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Functional interactions between neurons in vivo are often quantified by cross-correlation functions (CCFs) between their spike
trains. It is therefore essential to understand quantitatively how CCFs are shaped by different factors, such as connectivity,
synaptic parameters, and background activity. Here, we study the CCF between two neurons using analytical calculations and
numerical simulations. We quantify the role of synaptic parameters, such as peak conductance, decay time, and reversal potential,
and analyze how various patterns of connectivity influence CCF shapes. In particular, we find that the symmetry of the CCF
distinguishes in general, but not always, the case of shared inputs between two neurons from the case in which they are directly
synaptically connected. We systematically examine the influence of background synaptic inputs from the surrounding network
that set the baseline firing statistics of the neurons and modulate their response properties. We find that variations in the
background noise modify the amplitude of the cross-correlation function as strongly as variations of synaptic strength. In partic-
ular, we show that the postsynaptic neuron spiking regularity has a pronounced influence on CCF amplitude. This suggests an
efficient and flexible mechanism for modulating functional interactions.

Introduction
Recordings of multineuron spike trains have revealed significant
interdependencies between the firing of different neurons in a
population (Zohary et al., 1994; Meister et al., 1995; Alonso et al.,
1996; deCharms and Merzenich, 1996; Bair et al., 2001; Kohn and
Smith, 2005). Although it is important to identify the role such
functional interactions play in neural coding (Abbott and
Dayan, 1999; Nirenberg et al., 2001; Nirenberg and Latham,
2003; Averbeck et al., 2006; Schneidman et al., 2006; Pillow et al.,
2008), it is also important to understand how they depend on
biophysical parameters and network activity (Poliakov et al.,
1996, 1997; de la Rocha et al., 2007). For pairs of neurons, func-
tional interactions are quantified by the cross-correlation func-
tion (CCF) between their spike trains, which measures how
much the firing of one of the two neurons influences the firing
of the other at different time lags. Statistically significant cross-
correlations arise from the presence of a direct synaptic connec-
tion (Snider et al., 1998; Csicsvari et al., 1998; Barthó et al., 2004;
Fujisawa et al., 2008) and/or from common or correlated inputs
to the two neurons (Sears and Stagg, 1976; Binder and Powers,
2001; Constantinidis et al., 2001; Türker and Powers, 2001,
2002). The amplitude of the CCF therefore directly depends on

the properties of the synapses mediating the interactions, but
it is also modulated by the activity of the surrounding network
(Aertsen et al., 1989; Poliakov et al., 1996; Constantinidis et al.,
2001). The shape of the CCF also carries information on the
underlying connectivity, yet inferring the circuitry from the CCF
is a notoriously difficult problem (Melssen and Epping, 1987;
Alonso and Martinez, 1998; Trong and Rieke, 2008). A detailed,
quantitative understanding of the influences of synaptic param-
eters, network activity, and local circuitry on the CCF is therefore
necessary for a correct interpretation of CCFs.

The basic influence of the underlying circuit on the shape of
the CCF has long been considered at a qualitative level (Moore
et al., 1970; Palm et al., 1988). More quantitative studies have
been devoted to CCFs induced by a direct synaptic connection
(Knox, 1974; Ashby and Zilm, 1982; Fetz and Gustafsson, 1983;
Herrmann and Gerstner, 2002; Veredas et al., 2005). Early theo-
retical studies did not take into account the activity of the sur-
rounding network, and it is only more recently that the effects of
background inputs have been assessed using a phenomenological
noise model (Herrmann and Gerstner, 2001). For the case of
common inputs to the neurons, previous theoretical studies have
concentrated on spike-count correlations (de la Rocha et al.,
2007; Shea-Brown et al., 2008), and the results for the full CCF
appear scarce (Kirkwood and Sears, 1978; Tchumatchenko et al.,
2008).

In the present work, we systematically examine how the
amplitude and time course of the CCF depend on the synaptic
parameters, surrounding network activity, and local connec-
tivity. To this end, we use pairs of integrate-and-fire neurons
and represent the activity of the surrounding network by a
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compound, fluctuating background input that sets the base-
line firing statistics of the neurons. We first show that the
average firing response of a neuron to a given synaptic input
strongly depends on the regularity of its firing. We next deter-
mine analytically the CCF in various simple microcircuits
within a linear approximation. We first consider the two basic
situations of a direct synaptic connection and common syn-
aptic inputs to the two neurons. We then show how the results
obtained for these two microcircuits can be used to study more
complex ones, such as two mutually connected neurons and
feedforward inhibition.

Materials and Methods
Integrate-and-fire models. To study the influence of various biophysical
parameters on the shape and amplitude of the cross-correlation function
between the spike trains of two neurons, we used integrate-and-fire mod-
els in which action potentials are generated from the underlying dy-
namics of the membrane potential (Gerstner and Kistler, 2002). These
dynamics are given by the following:

cm

dV

dt
� �gmV � gm��V� � Isyn�t�, (1)

where the membrane potential V is determined with respect to the
resting potential of the cell, cm is the membrane capacitance of the
neuron, gm is the membrane conductance, gm�(V ) is a spike-
generating current, and Isyn is the total current elicited by synaptic
inputs to the neuron. We used cm � 250 pF and gm � 25 nS. These
parameters are taken from in vitro recordings from layer V neocorti-
cal pyramidal (Badel et al., 2008b), with gm increased by a factor of
2–3 compared with in vitro values, to account for in vivo-type synaptic
background inputs. We studied two different versions of the
integrate-and-fire model.

In the leaky integrate-and-fire (LIF) model, �(V ) � 0, there is no
spike-generation current, and an action potential (AP) is emitted when
the membrane potential crosses a fixed threshold value VT. The mem-
brane potential is subsequently reset to a value VR. We did not introduce
any refractory period after the emission of an AP. The values used for the
threshold and reset were VT � 20 mV and VR � 10 mV.

In the exponential integrate-and-fire (EIF) model, the spike-
generation current is exponential:

��V� � �T exp�V � VT

�T
�. (2)

Once the membrane potential crosses the threshold VT, it diverges to
infinity in finite time. This divergence represents the firing of an
action potential. After the divergence, the membrane potential is reset
to a value VR. The values used in this study were VT � 10 mV and
VR � 3 mV. The parameter �T quantifies the sharpness of the AP
initiation. We took here �T � 1 mV, a typical value for pyramidal cells
(Badel et al., 2008b).

The LIF model (Lapicque, 1907) presents the advantage of being ana-
lytically tractable. However, the absence of spike-generating currents and
the fixed threshold for spike emission may induce some differences with
the behavior of conductance-based models. The EIF model, in contrast,
reproduces in the simplest possible way the spike initiation in Hodgkin–
Huxley type models (Fourcaud-Trocmé et al., 2003), the spike sharpness
being described in the EIF model with a single parameter �T. Moreover,
it has been shown recently that the EIF model provides an excellent fit to
in vitro dynamics of the membrane potential in cortical pyramidal
neurons (Badel et al., 2008b), with a fitted value for the spike sharp-
ness of �T � �1 mV.

If the neuron receives a constant input current Isyn(t)��I0, we find it
useful to define the effective rest potential � � I0/gm as the value the
membrane potential of the neuron would reach in the absence of thresh-
old and spike-generating mechanisms.

Spike-train statistics and the cross-correlation function. A spike train is
represented as the following time series:

n�t� � �
j�1

p

��t � tj�, (3)

where tj for j � 1,…, p is the series of spike times ordered in time on the interval
[0,T]. It is often useful to work with Fourier transforms ñ(�) � f[n] of spike
trains, the Fourier transform f of a function f being defined as follows:

f�f� � �
�	

	

f�t�e�i�tdt, (4)

so that

ñ��� � �
j�1

p

e�i�tj. (5)

The instantaneous firing rate �(t) is defined as follows:

��t� � 
n�t��, (6)

where the brackets denote averaging over trials. If the firing is stationary,
�(t) � �0 for all t.

For stationary firing, the regularity of the spike train is quantified using
the coefficient of variation (CV), defined as follows:

CV �
���tj � �tj�

2

�tj

, (7)

where �tj � tj�tj �1 is the jth interspike interval, and the bar denotes
averaging over all interspike intervals in the spike train.

The autocorrelation function of a spike train is defined as follows:

A�t� �
1

T�0
2 �

0

T

d	 
�n�	� � �0��n�	 � t� � �0��. (8)

The Fourier transform of A(t), Ã(�), is equal to the power spectrum of
the spike train. It is given by the following:


ñ���*ñ����� � 2
�0
2��� � ���Ã��� � �2
�0�

2���������. (9)

The cross-correlation function between the spike trains n (1)(t) and
n (2)(t) of two neurons is as follows:

C�t� �
1

T�0
(1)�0

(2) �
0

T

d	 
�n�1��	� � �0
�1���n�2��	 � t� � �0

�2���. (10)

The value of C(t) represents the variation of the firing rate of the neuron
2, conditioned on the fact that neuron 1 fires t milliseconds earlier. With
the normalization adopted here, this variation is expressed as the fraction
of the baseline firing rate of neuron 2. Note that the normalization used

here is different from the normalization by the geometric mean ��0
�1��0

�2�

of the firing rates, commonly used for spike-count correlations (Bair,
2001; Kohn and Smith, 2005; de la Rocha et al., 2007).

The Fourier transform C̃(�) of C(t), also called the cross-spectrum
between neurons 1 and 2 is given by the following:


ñ�1�*���ñ�2������ � 2
�0
�1��0

�2���� � ���C̃���

� �2
�2�0
�1��0

�2����������. (11)

In this study, we determine C̃(�) analytically and then recover C(t) using
the inverse Fourier transform.

Synaptic inputs. Synaptic inputs are modeled as transient conductance
increases that cause a voltage-dependent inward or outward current flow in
the postsynaptic neuron. More precisely, the postsynaptic current (PSC)
elicited by a single presynaptic AP at time t0 is given by the following:

isyn�t� � gsyn�t � t0��V�t� � Esyn�, (12)
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where Esyn is the synaptic reversal potential, and gsyn is the conductance
of a synapse. The time evolution of gsyn after a presynaptic spike is given
by a delayed exponential:

gsyn�t� � � 0 t � �s

g0 exp ���t � �s�/	s�. t � �s
. (13)

Here g0 is the peak conductance, and �s and 	s are the latency and decay
time. Unless otherwise indicated, the values of the synaptic times are �s �
1.5 ms (Markram et al., 1997) and 	s � 3 ms (Hestrin, 1993).

The maximum amplitude of the postsynaptic current fluctuates from
presynaptic spike to presynaptic spike because of the voltage dependence
in Equation 12. Its mean is given by (� � Esyn)g0, where � is the effective
rest potential of the neuron. Esyn � � represents the effective driving
force of a synapse with reversal potential Esyn in the presence of fluctuat-
ing inputs.

