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Introduction
The identification of structural changes in
the brain on magnetic resonance imaging
(MRI) scans is increasingly important in
the study of neurological and psychiatric
diseases. MRI can be used to identify and
exclude treatable causes of cognitive impair-
ment and it has also become important in
the differential diagnosis of disease, in track-
ing disease progression, and for research
purposes. Pathological changes in the brain
resulting in cell loss manifest as loss of brain
tissue, or atrophy, which can be detected by
structural MRI. Characteristic patterns of
atrophy are associated with specific neuro-
degenerative diseases. Traditional techniques
of analyzing atrophy on MRI include visual
assessment by experienced radiologists
and manual measurements of structures
of interest. However, automated tech-
niques have been developed which allow
the assessment of atrophy across large
groups of subjects without the need for
time-consuming manual measurements
or subjective visual assessments.

Voxel-based morphometry (VBM) is
one such automated technique that has
grown in popularity since its introduc-
tion (Wright et al., 1995; Ashburner and
Friston, 2000), largely because of the
fact that it is relatively easy to use and has
provided biologically plausible results. It

uses statistics to identify differences in brain
anatomy between groups of subjects, which
in turn can be used to infer the presence of
atrophy or, less commonly, tissue expansion
in subjects with disease. The technique typ-
ically uses T1-weighted volumetric MRI
scans and essentially performs statistical
tests across all voxels in the image to identify
volume differences between groups. For ex-
ample, to identify differences in patterns of
regional anatomy between groups of sub-
jects, a series of t tests can be performed at
every voxel in the image. Regression analy-
ses can also be performed across voxels to
assess neuroanatomical correlates of cogni-
tive or behavioral deficits. The technique
has been applied to a number of different
disorders, including neurodegenerative dis-
eases (Whitwell and Jack, 2005), movement
disorders (Whitwell and Josephs, 2007), ep-
ilepsy (Keller and Roberts, 2008), multiple
sclerosis (Prinster et al., 2006; Sepulcre et al.,
2006), and schizophrenia (Williams, 2008),
contributing to the understanding of how
the brain changes in these disorders and
how brain changes relate to characteristic
clinical features. Although results from
VBM studies are generally difficult to val-
idate, studies have compared results of
VBM analyses to manual and visual mea-
surements of particular structures and
have shown relatively good correspon-
dence between the techniques (Good et
al., 2002; Giuliani et al., 2005; Whitwell et
al., 2005; Davies et al., 2009), providing
some confidence in the biological validity
of VBM.

MRI processing
In order for statistical analyses to be per-
formed across multiple MRI scans from

different individuals, the MRI scans need
to be matched together spatially (i.e., reg-
istered) so that a location in one subject’s
MRI corresponds to the same location in
another subject’s MRI. This process is
known as spatial normalization. This is
not an easy thing to do given that anatomy
varies a great deal across subjects, and
heads will be in different positions in the
scanner. It is generally achieved by regis-
tering all images from a study onto the
same template image so that they are all in
the same space. Different algorithms can
be used to perform this registration (Ash-
burner and Friston, 2000; Davatzikos et
al., 2001), but they typically include a
nonlinear transformation (Ashburner
and Friston, 2000). The most commonly
applied algorithm available in the Statisti-
cal Parametric Mapping (SPM) software
involves performing a 12-parameter af-
fine transformation followed by a nonlin-
ear registration using a mean squared
difference matching function (Ashburner
and Friston, 2000). The template image
used for the spatial normalization could
be one specific MRI scan or could be cre-
ated by averaging across a number of dif-
ferent MRI scans that have been put in the
same space. Customized templates that
are created using the study cohort or a co-
hort that is matched to the study cohort in
terms of age, disease status, scanner field
strength, and scanning parameters are
recommended for registrations that use a
mean squared difference matching func-
tion to improve the normalization be-
tween each subject in the study cohort and
the template (Good et al., 2001; Senjem et
al., 2005).
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Images are segmented into different
tissue compartments (gray matter, white
matter, and CSF), and analysis is per-
formed separately on either gray or white
matter, dependent on the question being
asked. There are a number of ways to per-
form the segmentation, including using
prior probability maps as well as voxel in-
tensity to guide segmentation, as in SPM.
Such prior probability maps may be more
unbiased when generated from the spe-
cific population under study. In SPM, in
which a low-parameter shape transforma-
tion is performed for spatial normaliza-
tion, a step called modulation is then often
applied which aims to correct for volume
change during the spatial normalization
step (Good et al., 2001). Image intensities
are scaled by the amount of contraction
that has occurred during spatial normal-
ization, so that the total amount of gray
matter remains the same as in the original
image. The analysis will then compare
volumetric differences between scans. If
the spatial normalization was precise, and

all the segmented images appeared identi-
cal, no significant differences would be
detected in unmodulated data, and the
analysis would reflect registration error
rather than volume differences. Other tech-
niques that use different normalization pro-
cedures, such as the RAVENS (regional
volumetric analysis of brain images) method,
which uses high dimensional elastic trans-
formations using point correspondence
(Davatzikos, 1998; Davatzikos et al.,
2001), preserve the volume of different
tissues and so do not require a separate
modulation step.

