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To successfully interact with objects in the environment, sensory evidence must be continuously acquired, interpreted, and used
to guide appropriate motor responses. For example, when driving, a red light should motivate a motor command to depress the
brake pedal. Single-unit recording studies have established that simple sensorimotor transformations are mediated by the same
neurons that ultimately guide the behavioral response. However, it is also possible that these sensorimotor regions are the
recipients of a modality-independent decision signal that is computed elsewhere. Here, we used functional magnetic resonance
imaging and human observers to show that the time course of activation in a subregion of the right insula is consistent with a role
in accumulating sensory evidence independently from the required motor response modality (saccade vs manual). Furthermore,
a combination of computational modeling and simulations of the blood oxygenation level-dependent response suggests that this
region is not simply recruited by general arousal or by the tonic maintenance of attention during the decision process. Our data
thus raise the possibility that a modality-independent representation of sensory evidence may guide activity in effector-specific
cortical areas before the initiation of a behavioral response.

Introduction
On a moment-to-moment basis, the brain must infer the most
likely state of the world given a variable amount of sensory evi-
dence, a process referred to as “perceptual decision making”
(Newsome et al., 1989; Salzman and Newsome, 1994; Gold and
Shadlen, 2001; Shadlen and Newsome, 2001). In a prototypical
laboratory experiment, observers view a noisy field of moving
dots drifting to the left or to the right [a random-dot pattern
(RDP)] and indicate the direction with a saccade in the appropri-
ate direction. The firing rate of motion-selective neurons in the
middle temporal area (MT) monotonically tracks the quality of
the available sensory evidence, which is systematically manipu-
lated by varying the percentage of dots moving in a common
direction (termed “motion coherence”) (Newsome et al., 1989;
Salzman et al., 1992; Britten et al., 1996; Shadlen et al., 1996; Gold
and Shadlen, 2001, 2007; Shadlen and Newsome, 2001; Ditterich
et al., 2003; Mazurek et al., 2003). This sensory information is
then thought to be temporally integrated by spatially selective
oculomotor neurons in areas such as the lateral intraparietal area
(LIP), frontal eye fields (FEFs), dorsal lateral prefrontal cortex
(DLPFC), and superior colliculus (SC) until a threshold level of
activity is reached and an appropriate eye movement response is
triggered (Hanes and Schall, 1996; Kim and Shadlen, 1999; Gold

and Shadlen, 2001, 2007; Schall, 2001; Shadlen and Newsome,
2001; Roitman and Shadlen, 2002; Ditterich et al., 2003; Huk and
Shadlen, 2005; Churchland et al., 2008; Kiani et al., 2008). Micro-
stimulating oculomotor neurons within some of these regions
can also bias the response outcome, implying a causal role in
perceptual decision making (Gold and Shadlen, 2000, 2003; Hor-
witz et al., 2004; Hanks et al., 2006).

The strong coupling between neural activity and behavior
suggests that decision making is performed by the same neurons
that ultimately initiate the appropriate motor response (here
termed the “modality-dependent” hypothesis). For example, oc-
ulomotor regions mediate simple decisions requiring saccadic
responses, and somatosensory cortex (S1) mediates vibrotactile
decisions (Romo and Salinas, 1999, 2003; Romo et al., 2002; Teg-
enthoff et al., 2005; Preuschhof et al., 2006). Decisions about
complex stimuli, such as images of faces or places, are also medi-
ated by motor-specific cortical areas depending on the response
output modality that is required by the task (Tosoni et al., 2008).

Although these studies leave no doubt that specialized motor
areas play an important role in translating sensory information
into a behavioral response, it is also possible that a separate mech-
anism computes a more abstract supramodal representation of
sensory evidence and sends a continuous input signal to motor
effector-specific sensorimotor areas during the course of the de-
cision process (termed the “modality-independent” hypothesis).
Here, we show that a region of right insula exhibits an activation
profile consistent with the accumulation of sensory evidence dur-
ing decision making, independent of response modality (saccade
vs manual). This finding raises the possibility that a modality-
independent mechanism guides activity in motor-specific re-
gions before movement initiation.
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Materials and Methods
Subjects. Twelve right-handed subjects (nine fe-
males) were recruited from the University of
California, Irvine (UCI) (Irvine, CA) commu-
nity, and one right-handed subject (male) was
recruited from the University of California, San
Diego (UCSD) (La Jolla, CA) community. Data
from one subject (female) were discarded be-
cause the manual and saccadic responses were
not recorded correctly during the scanning
session. All had normal or corrected-to-normal
vision. Each subject gave written informed con-
sent per Institutional Review Board require-
ments at either UCI or UCSD and completed
two 1 h training sessions outside the scanner
and one 1.5 h session in the scanner. Compen-
sation for participation was $10.00/h for train-
ing and $20.00/h for scanning.

Stimuli and task. Visual stimuli were gener-
ated using the Psychophysics Toolbox (Brain-
ard, 1997; Pelli, 1997) for Matlab (version 7.1;
Mathworks), presented at a frame rate of 60 Hz,
and projected onto a screen at the back of the
scanner bore that subjects viewed through a
mirror. Button-press responses were made on a
functional magnetic resonance imaging
(fMRI)-compatible response box using the fin-
gers of the right hand.

Subjects viewed a display consisting of two
overlapping centrally presented RDPs— one
composed of 100 red dots and the other made
up of 100 blue dots—against a light gray back-
ground (Fig. 1). Each small dot subtended 0.1°
of visual angle, and the circular stimulus aper-
ture subtended 4° of visual angle (radius) with a
small circular cutout around fixation (1° ra-
dius). On every trial, the coherence level for
each RDP was determined by the proportion of
dots moving in one of four possible direc-
tions— either to the upper left, upper right, lower left, or lower right—
while the direction of each remaining dot was selected from a uniform
distribution (across 360°). Each RDP moved in a different direction
(pseudorandomly determined) and contained a motion coherence level
of either 40 or 80% so that the total motion signal in the display was
equated on every trial (e.g., if the red RDP had 40% coherent motion, the
blue RDP would contain 80% and vice versa). Additionally, there were
four small black circles (subtending 1° and centered 11.3° from fixation)
arrayed at each corner of the screen that served as saccade targets.