Background synaptic activity. Each cortical neuron receives a large
number of synapses from other neurons, the typical estimate of this
number being of the order of tens of thousands (Braitenberg and Schüz,
1991). In vivo, neurons are spontaneously active so that any neuron
receives persistent background inputs as a result of the firing of its affer-
ents. To study the effect of this background activity on cross-correlation
functions, we represent it as a compound background input to the neu-
rons, as precisely described below.

If the amplitude of each postsynaptic current is small with respect to
the threshold for spike generation, a large number of synaptic events is
needed to cause the firing of an action potential. In such a situation, the
cumulative conductance of many co-occurring synaptic inputs generated
from random background activity can be described as a Gaussian random
process, the so-called diffusion approximation (Tuckwell, 1988).

More precisely, in the case in which the neuron receives two types of
synaptic inputs, excitatory and inhibitory ones, for each type of input, the
total conductance attributable to background synaptic activity can be
expressed as a sum of a tonic and a fluctuating part as follows:

gtot
E,I�t� � �

synapses
gsyn

E,I �t� (14)

� g0
E,I � 
g

E,I�E,I�t�, (15)

where g0
E and g0

I are the mean background synaptic conductances, respec-
tively, for the excitatory (E) and the inhibitory (I) synapses, 
g

E and 
g
I are

the SDs of the background synaptic conductances, and � E(t) and � I(t)
are Gaussian stochastic processes of zero mean and unit SD. For the sake
of analytical understanding, we assume that � E and � I are uncorrelated
in time, i.e., � E and � I are white-noise processes, although this is gener-
ally not the case because of the presence of the nonvanishing synaptic
decay times 	s. Including a finite correlation time in the background
inputs modifies qualitatively the behavior of the LIF model (Brunel et al.,
2001) but not the behavior of the EIF model (Fourcaud-Trocmé et al.,
2003) or of cortical neurons in vitro (Köndgen et al., 2008).

The total postsynaptic current attributable to the background synaptic
inputs is given by the following:

Isyn,tot � gtot
E �t��V � EE� � gtot

I �t��V � EI), (16)

where EE and EI are the reversal potentials of excitatory and inhibitory
synapses. This current can be decomposed in a sum of a voltage-
independent term and a voltage-dependent term. Within the diffusion
approximation, the voltage-independent term is described by a tonic and
a fluctuating part as follows:

Isyn � �I0 � 
�cmgm��t�, (17)

where the mean I0 and the SD 
 can be expressed in terms of g0
E, g0

I , 
g
E,

and 
g
I and the synaptic reversal potentials EE and EI (Richardson, 2004).

This is the background synaptic current term in Equation 1. Throughout
this study, we examine only the stationary situation in which I0 and 
 are
constant. Note that 
 is expressed in millivolt units. In the absence of
firing threshold, the SD of the membrane potential is equal to 
/�2.

The voltage dependent part is simply given by ( g0
E 
 g0

I )V, i.e., it has no
fluctuating part within the diffusion approximation (Richardson, 2004;

Richardson and Gerstner, 2005). The only effect of the voltage-
dependent part is thus to modify tonically the membrane conductance of
the neuron, in a time-independent manner. We therefore incorporate
this effect in the model by setting gm to a value larger than typically
measured in vitro in the absence of background inputs.

Linear response to synaptic inputs. To evaluate the cross-correlation
function between the spike trains of two neurons, we need to quantify
how much a conductance change attributable to a single synapse modi-
fies the instantaneous firing rate of a postsynaptic neuron that is in a
stationary state. The current elicited by a synaptic conductance change
g(t) is as follows:

I�t� � g�t��V � Esyn), (18)

where Esyn is the synaptic reversal potential.
We assume that the amplitude of this postsynaptic current is small so

that the resulting variation of the firing rate is small, too, and can be
described as a linear variation around the stationary firing rate:

��t� � �0 � �
0

	

Rn�	� g�t � 	�d	. (19)

Here we have averaged over trials, the conductance variation being
identical in all trials; �0 is the baseline firing rate attributable to tonic
background inputs, and Rn is the linear response kernel to a synaptic
conductance variation. A similar technique was used previously (Lindner
et al., 2005). The linear response approximation can be written in fre-
quency as follows:

�̃��� � 2
�0���� � R̃n��� g̃���, (20)

where R̃n � f[Rn] is the linear response in frequency, and g̃ � f[g].
The postsynaptic current in Equation 18 can be decomposed in a sum

of two components, a component �g(t)Esyn independent of the mem-
brane potential of the postsynaptic cell, and a component g(t)V propor-
tional to the membrane potential and equivalent to a variation of the
membrane conductance. Correspondingly, the linear response to a syn-
aptic input can therefore be expressed as follows:

Rn�t� � RE�t��Esyn � �� � Rshunt�t�, (21)

where RE is the linear response kernel to a variation of the input current
to the postsynaptic cell, � is the effective rest potential of the neuron, and
Rshunt is the linear response kernel to a variation of its membrane con-
ductance. Equivalently, for the response in frequency, we write R̃n �
R̃E(Esyn � �) 
 R̃shunt.

If Esyn is significantly different from �, the total linear response is
dominated by RE:

Rn�t� � RE�t��Esyn � ��. (22)

The linear response function RE is closely related to the Wiener kernel of
the neuron (Poliakov et al., 1997) and the spike-triggered average (STA)
input current (Paninski, 2006) as described in Appendix B. The full linear
response kernel Rn is calculated in Appendix A.

Dominant timescale approximation for Rn. The linear kernel Rn can be
written as follows:

Rn�t� � ��t� �
j�1

	

aje
zjt � complex conj., (23)

where {aj} and {zj} are complex numbers, with 0 � Re(z1) � Re(z2)… (for
more details, see Appendix C).

The dominant timescale approximation consists in keeping only the
long time asymptotic behavior for Rn(t), i.e., the exponential of the pole
z1 with the least negative real part. If the SD 
 of the background noise
term is small, the dominant pole has a nonzero imaginary part, and we
write it as z1 � �1/	1 
 i�0. In the dominant pole approximation, Rn

becomes as follows:

Rn�t� � 2a1e�t/	1cos ��1t���t�. (24)
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If 
 is larger than a critical value, z1 becomes real, and we write it as z1 �
�1/	1, so that in the dominant pole approximation, the following holds true:

Rn�t� � 2a1e�t/	1��t�. (25)

Results
Firing-rate responses to current and conductance variations
The cross-correlation function between the spike trains of two
neurons quantifies the average temporal variation of the firing
rate of one neuron relatively to the firing time of the other neuron
(Perkel et al., 1967). This variation of the firing rate around its
baseline value is ultimately attributable to synaptic inputs, arising
for example from a direct synapse between the two neurons or
from common or correlated inputs to the two neurons. To de-
scribe the cross-correlation function in any circuit, one thus first
needs to quantify the effect of a change of its input synaptic con-
ductance on the firing rate of a neuron. It is important to note
that the average response to a given synaptic input depends on the
baseline state of the neuron, i.e., its baseline firing rate �0 but also
the regularity of this firing as quantified by its CV. These proper-
ties of the baseline state are set by the background synaptic inputs
to the neuron. We therefore systematically examine the influence
of stationary background inputs (see Materials and Methods) on
the response properties of the neuron.

If the amplitude of the input conductance variation is small
compared with the firing threshold of the neuron—as is often the
case when only a subset of presynaptic neurons fires—the corre-
sponding variation of the firing rate is proportional to amplitude
of the conductance variation and can be described by the linear
response of the firing rate of the neuron to synaptic inputs (see
Materials and Methods), i.e., the temporal filter mapping the
synaptic conductance variation to a variation of the firing rate.
This linear filter can be specified either in time by the firing-rate
response function Rn or in frequency by the Fourier transform of
Rn denoted R̃n. Before studying cross-correlation functions, we
describe here the properties of Rn and R̃n for two models of neurons,
leaky integrate-and-fire and exponential integrate-and-fire, in the
presence of background synaptic noise that induces a baseline firing
specified by its frequency �0 and CV. To disentangle the influence on
the response of the baseline firing rate �0 and baseline firing regular-
ity, while varying the SD 
 of background noise, we systematically
adjust the mean input to keep �0 constant. Increasing 
 then results
in increasing the CV at fixed firing rate (Fig. 1D).

The response function Rn can be written as follows:

Rn � RE�Esyn � �� � Rshunt, (26)

where � is the effective rest potential, RE is the firing-rate re-
sponse to a varying input current, and Rshunt is the response to a
variation of the membrane conductance (for additional details,
see Materials and Methods). If the synaptic reversal potential Esyn

is sufficiently different from the effective rest potential �, i.e., if
Esyn � � is large, the response function Rn to a synaptic input is
essentially equivalent to the response to a varying input current
RE. Conversely, if Esyn is close to �, then Rn depends strongly on
the response Rshunt to a variation of the membrane conductance.
We therefore describe RE and Rshunt separately in the following.

Response to current modulations
The linear response function R̃E to input current modulations of
different frequencies has been studied theoretically (Brunel et al.,
2001; Fourcaud-Trocmé et al., 2003; Richardson, 2007) and ex-
perimentally (Köndgen et al., 2008; Boucsein et al., 2009),
whereas its equivalent in time RE is closely related to the Wiener

kernel (Poliakov et al., 1997) and the STA current of the neuron
(Paninski, 2006; Badel et al., 2008a) (see Appendix).

For both LIF and EIF models, the response R̃E to modulated
current is essentially a low-pass filter, the cutoff frequency of
which decreases with increasing background synaptic noise. For
low background synaptic noise (CV � 0.5), R̃E(�) displays reso-
nances at frequencies multiple of the underlying baseline firing
frequency �0 (Fig. 1A), and the response in time RE(t) displays
oscillations at a frequency equal to the baseline firing frequency
�0 (Fig. 1C). Qualitatively, in this regime in which the neuron
spikes regularly with a period T, the effect of a given input at time
t0 is to shift the times of the following spike emissions. Specifi-
cally, for the LIF and EIF neurons, an excitatory input advances
the next spike, especially when this spike follows closely the input
arrival. The effect is to increase the probability of spike emission
at the input time t0 and, because spikes are emitted regularly, also
at times that follow it by an integer number of periods (t0 
 T,
t0 
 2T,…). Correlatively, between these regularly spaced times
when probability of spike emission is increased, the differen-
tial shift of spike time by the input decreases the probability of
spike emission. For high background noise (CV � 0.5), R̃E(�)
is instead a pure low-pass filter with a cutoff frequency of the
order of �0, and RE(t) decays monotonically (Fig. 1C). Quali-
tatively, for high background noise, an excitatory input at time
t0 simply increases the probability of spike emission in a time
range after t0.