Finally, the images are smoothed (Ash-
burner and Friston, 2000; Good et al.,
2001) whereby the intensity of each voxel
is replaced by the weighted average of the
surrounding voxels, in essence blurring
the segmented image. The number of vox-
els averaged at each point is determined
by the size of the smoothing kernel, which
can vary across studies (Rosen et al., 2002;
Karas et al., 2003; Whitwell et al., 2009).
Smoothing makes the data conform more

closely to the Gaussian field model, which
is an important assumption of VBM, ren-
ders the data more normally distributed,
increasing the validity of parametric tests,
and reduces intersubject variability (Ash-
burner and Friston, 2000; Salmond et al.,
2002). Smoothing increases the sensitivity
to detect changes by reducing the variance
across subjects, although excessive smoothing
will diminish the ability to accurately local-
ize change in the brain.

Although these processing steps are
necessary to be able to analyze data across
subjects, they can also introduce errors
and variability into the analysis, which
can reduce sensitivity. For example, VBM
cannot differentiate real changes in tissue
volume from local mis-registration of im-
ages (Ashburner and Friston, 2001; Book-
stein, 2001). Normalization accuracy will
vary across regions and, therefore, the
ability to detect change will differ across
regions. The accuracy of the segmentation
will also depend on the quality of the nor-
malization. Iterative normalization and

Figure 1. Different VBM display options. Results of a VBM t test analysis assessing patterns of gray matter loss in a group of 20 subjects with a clinical diagnosis of Alzheimer’s disease (AD)
compared with a group of 40 healthy control subjects. The healthy control subjects have been matched by age and gender to the subjects with Alzheimer’s disease. The analysis was performed with
SPM2 using a statistical threshold of p � 0.005 after correction for multiple comparisons using the FDR correction method. The same results have been shown using three different display
techniques. A, The voxels that showed significantly reduced gray matter volume in the AD subjects compared with controls are shown in red on a 3D render of a brain. Six different views of the render
are shown. B, The voxels that showed significantly reduced gray matter volume in the AD subjects compared with controls are shown as grayscale on a glass-brain render of the brain. Sagittal,
coronal, and axial views are shown. C, The voxels that showed significantly reduced gray matter volume in the AD subjects compared with controls are shown on representative sagittal, coronal, and
axial slices through the template image with the color bar representing the t statistic. The 3D renders (A) demonstrate that gray matter loss was present predominantly in the temporoparietal cortex
in the AD subjects. The glass-brain renders (B) provide the same information but also provide information on the regions of greatest loss, showing that the regions of most severe loss are located in
the temporal lobes (arrows). The slices through the template (C) provide more detail on exactly which structures of the brain show gray matter loss, yet only show regions of loss on the selected slices.
They demonstrate that gray matter loss was observed bilaterally throughout the temporal lobes, particularly involving the hippocampus, and also in the insula and posterior cingulate. All three
display techniques therefore provide complementary information.
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segmentation methods have been devel-
oped which aim to optimize both proce-
dures concurrently to improve the final
segmentations (Ashburner and Friston,
2005). Segmentation errors can also occur
because of displacement of tissue and par-
tial volume effects between gray matter
and CSF, which are both especially likely
to occur in atrophic brains. The use of
customized templates can help to mini-
mize some of these potential errors (Good
et al., 2001).

Statistical analysis of VBM results
Statistical analysis of the smoothed seg-
mented images can be performed with
parametric statistics using the general
linear model and the theory of Gaussian
random fields to ascertain significance
(Ashburner and Friston, 2000), although
nonparametric testing can also been applied
(Nichols and Holmes, 2002; Ziolko et al.,
2006; Rorden et al., 2007). The null hy-
pothesis is that there is no difference in

tissue volume between the groups in ques-
tion. These analyses generate statistical
maps showing all voxels of the brain that
refute the null and show significance to a
certain, user-selected, p value. These maps
are often shown as color maps with the
scale representing the t statistic, but can
also be shown as three-dimensional (3D)
surface renders of the brain or on what is
known as the “glass-brain” display in
which all significant voxels are displayed
on an essentially transparent render (Fig.
1). Although both gray and white matter
volumes can be assessed using VBM, the
majority of VBM studies concentrate on
gray matter. Changes in white matter in-
tegrity may be assessed more accurately
using imaging techniques such as diffu-
sion tensor imaging.

Because the statistical tests are per-
formed across a very large number of
voxels, it is important that studies cor-
rect for multiple comparisons to pre-
vent the occurrence of false positives.