At the start of each trial, a cue was presented for 750 ms in the form of
a colored fixation cross (either red or blue), indicating which of the two
RDPs subjects should monitor. This colored fixation cross remained
onscreen throughout the stimulus display. Subjects were asked to judge
the direction of the coherent motion of the RDP to which they were cued.
If the cued RDP contained 80% coherent motion, then the trial was
termed “easy,” and if the cued RDP contained only 40% coherent mo-
tion, the trial was termed “hard.” The stimulus remained onscreen for
1500 ms, after which only a white fixation cross was displayed for the
remainder of the trial. Each trial lasted 5250 ms and subjects were allowed
to respond any time after stimulus onset and up until the termination of
the trial. Each run in the scanner consisted of 32 task trials randomly
interleaved with 10 null trials (which were the same duration as a normal
trial but only required passively viewing the fixation cross: no RDPs were
presented). The color of the cue and the cued motion direction were
randomized and counterbalanced within each block and each run ended
with 10 s of passive fixation.

Response modality was alternated on a run-by-run basis and subjects
were informed beforehand whether they were to make their responses via
saccades or manual button presses. When making saccadic responses,

subjects were instructed to keep their eyes on the fixation cross and then
to make one clean eye movement to one of the four peripheral black
circles before redirecting their gaze back to the central cross in prepara-
tion for the start of the next trial. When responding with button presses,
subjects were instructed to keep their eyes on the fixation cross through-
out the entire trial and to press one of four buttons spatially arrayed to
correspond to the four possible target directions.

Eye movement data acquisition and analysis. At UCI, eye movements
were monitored using an infrared video eye tracker (Applied Science
Laboratories; long range optics system); at UCSD, an Avotech SV-7021
infrared eye tracker was used. The position of the right eye was sampled at
60 Hz, and before each run, the eye tracker was recalibrated. Preprocess-
ing and saccade extraction were performed using the ILAB toolbox for
Matlab (http://www.brain.northwestern.edu/ilab/) (Gitelman, 2002).
The raw data were first binned into temporal epochs corresponding to
each trial, and then blinks (periods when the pupil disappeared), as well
as five samples on either side of each blink, were marked and removed
from the epoched data. The following parameters were used to identify
saccades: an initial velocity threshold of 30° per second, a minimum
saccade duration of 35 ms, and a minimum fixation duration of 100 ms at
the endpoint of the saccade. Response times (RTs) on saccade trials were
defined as the time between the onset of the stimulus and the first sac-
cadic eye movement that deviated �3° from fixation in the direction of
one of the four peripheral targets (data were scored by hand on a trial-
by-trial basis to ensure accuracy).

fMRI data acquisition and analysis. For 11 of the subjects, MRI scan-
ning was performed on a Phillips Intera 3 tesla scanner equipped with an
eight-channel head coil at the John Tu and Thomas Yuen Center for
Functional Onco Imaging (UCI). Anatomical images were acquired us-
ing a magnetization-prepared rapid-acquisition gradient echo

Figure 1. Behavioral paradigm. Subjects maintained fixation on the central fixation cross at the start of each trial; the color of
the cross cued the subjects to decipher either the dots rendered in red or blue. On every trial, one dot field contained 40% coherent
motion (hard stimulus) and the other contained 80% coherent motion (easy stimulus). On alternating runs, subjects indicated the
direction of the relevant dot field with either a saccade to one of the four peripheral position markers or with a button press
response. For additional details, see Materials and Methods.
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(MPRAGE) T1-weighted sequence that yielded images with a 1 � 1 � 1
mm resolution. Whole-brain echoplanar functional images (EPIs) were
acquired in 35 transverse slices [repetition time (TR), 2000 ms; echo time
(TE), 30 ms; flip angle, 70°; image matrix, 64 � 64; field of view, 240 mm;
slice thickness, 3 mm; 1 mm gap; SENSE factor, 1.5]. For the remaining
subject, scanning was performed on a General Electric 3 T scanner
equipped with an eight-channel head coil at the W. M. Keck Center for
Functional MRI (UCSD). Anatomical images were acquired using a
MPRAGE T1-weighted sequence that yielded images with a 1 � 1 � 1
mm resolution. Whole-brain EPIs were acquired in 33 transverse slices
(TR, 2000 ms; TE, 30 ms; flip angle, 90°; image matrix, 64 � 64; field of
view, 240 mm; slice thickness, 3 mm; 1 mm gap).

Data analysis was performed using BrainVoyager QX (version 1.91;
Brain Innovation) and custom time series analysis routines written in
Matlab. Data from the main experiment were collected in 8 or 10 runs per
subject (i.e., either 4 or 5 runs per response modality, respectively), with
each run lasting 230 s. EPI images were slice time corrected, motion
corrected (both within and between scans), high-pass filtered (3 cycles/
run) to remove low-frequency temporal components from the time se-
ries, and spatially smoothed with a 4 mm full width at half-maximum
kernel. The motion parameters were used to estimate and remove
motion-induced artifacts in the time series of each voxel using a general
linear model (GLM). The time series from each voxel in each observer
was then z-transformed on a run-by-run basis to ensure that the time
series had a mean of zero. All anatomical and EPI images were trans-
formed into the atlas space of Talairach and Tournoux (1988) before
group analyses were performed.

Linear ballistic accumulator model. Behavioral data were modeled us-
ing the linear ballistic accumulator (LBA), a simplified version of the
ballistic accumulator (Brown and Heathcote, 2005), which was in turn a
simplified version of the leaky competing accumulator of Usher and
McClelland (2001). The simplifications included in the LBA allow it to
keep the essential predictive qualities of Usher and McClelland’s original
model, but with much improved analytic tractability. The simplifying
assumptions used in the LBA are similar to those in some other neurally
inspired models of decision making, most notably the LATER model of
Reddi and Carpenter (2000) and the random ray model of Reeves et al.
(2005).

In the LBA, each of the four response alternatives (motion directions)
is represented by an independent linear accumulator, illustrated in Fig-
ure 2. On each trial, each accumulator begins with a random activation
level that is independently drawn from a uniform distribution on [0,A].
During decision making, activity in each accumulator increases linearly,
and a response is triggered as soon as the first accumulator crosses a
response threshold (b). The predicted response time is simply the time
taken to reach the threshold, plus a constant offset time t0. The rate at
which activation increases in each accumulator is termed the “drift rate”
for that accumulator. These drift rates are drawn from independent nor-
mal distributions for the four accumulators. To simplify matters, we
always assumed that these normal distributions share a common SD (s).

The means of the normal distributions reflect the perceptual input: when
the motion direction of the cued RDP closely matches the response as-
signed to a particular accumulator, that accumulator will have a large
drift mean rate, and vice versa. We estimated a parameter for the mean
drift rate of the accumulator corresponding to the correct response (dc)
and assumed that the other three accumulators had equal mean drift
rates (1 � dc)/3, keeping the total of all four drift rates fixed at 1. We also
calculated a more detailed analysis with different mean drift rates for the
accumulators corresponding to incorrect responses. That analysis
showed obvious differences (e.g., the mean drift rate for the response
opposite the correct response was �10% smaller than the mean drift
rates for responses that were orthogonal to the correct response) but all of
the substantive results were unchanged.

