Determine Synchronization J. Neurosci., April 22, 2009 • 29(16):5218 –5233 • 5227



that the analytical method predicts will
support the within-cluster synchrony,
the green bar predicts stable between-
cluster splay mode, and the black bar
predicts unstable between-cluster splay
mode. The intersection of the blue and
green bars (demarcated by vertical
dashed line) is the analytical prediction
of a clustered mode. The red bar shows
the parameter regime in which a cluster
solution was observed in the full system
of differential equations and the orange
bar shows the parameter regime in
which the iterated map produced a clus-
ter mode. The phases at which each clus-
ter receives input from the others are
shown (open squares) on the PRC on the
right side of each panel for the case cor-
responding to gsyn � 0.01 mS/cm 2.

Figure 11 A1 shows that the two clus-
ters of six mode is analytically predicted
to be stable up to gsyn � 0.02 mS/cm 2

(vertical dashed line), which agrees with
observation (red bar). The iterated map
(orange bar) correctly predicted the ex-
istence of the mode during part of the
parameter region but was incorrect on
the borderline of the observed mode.
Similar results were obtained for three
clusters of four (Fig. 11 B1). The loss of
stability is due to the loss of within-
cluster synchrony as conductance is in-
creased. The between-cluster splay mode
remains stable at very large conduc-
tances, presumably due to saturation of
inhibition such that the IPSP essentially
clamps the membrane potential at the
synaptic reversal potential. For four
clusters of three, both the iterated map
and the analytical method correctly pre-
dicted that this mode would not be ob-
served in the full system of differential
equations. The loss of stability of the
between-cluster splay mode is responsi-
ble for limiting the number of clusters
that can be observed.

One of the relevant slopes for within-
cluster synchrony is always f1

�(0, gsyn). The
other is f1

�(0, 5gsyn) for a cluster of six, f1
�(0,

3gsyn) for a cluster of four, and f1
�(0, 2gsyn)

for a cluster of three. Within-cluster syn-
chrony loses stability at gsyn � gmax/(M �
1), where gmax is the total value for the con-
ductance of the M � 1 cluster when stabil-
ity is lost. Since the slope of the PRC de-
creases as the conductance decreases, the stability of the six
neuron cluster implies the stability of smaller clusters, just as the
stability of the 12-neuron cluster (data not shown) implies the
stability of all smaller clusters. On the other hand, the stability
criterion for the splay mode is complex, but the slope corre-
sponding to the last input received within the cycle appears more
frequently and may be more critical. Empirically, we note that
stability can be lost when this last input falls in a more steeply

negative region of the PRC as in Figure 11C2 compared with
Figure 11, A2 and B2. Increases in the largest eigenvalue indicate
a destabilizing trend. The largest eigenvalues corresponding to
Figure 11, A2, B2, and C2, follow such a destabilizing trend, and
are 0.834, 0.973, and 1.009, respectively, for the case correspond-
ing to gsyn � 0.01 mS/cm 2. Another empirical observation (data
not shown) is that it is destabilizing for multiple input phases to
fall in the negative slope region.
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Figure 11. Cluster predictions for three networks of 12 type I neurons with inhibitory inputs. The model neurons were
type I WB neuron coupled by inhibition. PRCs are shown for gsyn � 0.01 mS/cm 2. The brown squares on each PRC indicate
the phases at which each cluster receives inputs from the other clusters (one, two, and three, respectively) in the network.
The observed results are indicated by red horizontal lines and the results predicted by the iterative method are indicated
by orange horizontal lines. A, Two clusters of six neurons. A1, Two clusters of size six were observed to be stable up to gsyn