The time course of RE at short times is determined by the
asymptotic behavior of R̃E at high frequencies. For the leaky
integrate-and-fire model, the amplitude of R̃E decays asymptoti-
cally as 1/�� (Brunel and Hakim, 1999), so that RE diverges as
1/�t in the limit t3 0 (Paninski, 2006). This divergence implies
that the LIF model is capable of responding fast to current varia-
tions. In contrast, for the exponential integrate-and-fire model,
the amplitude of R̃E decays asymptotically as 1/w (Fourcaud-
Trocmé et al., 2003), so that RE reaches a finite limit at zero times
(Fig. 1C). The response of the EIF model is therefore slower at
short times than the response of the LIF model.

The asymptotic behavior of RE(t) at long times can be de-
scribed using the dominant mode approximation (see Materials
and Methods and Appendix C). For high background noise, this
approximation predicts that RE(t) decays exponentially with a
time constant 	1 that can be calculated from Equation 49 (Ap-
pendix B). This time constant determines the longest timescale in
the dynamics of the firing rate and sets a limit on the rate of
variation of the firing frequency in response to a varying input
current. Interestingly, the value of 	1 depends on the input statis-
tics, i.e., on the SD of the background noise 
 and the baseline
firing frequency �0 of the neuron. In Figure 1F, the time constant
	1 is displayed as a function of the SD of background noise 
, the
firing rate �0 being held constant by adjusting the mean back-
ground input while 
 is varied. For the LIF model, 	1 increases
with 
, whereas for the EIF model, it reaches a maximum at inter-
mediate values of 
 and decreases for larger values of 
. In both
models, 	1 decreases with increasing �0. In particular, it appears to be
always smaller than the membrane time constant 	m.

The amplitude 
 of the background noise strongly modulates
the amplitude of the response and affects differently the response
at low and high frequencies. The response R̃E at low frequencies is
given by the gain of the neuron, i.e., the variation of its back-
ground firing rate when its mean input current is changed. The
gain of a neuron is known to depend on the amplitude of
background noise (Chance et al., 2002). Figure 1 E shows that,

Ostojic et al. • Cross-Correlation Functions between Neural Spike Trains J. Neurosci., August 19, 2009 • 29(33):10234 –10253 • 10237



for both models studied, the gain decreases with increasing 
,
the magnitude of this variation being dependent on the base-
line firing rate �0. The effect of noise on the amplitude of the
response at high frequencies is different from its effect on the
gain but depends on the model: for the LIF model, R̃E (�)
scales as 1/
 for large �, whereas for the EIF model, it is
independent of 
 (Fourcaud-Trocmé et al., 2003).

Response to membrane conductance modulations
If the synaptic reversal potential Esyn is close to the effective rest
potential � of the neuron, the membrane conductance variation
after a synaptic input plays an important role in the firing rate
response. In particular, if Esyn is exactly equal to the effective rest
potential �, then the firing rate response is entirely attributable to
shunting, i.e., R̃n � R̃shunt. The influence of the variation of
membrane conductance on the firing response can be under-
stood in the LIF model as a superposition of two effects, a
variation of the membrane timescale of the neuron, and a
variation of the amplitude of the fluctuating input (for details,

see Appendix A). These two effects compete against each
other: increasing the conductance decreases the effective time
constant, leading to an instantaneous increase of the firing
rate, but it also decreases the effective level of noise, the effect
of which depends on whether the mean input is subthreshold
(� below the threshold VT) or suprathreshold (� � VT). In the
case of subthreshold input, the shunting part Rshunt of the
linear response in time Rn is biphasic, with a fast negative part
and a slower positive part. In contrast, for suprathreshold
inputs, Rn is positive at all times. These two cases are illus-
trated in Figure 2, where �0 � 30 Hz corresponds to a
subthreshold input and �0 � 65 Hz corresponds to a suprath-
reshold input.

In summary, in this section, we have examined the firing-rate
response of a neuron to a time-varying conductance input. We
have shown that both the amplitude and the timescales of this
response strongly depend on the baseline firing statistics of the
neuron, set by the background synaptic input.
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Figure 1. Neuronal firing rate response to varying input current, for the leaky integrate-and-fire model (left column) and the exponential integrate-and-fire model (right column). A,
Modulus of the response RE as function of input frequency for two values of background noise corresponding to regular firing (CV � 0.2; LIF, 
 � 0.5 mV; EIF, 
 � 1 mV) and irregular
firing (CV � 0.8; LIF, 
 � 6 mV; EIF, 
 � 8 mV). The dashed line represents the asymptotic decay at large frequencies. B, Phase of R̃E. C, Response in time RE(t), for the two values of
background noise. The dashed line represents the dominant time approximation 2a1 exp(�t/	1) in the case of large noise. D, CV of the interspike intervals as function of the SD 
 of
background synaptic noise. E, Gain as function of 
. The gain is defined as a the value of R̃E at zero frequency. It corresponds to the slope of the f–I curve of the neuron at firing rate �0

and given level of background noise 
. F, Dominant decay time 	1 as function of 
. In A–C, the firing rate is 30 Hz. In D–F, the baseline firing rate is maintained constant by adjusting
the mean input current as 
 is varied.
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Correlations arising from a direct synaptic connection
Having characterized the response of a neuron to synaptic inputs,
we now turn to the cross-correlation function between spike
trains of two neurons arranged in different circuits. We first ex-
amine the cross-correlations attributable to a direct synaptic con-
nection between two neurons (Fig. 3). Assuming that both the
presynaptic and the postsynaptic neuron receive background
synaptic inputs uncorrelated from each other, the cross-
spectrum can be expressed as follows:

C̃��� �
�0

�pre�

�0
�post� R̃n��� g̃syn���Ãpre���, (27)

where R̃n is the linear response function of the postsynaptic
neuron (see previous section) (Figs. 1, 2), g̃syn is the Fourier trans-
form of the synaptic conductance time course after a single pre-
synaptic spike (see Materials and Methods), Ãpre(�) is the power
spectrum of the spike train of the presynaptic neuron, and �0

(pre)

(resp. �0
(post)) is the stationary firing rate of the presynaptic (resp.

postsynaptic) neuron. Details of the derivation are provided in
Appendix D.

Because R̃n � R̃E(Esyn � �) 
 R̃shunt, the cross-correlation
function can be written as C(t) � CE(t) 
 Cshunt(t), with CE(t)
purely induced by current variations and proportional to the
amplitude g0(Esyn � �) of the postsynaptic current and Cshunt(t)

purely induced by membrane conductance variations and pro-
portional to the peak synaptic conductance g0. If Esyn � � is
large enough, Cshunt(t) is negligible with respect to CE(t). We
therefore first examine current-induced cross-correlations and
later examine the influence of conductance variations for Esyn

close to �. Note that CE(t) is proportional to (Esyn � �), the sign
of which determines whether the synapse is excitatory or
inhibitory.

Poisson presynaptic firing
It is instructive to consider first the situation in which the firing of
the presynaptic neuron is a Poisson process, in which case the
power spectrum Ãpre(�) is a constant. The cross-correlation
function CE(t) is then simply given by the synaptic conductance
time course filtered through the linear response function Rn. In
particular, CE(t) at negative times is necessarily zero, and a non-
zero synaptic delay �s simply shifts CE(t) by �s to positive times.

Because RE filters out high frequencies (Fig. 1A,B), the time
course of current-induced cross-correlations is always slower
than the time course of the postsynaptic current (Fig. 3A,B). For
low background noise (Fig. 3A), the resonances in R̃E (Fig. 1A)
lead to secondary peaks at positive times in the cross-correlation
function CE(t), located at multiples of the baseline firing fre-
quency �0. For high background noise, CE(t) displays a single
peak as shown in Figure 3B. In that case, within the dominant
timescale approximation, the cross-correlation function can be
expressed as a difference of two exponentials:

CE�t� � C0

	s	1

�	s � 	1�
�exp��

t � �s

	s
�

� exp��
t � �s

	1
�	 for t � �s, (28)

where �s and 	s are the latency and the decay time of the synaptic
conductance, 	1 is the dominant timescale in Rn(t) (Fig. 1C), and
C0 is a constant given in Appendix C. Figure 3B shows that the
dominant mode approximation describes well the asymptotic
decay of CE(t) at large times, the timescale of that decay being
given by the maximum between the neuronal timescale 	1 and the
synaptic timescale 	s as seen from Equation 28. The dominant
approximation, however, fails to describe the small time behavior
of CE(t), which is determined by the fast components of RE(t) at
small t. The main difference between the LIF and the EIF model is
that, for the LIF model, RE diverges at small t, which leads to a fast
rise of CE(t) at small t, whereas in the EIF model, RE remains finite
and correspondingly the rise CE(t) at small t is slower. Despite this
qualitative difference at short times, the CCFs for the two models
end up looking very similar (Fig. 3, compare both B panels). This
is in part attributable to the fact that, for the values of the noise
used in Figure 3B, the dominant timescale 	1 is very similar in
both models.

The peak time and amplitude of the cross-correlation func-
tion CE(t) naturally depend on the biophysical parameters of the
synaptic connection, its peak conductance g0, and decay time-
scale 	s. Because we are using a linear approximation, the ampli-
tude of CE(t) is proportional to g0. In Figure 4, we examine the
accuracy of the linear approximation by comparing our theoret-
ical predictions with numerical simulations for different values
of the PSC amplitude g0(� � Esyn). The level of accuracy of the
linear approximation depends on the ratio between the PSC
amplitude and the noise amplitude: for high noise, the approxi-
mation is excellent over a wide range of physiological PSC ampli-

A

B

C

Figure 2. Linear response of the instantaneous firing rate of an LIF neuron to a membrane
conductance variation, in the case of subthreshold inputs (�0 � 30 Hz) and suprathreshold
inputs (�0 � 65 Hz). A, Modulus of the response R̃shunt to different input frequencies. B, Phase
of R̃shunt. C, Linear response in time, Rshunt(t). The SD of background noise is 
 � 6 mV.
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tudes; in contrast, for low noise, deviations are seen for large
PSCs. Note that the linear approximation does not capture the
asymmetry between inhibitory and excitatory CCFs, as pointed
out previously (Herrmann and Gerstner, 2001).

Because the cross-correlation function is a filtered version of
the synaptic conductance time course, its peak time and ampli-
tude increase with 	s as seen in Figure 3, C and D. For fixed g0,
longer-lasting postsynaptic currents thus have a stronger effect
on the firing of the postsynaptic neuron. Such a dependence is
qualitatively described by the dominant timescale approximation
(see Appendix D), although this approximation is not very accu-
rate quantitatively.