Brown and Heathcote (2008) showed that the LBA accommodates all
the benchmark phenomena observed in choice RT paradigms. The LBA
is also sufficiently simple in that there are closed form solutions for the
densities of predicted RT distributions, making it easy to apply to data
such as ours. These solutions were used to calculate likelihood values
when fitting the model to data. We assessed the goodness-of-fit between
the observed RT distributions and those predicted by the LBA model
using the quantile maximum product statistic (Heathcote et al., 2002;
Heathcote and Brown, 2004). The parameters of the model were adjusted
to maximize the goodness of fit using the simplex algorithm (Nelder and
Mead, 1965; Brown and Heathcote, 2008).

Predicting blood oxygenation level-dependent responses based on the rate
of evidence accumulation. Assuming a different rate of evidence accu-
mulation on easy and hard trials, we generated predictions of the
blood oxygenation level-dependent (BOLD) response profile within
regions involved in accumulating sensory evidence during perceptual
decision making. The model is primarily motivated by the work of
Shadlen and coworkers, who have shown that the firing rates of neu-
rons in areas such as LIP monotonically increase until a response
threshold is achieved and a response is executed. In our simulation,
we assumed that the estimated drift rate on easy and hard trials is a
proxy for neural activity (Fig. 3A); we then convolved this ramping
activity profile with a canonical model of the BOLD response (a dif-
ference of two gamma functions; time to peak, 5 s; undershoot ratio,
6; time to undershoot peak, 15 s). Assuming that the firing rate of
“accumulator” neurons in areas like LIP falls off after a response is
made (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002), the
simulation predicts that lower drift rates will produce larger and
temporally extended BOLD responses because the response is propor-
tional to the integrated amount of neural activity during the decision
process (Fig. 3 A, B). However, this same effect—larger and tempo-
rally extended BOLD responses on hard trials—might also be ex-
pected in a region involved in maintaining selective attention to rel-
evant aspects of the stimulus display during decision making, or in a
region that more generally participates in sustaining a task set or an
aroused state. Thus, it is not possible to distinguish areas involved in
accumulating sensory evidence based solely on an increased response

Figure 2. Schematic of the LBA model. The choice between the four responses is modeled as a race between four accumulators. Activation in each accumulator begins at a random point between
zero and A and increases with time. The rate of increase is random from trial to trial, but is (on average) faster for the accumulator whose associated response matches the stimulus. A response is given
by whichever accumulator first reaches the threshold b, and the predicted response time depends on the time taken to reach that threshold.
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associated with perceptual difficulty. Fortu-
nately, the simulation also predicts that the
BOLD response should rise more slowly on
hard trials compared with easy trials, because
hard trials are associated with a more gradual
ramping of neural activity (Fig. 3B, shaded
region). In contrast, regions that are involved
in general attentional processes should be
uniformly engaged for the duration of the de-
cision process, resulting in a similar main ef-
fect of perceptual difficulty without the ac-
companying shift in response latency. Two
variants of such attentional accounts—along
with the predicted BOLD response profiles—
are shown for comparison in Figure 3C–F.

Identifying supramodal mechanisms of infor-
mation accumulation. The main goal of the
analysis was to use a two-step inferential pro-
cess to define regions that (1) exhibit a larger
and temporally extended response on hard tri-
als compared with easy trials and (2) exhibit a
temporally delayed BOLD response on hard
compared with easy trials (Fig. 3 A, B). These
properties define regions that are likely per-
forming evidence accumulation, rather than
some other role in the decision process.

To identify regions of interest (ROIs) that
respond more on hard compared with easy tri-
als (step 1 in the analysis), the hemodynamic
response function for each event type (easy sac-
cade, hard saccade, easy manual, hard manual)
was estimated using a GLM and a finite impulse
response model that included separate regres-
sors to estimate the BOLD response at the time
of event onset and at each of the next eight time
points after that event (times 0 –16 s after stim-
ulus) (Dale and Buckner, 1997). Using this ap-
proach, the rows in the GLM design matrix cor-
respond to the number of time points in a
scanning session and the columns correspond
to the relative temporal position of each model
regressor with respect to the time of event onset.
Each of the nine time points was modeled with
a “1” in the appropriate row and column of the
GLM design matrix, yielding scaled fit coeffi-
cients (� weights) at each time point for each
event type. Additional regressors-of-no-
interest were included to model the mean re-
sponse across the nine time points after incor-
rect trials, collapsed across trial type. A three-
way repeated-measures ANOVA with response
modality (saccade vs manual), perceptual diffi-
culty (easy vs hard), and time (0 –16 s after stim-
ulus, in nine intervals) as factors was then per-
formed on the estimated � weights; ROIs were
defined based on the interaction between per-
ceptual difficulty and time, collapsed across re-
sponse modality. All statistical maps were
thresholded at p � 0.05, after correcting for
multiple comparisons using the false discovery rate algorithm imple-
mented in BrainVoyager.

Having identified ROIs in which the response is larger and temporally
extended on hard compared with easy trials (step 1 of the analysis), we
next tested for latency differences in the onset of the BOLD response in
each ROI (step 2 in the analysis) by evaluating the interaction between
perceptual difficulty and time across only the first two time points (0 –2 s)
of the event-related BOLD responses. A significant interaction across this
temporal window indicates a differential slope during the rising phase of
the responses, which is consistent with the accumulation of sensory evi-

dence and inconsistent with the maintenance of sustained attention or
general arousal.

Because both analytical steps involved evaluating the interaction be-
tween perceptual difficulty and time (albeit across different temporal
windows), we performed a “leave-one-out” cross-validation procedure
to ensure that the selection of voxels to include in a ROI during step 1
(larger and temporally extended response on hard compared with easy
trials) did not bias the outcome of the statistical test in step 2 (difference
in onset latency). Using this procedure, ROIs that exhibited a significant
interaction between perceptual difficulty and time (from 0 to 16 s after