� 0.02 mS/cm 2. Within-cluster synchrony is stable until gsyn � 0.02 mS/cm 2. The splay mode captures the between-
cluster interaction and remains stable beyond gsyn � 0.10 mS/cm 2. The dashed vertical line indicates that the two clusters
of six neurons are predicted to be stable until gsyn � 0.02 mS/cm 2 by the analytical approach. A2, PRC. B, Three clusters
of four neurons. B1, Three clusters of size four were observed to be stable up to gsyn � 0.04 mS/cm 2. Within-cluster
synchronous mode is stable until gsyn � 0.03 mS/cm 2. The splay mode captures the between-cluster interaction and is
stable for a range of conductance values. The vertical line indicated that the three clusters of four neurons are predicted to
be stable until gsyn � 0.03 mS/cm 2 by the analytical approach. B2, PRC. C, Four clusters of size three. C1, Four clusters of
size three were not observed. Within-cluster synchronous mode is stable until gsyn � 0.04 mS/cm 2. The between-cluster
splay mode exists but is not stable (indicated by black bar) for the given range of conductance values. Four clusters of three
neurons are predicted to be unstable by the analytical approach. C2, PRC.
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Discussion
Applications to real neural networks
We have derived general results for generic phase-locked modes
based on the slopes of the PRCs at the respective locking points.
Although these results were derived for idealized networks of
identical and identically connected neurons, our intent is to pro-
vide clues about network synchronization behavior in more gen-
eral networks as described in the next three sections. The network
components are not required to be single neurons, but can be
generalized to half-center oscillators that rely on inhibitory re-
bound or to more complex circuits such as gamma modules con-
sisting of multiple neurons (Tort et al., 2007). The analysis can
also be generalized to bursting neurons (Luo et al., 2004; Oprisan
et al., 2004; Sieling et al., 2009) except that the burst is used as the
perturbation instead of a spike as in this study. These methods
can be generalized to circuits containing noise (Mancilla et al.,
2007); moreover, if the number and stability of the fixed points
identified by the stability criteria are robust to slight shifts of the
PRC, then the identified modes should be robust to PRC mea-
surement error and other sources of noise, as confirmed both in
iterated maps with added noise and in hybrid circuits constructed
with the dynamic clamp (Sieling et al., 2009).

Further generalization can be realized by considering hetero-
geneous networks as perturbed versions of homogeneous, iden-
tical, identically connected networks. The modes predicted for all
of the homogeneous circuits used herein are robust to the intro-
duction of some heterogeneity (data not shown). Thus PRCs that
would lead to exact phase locking in a homogeneous network are
predicted to lead to locking points in mildly heterogeneous net-
works, with phase lags clustered about the exact locking in the
idealized circuit. The iterated map requires one PRC per input
per oscillator, and there is no requirement that they be identical,
so the circuits it can emulate are limited only by the availability of
PRCs (Maran and Canavier, 2008).

Implications for synchrony
The analytical approach (Fig. 9A2,B2) builds on the observation
that positive slopes of the PRC at a phase of zero corresponding to
spike initiation promote synchrony. This implies that at suffi-
ciently weak conductance strengths, type I neurons tend to syn-
chronize with inhibition but not excitation, whereas type II neu-
rons synchronize with excitation but not inhibition. For weak
coupling, a positive slope guarantees synchrony (Ermentrout and
Kopell, 1990, 1991; Ermentrout, 2002). Previous work on stabil-
ity in all-to-all networks of pulsatile coupled oscillators (Goel and
Ermentrout, 2002) did not address second-order resetting, but
only first-order resetting at phase just after spike initiation (0�)
and just before spike initiation (1�). For pulsatile coupling, first-
order resetting at 1� is negligible, but the second-order resetting
at 1� is equal to the first-order resetting at 0�. This allows the
stability criterion at synchrony to collapse to 	 � 1 � f1