The peak time and amplitude of the cross-correlation func-
tion are not set by the synaptic properties alone but depend

strongly on the statistics of baseline firing of the postsynaptic
neuron. The effect of the background synaptic noise amplitude is
shown in Figure 3E. The neuron firing rate is kept fixed by ad-
justing the mean input so that only its CV varies with the noise
amplitude. Remarkably, one sees that, for the LIF model, the
cross-correlation amplitude decreases inversely proportionally to
the SD 
 of the background noise. In other words, the regularity
of the baseline firing of the postsynaptic neuron has a strong
influence on the amplitude of the cross-correlations: for a given
synaptic peak conductance and decay time, the more regularly
the postsynaptic neuron fires, the larger the cross-correlation
amplitude. This is also true for the EIF model, although in that
model the modulation of the cross-correlation amplitude with
noise strength is somewhat weaker, as shown in Figure 3E. For
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P P EIFEIF
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Figure 3. Cross-correlation function C(t) arising from a direct synaptic connection between the two neurons, in the case of current-dominated inputs ( Esyn �� �� 1). The presynaptic neuron
is a Poisson process and the postsynaptic neuron an LIF (left column) or an EIF (right column). A, Time course of the cross-correlation function C(t) for low background synaptic noise, corresponding
to a CV of 0.2 (LIF, 
� 0.5 mV, PSC amplitude of 15 pA; EIF, 
� 1 mV, PSC amplitude of 25 pA). For comparison, the time course of the postsynaptic current is shown in orange (rescaled in arbitrary
units). The histogram displays results of direct numerical simulations. B, Same as in A, in the case of high background synaptic noise, corresponding to a CV of 0.8 (LIF, 
 � 6 mV, PSC amplitude of
100 pA; EIF, 
 � 8 mV, PSC amplitude of 125 pA). The dashed trace shows the dominant timescale approximation for C(t). In A and B, the baseline firing rate of the postsynaptic neuron is 30 Hz. C,
D, Peak value and peak time of C(t), as function of the synaptic decay time 	s, for CV � 0.8. E, F, Peak value (log scale) and peak time of C(t), as function of the SD 
 of background synaptic noise.
While varying 
, the firing rate �0 was kept constant by adjusting the mean input current. Results in C–F are shown for three different values of the firing rate �0 (10, 30, and 50 Hz as described by
the legend in E). The synaptic decay time was 	s � 3 ms, except in C and D. The amplitude of the postsynaptic current was 60 pA (corresponding to a peak postsynaptic potential of 0.5 mV), except
in A and B.
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both models, the cross-correlation amplitude decreases with in-
creasing baseline firing rate �0, but varying �0 modulates the
cross-correlation amplitude in a weaker manner than varying 
.
Conversely, the peak time of C(t) is relatively insensitive to 
, for
both LIF and EIF models. The peak time decreases with increas-
ing firing rate, in agreement with the predictions of the dominant
timescale approximation.

For the sake of comparison with experimental studies, in Fig-
ure 3, C and E, the peak value of the cross-correlation function is
given for a synaptic conductance corresponding to a postsynaptic
current amplitude of 60 pA and a synaptic decay time 	s � 3 ms,
yielding a postsynaptic potential (PSP) peak of 0.5 mV, a typical
order of magnitude for AMPA-dependent EPSPs in the cortex
(Markram et al., 1997; Sjöström et al., 2001; Holmgren et al.,
2003; Barbour et al., 2007). For background synaptic inputs cor-
responding to a firing rate �0 � 30 Hz and CV � 0.9 (
 � 8 mV
in the LIF model), our analysis predicts a corresponding peak
cross-correlation of 0.15, meaning that the synaptic inputs from
the presynaptic neuron increase the firing rate of the postsynaptic
neuron by 15% with respect to the baseline firing rate. If the
background noise amplitude is reduced by half to 
 � 4 mV, the
CV becomes 0.7, but the amplitude of the cross-correlations in-
creases to 0.3.

Influence of the firing statistics of the presynaptic neuron
If the firing of the presynaptic neuron is not poissonian, the au-
tocorrelation of the presynaptic firing also plays a role in the
cross-correlation function (see Eq. 27). We examined the effect of
the presynaptic autocorrelation for the LIF models, for which the
power spectrum Ãpre(�) can be analytically calculated (see Ap-
pendix E). Depending on the level of background synaptic noise,
the LIF neuron can be found in one of the three following re-
gimes, illustrated in Figure 5A: (1) for weak background noise
(CV � 0.5), the neuron fires rhythmically, and its autocorrelation
function exhibits peaks at multiples of the mean interspike inter-
val; (2) for intermediate background noise (0.5 � CV � 1), the
presynaptic neuron fires irregularly but exhibits a noise-
dependent refractory period around zero in the autocorrelation
function; (3) for strong background noise (CV � 1), the neuron
tends to fire in bursts, which results in positive autocorrelation at
short time lags. The effect of the presynaptic autocorrelation on
the cross-correlation function is most prominent at negative
times (corresponding to the postsynaptic neuron firing before
the presynaptic one), in which C(t) is essentially given by the

autocorrelation function of the presynap-
tic neuron. This is illustrated in Figure 5B
in the three firing regimes of the presyn-
aptic neuron. For weak noise in the pre-
synaptic neuron, C(t) displays periodic
secondary peaks at both positive and neg-
ative times, corresponding to the period T
in the firing of the presynaptic neuron.
The peaks correspond to increased
postsynaptic spiking arising from the
spikes at (…, �2T, �T, 0, T, 2T, …) in the
presynaptic neuron. For intermediate
noise in the presynaptic neuron, regular
spiking disappears and C(t) simply dis-
plays a dip close to zero attributable to the
refractory period of the presynaptic neu-
ron. For strong noise in the presynaptic
neuron, C(t) displays positive values close
to zero as a result of the bursts in the pre-
synaptic neuron. It is important to note

that the firing statistics of the presynaptic neuron affect only
marginally the amplitude of the cross-correlation function, in
contrast to the firing statistics of the postsynaptic neuron. Inter-
estingly, the amplitude of the CCFs increase when presynaptic
CV increases, whereas it decreases when postsynaptic CV in-
creases. Figure 5C displays the effect of the presynaptic firing rate
on C(t) at intermediate presynaptic noise: the effect of the pre-
synaptic refractory period increases with increasing presynaptic
firing rate.

Shunting effects
If the synaptic reversal potential Esyn is close to the effective
resting potential � of the postsynaptic neuron, the membrane
conductance variations have an important influence on the cross-
correlation function. Figure 6 displays the total cross-correlation
function C(t) � CE(t) 
 Cshunt(t) for Esyn close to the effective rest
potential �. For Esyn � �, at the point of crossing between inhi-
bition and excitation, the full cross-correlation is given by Cshunt.
If the input is subthreshold (� � VT), Rshunt is biphasic, so that
C(t) is biphasic with a fast inhibitory phase at small times and a
slower excitatory phase at long times (Fig. 6A). For Esyn close to
�, depending on the sign of Esyn � �, the excitatory or inhibitory
phase of Cshunt(t) is amplified by the cross-correlation CE(t) aris-
ing from current variations. For Esyn � �, negative but small
CE(t) approximately cancels the slow excitatory phase of Cshunt,
and only the fast inhibitory part of Cshunt remains in C(t). Note
that this inhibitory part is as fast as the postsynaptic current and
thus significantly faster than cross-correlations arising from cur-
rent variations alone.

If the input is suprathreshold, Rshunt is monophasic, and
Cshunt(t) is purely excitatory for Esyn � �. C(t) becomes biphasic
when the effective resting potential � is slightly below the
synaptic reversal potential (Fig. 5C) arising from a competition
between an excitatory shunting effect and an inhibitory effect
arising from the negative effective driving force. The average
background level at which the transition between an excitatory
and an inhibitory CCF occurs thus depends on the baseline firing
rate.

If the effective driving force Esyn � � is of the order of tens of
millivolts, current variations dominate, and shunting hardly af-
fects the amplitude of C(t). However, it modifies the time course
of C(t) with respect to the CCF CE(t) purely induced by current
variations: the time course of C(t) is faster than that of CE(t) in

Figure 4. Testing the validity of the linear approximation in the case of a direct synaptic connection between two LIF neurons:
the theoretical predictions based on the linear approximation (black traces) are compared with numerically estimated cross-
correlation functions, obtained by varying the amplitude g0(Esyn � �) of the PSC (color scale). On the vertical axis, the CCF
amplitude is rescaled by the PSC amplitude g0(Esyn ��). Left, Low noise, CV�0.2, 
�0.5 mV; right, high noise, CV�0.8, 
�
6 mV. The color scale is the same in both panels, and the firing rate is 30 Hz. The insets display the amplitude of the CCF as function
of the PSC amplitude compared with the linear prediction (black line).
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the case of inhibition and slower in the
case of excitation. This is illustrated in
Figure 6 B for subthreshold inputs and
Esyn � � � 10 mV and in Figure 6 D for

suprathreshold input and Esyn � � �
30 mV.

To summarize, we have shown that the
primary peak in the cross-correlation
function arising from a synaptic connec-
tion corresponds to a filtered postsynaptic
current. The amplitude and the shape of
this peak therefore depend on the peak
postsynaptic current and decay time of
the corresponding synapse. However,
these amplitude and shape are not deter-
mined by synaptic properties alone but
are strongly modulated by the baseline
firing statistics of the postsynaptic neu-
ron and in particular the regularity of its
firing. Conversely, the firing statistics of
the presynaptic neuron only have a mi-
nor effect on correlations at short times.
Finally, if the synaptic reversal potential
is close to the effective rest potential of
the postsynaptic neuron, shunting ef-
fects can either accelerate (in the case of
inhibition) or slow down (in the case of
excitation) the time course of the cross-correlation function.

Correlations arising from common inputs
Correlations between the spike trains of two neurons can be in-
duced by common or correlated inputs to the two neurons, even
in the absence of a direct synaptic connection between them
(Sears and Stagg, 1976; Binder and Powers, 2001; Türker and
Powers, 2001, 2002; de la Rocha et al., 2007; Shea-Brown et al.,
2008; Tchumatchenko et al., 2008). Assuming that the two neurons,
labeled 1 and 2, receive a spike train npre from Npre common presyn-
aptic neurons on top of other uncorrelated background inputs

(Fig. 7A), the cross-spectrum between neurons 1 and 2 can be
expressed as follows:

C̃��� �
��0

�pre��2

�0
�1��0

�2� �R̃n
�1���� g̃syn

�1�������R̃n
�2���� g̃syn

�2���Ãpre���,

(29)

where R̃n
(1) and R̃n

(2) are the linear response functions of the neu-
rons 1 and 2, g̃syn

(1) and g̃syn
(2) are the Fourier transforms of the syn-

aptic conductance time courses in the two neurons after a single
presynaptic spike, and �0

(pre) and Ãpre(�) are the stationary rate

Figure 5. Effect of the autocorrelation of presynaptic firing on the cross-correlation function C(t) in the case of a direct synaptic connection between the neurons. Both neurons are LIF neurons,
receiving independent background inputs with different statistics. A, Autocorrelation function of the presynaptic spike train for low, intermediate, and high background noise. B, Corresponding
cross-correlation function C(t) compared with C(t) obtained for a poissonian presynaptic spike train. The postsynaptic neuron receives an intermediate level (CV � 0.8, 
� 6 mV) of synaptic noise,
and both neurons are firing at a stationary rate of 30 Hz. C, C(t) for three different values of the presynaptic firing rate �pre, for moderate background noise in both neurons (
 � 6 mV). The
anti-correlations at negative times increase with �pre. In B and C, the PSC amplitude is 30 pA.