Figure 3. Simulated BOLD activation profile in a region involved in accumulating sensory evidence. Neurons in areas such as LIP
are known to increase their firing rates to a bound during perceptual decision-making tasks; the time taken to reach the bound is
determined by the quality of the sensory evidence (e.g., the motion coherence in a RDP) (Shadlen and Newsome, 2001). A, Two
hypothetical cases of a fast (blue) and a slow (green) decision process in a sensory integration area like LIP. The blue trace might
be expected on easy trials because sensory evidence is abundant; the green trace might be expected on hard trials because sensory
evidence is sparse. B, Predicted pattern of BOLD responses associated with each hypothetical case shown in A, computed by
convolving the simulated firing rate of the neuron depicted in A with a simulated BOLD response function (a “double-gamma”
function). Notice that a larger response is expected when the drift rate is slow because the BOLD response is proportional to the
integrated amount of neural activity during the decision process. Moreover, the onset of the BOLD response is delayed when the
drift rate is slow (shaded region), which is a distinguishing characteristic of a region involved in accumulating sensory evidence.
The dashed red line represents the predicted response on hard trials minus the response on easy trials. C, Hypothetical neural
activity in a region that is involved in maintaining attention at a fixed level for the duration of the decision process. D, BOLD
response profiles expected on easy and hard trials given the neural profiles shown in C. As in B, a region involved in maintaining
sustained attention should also exhibit a larger and temporally extended response, but without the corresponding offset in
response latency. E, Same as C, but assumes a larger sustained response on hard compared with easy trials because of the increase
in task difficulty. F, BOLD response profiles expected on easy and hard trials given the neural profile in E; again, a larger and
temporally extended response is predicted on hard trials, but without a shift in the latency of response onset. Note that the
absolute scale of BOLD responses is not relevant for the present purposes; instead, we focus on the qualitative pattern of the BOLD
responses that should be associated with a region involved in accumulating sensory evidence.
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stimulus) were identified using data from 11 of 12 subjects, and then the
data from the remaining subject was extracted from each ROI and used
for statistical tests (see Tables 3, 4) and for generating time series plots
(see Figs. 6 – 8, 10). This procedure was repeated 12 times across all
permutations of leaving one subject out, generating 12 sets of ROIs (see
Table 2). In addition to protecting against bias when evaluating differ-
ences in response latency, this procedure also ensured that the time
courses are not biased by the inclusion of noise that is favorable to our
conclusions (Kriegeskorte et al., 2009; Vul and Kanwisher, 2009; Vul et
al., 2009). All analyses of the BOLD response used this leave-one-out
procedure, with the exception of the results reported from the human
MT region (hMT�); however, hMT� was identified using independent
localizers, so bias of this sort was not an issue (see below).

hMT� functional localizer. To identify motion-responsive voxels in
hMT�, we presented alternating 10 s trials of 100% coherent motion
moving in one of four directions with 10 s trials in which the position of
each dot was randomly replotted within the circular aperture on every
video frame (resembling “snow” on a television set). The size of the
stimulus aperture was the same as the one used in the main experiment.
The subject’s task was to press a button whenever the speed of the stim-
ulus slowed briefly for 500 ms; these target events occurred at three
randomly determined intervals in each 10 s trial. A GLM that contained
a regressor corresponding to each stimulus type was used to identify
hMT� as the contiguous cluster of voxels lateral to the parietal– occipital
sulcus that responded more during epochs of coherent motion than to
the random-dot stimulus (single voxel threshold was set to p � 0.05,
corrected for multiple comparisons using the false discovery rate algo-
rithm implemented in BrainVoyager). Bilateral regions of hMT� were
identified in 10 of 12 subjects; only left hMT� was identified in one of the
remaining subjects, and only right hMT� was identified in the other.

Results
Figure 1 shows a schematic of the four-alternative forced-choice
(4AFC) behavioral task subjects performed while in the scanner.
This task was relatively easy when subjects were cued to report the
direction of the high-coherence dot field, and relatively hard
when they were cued to report the direction of the low-coherence
dot field (termed easy and hard trials, respectively). Importantly,
high and low coherence dot fields were simultaneously present
on every trial, so the sensory properties of the display were fixed
with respect to the total amount of coherent motion. This feature
of the design was introduced to avoid simultaneously manipulat-
ing sensory factors (i.e., the motion coherence level) and percep-
tual difficulty. The subject was free to make a response at any
point during the trial to indicate the direction of the currently
relevant dot field; a saccadic response was required on one-half of
the runs, and a manual button press response was required on the
remaining runs. On saccadic-response runs, subjects were re-
quired to maintain central fixation until the response was exe-
cuted; on manual-response runs, central fixation was maintained
throughout the trial.

By requiring subjects to use different output response modal-
ities, we were able to search for supramodal signals related to
decision making; the observation of this type of signal would
support the existence of modality-independent decision variables
(Heekeren et al., 2006). To identify such regions, we used the LBA
model (see Materials and Methods) to make inferences from the
behavioral data about how manipulations of perceptual difficulty
should influence the BOLD signal originating from areas that
play a role in accumulating sensory evidence during decision
making. Importantly, these modeling efforts also dissociated cor-
tical regions involved in perceptual decision making from those
more generally involved in attentional processes (i.e., general
arousal, task demands, etc.).

Behavioral results
Separate two-way repeated-measures ANOVAs with response
modality (saccade vs manual) and perceptual difficulty (easy vs
hard) were used to assess the accuracy and RT data collected
during the scanning session (for a summary of the group data, see
Table 1). Subjects were slightly more accurate when making man-
ual compared with saccadic responses (F(1,11) � 6.2; p � 0.03),
and there was a robust main effect of perceptual difficulty on
accuracy, indicating that deciphering the direction of a low-
coherence stimulus on a hard trial was more challenging than
deciphering a high-coherence stimulus on an easy trial (F(1,11) �
69.4; p � 0.001). Finally, there was no interaction between re-
sponse modality and discrimination difficulty, indicating that
manipulations of perceptual difficulty had a similar influence on
both saccade- and manual-response accuracy (F(1,11) � 0.13; p �
0.73).

RTs were shorter on saccade trials compared with manual
trials, but this effect did not reach significance (F(1,11) � 2.7; p �
0.13). RTs were reliably shorter on easy trials compared with hard
trials (F(1,11) � 64.6; p � 0.001), and there was no interaction
between perceptual difficulty and response modality (F(1,11) �
0.14; p � 0.72).

Linear ballistic accumulator model of behavioral data
Before analyzing the BOLD fMRI data, we fit our behavioral data
using the LBA model (Brown and Heathcote, 2008). The goal was
to investigate how manipulations of perceptual difficulty and re-
sponse modality affected RT distributions. For instance, RTs
might be faster on easy compared with hard trials because of (1) a
change in the rate with which sensory evidence from the display
was accumulated (termed the “drift rate” in the model) or (2) a
change in the amount of evidence required to make a decision
(termed the “response threshold”) or (3) both. Analysis using a
cognitive model allows us to tease apart these separate influences
and to estimate parameters associated with each. By establishing
which parameters changed with experimental manipulations, we
can then estimate the pattern of BOLD responses expected from a
region that is involved in accumulating sensory evidence during
the decision process.