�(0�,
gsyn) � f1

�(0�, (N � 1)gsyn).
All possible perturbations (clusters of N � j and j) should

technically be considered, but we found that the criterion above is
generally the most severe. The simple form of the eigenvalue 	
provides valuable intuition since it is stated in terms of the rele-
vant PRC slopes. For example, it is clear that if both slopes are
negative, the eigenvalue will be greater than one and therefore full
synchrony in an N neuron cluster will be unstable. Also, if both
slopes are positive but their sum is greater than two, the eigen-
value will be less than negative one, and synchrony will again be
unstable. Changing the magnitude of the conductance at zero
usually does not change the sign of the initial slope. Therefore, if

the initial slopes are positive, any manipulation that increases
their magnitude sufficiently will destabilize synchrony. These
manipulations include increasing the size of the cluster or in-
creasing the individual synaptic conductances, consistent with
previous modeling studies of a pulse-coupled network of burst-
ing Hindmarsh-Rose neurons (Belykh et al., 2005) in which sta-
bility of the fully synchronous state depended only on the total
input each neuron received. For heterogeneous circuits, the near
synchronous state will tend to be destabilized when the absolute
value of the eigenvalue, calculated using the appropriate PRCs,
exceeds one. The appropriate PRCs to use for each neuron rep-
resent (1) the effect of that neuron on the rest of the cluster, which
may be approximated by its effect on a representative neuron
within the cluster, and (2) the simultaneous effects of the all other
neurons in the cluster on a specific neuron. The dynamic clamp
protocol (Sharp et al., 1993a,b) may be helpful in approximating
the latter.

Implications for clustering
The existence and stability of the between-cluster splay mode is
necessary for clusters to form. If within-cluster synchrony is also
stable, then clusters will be observed, but if it is not, it is still
possible that clusters could form (Fig. 10). Previously, Jeong and
Gutkin (2007) hypothesized that bistability in a two-neuron sys-
tem between synchrony and antiphase implies the ability to form
two synchronous clusters in a larger network. Another modeling
study (Ernst et al., 1995) showed the formation of stable clusters
in pulse-coupled systems enabled by bistability in the two-
neuron network, as well as clustering where synchrony in the
two-neuron network was unstable. Only the latter clusters were
susceptible to temporary disruption by noise. We extend these
previous results by setting specific criteria in terms of the PRCs
for bistability. For example, the PRC for type I inhibition (Fig.
8A1) has an initial region of positive slope that extends beyond a
phase of 0.5, so at least for weak values of conductance, the fully
synchronous mode is bistable with the antiphase mode in a two-
neuron network (data not shown), which does lead to clustering
in the map (Fig. 8A2), the analytical prediction (Fig. 9A2) and the
full system of differential equations (Fig. 8A3). We also show that
making the connections within clusters stronger by either in-
creasing the conductance of the individual synapses or by in-
creasing the size of the cluster, can destabilize clustering just as it
does the fully synchronous state.

Stable phase-clustered states have been mostly found in net-
works with reciprocal inhibition, except in an all-to-all excitatory
network in which within-cluster connections were weakened to
reduce the network to a bidirectional ring with all adjacent neu-
rons in antiphase, producing synchronous clusters comprised of
nonadjacent neurons (Li et al., 2003). We were able to identify
one all-to-all homogeneous excitatory network that supported
bistability between antiphase and synchrony in a network of four
homogeneous neurons, and also supported clustering (supple-
mental Fig. S1, available at www.jneurosci.org as supplemental
material). Therefore the PRC, and not the sign of the reciprocal
coupling, determines whether synchronous clusters will form.

In large network simulations (Pervouchine et al., 2006), with
many entorhinal stellates and fast-spiking cells, the stellates break
up into two clusters, each firing at a theta rhythm, with a popu-
lation rhythm twice as fast in the beta range. The two clusters are
invoked to explain a beta peak seen by Cunningham et al. (2004)
in slices of entorhinal cortex in which the main cells involved, the
fast-spiking and stellate cells, are thought to be firing at theta
frequency. The between-cluster analysis methods developed here
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show that in general it is progressively more difficult to find PRCs
that support between-cluster modes with N/M larger than 2 (Fig.
11), which likely explains why at most two clusters are observed.