There are a couple of typical methods
used to perform such a correction, such
as the family-wise error (FWE) correc-
tion (Friston et al., 1993) and the more
lenient false discovery rate (FDR) cor-
rection (Genovese et al., 2002), which
both reduce the chance of false-positive
results (www.fil.ion.ucl.ac.uk). The FWE cor-
rection controls the chance of any false
positives (as in Bonferroni methods)
across the entire volume, whereas the
FDR correction controls the expected
proportion of false positives among su-
prathreshold voxels. A number of studies
have also used what is called a small vol-
ume correction to reduce the number of
comparisons being performed and increase
the chance of identifying significant results
in particular regions of interest. This
method typically involves placing regions
of interest over particular structures and
only performing analysis over these re-
gions. The placement of these regions
should be hypothesis driven and ideally
based on previous work.

Interpreting VBM results
Interpreting data across VBM studies is a
problem because there are a large number
of factors that can vary and influence the
results. First, the processing steps often
vary across studies (Whitwell and Jack,
2005), with studies using different degrees
of smoothing and different registration
and segmentation algorithms. Second, as
well as having different options for correc-
tion for multiple comparisons, there are
no standard conventions for what p value
to apply to each statistical analysis, leading
to variability across studies. It is impor-
tant to understand that by changing the p
value and using different corrections for
multiple comparisons, the number of
voxels that exceed the significance thresh-
old will change, and this could potentially
change the final conclusions of the study
(Fig. 2). Studies also vary greatly in the
number of subjects included in both con-
trol and disease cohorts, which in turn can
have a large effect on the resulting p val-
ues. As with traditional statistical tests,
the power to detect differences between
groups will typically be a function of the
sample size, the degree of the investigated
“effect,” and the error probability. There-
fore, the larger the sample size, the greater
the power to detect differences, although
differences can be observed with smaller
cohorts if the effect size is large. Conse-
quently, studies with larger sample sizes
will typically be able to apply the harsh
FWE correction for multiple compari-
sons, whereas smaller studies may favor

Figure 2. Effect of statistical threshold choice. Results of a VBM t test analysis assessing patterns of gray matter loss in a group
of 20 subjects with a clinical diagnosis of Alzheimer’s disease (AD) compared with a group of 40 healthy control subjects, shown
at different statistical thresholds. The top analysis uses a statistical threshold of p�0.05 after correction for multiple comparisons
using the FWE correction. This analysis has a very low probability of false-positive results, yet has a greater chance of false
negatives and failing to identify regions of the brain that may truly be atrophic. Gray matter loss in this analysis was identified
exclusively in the temporal lobes, particularly in the medial temporal lobes. The middle analysis shows the results after correction
for multiple comparisons using the more lenient FDR correction at p�0.005 and shows a more widespread pattern of gray matter
loss involving the temporal lobes, but also the parietal and frontal lobes. The bottom analysis shows the most statistically lenient
analysis after correction using the FDR at p � 0.05. In this analysis gray matter loss is observed throughout the entire brain,
including regions that are typically spared in AD such as the cerebellum and sensorimotor cortices, which likely represent false
positives. Therefore, the statistical threshold chosen for the analysis will influence the resultant pattern of gray matter loss and,
potentially, the conclusions of the studies concerning which regions are affected in the disease.
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the more lenient FDR correction. The re-
sulting power will also depend on errors
introduced in the image processing steps
and variability across subjects. There are
also many potential confounders that can
influence the results of a VBM study, for
example, differences in age, gender ratios,
or disease severity across groups. These
potential confounders need to be properly
addressed in any study design to be able to
make appropriate conclusions concern-
ing the results.

Given all this potential variability, a
comparison of t statistics or p values
across studies does not tell us anything bi-
ologically meaningful, and only provides
anecdotal evidence for differences be-
tween diseases and different cohorts of the
same disease. Ideally, different patient co-
horts should be analyzed in the same sta-
tistical model using the same processing
techniques and analysis strategies, or at
the very least, standardized reporting
should be implemented. Currently, there
are several sociological obstacles to such
analyses, but projects such as the Alzhei-
mer’s Disease Neuroimaging Initiative
(ADNI) (The Alzheimer’s Disease Neuro-
imaging Initiative, 2008) may pave the
way toward making better use of data.
Nevertheless, it is still important that
studies provide adequate detail on how
they performed their statistical analysis, as
well as their preprocessing, in order for
the reader to be able to correctly interpret
the results (Ridgway et al., 2008).

Summary
In summary, the technique of VBM if
implemented correctly is an incredibly
powerful and useful tool in the study of
neurological disease. It can increase un-
derstanding of disease processes, which
can be useful both from a scientific point
of view and also by providing anatomical
information that can be helpful for differ-
ential diagnosis of disease. Similar voxel-
level statistical techniques can also be
applied to other imaging modalities, such
as functional MRI and positron emission
tomography. It should be stressed, how-
ever, that because of the statistical nature
of the technique, the power of VBM lies in
group analyses. Although it has been ap-
plied to single subjects, it has not been op-
timized or validated for such use. Hence it
can provide very important information
about regions of atrophy across groups
but cannot provide reliable information
for single-subject diagnosis. Nevertheless,
it is likely to be an important biomarker in

future drug trials to assess treatment ef-
fects at the group level.
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