We report here fits to data averaged over participants, for
simplicity of exposition. However, we repeated the same analyses
separately for each individual participant and obtained broadly
similar results (see below). The data were split into four within-
subject conditions, defined by two factors: response modality
(saccade vs manual) and stimulus coherence (easy vs hard). For
simplicity, we collapsed across motion direction (upper left, up-
per right, lower right, lower left); however, we obtained qualita-
tively similar results if we included the four motion directions in

Table 1. Behavioral accuracy and response times on correct trials during the fMRI
experiment for each condition and for the main effect of perceptual difficulty
(easy vs hard) and the main effect of response modality (manual vs saccade)

Condition Accuracy
Response
time (ms)

Manual (easy) 93 � 2 1184 � 93
Manual (hard) 66 � 5 1469 � 106
Saccade (easy) 89 � 3 1035 � 94
Saccade (hard) 61 � 5 1304 � 124
Easy (manual � saccade) 91 � 2 1110 � 82
Hard (manual � saccade) 64 � 5 1387 � 102
Manual (easy � hard) 79 � 3 1327 � 98
Saccade (easy � hard) 75 � 4 1170 � 109

Shown are means � SEM.

Ho et al. • Supramodal Mechanisms of Decision Making J. Neurosci., July 8, 2009 • 29(27):8675– 8687 • 8679



the analysis to bring the total number of
within-subject conditions to 16.

For a single decision condition, the
LBA model as described above has five free
parameters: t0, A, b, s, and dc, but it is not
reasonable that all five of these should be
estimated separately for all four conditions
(easy vs hard, saccade vs manual). Instead,
we fit the LBA model to the data 28 times,
using different designs for constraining
the parameters. Each design reflects a par-
ticular set of psychological assumptions
regarding the way our experimental ma-
nipulations influenced cognitive process-
ing. For example, the simplest model used
a single set of five parameter estimates for
all conditions, reflecting the assumption
that the data were completely unaffected
by the experimental manipulations. Other
designs allowed drift rates (dc) to be differ-
ent for easy versus hard stimuli, or for
manual versus saccadic responses, and so
on. We compared the adequacy of all possible designs using the
Bayesian information criterion (BIC) (Schwarz, 1978). The best
design, with BIC � 18,784.26, used constant values of s � 0.227/s
(SD) and A � 0.849 (start point parameter) across all conditions.
However, the design used higher mean drift rates on easy versus
hard trials (dc,easy � 0.739/s, dc,hard � 0. 517/s, with equal drift
rates across modalities), and smaller nondecision times for sac-
cadic responses (t0,s � 0.053 s) compared with manual responses
(t0,m � 0.134 s), likely reflecting the modestly faster movement
execution times for saccades. The model also assumed that the
response threshold was slightly lower—that is, less cautious—for
saccadic than manual responses (bsaccade � 1.212; bmanual �
1.278). Figure 4 illustrates the observed RT distributions (histo-
grams) along with the predictions from the LBA model (solid
lines). The top row shows distributions from high coherence con-
ditions, and the bottom row for low coherence conditions. The
first two columns show data from trials with saccadic responses,
and the next two show data from trials with manual responses.
The same y-axis scale was used for all histograms, so the heights of
the distributions illustrate the relative probabilities of the re-
sponses (e.g., there are many more correct than incorrect re-
sponses for high coherence trials, so both the observed and pre-
dicted distributions are much taller for correct responses). The
distributions predicted by the LBA are those corresponding to the
best-BIC design described above.

We obtained similar results when we repeated the above anal-
yses separately for each individual subject, although results were
more variable because of the smaller sample sizes involved. Most
importantly, the best-BIC model from the group data analysis
performed well across the individual subjects. That model had
the third best mean BIC score of the 28 models we tested; the
model with the best mean BIC score was identical except with the
added constraint that even t0 should be constant across all con-
ditions (not a surprising outcome given that the BIC tends to
favor simpler models for smaller sample sizes). Patterns observed
in the mean parameter estimates across individual participants
also closely matched those obtained from the group data: s �
0.182/s, A � 0.791, dc,easy � 0.688/s, dc,hard � 0.521/s, t0,s � 0.120
s, t0,m � 0.203 s, bsaccade � 0.993 and bmanual � 1.078.

Supramodal mechanisms of information accumulation
To identify “candidate” regions that might be involved in percep-
tual decision making, we first performed a random effects analy-
sis on data from 11 of 12 subjects to identify cortical areas exhib-
iting a two-way interaction between perceptual difficulty (easy vs
hard) and time (0 –16 s in 2 s intervals); this interaction was used
to target areas that had a larger and temporally extended response
on hard trials compared with easy trials (as in Fig. 3B). The time
series of the response on hard and easy trials was then computed
from each ROI in the 12th subject; this leave-one-subject-out
procedure was then repeated so that each subject was left out in
turn (the permutation analysis was performed to avoid biasing a
subsequent evaluation of response onset latency) (see below and
Materials and Methods). We collapsed across response modality
because estimated drift rates did not vary between saccade and
manual response conditions, and therefore our simulation pre-
dicted an identical BOLD response profile on hard compared
with easy trials for both response modalities (Fig. 3A,B). This
analysis identified regions in the right insula, bilateral intrapari-
etal sulcus (IPS), bilateral FEFs, a region of medial frontal cortex
(MFC), right inferior frontal gyrus (IFG) (just anterior to the
insula), right superior frontal gyrus (SFG), and left temporal pa-
rietal junction (TPJ) (Fig. 5, Tables 2, 3). We also identified a ROI
in left superior frontal sulcus (SFS) on 10 of 12 permutations of
leaving one subject out; however, the interaction between per-
ceptual difficulty and time did not reach significance in this re-
gion when evaluated in the left-out subjects (Table 3). In all of the
regions identified, the interaction between perceptual difficulty
and time was driven by a larger and temporally extended re-
sponse on hard trials compared with easy trials, with the excep-
tion of the left SFS and the left TPJ (a description of these regions
is presented in Discussion and Fig. 10).