Figure 6. Effects of shunting on the cross-correlation function for an LIF model. A, Cross-correlation function C(t) arising from a
direct synaptic connection, in the case when the synaptic reversal potential is close to the effective rest potential � of the
postsynaptic cell. For Esyn � �, the cross-correlation function is a result of shunting alone. B, Comparison between the full
cross-correlation function C(t) (solid lines) and the cross-correlations CE resulting from current inputs (dashed line). Shunting
accelerates the cross-correlation function in the case of inhibition and delays it in the case of excitation. In A and B, the mean input
is subthreshold, with �0 � 30 Hz and 
 � 6 mV. C, D, Same as in A and B, but for a suprathreshold input (�0 � 65 Hz and 
 �
6 mV). In all panels, g0 � 8 nS.
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and power spectrum of the activity npre in the common pre-
synaptic network of the two neurons (npre is obtained by su-
perposing the spike trains of all Npre neurons in the common
presynaptic network). Here we assume that the synaptic prop-
erties (reversal potential, peak conductance, and decay time)
for each neuron are identical for all inputs from the common
presynaptic network. Details of the derivation are provided in
Appendix D.

For each neuron, the response function R̃n is a sum of a
current-dependent term R̃E(Esyn � �) and a conductance-
dependent term R̃shunt. We consider only the current-dominated
regime in which Esyn � � is large so that C(t) is proportional to
g0

2(Esyn � �) 2Npre
2 , i.e., to the square of the peak PSC of a single

synapse, multiplied by the number Npre of common presynaptic
neurons. Within this approximation, inhibitory and excitatory
common inputs lead to identical cross-correlations. For Esyn close
to the effective rest potential �, the shunting term prevents C(t)
from going to zero but does not change the qualitative shape of
C(t) (data not shown).

We first examine the cross-correlations resulting from un-
correlated Poisson common inputs, corresponding to constant
presynaptic power spectrum Ãpre(�) � A0 and later discuss the
additional effect of synchrony in common inputs.

Asynchronous inputs
If the two neurons have identical properties, meaning that their
firing statistics and synaptic inputs are identical, Equation 29
predicts that the cross-correlation function C(t) is symmetrical
around its maximum. Here we consider only the situation in

which the common inputs reach the two cells simultaneously, in
which case the maximum is located at the origin. If the inputs
reach the two cells with different delays, the maximum is shifted
away from the origin. Figure 7, A and B, displays the cross-
correlation function C(t) in the two cases of low and high back-
ground noise. For low background noise (CV � 0.2), C(t)
displays a central peak as well as secondary peaks at multiples of
the firing period as a result of to the resonance present in R̃E.
Hence, common stochastic inputs induce oscillatory synchroni-
zation between the two neurons. This observation corresponds to
the well known phenomenon of noise-induced synchronization
(Pikovsky et al., 1997; Ermentrout et al., 2008).

As noise is increased, the amplitude of the secondary peaks
decreases, and, for moderately high background noise (CV �
0.8), C(t) has a single central peak. In that case, using the
dominant timescale approximation for R̃E, the cross-correlation
function can be expressed as the difference of two exponentials:

C�t� �
C0

	s � 	1
�	se

�
t
/	s � 	1e�
t
/	1�, (30)

where 	s is the decay time of the synaptic conductance, 	1 is the
dominant timescale in Rn(t) (Fig. 1F), and C0 is a constant given
in Appendix D. As shown in Figure 7B, this approximation typi-
cally underestimates the peak of C(t) at zero but captures well the
decay of C(t), the timescale of which is given by the maximum
between the synaptic timescale 	s and the neuronal timescale 	1.

The synaptic parameters of the common inputs have an im-
portant influence on the shape and amplitude of the cross-

A B

C D

A B

C D

EIFFIL FIL EIF

Figure 7. Cross-correlation function C(t) arising from common inputs to the two neurons. The two neurons are identical LIF (left column) or EIF (right column) neurons, receiving common inputs
in addition to independent background inputs with identical statistics. A, Time course of the cross-correlation function C(t) for a low level of background noise [CV � 0.2; LIF, 
� 0.5 mV; EIF, 
�
1 mV; g0(Esyn � �)Npre � 10 pA], both neurons firing at 30 Hz. The histogram displays results of direct numerical simulations. B, Same as in A, for a high level of background noise [CV � 0.8; LIF,

 � 6 mV; EIF, 
 � 8 mV; g0(Esyn � �)Npre � 100 pA]. The blue trace shows C(t) obtained by keeping only the dominant timescale 	1 in the firing-rate response. This approximation describes
the asymptotic decay of the cross-correlation function C(t). C, Amplitude of the peak of C(t), as function of the synaptic decay time 	s, for three different values of the firing rate �0 in both neurons.
D, Amplitude of the peak of C(t), as function of the SD 
 of background synaptic noise (log scale). While varying 
, the firing rate �0 was kept constant by adjusting the mean input current to both
neurons. Results are shown for three different values of the firing rate �0.
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correlation function. The dominant timescale approximation
shows that the decay of the cross-correlation function cannot be
faster than the timescale 	s of synaptic decay. The amplitude of
the cross-correlation function is proportional to the square of the
peak synaptic conductance but also depends on the synaptic
timescale 	s. Figure 7C shows that the peak value of C(t) increases
approximately linearly with 	s, in contrast to the case of correla-
tions generated by a direct synaptic connection between the two
neurons, where 	s has a weaker effect on the amplitude of C(t).
Note that this linear trend is not captured by the dominant time-
scale approximation.

The shape and amplitude of the cross-correlation function are
not fully determined by the synaptic properties of common in-
puts but are again also strongly modulated by the statistics of
firing of the two neurons, which are determined by independent
background inputs to each of them. In particular, Figure 7D
shows that changing the regularity of firing while keeping the
firing rate constant strongly modulates the amplitude of the
cross-correlation function, the peak of which decreases approxi-
mately quadratically with the SD 
 of background noise in the
LIF model. In the EIF model, the dependence on 
 is somewhat
weaker but nevertheless important. The amplitude of the cross-
correlation function is also modulated by the baseline firing rate
�0 but in a weaker manner. In both LIF and EIF models, the
maximum of C(t) decreases with increasing �0.

Effects of heterogeneity
The cross-correlation function C(t) is symmetric around the or-
igin as long as all properties of the two neurons are identical. This
symmetry is, however, broken if the firing properties (firing rate
and coefficient of variation) of the two neurons are different.
Figure 8, A and B, displays the cross-correlation functions for
neurons firing at different firing rates but with identical CV com-
pared with the symmetric case. For high background noise, even
if heterogeneity is strong (neuron 1 firing at 10 Hz and neuron 2
firing at 100 Hz), the cross-correlation function remains highly
symmetric and very close to the homogeneous case. Note that, if
the two neurons have different firing thresholds but identical
firing rate and CV, the cross-correlation function is perfectly
symmetric. For low background noise (Fig. 8A), the two different

firing rates lead to secondary peaks at different periods on the two
sides of the origin. This is a consequence of causality, namely, that
an input modifies spiking after its arrival, not before. Qualita-
tively, observing a spike in neuron 1 at t � 0 increases the prob-
ability that an excitatory input has arrived just before t � 0.
Because part of the inputs are common to the two neurons, it also
increases the probability of a spike in neuron 2 at approximately
t � 0 and also subsequently approximately (t � T2, 2T2,…) when
neuron 2 is spiking regularly with period T2. Because condition-
ing the firing of neuron 1 on the spikes of neuron 2 amounts to
time inversion, the same reasoning explains that, for negative t,
the peaks in the correlation function occur at the firing period of
neuron 1. The full cross-correlation function is therefore highly
asymmetric, although the two neurons receive the same input
that arrives with the same delay. Altogether, these results suggest
that the symmetry of the cross-correlation function allows for a
reliable discrimination between the underlying common inputs
and a direct synaptic connection in the case of strong background
noise but not in the case of low background noise, the two cases
being distinguished by the presence of secondary peaks.

Effects of the autocorrelation of common inputs
So far, we considered only the situation in which the activity in
the common presynaptic network does not display correlations.
If that activity display some amount of short-term temporal cor-
relation, an important question is how far these correlations are
transmitted to the two neurons receiving the common inputs. If
the presynaptic activity is correlated on a timescale 	pre, i.e., its
autocorrelation is of the form A0exp(�t /	pre), these correlations
will induce an additional timescale 	pre in C(t). Figure 9 displays
the cross-correlation function C(t) obtained for two values of 	pre

compared with C(t) obtained from asynchronous inputs. If 	pre is
shorter than the correlation time (maximum between synaptic
decay timescale 	s and dominant neural timescale 	1, 4.5 ms in the
case for parameters of Fig. 9), the cross-correlation function is
essentially identical to the case of asynchronous inputs. If 	pre is
larger than max(	s,	1), the decay timescale of C(t) is given by 	pre.
Correlations in the presynaptic activity can therefore only
broaden the CCF between the two neurons but not sharpen it.

Figure 8. Cross-correlation function C(t) arising from common inputs, for two LIF neurons with different firing statistics. A, Low noise: neuron 1 fires at 30 Hz, and neuron 2 fires at 30 and 100 Hz.
The noise amplitude was adjusted so that both neurons fire with CV � 0.2 in the two cases. B, High noise: neuron 1 fires at 10 Hz, and neuron 2 fires at 10, 30, and 100 Hz. The noise amplitude was
adjusted so that both neurons fire with a CV of 0.8 in all cases. C, Varying the CV: neuron 1 fires with a CV of 0.6, whereas neuron 2 fires with CVs of 0.6, 0.8, and 1. The mean firing rate of both neurons
is 30 Hz. In the three panels, amplitudes are normalized to unity to facilitate the comparison between the symmetry of the CCFs.
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In summary, the cross-correlation function arising from com-
mon inputs is in general highly symmetric. This is an important
distinction from the highly asymmetric cross-correlation func-
tion generated by a direct synaptic connection. However, if the
firing rates of the two neurons differ significantly and the ampli-
tude of background is low in at least one of the two neurons, the
cross-correlation function arising from common inputs is asym-
metric so that, in that case, asymmetry does not imply that a
direct connection is present between the two neurons. The width
and the amplitude of the cross-correlation function depend on
the properties of the synapses mediating common inputs. The
amplitude of the CCF is, however, modulated in a much stronger
way by the firing statistics of the neurons, which are set by inde-
pendent background inputs: for fixed amplitude of common in-
puts, the amplitude of the cross-correlations is much larger when
the neurons fire regularly than when they fire irregularly.