Summary of major results
Two systematic PRC-based approaches have been proposed: in one
the interactions are presumed to be weak and in the other they are
presumed to be pulsatile (Ermentrout and Chow, 2002). We have
chosen to pursue the pulsatile approach because neural synchrony is
frequently achieved rapidly, even within a single cycle (Singer, 1999),
implying strong coupling in which the relative phases of the oscilla-
tors change quickly with respect to their absolute phase. For strong
coupling, phase resetting does not scale linearly as synaptic conduc-
tance is increased (Fig. 3A3). Our key extension of the pulsatile cou-
pling method was to use a lookup table for simultaneously received
inputs that accounts for nonlinear scaling of PRCs in the strong
coupling regime. This allows larger networks that receive multiple
inputs per cycle to be analyzed directly rather than using two-neuron
networks to quantitatively assess larger network dynamics (Skinner
et al., 2005, Netoff et al., 2005a) or reducing the larger network to a
two-neuron network (Pervouchine et al., 2006). The methods that
we propose could be broadly applicable because they can be used to
gain insight into networks composed of biological neurons, for
which the PRCs can be determined directly. Only strong coupling
methods can predict the loss of stability as the coupling becomes
strong, or as the net coupling received by a given neuron due to
increasing network size becomes larger. The major limitation is the
assumption of pulsatile coupling: if the inputs are so close together
the trajectory has not returned close to the original cycle before each
input is received then the assumption is violated.

In sum, we predict that only certain PRC shapes can support a
single synchronous cluster, that only certain PRC shapes can sup-
port a splay mode, that a subset of those shapes which supports
both modes can robustly support multiple clusters, and that as
the coupling strength is increased, clusters tend to break up.
These are the types of very general predictions that may be test-
able even in realistic brain networks for which we will have access
only to partial information.

Appendices
Appendix 1: derivation of the stability criterion for the fully
synchronous mode
From Figure 4, the periodicity criteria are as follows:

tsN�1[k] � tr1[k � 1]

trN�1[k] � ts1[k].

Substituting for the recovery intervals (tr) and stimulus intervals
(ts) in the above equations, we have the following:

�N�1[k] � f2(�N�1[k � 1], (N � 1)gsyn) �

1 � �1[k � 1] � f1(�1[k � 1], gsyn)

1 
 �N�1[k] � f1(�N�1[k], (N � 1)gsyn) �

�1[k] � f2(�1[k � 1], gsyn).

Rewriting the above equations, we have the following:

�N�1[k] � 1��1[k � 1] � f1(�1[k � 1], gsyn) �

f2(�N�1[k � 1], (N � 1)gsyn)

�1[k] � 1��N�1[k] � f1(�N�1[k], (N � 1)gsyn) �

f2(�1[k � 1], gsyn).

In the above two equations we assume a perturbation ��n[k]
about the fixed point �n

* so that �[k] � �n
* � ��n[k], n � 1 or

N � 1. After linearizing the PRCs such that f(�) � f(�*) � f�(�*)
�� and canceling the steady-state terms from both sides of the
equations, we obtain the following:

��N�1[k] � ( f1
�(�1

*, gsyn) � 1)��1[k � 1] �

f2
�(�N�1

* , (N � 1)gsyn)��N�1[k � 1]

��1[k] � (( f1
�(�N � 1

* , (N � 1)gsyn) � 1)( f1
�(�1

*, gsyn) � 1)

� f2
�(�1

*, gsyn))��1[k � 1] �(1 � f1
�(�N�1

* , (N � 1)

gsyn))f2
�(�N�1

* , (N � 1)gsyn)��N�1[k � 1].

The two equations above constitute a discrete linear system:

�[k] � M�[k � 1],

where �[k] � [��1[k], ��N�1[k]] T and M is a 2-by-2 matrix.
The characteristic polynomial corresponding to the matrix M

is as follows:

	 2 � 	[(1 � f1
�(�1

*, gsyn))(1 � f1
�(�N�1

* , (N � 1)gsyn)) �

f2
�(�1

*, gsyn) � f2
�(�N�1

* ,(N � 1)gsyn)] �

f2
�(�1

*, gsyn)f2
�(�N�1

* , (N � 1)gsyn) � 0.