Although a larger and temporally extended response on hard
compared with easy trials is consistent with the accumulation of
sensory evidence during perceptual decision making, similar ef-
fects of perceptual difficulty would also arise from areas involved
in maintaining sustained attention or arousal during the decision
process (Fig. 3C–F). Therefore, we next used data from only the
“left-out” subjects to evaluate the latency of the BOLD response
on easy and hard trials in each ROI; a delayed onset on hard trials
is a distinguishing characteristic of a neural accumulator (Fig. 3B,

Figure 4. Fit of LBA model to the RT data. The histograms show observed RT distributions for correct and incorrect decisions.
The top and bottom rows show distributions of RTs associated with decisions based on high-coherence (easy) and low-coherence
(hard) stimuli, respectively. The left one-half of the figure shows data from saccadic responses, and the right one-half, from
manual responses. The solid lines indicate the RT distributions predicted by the LBA model (see text).
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shaded region). To test for latency differences, we performed a
two-way repeated-measures ANOVA with perceptual difficulty
and time as factors, but this time we only included data from the
first two time points of the BOLD response (0 –2 s after stimulus).
Note that the use of a leave-one-out procedure ensures that this
second interaction test is independent from the criterion used to
define each ROI. A subregion of the right insula was the only area
in which the onset of the BOLD response was delayed on hard
trials for both response modalities (Table 4, Fig. 6), making it a
candidate for computing a supramodal decision variable that
might mediate activity in effector-specific regions of sensorimo-
tor cortex. Moreover, three-way repeated-measures ANOVA
with perceptual difficulty, time (0 –2 s), and ROI as factors re-
vealed that the difference in the slope of the BOLD response on
hard compared with easy trials was larger in right insula than in
any of the other regions (all values of F(1,11) � 5.0; all values of p �
0.05; excluding data from the left SFS and left TPJ). Finally, to
further explore the relationship between perceptual difficulty and
BOLD response latency in the right insula, we divided RTs into
three bins (collapsed across easy and hard trials) and found that
the slope of the BOLD response across the first two time points
decreased systematically with increasing RT (two-way repeated-
measures ANOVA with RT-bin and time as factors, F(2,22) � 5.11,
p � 0.015) (supplemental Fig. 1, available at www.jneurosci.org
as supplemental material).

In addition, the onset of the BOLD response was delayed on
hard trials in bilateral regions of IPS on saccadic response trials
(but not on manual response trials), as predicted by previous
single-unit recording studies (Shadlen and Newsome, 2001; Roit-
man and Shadlen, 2002) (differential effect of perceptual diffi-
culty over the first two time points, F(1,11) � 12.3, p � 0.005,
collapsed across right and left IPS) (for data from each hemi-
sphere, see Table 4 and Fig. 7). However, no effect of perceptual
difficulty on response latency was observed in the FEF on saccade
response trials (Table 4, Fig. 7).

Modality-dependent accumulator region for
manual responses
Although the BOLD response in IPS was temporally delayed on
hard saccade trials (Table 4, Fig. 7), no corresponding modality-
dependent accumulator region was found on manual response
trials. Therefore, based on previous reports (Meier et al., 2008),
we used a two-way ANOVA and a leave-one-out procedure to
identify a cluster of voxels in the superior aspect of the left central
sulcus that responded more robustly on manual response trials
than on saccade response trials (interaction between response

modality and time, F(8,88) � 14.2, p �
0.001; mean Talairach coordinates, �35,
�23, 54; �1 SEM across permutations,
0.6, 0.8, 0.5; mean volume, 5.2 ml; �1 SD,
0.637 ml) (Fig. 8). This region showed a
larger and temporally extended response
on hard manual trials compared with easy
manual trials (F(8,88) � 2.9; p � 0.01) (Fig.
8). Moreover, the onset of the BOLD re-
sponse was delayed on hard trials when
manual responses were required, meeting
the second requirement for a modality-
specific neural accumulator (differential
effect of perceptual difficulty across the
first two time points when only consider-
ing manual response trials, F(1,11) � 8.0,
p � 0.025). No such effects were found on

saccade response trials (interaction between perceptual difficulty
and time across all time points: F(8,88) � 1.0, NS; interaction
between perceptual difficulty and time across only the first two
time points: F(1,11) � 1.1, NS).

Activation profile in motion-selective area hMT�
Single-unit recording studies have demonstrated that neurons
within stimulus-specific regions in early visual cortex—such as
area MT for motion—signal the amount of sensory evidence
present in the visual field (Newsome et al., 1989; Salzman et al.,
1992; Britten et al., 1993, 1996; Ditterich et al., 2003). However,
such regions do not integrate sensory evidence over time, sug-
gesting that they primarily function to provide input to sensori-
motor regions that are more directly involved in decision making
(Roitman and Shadlen, 2002; Romo and Salinas, 2003; Huk and
Shadlen, 2005; Hanks et al., 2006; Gold and Shadlen, 2007). If this
account applies to hMT� as well, then we predict a larger and
temporally extended BOLD response on hard compared with
easy trials because the sensory evidence on hard trials must be
represented for a longer period of time. However, no shift in the
latency of activation onset is predicted because the underlying
neural activity should be relatively constant for the duration of
the stimulus presentation epoch (as opposed to ramping activity,
as shown in Fig. 3A). We tested this prediction by examining the
BOLD activation profile within independently localized regions
of hMT� (see Materials and Methods). There was a significant
interaction between perceptual difficulty and time (from 0 to
16 s), indicating a larger and temporally extended response on
hard trials (F(8,88) � 3.8; p � 0.005; collapsed across right and left
MT). However, there was no interaction between perceptual dif-
ficulty and time over the first two time points of the responses,
suggesting that onset latency was similar on hard and easy trials
(F(1,11) � 0.2, NS). These results are consistent with the notion
that hMT� primarily plays a role in relaying information about
sensory properties of the display to higher order accumulation
centers (for a graphical depiction of the BOLD time courses from
left and right hMT�, see supplemental Fig. 2, available at www.
jneurosci.org as supplemental material).

Discussion
Here, we examined the neural mechanisms of perceptual decision
making using a simple 4AFC task that controlled for sensory
factors and a model that allowed us to predict the BOLD activa-
tion profile expected from cortical areas that accumulate sensory
evidence (Figs. 2, 3). Although the BOLD response in many re-
gions increased with increasing perceptual difficulty, only a sub-

Figure 5. Regions exhibiting a larger and temporally extended response on hard compared with easy trials. These maps were
generated by averaging the ROIs identified on each permutation of leaving one subject out while testing for an interaction
between perceptual difficulty and time (0 –16 s after stimulus), collapsed across response modality (for statistical values associ-
ated with each region, see Materials and Methods and Tables 2 and 3). These are candidate areas that may play a role in
accumulating sensory evidence during decision making. All activations projected onto an average of the high-resolution anatom-
ical scans from all subjects in our study (applies to Fig. 8 as well).
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set of these regions exhibited the latency offset predicted for a
region involved in accumulating sensory evidence. Of these, only
the right insula displayed this characteristic response profile for
both tested response modalities. This finding raises the possibility
that perceptual decisions are not solely computed by the same
neural mechanisms that mediate the ultimate motor response.