Other simple microcircuits
The knowledge of the cross-correlation functions for the two
cases of directly connected neurons and neurons receiving com-
mon inputs provides us with the basic tools for calculating the
cross-correlation function in more complex circuits. Within the
linear approximation, any circuit can be decomposed in a super-
position of simpler ones, and the cross-correlation function for
that circuit can be obtained as a sum of cross-correlation func-
tions of the simpler circuits. This approach is illustrated here on a
couple of basic, experimentally relevant microcircuits.

Mutually connected neurons
The circuit, consisting of two neurons mutually connected by two
synapses (Fig. 10A), is one of the connectivity patterns found to
occur with high probability in the cortex (Markram et al., 1997;
Sjöström et al., 2001; Song et al., 2005). A number of theoretical
(Van Vreeswijk et al., 1994; Ernst et al., 1995; Lewis and Rinzel,
2003) studies have examined the activity in mutually coupled
pairs of neurons, especially the synchronization properties be-
tween the two neurons in the case in which they fire regularly
(low background synaptic noise).

The cross-correlation between the two neurons can be written
as follows (Fig. 10A):

C�t� � C132�t� � C231�t�, (31)

where C132 (resp. C231) is the cross-correlation of the mono-
synaptic circuit in which the neuron 1 projects a synapse on
neuron 2 (resp. neuron 2 on neuron 1). If the two neurons are
identical and receive identical background inputs, then C231(t) �
C132(�t).

Here we only examine the case of high
background synaptic noise. This will al-
low us to determine how far the main
findings of previous, low-noise, studies
extend to high noise. We moreover as-
sume that the synaptic reversal potential
Esyn is significantly different from the
mean membrane potential of the two neu-
rons, so that synaptic inputs are domi-
nated by current inputs.

Previous studies have found that the
delay in synaptic transmission plays a key
role in synchronizing the two neurons
(Ernst et al., 1995). If C132,0(t) is the
cross-correlation function for a single
synaptic connection without delay, the

cross-correlation function C�s�t� for two mutually coupled neu-
rons with a synaptic delay �s is given by the following:

C�s�t� � C132,0�t � �s� � C132,0��t � �s�. (32)

Figure 10B displays the cross-correlation function as the delay is
increased, for the case of inhibitory synapses. In absence of syn-
aptic delay, inhibitory coupling induces strong anti-correlations
at short times, but at zero lag the cross-correlation is equal to
zero, i.e., no synchrony is present. For a synaptic delay of 1 ms,
the inhibitory anti-correlations persist, but positive correlations
appear at zero time lag so that the synchronization of the two
neurons is increased. This increase is attributable to the disin-
hibition caused by the effective refractory period at negative
times in C132,0(t) (Fig. 5). If the synaptic delay is further in-
creased to 5 ms, the maximum of C�s�t� shifts away from zero, so
that the coupling does not promote zero lag synchrony anymore.
Our results therefore confirm the role of synaptic delays in the
synchronization of two mutually coupled neurons, even for high
background noise.

Another striking result of low-noise studies is that inhibitory
synapses between mutually coupled neurons promote syn-
chrony, whereas excitatory synapses instead promote antisyn-
chrony (Van Vreeswijk et al., 1994; Ernst et al., 1995). Within our
linear approximation in the regime of current-dominated syn-
aptic interactions, the cross-correlation function C�s

�e��t� for
neurons coupled by excitatory synapses is simply obtained as
C

�s�e�
�t� � �C�s

�i��t�, where C�s

�i��t� is the cross-correlation function

for neurons coupled by inhibitory synapses. It is thus immedi-
ately clear that, whereas inhibition induces zero-lag correlations
and anti-correlations at small times, excitation instead leads to
anti-correlations at zero lag and positive correlations at small
times, i.e., out-of-phase synchrony.

Feedforward inhibition
It has been experimentally observed that inhibitory and excita-
tory inputs to neurons are often not independent but instead
co-occur with a precise timing (Pouille and Scanziani, 2001;
Wehr and Zador, 2003; Brunel et al., 2004; Mittmann, 2005).
Such a coordination of excitatory and inhibitory inputs can be
implemented via feedforward inhibition. In this simple microcir-
cuit, illustrated in Figure 11, common excitatory inputs arrive on
neuron 1, an inhibitory interneuron, and neuron 2. Neuron 2
also receives direct synaptic inputs from neuron 1. Neuron 2 thus
receives excitatory inputs, closely followed by inhibitory inputs
elicited by excitation in neuron 1. The cross-correlation function
C(t) for feedforward inhibition can be obtained as the sum of

Figure 9. Cross-correlation function C(t) resulting from partially synchronous common inputs. A, Autocorrelation function
exp(�t /	pre) of the common inputs to the two neurons, for three values of the correlation time 	pre. B, Resulting cross-correlation
functions. Note that, for 	pre � 0 and 	pre � 1 ms, the cross-correlation functions are almost perfectly identical.
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cross-correlations arising from common inputs and cross-
correlations arising from a direct synaptic connection. It should
be noted that the cross-correlation function depends linearly on
the inhibitory synaptic weight but quadratically on the excitatory
weights. The precise shape of the cross-correlation function is
thus not simply scaled by the input strengths but depend on their
relative weights. Figure 11 illustrates the shape of the cross-
correlation function for feedforward inhibition in the case of
strong background synaptic noise in both neurons. The common
inputs lead to a broad central peak in C(t), which is truncated by
the inhibition, thus improving the precision of synchrony
between the two neurons. A cross-correlogram with the same
characteristic shape has been recently obtained from in vivo re-
cordings in a cerebellar circuit identified as potential feedforward
inhibition by in vitro studies (Léna et al., 2008).

Discussion
The aim of this study was to examine the relation between the
CCF of two neural spike trains and the underlying connectiv-
ity, synaptic properties, and firing statistics of the two neu-
rons. To this end, we used integrate-and-fire models of neurons
that incorporate some of the essential biophysical properties of
real neurons but remain simple enough to be fully analyzed
mathematically. We explicitly modeled two neurons only and
took into account the activity of the surrounding network, which
we assumed to be stationary, as a fluctuating background input
that sets each of the neurons in a baseline state with a nonzero
firing rate. The response properties to synaptic inputs in this
baseline state can be determined analytically and give access to
the CCFs within a linear approximation (Brunel and Hakim,

Figure 11. Cross-correlation function C(t) for feedforward inhibition. The cross-correlation function of the full circuit is obtained as the sum of the cross-correlation functions of two simpler
circuits. For comparison, the histogram shows results of direct numerical simulations. Both neurons are LIF neurons firing at 30 Hz, and the amplitude of background synaptic noise is 
� 6 mV. The
PSC amplitudes are 100 and 150 pA for the synaptic connection and the common inputs, respectively.

Figure 10. Cross-correlation function C(t) for two mutually coupled LIF neurons. A, The cross-correlation function of the full circuit is obtained as the sum of the cross-correlation functions of two
simpler circuits. In this example, the synapses are excitatory, and the synaptic delay is 1 ms. B, C(t) in the case of inhibitory synapses, as the synaptic delay time is increased. In both panels, the two
neurons fire at 30 Hz and receive moderate background synaptic noise (
 � 6 mV), and the PSC peak amplitude is 100 pA. Histograms show results of direct numerical simulations.
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1999; Brunel, 2000; Lindner and Schimansky-Geier, 2001; Lind-
ner et al., 2005; Richardson, 2007). This approximation remains
accurate for cross-correlations of amplitude up to 0.3. We there-
fore expect it to be relevant for the strong background noise
usually observed in vivo (Anderson et al., 2000). Using this ap-
proach, we determined the CCFs for different patterns of connectiv-
ity, starting with the case of a direct synaptic connection from one
neuron to the other and the case of common inputs to the two
neurons. We then showed how the results for these two simple cir-
cuits can be exploited to study the CCF in more complex situations.

Modulating the functional interactions
The functional interactions between two neurons, as quantified
by the CCF between their spike trains, depend in an essential manner
on the properties of the synapses providing the inputs. In a first
approximation, the amplitude of the CCF is proportional to the peak
PSC in the case of a direct synaptic connection and to its square in
the case of common inputs so that plastic modifications of
synaptic strength obviously modulate functional interactions.
The full time course of the CCF is determined by a temporal
filtering of the PSC by the firing response of the postsynaptic
neuron(s). The properties of this firing response however depend
on the statistics of baseline firing of the postsynaptic neuron(s).

The amplitude and shape of functional interactions are there-
fore not set by the synaptic properties alone but strongly depend
on the background synaptic inputs to the postsynaptic neuron(s),
i.e., the activity of the surrounding network, which determines
their firing statistics. If the fluctuations in background inputs are
weak and the firing of the postsynaptic neuron regular, additional
synaptic inputs have a much larger effect than if the background
fluctuations are strong and the firing of that neuron very irregu-
lar. As a consequence, for a fixed PSC amplitude, the amplitude of
the CCF varies in a highly nonlinear manner with the strength
of background noise, in agreement with previous observations
(Poliakov et al., 1996). Changes of the firing regularity by back-
ground inputs modulates the functional interactions in a much
stronger and flexible manner than plastic modifications of syn-
aptic weights. Thus, background noise affects both the gain of
neurons (Chance et al., 2002), i.e., their steady-state direct cur-
rent response, and their correlations that are determined by their
response at intermediate frequencies.

Reading out the connectivity
An important question is whether the CCF can be used to
distinguish monosynaptically connected neurons from neu-
rons receiving common inputs. For two identical neurons firing
with identical statistics, the CCF is highly asymmetric in the
former case, although it is perfectly symmetric in the latter case.
Symmetry has therefore been commonly used as a criterion to
distinguish between the two situations (Alonso and Martinez,
1998; Fujisawa et al., 2008). It was, however, a priori not clear
how accurate this criterion would remain for two neurons with
very different intrinsic properties or firing statistics, because such
heterogeneities disrupt the symmetry of the CCF in response to
common inputs. We found that, even for high degrees of heter-
ogeneity between the two neurons, in the case of strong back-
ground fluctuations, the asymmetry remains much weaker in the
case of common inputs than for a direct synaptic connection. In
contrast, for low background noise, the CCF arising from
common inputs can be highly asymmetric. The symmetry is
therefore a robust criterion for distinguishing a direct synaptic
connection from common inputs only in the case of strong
background noise.