For synchrony, the above expression has to be evaluated twice,
once at �1

* � 0� and �N�1
* � 1�, and again at �1

* � 1� and �N�1
*

� 0�. This accounts for two possible perturbations from syn-
chrony, one in which neuron group N � 1 leads and one in which
neuron 1 leads (Fig. 4). Often, f1

�(1�, (igsyn)) and f2
�(0�, (igsyn))

are near 0, for i � 1 and N � 1, because the PRC is flat in that
region, thus the expression reduces to a single eigenvalue for each
evaluation:

	 � 1 
 f1
�(0 �, gsyn)�f2

�(1 �, (N � 1)gsyn)

	 � 1 
 f1
�(0 �, (N � 1)gsyn)�f2

�(1 �, gsyn).

f1
�(0�, igsyn) � f2

� (1�, igsyn) for i � 1 and N � 1 because they
measure the same quantity, namely, the resetting in the next cycle
when the perturbation occurs at the time of action potential ini-
tiation. Thus, we obtain the following eigenvalue twice:

	 � 1 
 f1
�(0 �, gsyn) � f1

�(0 �, (N � 1)gsyn).

Appendix 2: derivation of the stability criterion for the
splay mode
Suppose that the oscillators are firing in a sequential order. Let
the phases of the oscillators immediately before oscillator N fires
be the following: 1 � �N�1[k] � �N�2[k] �…� �2[k]� �1[k] �
0. The phase of the firing oscillator �N is taken to be 1 in the kth
cycle and the oscillators are reindexed on every cycle so that only
N � 1 variables are required. Considering only first-order reset-
ting ( f1(�)), which is not indexed by gsyn here because only one
input is received at a time, and ignoring higher-order resetting,
we obtain expressions for the phase immediately after a pertur-
bation (�̂) in terms of the phase immediately before the pertur-

5230 • J. Neurosci., April 22, 2009 • 29(16):5218 –5233 Achuthan and Canavier • Phase-Resetting Curves Determine Synchronization



bation (�): �̂N � 0 and �̂i � �i � f1(�i) for i � 1,…,N � 1.
Assuming that the phase transition function is monotonically
increasing (a key assumption), we have that �̂N�1 � �̂N�2 �…�
�̂1. The next step is to advance all of the phases until just before
the next neuron fires, but keeping the numbering such that the
neuron that just fired as oscillator N in cycle k is now oscillator 1
in cycle k � 1, oscillator 1 is now 2, and so on (Fig. 5). The phase
�1[k � 1] in the stimulus interval ts1 is equal to the normalized
recovery interval 1 � �̂N�1[k], so we can calculate it as follows:

�1[k � 1] � 1 � �̂N�1[k] � 1 � �N�1[k] � f1(�N�1[k]).

Each phase can then be updated to the next firing time by adding
�1[k � 1] to the phase after the previous input and increasing the
index by one as in Figure 5.

�i�1[k � 1] � �̂i[k] � �1[k � 1] � �i[k] � f1(�i[k]) � �1[k � 1],

for i � 1 to N � 2.

In the above equations we can assume a perturbation ��i[k]
about a fixed point �i

*�i[k] � �i
* � ��i[k] for i � 1,…N � 1;

where �i
* is the steady-state fixed point. After linearizing the

PRCs such that f(�) � f(�*) � f�(�*)�� and canceling the
steady-state terms from both sides of the equations, we obtain the
following linear system:

��N�1[k � 1] � ( f1
�(�N�1

* ) � 1)��N�1[k] �

(1 � f1
�(�N�2

* ))��N�2[k]

��N�2[k � 1] � ( f1
�(�N�1

* ) � 1)��N�1[k] �

(1 � f1
�(�N�3

* ))��N�3[k]

…………..

��3[k � 1] � ( f1
�(�N�1

* ) � 1)��N�1[k] �

(1 � f1
�(�2

*))��2[k]

��2[k � 1] � ( f1
�(�N�1

* ) � 1)��N�1[k] � (1 � f1
�(�1

*))��1[k]

��1[k � 1] � ( f1
�(�N�1

* ) � 1)��N�1[k].