Instead, the ramping-up of neural activity in sensorimotor re-
gions such as the LIP may also reflect input from downstream
regions that compute an abstract decision variable. Note that this
account still allows for a causal influence of sensorimotor areas
on decision making (Romo et al., 2002; Hanks et al., 2006). How-
ever, such regions may not be the actual site of the decision pro-
cess, but instead might serve as “relay stations” that translate
abstract decision signals into an appropriate motor response (Ta-
ble 4, Figs. 7, 8). As would be the case with any correlational
method, the evidence we provide here in support of this hypoth-
esis is tentative; additional work using converging methodologies
will be required to clarify the role of the modality-independent
signals that we observed in the right insula.

An alternative account of the temporally delayed onset of the
BOLD response in the right insula holds that neural activity
might briefly pulse (an impulse response) at a slightly later time
on hard compared with easy trials, perhaps signaling the termi-
nation of the decision process. For example, de Lafuente and
Romo (2005) demonstrated that neurons in the medial prefron-
tal cortex signal the production of a “yes” response in an all-or-
none manner, such that the amplitude of the response does not
correlate with the difficulty of the perceptual decision (in the
context of a detection task). However, our data are inconsistent
with this type of all-or-none termination signal because if the two
temporally shifted impulse responses were equal in amplitude
(Fig. 9A,B), then we should not see a larger and temporally ex-
tended BOLD response on hard compared with easy trials (which
we observe) (Table 3, Figs. 6 – 8). However, if the impulse re-
sponse on hard trials is temporally delayed and larger (Fig. 9C,D),
then we would expect to see a BOLD response pattern that is
similar to the ramping accumulator model shown in Figure 3, A
and B. This second hypothesis is not suggested by any data that we
are aware of, but one ad hoc account is that the amplitude of the
impulse response is somehow tied to the height of the decision
boundary. However, the LBA model we used estimated that the
decision boundary was similar on easy and hard trials, arguing
against this hypothesis (i.e., primarily drift rate differed). In any
case, the pattern of activity depicted in Figure 9, C and D, also
implies an important functional role for the right insula as it
indicates sensitivity to both the difficulty and the timing of a
perceptual decision.

In contrast to the predictions generated by our simulation
(Fig. 3), at least two previous studies asserted that the magnitude
of the BOLD response should be higher on easy trials compared
with hard trials because more sensory evidence is present on easy
trials. Based on this criterion, Heekeren et al. (2004, 2006) high-

Table 2. Anatomical location and volume of areas defined as showing an interaction between perceptual difficulty and time (based on a leave-one-subject-out analysis)
(see Materials and Methods)

Region x, y, z SD x, y, z Volume (ml) Std. volume N

RH insula 41, 7, 5 4, 3, 6 0.34 0.27 12
RH IFG 31, 17, 9 1, 1, 1 0.67 0.29 12
RH MFG 44, 7, 27 2, 3, 5 0.18 0.82 12
RH SFG 30, 44, 22 1, 1, 1 1.04 0.48 12
RH IPS 20, �70, 34 3, 3, 5 3.22 1.4 12
RH FEF 26, �4, 51 2, 3, 3 0.75 0.69 12
LH IPS �22, �74, 27 2, 2, 3 4.13 1.89 12
LH FEF �27, �2, 55 1, 1, 1 1.59 0.77 12
MFC 2, 12, 44 1, 1, 1 2.56 1.24 12
LH TPJ �43, �57, 32 1, 1, 1 0.95 0.58 12
LH SFS �22, 20, 35 10, 12, 19 0.16 0.19 10

All coordinates are from the atlas of Talairach and Tournoux (1988). The location of all regions was extremely consistent across permutations of leaving one subject out; the only exception was the left SFS activation (which was identified in
only 10 of 12 permutations and moved considerably from one permutation to the next). RH, Right hemisphere; LH, left hemisphere.

Table 3. All statistical tests computed by accumulating the data from each subject
based on ROIs that were defined using data from the remaining subjects (and then
permuting this leave-one-out procedure 12 times) (see Materials and Methods)

Region Difficulty by time Difficulty by modality by time

RH insula 3.64*** 0.98
RH anterior insula 5.00*** 1.54
RH MFG 2.46* 0.97
RH SFG 3.46** 0.39
RH IPS 4.53*** 1.59
RH FEF 2.66* 0.98
LH IPS 4.25*** 1.80
LH FEF 5.80*** 0.77
MFC 6.85*** 0.87
LH TPJ 4.95*** 0.94
LH SFS 0.32 0.60

Of all the regions identified, only the left SFS did not show a significant effect across permutations of leaving one
subject out. All numbers in the table represent F values with (8, 88) df, with the exception of values for left SFS, in
which there are (8, 72) df (because this region was identified in only 10 of 12 permutations). The three-way
interaction among perceptual difficulty, response modality, and time did not reach significance in any region.

*p � 0.025; **p � 0.01; ***p � 0.001. RH, Right hemisphere; LH, left hemisphere.

Table 4. All statistical tests computed by accumulating the data from each subject
based on ROIs that were defined based on data from the remaining subjects (and
then permuting this procedure 12 times)

Region
Difficulty
by time

Difficulty by time
(saccade trials)

Difficulty by time
(manual trials)

Difficulty by
modality by time

RH insula 10.7*** 5.30* 7.57** 0.28
RH anterior insula 0.15 2.04 2.06 3.98
RH MFG 0.00 0.70 0.18 0.91
RH SFG 0.09 0.40 0.03 0.53
RH IPS 1.86 9.35** 0.24 4.15 (p � 0.06)
RH FEF 0.00 0.01 0.00 0.01
LH IPS 0.38 8.76** 0.11 3.46 (p � 0.09)
LH FEF 0.00 0.50 0.81 1.64
MFC 0.03 1.11 0.82 2.18
LH TPJ 2.19 0.29 2.65 0.38
LH SFS 1.47 0.30 0.64 0.01

The first column contains F values for the interaction between perceptual difficulty and time over the first two data
points (0 –2 s), collapsed across response modality; also reported is the interaction computed separately for each
response modality, and the three-way interaction among perceptual difficulty, response modality, and time. All
numbers represent F values with (1, 11) df, with the exception of the values for left SFS, in which there are (1, 9) df.