In large recurrent networks, two neurons that are part of the
same network receive common input from the network that can
potentially have a nontrivial temporal structure as a result of the
collective network dynamics (Brunel and Hakim, 1999; Brunel,
2000). In this situation, an interesting question is whether the
cross-correlation is dominated by the collective dynamics of the
network (making identification of synaptic connectivity difficult
if not impossible) or by the direct (monodirectional or bidirec-
tional) synaptic connection. For networks of binary neurons,
Ginzburg and Sompolinsky (1994) showed that, if the network is
in an asynchronous state and far from bifurcations leading to
synchronized states, cross-correlations can be dominated by di-
rect connections, whereas close to such bifurcations the effect of
direct connections is very small compared with the collective
dynamics of the network. For more realistic networks of spiking
neurons, cross-correlations have been studied analytically only in
extremely simplified architectures [homogeneous and fully con-
nected networks (Meyer and Van Vreeswijk, 2002)] or through
numerical simulations (Amit and Brunel, 1997). The question of
the relative impact of direct connections and collective dynamics
on cross-correlations therefore remains an open issue in realistic
networks of spiking neurons.

Comparison with previous studies
Previous theoretical studies have examined separately the cross-
correlations in the case of a direct synaptic connection (Knox,
1974; Ashby and Zilm, 1982; Fetz and Gustafsson, 1983; Poliakov
et al., 1996, 1997; Herrmann and Gerstner, 2001, 2002) and com-
mon inputs (de la Rocha et al., 2007; Shea-Brown et al., 2008;
Tchumatchenko et al., 2008). Here, we have developed a com-
mon framework for these two and other circuits and systemati-
cally included the effects of the surrounding network by taking
into account background synaptic inputs to the neurons. For a
direct synaptic connection, our approach is similar in spirit to the
study of Herrmann and Gerstner (2001). These authors also
made use of linear response, but they modeled background syn-
aptic inputs as “escape” noise instead of diffusion noise in our
work. For the case of common inputs, our approach is also closely
related to the one adopted by de la Rocha et al. (2007) and Shea-
Brown et al. (2008) to study spike-count correlations. However, the
spike-count correlation of two spike trains is related to the time
integral of the CCF (Bair et al., 2001) and therefore different from the
amplitude of the CCF (Kohn and Smith, 2005). Moreover, different
normalizations are commonly used for the two quantities (see Ma-
terials and Methods). Although spike-count correlations arising
from common inputs depend on the firing rate of the neurons, they
were found to be insensitive to the regularity of the firing (de la
Rocha et al., 2007), in contrast to our results for the CCFs.

For the situation of a direct synaptic connection, the previous
studies (Knox, 1974; Ashby and Zilm, 1982; Fetz and Gustafsson,
1983; Poliakov et al., 1996, 1997; Herrmann and Gerstner, 2001,
2002) have sought to relate the postsynaptic potential to the CCF,
and it has been debated whether the PSP, its time derivative, or a
combination of the two determine the shape of the CCF. The reason
to consider the PSP (or its derivative) rather than the PSC, as we do,
was that, in the absence of background synaptic inputs, the PSP
determines when the membrane potential crosses the threshold. In
the presence of background synaptic inputs, a probabilistic reason-
ing becomes necessary, and we find it more natural to express the
CCF in terms of the PSC shape rather than PSP. Because the PSP is
obtained by the filtering of the PSC through the membrane, our
results are not in conflict with previous observation that both the
PSP and its time derivative have an influence on the CCF.
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Interpreting experimental data
The present results should be helpful for the interpretation of
experimental results. Here, we do not attempt to provide an
exhaustive survey of the literature but instead point out a
couple of examples. In an impressive recent study, Fujisawa
et al. (2008) were able to track the variations of CCF between
neurons from the prefrontal cortex of the rat, at different epochs of
a working memory task. They observed strong modulations of
the CCF amplitude and interpreted them as evidence of short-
term plasticity. Our results suggest that, alternatively, such
modulations may result from modulations of the firing regu-
larity of the postsynaptic neuron, arising from changes in
background inputs from the surrounding network. The
present analysis, however, assumed stationary background in-
puts, and the implications of the variation of background inputs
certainly deserves additional examination. In another study
(Csicsvari et al., 1998), strong cross-correlations were observed
on the timescale of 1 ms. Our results, which relate the neuronal
and synaptic timescales to the timescales of the CCF, suggest that
extremely fast neuronal and synaptic timescales underlie such fast
correlations. A number of other experimental studies have observed
cross-correlations at timescales significantly longer that the synaptic
and neural timescales (Kohn and Smith, 2005). These long time-
scales could arise from either intrinsic neuronal currents act-
ing on slow timescales, such as firing rate adaptation, or slow
dynamics of a network projecting to both recorded neurons.

Finally, several recent theoretical studies have focused on re-
producing quantitatively the precise time course of arbitrary
CCFs (Rosenberg et al., 1998; Truccolo et al., 2004). Powerful
methods, based on the framework of point processes, are now
available to fit models to experimental CCFs (Pillow et al.,
2008) and extract effective parameters for neuronal interac-
tions. However, these effective parameters do not have a direct
biophysical interpretation and are not directly linked to the
underlying circuitry. It would thus be interesting to combine
the tools developed for statistical inference with the present
analytical results to extract biophysically constrained param-
eters from the fitting of models to experimental data.

Appendices
Appendix A: linear response to synaptic inputs
In this section, we calculate the linear response of the firing rate to
a variation g(t) of the synaptic conductance.

The dynamics of the membrane potential of the postsynaptic
cell are given by the following:

cm

dV

dt
� �gmV � gm��V� � I0

� 
�cmgm��t� � g�t��V � Esyn). (33)

We divide both sides by gm 
 g(t), write �g � g(t)/gm, and keep only
first-order terms in �g, so that Equation 33 becomes the following:

	m�1 � �g�
dV

dt
� �V � �1 � �g�� � �1 � �g��

� �1 �
1

2
�g�
�	m�1 � �g���t� � �gEsyn, (34)

where 	m � cm/gm is the membrane time constant, and � � I0/gm

represents the effective rest value that the membrane potential
would reach in absence of threshold. Equation 34 can be seen as a
perturbed version of the following equation:

	m

dV

dt
� �V � � � � � 
�	m��t�, (35)

with the parameters 	m, �, 
 2, and VT (in the EIF model only)
being perturbed to values 	m(1 � �g), �(1 � �g) 
 �g(t)Esyn,

 2(1 � �g), and VT 
 �T�g, respectively.

In absence of the perturbation corresponding to synaptic in-
puts, the inputs in Equation 35 are constant and lead to a
stationary firing �0 � F(�,
), F being the transfer (or f–I
curve) function, which can be calculated analytically (Tuckwell,
1988). The presence of a time-varying perturbation leads to a
temporal variation of the firing rate, which on the linear level
can be written as follows:

��t� � �0 � �
0

	

Rn�	� g�t � 	�d	 (36)

or in frequency

�̃��� � 2
�0���� � R̃n��� g̃���, (37)

where R̃n(�) is the Fourier transform of the linear response ker-
nel, and g̃(�) is the Fourier transform of the synaptic conduc-
tance g(t).

From Equation 34, it is apparent that the linear response to a
synaptic conductance change can be expressed as the sum of
linear responses to the varied parameters as follows:

R̃n��� � �Esyn � ��R̃E��� � 
2R̃
2���

� 	mR̃	m��� � �TR̃VT���, (38)

where R̃E, R̃
2, R̃	m, and R̃VT are the linear responses in fre-
quency of the firing rate to variations of parameters �, 
 2, 	m,
and VT (EIF model only), each divided by gm with the chosen
normalization.

The linear response functions to variations of any parameter
in Equation 35 have been analyzed in previous studies using the
Fokker–Planck equation. In particular, R̃E is the response to the
variation of the external input current (Brunel and Hakim, 1999;
Brunel et al., 2001). For the LIF model, R̃E and R̃
2 can be ex-
pressed explicitly (Brunel and Hakim, 1999; Brunel et al., 2001;
Lindner and Schimansky-Geier, 2001):

R̃E��� �
�0

gm
�1 � i�	m�

�u

�y
�yT, �� �

�u

�y
�yR, ��

u�yT, �� � u�yR, ��
(39)

and

R̃
2��� �
�0

2gm
2�2 � i�	m�

�2u

� y2 � yT, �� �
�2u

�y2 �yR, ��

�u�yT, �� � u�yR, ���
,

(40)

where yT � (Vth � I0)/
, yR � (Vr � I0)/
, and u( y,�) is given in
terms of a combination of hypergeometric functions or equiva-
lently as the solution of the following differential equation:

d2u

d y2 � 2y
du

d y
� 2i�	mu, (41)

with the condition that u is bounded as y3�	.
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Note that the amplitude of R̃E decays asymptotically to zero as
1/��, so that R̃E is a low-pass filter. In contrast, R̃
2 converges to a
nonvanishing constant, so that fast variations of the noise vari-
ance are transmitted instantaneously by the neuronal firing rate,
a property studied by Lindner and Schimansky-Geier (2001) and
Silberberg et al. (2004).

The response R̃	m to the variation of the membrane timescale is
simply a constant (for both LIF and EIF models) (Richardson, 2007):

R̃	m��� � �
�0

gm	m
. (42)

Any temporal variation of the membrane time constant is thus
perfectly reproduced by the temporal variation of the firing rate.

For the EIF model, the response functions R̃E, R̃
2, and R̃VT

have been studied by Richardson (2007), in which an efficient
semi-numerical method based on the Fokker–Planck equation
was developed to evaluate the response R̃� to the variation of any
parameter � as follows:

R̃� �
j�

jr
, (43)

where the function jr in the denominator is independent of the
varied parameter �. We used the same method in this study.
Note that, for the EIF model, R̃E is a low-pass filter, the ampli-
tude of which decays as 1/�. In contrast to the LIF model, R̃
2

is also a low-pass filter, with an amplitude also decreasing as
1/�. R̃VT is, however, a high-pass filter, privileging fast varia-
tions of VT.

Note that R̃n can be written as follows:

R̃n � �Esyn � ��R̃E � R̃shunt, (44)

where

R̃shunt��� � �
2R̃
2��� � 	mR̃	m��� � �TR̃VT��� (45)

is independent of Esyn and corresponds to the shunting part of the
synaptic conductance variation (for the LIF model, �T � 0).

As a consequence, if the synaptic reversal potential is suffi-
ciently different from the mean membrane potential �, the re-
sponse to synaptic inputs is dominated by the response to the
input current variation. In contrast, if Esyn � ��, the response to
synaptic inputs is dominated by the response to the variation of
the membrane conductance.