These equations can be written as a single matrix equation as
follows:

�	k � 1] � S�[k],

where �[k] � [��N�1[k], ��N�2[k],…, ��2[k], ��1[k]] T and S
is the following matrix:

�
f1
�(�N�1

* ) � 1 1 � f1
�(�N�2

* ) 0 � 0
f1
�(�N�1

* ) � 1 0 1 � f1
�(�N�3

* ) � 0
� � � � �
� � � � 1 � f1

�(�1
*)

f1
�(�N�1

* ) � 1 0 0 � 0
�

The eigenvalues of the above matrix determine the stability of
the splay mode. Since this matrix describes the linearization of a
discrete map at the fixed point of the mapping that corresponds
to a splay firing pattern, the eigenvalues of the matrix determine
not only the stability of the linear system, but also whether a
perturbation of the fixed point would grow or dissipate, with
implications for the stability of the corresponding firing pattern
in both the map and the full system of differential equations. The

mode is predicted to be stable only if the absolute value of all
eigenvalues is 
1.

Note that if the intervals between firings are not identical
and/or the neurons are not identical, then it is not sufficient to
consider what happens when a single neuron fires, but instead N
sequential firings must be considered in which N neurons receive
N � 1 inputs each, so N square matrices of dimension N � 1
containing N � 1 PRC slopes in the format shown above, for a
total of N(N � 1) distinct slopes, must be multiplied by each
other to obtain the correct linear system to determine stability in
this case. Also, the intrinsic periods cannot be ignored as they
were in the above derivation. The resultant matrix will still have
N � 1 eigenvalues.

Appendix 3: technical limitations of the pulse-coupled maps
Causality
An input cannot advance the next spike to before the input is
received. In practice, this implies that the recovery interval be-
tween when an input is received and when the next spike is gen-
erated must be non-negative. If inputs were allowed to sum lin-
early in a nonlinear regime, causality violations of this type can
occur, but the lookup table method prevents this type of causality
violation. The stimulus interval between when a neuron fires and
when it receives its next input must also be non-negative. In the
case of no simultaneous inputs, this interval is equal to the phase
of the next input �i plus the second-order resetting f2(�j) from
the previous input, hence �f2(�j) must be less than �i.

Strengths and weaknesses of the iterated map with no presumed
firing order
The strength of the iterative map method described in Materials
and Methods is that a single map can reproduce all firing orders,
whereas by definition a map based on a presumed firing order
cannot (Pervouchine et al., 2006). Maps similar to the iterative
map have been used in the past to study network dynamics
(Canavier et al., 1997, 1999; Netoff et al., 2005b; Maran and
Canavier, 2008; Oh and Matveev, 2009; Sieling et al., 2009). The
iterated map method could predict two clusters of two in an-
tiphase (Fig. 8D2) in a case in which analytical methods failed
(Fig. 9D2), and it easily handles multistability and aperiodic
modes (Fig. 7). However, the fixed points of this map cannot
easily be determined a priori due to the nonlinear step of polling
which neuron(s) will fire next. Therefore, stability criteria based
on the slopes of the PRC cannot be derived from this map, which
limits the intuitive understanding of synchronization and phase
locking that can be derived from this method. There are also
some subtle problems with simultaneous inputs that caused a
poorer prediction of full synchronization (Fig. 8A2) compared
with the analytical method (Fig. 9A2) in one case.

The subtle problems at synchronization include the possibility
of a negative phase immediately after spiking when second-order
resetting is a delay (positive resetting in our convention). In Fig-
ure 3C2, for example, a small dip into negative phases can be
observed right after the phase of each neuron is reset from one to
zero to indicate that the neuron has fired. Since a negative phase
does not actually correspond to a point on the limit cycle in this
case (Oh and Matveev, 2009), the resetting assigned to the second
pulse is arbitrary. As described in Materials and Methods, if an
input was received while the phase of a neuron was negative, we
choose to assign the nearest value for resetting, i.e., the resetting
at a phase of zero. Thus, this can introduce error near synchrony.