*p � 0.05; **p � 0.025; ***p � 0.01. RH, Right hemisphere; LH, left hemisphere.
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lighted a region of posterior left SFS/
DLPFC as being important for perceptual
decision making. Although we identified a
region of the left SFS in 10 of 12 permuta-
tions of leaving one subject out that tended
to respond more on easy than on hard tri-
als, the effect was not significant (Table 3,
Fig. 10). In addition, we also identified a
region of the left TPJ—similar to an infe-
rior parietal lobe activation reported by
Heekeren et al. (2006)—that responded
more on easy trials compared with hard
trials (Table 3, Fig. 10). Interestingly, both
the left SFS and the left TPJ showed nega-
tive response profiles in our experiment
(compared with the fixation baseline),
with relatively smaller negative deflections
on easy compared with hard trials (Fig.
10). Thus, in our study at least, the left SFS
and TPJ regions do not appear to follow an
activation profile that is consistent with
the active accumulation of sensory evi-
dence (i.e., the pattern shown in Fig. 3B). A
similar pattern of deactivations was also
reported by Tosoni et al. (2008), and we
(along with Tosoni et al.) speculate that
these regions are functionally related to the
“default” network that is actively sup-
pressed during the performance of a de-
manding task; this suppression should be
longer on hard trials because subjects
spend more time trying to discriminate the
direction of the target (Greicius et al.,
2003; Shulman et al., 2003; Raichle and
Snyder, 2007; Buckner et al., 2008) (for ad-
ditional discussion of this point, see also
Tosoni et al., 2008).

Tosoni et al. (2008) also proposed that
activation levels in putative accumulator
areas should increase with increasing sen-
sory evidence, contrary to our model sim-
ulations. In their study, the primary focus
was on identifying regions of parietal and
frontal cortex that mediate modality-
dependent responses (saccade and point-
ing movements) to arbitrary images (faces
and houses); they found that modality-
sensitive subregions of parietal cortex re-
sponded more strongly on easy trials. At
first glance, this observation appears at
odds with the data we present here that
shows larger responses on hard trials when
the sensory evidence is weaker. However,
because Tosoni et al. (2008) wanted to sep-
arate “sensory” from “motor” contribu-
tions to the BOLD signal, they had subjects
delay their decision for 10.5 s after the pre-
sentation of the stimulus while awaiting a
“go” signal. Since this delay interval is
longer than required by the decision pro-
cess, it is possible that subjects were storing
a modality-dependent representation of
their planned response for much of the

Figure 6. Mean time courses across subjects in each ROI, collapsed across response modality. All time courses based on data from the
left-out subject after ROIs were identified in 11 of 12 subjects. The figures in the right column depict the mean difference between
responses associated with hard and easy trials (left column), and error bars are�1 SEM across subjects. Note the relative delay in the onset
oftheBOLDresponseonhardtrials intherightinsula(Table4);thisdelayisqualitativelysimilartothepatternpredictedinaregioninvolved
in accumulating sensory evidence during decision making (Fig. 3B), and inconsistent with the predicted response in a region involved in
sustaining attention or arousal during task performance (Fig. 3 D, F ).
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trial. Given that the computation of the
response occurs more quickly when ample
sensory evidence is present, the process of
storing the prepared motor response for a
longer period of time might have contrib-
uted to increases in activation on easy tri-
als. In contrast, our subjects were required
to make speeded perceptual decisions and
thus had little time to engage in cognitive
processes not directly related to perceptual
decision making. Clearly, more work
needs to be done to resolve this issue, per-
haps by combining the methods of Tosoni
et al. for precisely mapping manual and
saccadic sensitive regions with a task that
constrains the cognitive operations sub-
jects engage in during the “decision-
making” stage of the task.

Even though we focus on the role of
right insula in perceptual decision making,
we cannot rule out the possibility that
other regions are also involved in accumu-
lating sensory evidence across multiple re-
sponse modalities. Indeed, the interpreta-
tion of activation patterns in other areas is
difficult: a larger response on hard com-
pared with easy trials in the absence of a
latency shift is equally consistent with a
role in general attentional control or a lack
of statistical sensitivity to detect a true dif-
ference in onset latencies. Therefore, we
withhold speculation about other regions
in anticipation of future studies that will
selectively target candidate areas with con-
verging methodologies to further delin-
eate their role in perceptual decision
making.

Similar regions of insula have been pre-
viously implicated in different aspects of
perceptual decision making. Trial-by-trial
fluctuations in the left insula predict deci-
sions about near-threshold fearful and
nonfearful faces (Pessoa and Padmala,
2005, 2007), even when the sensory evi-
dence is ambiguous and thus equated
(Thielscher and Pessoa, 2007). Activation
levels in bilateral regions of the anterior
insula scale with the amount of differential
sensory evidence during vibrotactile deci-
sion making (Pleger et al., 2006), increase
at the moment of a perceptual decision in
an image recognition task (Ploran et al., 2007), and correlate with
a non-monotonic RT function during an auditory discrimina-
tion task, implying a role in the decision process as opposed to
sensory processing (Binder et al., 2004). Finally, activation levels
in insular regions also scale with the amount of “uncertainty” a
subject experiences while discriminating a stimulus, suggesting a
role in the process of comparing sensory evidence to a decision
criterion (Grinband et al., 2006).

In contrast, other investigators have suggested that insular
regions participate in attentional control precisely because more
activation is observed on hard compared with easy tasks (Heek-
eren et al., 2006, 2008; Philiastides et al., 2006; Philiastides and

Sajda, 2007; Tosoni et al., 2008). However, our simulation (Fig.
3A,B) predicts a qualitatively distinct activation profile in
decision-making areas compared with “attention” areas, and the
profile we observe in the right insula is more consistent with the
former. We therefore argue that the present results support the
hypothesis that the right insula is involved in coding an abstract
decision variable capable of guiding the buildup of activity in
effector-specific regions of sensorimotor cortex.

Ultimately, the extent to which regions outside of sensorimo-
tor cortex participate directly in computing perceptual decisions
may turn out to depend on the amount of training and the com-
plexity of the task. For example, most single-unit recording stud-

Figure 7. Mean time courses across subjects on saccadic-response trials. Time series computed as described in Figure 6; note
the temporal delay in the IPS ROIs on hard saccadic-response trials (Table 4). Error bars �1 SEM across subjects.
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ies employ 2AFC paradigms that involve highly stereotyped stim-
ulus–response pairings that are practiced many thousands of
times over many months [but see Churchland et al. (2008) for a
more complex 4AFC task]. In these tasks, making a perceptual
decision is tantamount to selecting a motor response, so it is
perhaps not surprising that the empirical evidence is consistent
with the hypothesis that perceptual decisions are directly com-
puted by sensorimotor neurons. However, in many everyday sit-
uations, a combination of motor responses must be issued in
response to a single stimulus. For example, when driving, a red
light should motivate both a saccade toward the car immediately
in front of you as well as a signal to depress the brake pedal. If
perceptual decisions are solely computed and executed by the
same mechanisms that mediate the motor response(s), then mul-
tiple systems— one for each response modality—must accumu-
late sensory evidence, translate the evidence into a decision based
on current behavioral goals, and then generate two distinct motor
responses. An alternative account, and one that is consistent with
the present results, holds that a single modality-independent rep-
resentation of the decision variable is computed and that this
representation can then be used to efficiently guide multiple mo-
tor responses.
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