Appendix B: relation between the response function and the
spike-triggered average current
The linear response function to an input current RE is closely
related to the STA current. It is not, however, fully equivalent
to the Wiener kernel and STA current studied previously
(Poliakov et al., 1997; Paninski, 2006). Here we describe ex-
plicitly this relation.

Consider a neuron that receives a mean input current and two
time-varying inputs with flat power spectrum:

cm

dV

dt
� �gmV � gm��V� � I0

� 
�cmgm��t� � 
s�cmgm�s�t�. (46)

The first white-noise input �(t) represents background noise and
is different in each trial. The second white noise-input �s(t) has a

flat power spectrum, but its time course is identical in each trial so
that it represents the signal the neuron receives.

If the amplitude 
s of the signal is small, and the variation of
the firing rate (averaged over trials or equivalently background
noise) around its mean �0 is given by the convolution with the
response function RE:

��t� � �0 � �
0

	

�cmgmRE�	�
s�s�t � 	�d	. (47)

The linear response function RE is the optimal Wiener kernel
in the presence of a background noise of amplitude 
 and
therefore corresponds to the spike-triggered average signal
current. The cases studied by Poliakov et al. (1997) and
Paninski (2006) correspond to the situation in which back-
ground noise is absent, so that all the time-varying input cor-
responds to the signal.

Appendix C: dominant timescale approximation for Rn

The linear response function R̃n(�) is an analytic function. We
call � the analytical extension of R̃n, defined by its values on the
imaginary axis:

��i�� � R̃n���. (48)

The complex function � possesses a set of simple poles {zj}j�0, with
@j, Re(zj) � 0, and labeled such that Re(zj1) � Re(zj2) if j1 � j2.
These poles are the zeros of the denominator of R̃n, i.e., the
zeros of u( yT) � u( yR) (see Eq. 40) in the case of the LIF
model and the zeros of jr (see Eq. 43) in the case of the EIF
model. Note that R̃E and R̃shunt have the same poles, so that the
present analysis is not restricted to R̃E alone.

The function � can be written as an expansion over its poles:

�� z� � �
j�1

	 aj

z � zj
� complex conj., (49)

where aj is the residue of � at its jth pole.
Using Equation 49, the linear kernel Rn, the inverse Fourier

transform of R̃E, can be expressed as follows:

Rn�t� � ��t��
j�1

	

aje
zjt � complex conj., (50)

where �(t) � 1 if t � 0 and �(t) � 0 otherwise.

Appendix D: calculation of cross-correlation functions
Direct synaptic connection
In the situation in which one neuron makes a direct synaptic
connection on the other neuron, the dynamics of the mem-
brane potentials of the presynaptic and postsynaptic neuron
are given by the following:

cm

dVpre

dt
� �gmVpre � gm��Vpre� � Ipre

� 
pre�cmgm�pre�t� (51)

and

cm

dVpost

dt
� �gmVpost � gm��Vpost� � Ipost

� 
post�cmgm�post�t� � g�t��preV � Esyn�. (52)
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The postsynaptic conductance g(t) is given by the following:

g�t� � �
0

	

d	gsyn�	�npre�t � 	�, (53)

where npre is the train of spikes emitted by the presynaptic neu-
ron, and gsyn is the postsynaptic conductance change attributable
to a single presynaptic spike, defined in Equation 13.

We compute the cross-correlation function between the two
neurons in a linear approximation in which the interaction be-
tween the two neurons is treated as a perturbation of the case
when the two neurons are not connected. A similar approach was
used previously by Lindner et al. (2005).

Within the linear approximation, the probability that the
postsynaptic neuron spikes at time t can be written as follows:

��post��t� � �0,0
�post� ��

0

	

d	Rn�	�g�t � 	�, (54)

where �0,0
(post) is the firing rate that the postsynaptic neuron would

have in the absence of the connection to the singled-out presyn-
aptic neuron. The cross-correlation function between the spike
trains of these two neurons is therefore as follows:


n�pre��t��n�post��t�� � �0
�pre��0,0

�post�

��
0

	

d	Rn
�post��	�
n�pre��t��g�t � 	��. (55)

Taking the Fourier transform with respect to both times t and t�
gives the equivalent form in frequency as follows:


ñpre
* ����ñpost���� � �2
�2�0

�pre��0,0
�post����������

� 
ñpre
* ���� R̃n

�post���� g̃����. (56)

From Equation 53, the Fourier transform of the conductance
g̃(�) is proportional to the Fourier transform of the presynaptic
spike train as follows:

g̃��� � g̃syn���ñpre���, (57)

so that the following holds true:


ñpre
* ����ñpost���� � �2
�2�0

�pre��0,0
�post����������

� R̃n
�post���� g̃syn���
ñpre���ñpre

* �����. (58)

One can express the averages on both sides of Equation 58 using
the power spectrum of the presynaptic spike train, Ãpre(�), and
the cross-spectrum between the presynaptic and postsynaptic
neurons, as defined and normalized in Equations 9 and 11. We
also note that the stationary firing rate of the postsynaptic neuron
is modified when the singled-out presynaptic connection is taken
into account and is given to linear order by the following:

�0
�post� � �0,0

�post� � R̃n
�post��0� g̃syn�0��0

�pre�. (59)

Finally, we obtain the following:

C̃��� �
�0

�pre�

�0
�post� R̃n

�post���� g̃syn���Ãpre���. (60)

In the dominant timescale approximation, Rn �
a1	1

1 � i�	1
, and, for a

Poisson presynaptic neuron, the cross-correlation function reads as
follows:

C�t� � g0a1

	1	s

�0
�post��	s � 	1�

� �e��t��s�/	s � e��t��s�/	1���t � �s�. (61)

Note that the maximum of C(t) in Equation 61 is as follows:

Cmax � g0a1

	s

�0
�post� �	s

	1
�

	s

	1�	s

, (62)

and occurs at the following:

tmax �
	1	s

	s � 	1
log �	s

	1
� � �s. (63)

Common inputs
In the situation in which two neurons labeled 1 and 2 receive
common inputs, the dynamics of the membrane potentials of the
two neurons are given by the following:

cm

dVi

dt
� �gmVi � gm��Vi� � Ii � 
i�cmgm�i�t�

� g�i��t��V � Esyn�, (64)

where i � 1,2.
The conductance g (i ) of neuron i attributable to synaptic inputs

from the common presynaptic network is given by the following:

g�i��t� � �
0

	

d	gsyn
�i� �	�npre�t � 	�, i � 1, 2, (65)

where npre is the spike train obtained by superposing the spike trains
of all common presynaptic neurons. Here we assume that the syn-
apses made by the presynaptic neurons are identical and simply de-
pend on the postsynaptic neuron identity, but the derivation can be
easily extended to a more general case.

Within the linear approximation, the firing probability of neuron
i for a given presynaptic train npre can be written as follows:

��i��t� � �0
�i� � �

0


	

d	Rn
�i��	�� g�i��t � 	� � 
g�i���, (66)

where the average conductance �g (i )� attributable to the com-
mon presynaptic input has been substracted in the integral
term so that �0

(i) is the average firing rate of neuron i, arising
from both the common inputs and the inputs specific to neu-
ron i. Note also that, even for two identical neurons, the re-
sponse functions Rn

(1) and Rn
(2) are different when the inputs

(I1,
1) and (I2,
2) are different.
The correlation between the spike trains of neurons 1 and 2 is

obtained by averaging over the common inputs as follows:


��1��t���2��t��� � �0
�1��0

�2�

� �
0


	�
0


	

d	d	�Rn
�1��	� Rn

�2��	��
� g�1��t � 	� � 
g�1���

� � g�2��t� � 	�� � 
g�2���� (67)
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or equivalently


���1��t� � �0
�1�����2��t�� � �0

�2���

� �
0


	�
0


	

d	d	�Rn
�1��	� Rn

�2� �	��
� g�1��t � 	�

� 
g�1���� g�2��t� � 	�� � 
g�2����. (68)

Moreover, the cross-correlation between the conductances of the
two neurons can be related to the autocorrelation function of the
common presynaptic spike train npre as follows:


� g�1��s� � 
g�1���� g�2��s�� � 
g�2����

� �
0


	�
0


	

d	d	�gsyn
�1� �	�gsyn

�2��	��
�n�pre��s � 	� � �0
�pre��

� ��n�pre��s� � 	�� � �0
�pre���

� ��0
�pre��2�

0


	�
0


	

d	d	�gsyn
�1��	�gsyn

�2��	��Apre�s� � s � 	 � 	��. (69)

Finally, taking the Fourier transform of Equation 68 with respect
to the time difference t� � t relates the cross-correlation function
between the spike trains of neuron 1 and neuron 2 to the auto-
correlation function of the common presynaptic spike train.
With the normalization of Equation 9, it reads as follows:

C̃��� �
��0

�pre��2

�0
�1��0

�2� �R̃n
�1���� g̃syn

�1�����*�R̃n
�2���� g̃syn

�2���)Ãpre���.

(70)

In the dominant timescale approximation, Rn �
a1	1

1 � i�	1
, and

for identical neurons with asynchronous common inputs, the
cross-correlation function reads as follows:

C�t� � g0
2a1

2
�0

�pre�

��0
�post��2

	1
2	s

2

2�	s
2 � 	1

2�
�	se

�
t
/	s � 	1e�
t
/	
1�.

(71)

As a final remark, it can be noted that Equation 70 is quadratic in
g0. This might be a concern because we only computed the re-
sponse to linear order. It can, however, be checked that quadratic
terms in the response do not contribute to the cross-correlation
function as defined here.

Appendix E: power spectrum for the LIF model
The autocorrelation function can be deduced directly from the
Fourier transform of the interspike interval distribution f(t)
(Gerstner and Kistler, 2002). Indeed, if we denote by A(t) the full
autocorrelation function, its positive part A
(t) � �0A(t)�(t)
obeys the following:

A
�t� � f�t� � �
0

	

ds f�s� A
�t � s�. (72)

Taking the Fourier transform, we have the following:

Ã
��� �
f̃���

1 � f̃���
, (73)

and as Ã(�) � (1 
 2Re(Ã
(�)))/�0,


ñpreñpre
* � � �0Re �1 � f̃���

1 � f̃����. (74)

The Fourier transform of the interspike interval distribution can
be calculated analytically for the LIF neuron (Tuckwell, 1988),
and it reads as follows:

f̃��� �
u� yR, ��

u�yT, ��
, (75)

where u is the function defined by Equation 41.
In conclusion, the power spectrum of the LIF neuron is given

by the following:


ñpreñpre
* � � �0Re�u�yT, �� � u�yR, ��

u�yT, �� � u�yR, ���. (76)
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