A similar problem occurs in the convergence to synchrony of
two inputs to a given neuron, as in the two clusters of two case.
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When two inputs are received in succession, all of the resetting
due to the first input is assumed to be complete by the time the
second input is received, but if the two inputs arrive close to-
gether this may not be a good approximation. If the pulses are
simultaneous, the resetting due to two pulses is f(�,2 gsyn),
whereas if the two pulses are separated by a normalized delay � the
total resetting is f(�) � f(� � f(�) � �) (Oprisan and Canavier,
2003). In the limit as � approaches zero, the resetting due to two
pulses approaches f(�) � f(� � f(�)), causing a discontinuity at
� for simultaneous pulses unless f(�, 2gsyn) � f(�, gsyn) � f(� �
f(�, gsyn), gsyn), which is not necessarily true in general, another
reason that the map may not always converge to synchrony as
desired.

The assumption that the resetting be complete by the time the
next input is received means that the system is memoryless. How-
ever, if the interval between two inputs contains a threshold event
such as an action potential, then the interval is comprised of two
parts: the recovery interval between when the input is received
and the action potential, and the stimulus interval between the
action potential and the next input. In this case, the first-order
resetting due to the first input can be taken in the first interval and
the second order in the second interval without violating the
assumption of a return to the limit cycle between inputs. The
second-order resetting due to inputs that do not immediately
precede an action potential are dropped under a strict memory-
less assumption. However, in a system with more than two neu-
rons, the pulse-coupled map based on a strictly memoryless as-
sumption cannot produce the fully synchronous mode or
synchronous subclusters because ignoring all second-order reset-
ting except that due to the last input received in a cycle very
slightly disrupts the symmetry required to achieve exact syn-
chrony. This is only significant because the theoretical proofs
presented in the paper only deal with exact synchrony, hence we
would like for the pulse-coupled map to reproduce these modes.
If we include all second-order resetting, the memoryless assump-
tion is somewhat relaxed, as it must be in the full system of dif-
ferential equations and easily achieve exact synchrony if the sta-
bility criteria are fulfilled. On the other hand, including all
second-order resetting can disrupt ability of the pulse-coupled
map to reproduce the splay mode in Figure 8C2 when the inter-
vals are short compared with those obtained by including
second-order resetting from each input. For the parameter re-
gime gsyn � 0.09 – 0.17 mS/cm 2, the pulse-coupled map was re-
programmed to ignore the second-order contribution of all but
the most recent input to successfully reproduce the splay mode in
Figure 8C3. Since inputs occur with small separation in the splay
mode, this is a severe test of the condition that all second-order
resetting be complete by the time the next input is received. A
final weakness of the iterated map is the tradeoff between the
strict memoryless assumption and the symmetry requirement of
synchrony. Mismatches between the performance of the full sys-
tem of differential equations can be observed in either case when
the assumptions are pushed too hard, but very good agreement is
observed in a wide variety of cases over large parameter regimes.

Strengths and weaknesses of the analysis of maps with a presumed
firing order
The strength of the analytical prediction method is that it allows
us to write an explicit criterion for stability of the presumed firing
pattern in terms of the slopes of the PRC that can be applied to the
fixed points of the map, which are easily identified. The major
intuition gained for the synchronous mode that is derived is only
possible using the analytical method. As noted above, the analyt-

ical method (Fig. 9A2) outperformed the iterative map method in
predicting when synchrony would break down (Fig. 8A2) in one
case. Although the analytical method also allows us to develop
intuition about how synchronous clusters can form, the iterative
map method (Fig. 8A2,D2) was better able to identify which
parameter sets support this type of clustering than the analytical
method (Fig. 9A2,D2). The iterative map cannot provide insight
on why this type of clustering occurs, though, some more analyt-
ical work is required to determine under what conditions
between-cluster interactions can produce within-cluster syn-
chrony in a cluster that cannot synchronize on its own.
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