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When we perform a skilled movement such as reaching for an object, we can make use of prior information, for example about the location
of the object in space. This helps us to prepare the movement, and we gain improved accuracy and speed during movement execution.
Here, we investigate how prior information affects the motor cortical representation of movements during preparation and execution.
We trained two monkeys in a delayed reaching task and provided a varying degree of prior information about the final target location. We
decoded movement direction from multiple single-unit activity recorded from M1 (primary motor cortex) in one monkey and from PMd
(dorsal premotor cortex) in a second monkey. Our results demonstrate that motor cortical cells in both areas exhibit individual encoding
characteristics that change dynamically in time and dependent on prior information. On the population level, the information about
movement direction is at any point in time accurately represented in a neuronal ensemble of time-varying composition. We conclude that
movement representation in the motor cortex is not a static one, but one in which neurons dynamically allocate their computational
resources to meet the demands defined by the movement task and the context of the movement. Consequently, we find that the decoding
accuracy decreases if the precise task time, or the previous information that was available to the monkey, were disregarded in the
decoding process. An optimal strategy for the readout of movement parameters from motor cortex should therefore take into account
time and contextual parameters.

Introduction
Neurons in motor cortex are well known to encode physical pa-
rameters of limb movements such as direction, force, extent,
load, or posture (for review, see Hepp-Reymond, 1988; Johnson
et al., 2001). In a series of experimental studies, it has been shown
that encoding properties are sufficiently stable over time, such
that arm movement trajectories could be accurately decoded
from neural populations in single trials (Wessberg et al., 2000;
Serruya et al., 2002; Taylor et al., 2002; Mehring et al., 2003). This
opened the possibility to decode neural spike trains in brain–
machine interfacing (BMI), as a means to control prosthetic de-
vices (Carmena et al., 2003; Musallam et al., 2004; Hochberg et
al., 2006; Santhanam et al., 2006; Moritz et al., 2008; Velliste et al.,
2008). Indeed, real-time applications have, in principle, proven
to work under experimentally controlled conditions. However,

several recent studies provided evidence that neural encoding
properties need not be stable under all circumstances. Instead,
they can change dynamically with time, both within a trial and across
repeated trials (Chestek et al., 2007; Churchland and Shenoy,
2007; Rokni et al., 2007). Such changes may be attributable to
changes in contextual parameters. In parietal cortex, the influ-
ence of attention (Oristaglio et al., 2006), reward (Musallam et
al., 2004), or movement cue (Gail and Andersen, 2006) on the
neural encoding of movement goals is well established (for re-
view, see Gottlieb, 2007). In motor cortex, there is evidence for
similar influences on the encoding of movements. For in-
stance, reward and reward expectation can modulate motor
cortical activity related to eye movements (Roesch and Olson,
2004). Serial execution order of different movement compo-
nents influences their neural representation (Carpenter et al.,
1999; Hepp-Reymond et al., 1999; Lu and Ashe, 2005), as well
as the presence or absence of specific movement cues (Hepp-
Reymond et al., 1999). Moreover, motor cortical activity can
be similar during actual execution and during the preparation
of a movement (for review, see Riehle, 2005).

Here, we studied in detail the time-dependent encoding of
movement direction in the monkey primary motor cortex (M1)
and dorsal premotor cortex (PMd) during movement prepara-
tion and execution in a delayed hand-reaching task with a varying
context. In different experimental conditions, two monkeys were
confronted with different degrees of previous target information,
presented at the beginning of the initial hold period. Previous
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studies showed that prior information modulates motor cortical
activity during movement preparation (Georgopoulos et al.,
1989; Riehle and Requin, 1989; Bastian et al., 2003; Roux et al.,
2003; Cisek and Kalaska, 2005; Churchland et al., 2006) and dur-
ing execution (Riehle and Requin, 1989; Hepp-Reymond et al.,
1999). Our analyses, using single-trial Bayesian inference, show
that the encoding of movement direction in M1 (monkey 1) and
in PMd (monkey 2) is a dynamic process dependent on time and
prior information. Nevertheless, on the population level, 50 –100
neurons allowed an essentially error-free decoding of the visually
presented cue and of the executed movement direction at any
point in time during movement preparation and execution.

Materials and Methods
Experimental paradigm. Two monkeys (Macaca mulatta), one male
(monkey 1) and one female (monkey 2), were trained to perform a de-
layed arm-reaching task. The animals were cared for according to Euro-
pean and French government regulations. They were seated in front of a
vertical panel carrying seven touch-sensitive buttons with light-emitting
diodes (LEDs)— one in the center and six on a circle of 10 cm radius
around it (see Fig. 1). When the center LED was lit, the monkey had to
place its right hand on it to initiate the trial [trial start (TS)]. After a delay
of 500 ms, one, two, or three adjacent target LEDs lit up in green [prepa-
ratory signal (PS)], providing the monkey with more or less information
about the direction of the upcoming movement (see Fig. 1 A): (1) in the
one-target condition, one of the six target LEDs lit up; (2) in the two-
target condition, one of three possible pairs of adjacent target LEDs lit up
(targets 1 � 2, 3 � 4, or 5 � 6); (3) in the three-target condition, one of
two possible triplets of adjacent target LEDs lit up (targets 6 � 1 � 2 or
3 � 4 � 5). After a fixed preparatory period of one second, one of the
green LEDs turned red [response signal (RS)], signaling the monkey to
release the center LED and to reach out and touch the red target signal.
Thus, each condition comprised six types of trials (i.e., six possible com-
binations of the preparatory and the response signal). Correct and fast
performance was rewarded by fruit juice. The three behavioral condi-
tions of prior information (i.e., one, two, or three targets as preparatory
signal) were presented as separate blocks of �100 trials each, within
which each trial type was presented at random with equal probability
(median of 19 trials per final target direction with a SD of 6.1 in monkey
1 and 13 trials per final target direction with a SD of 4.2 in monkey 2). On
each recording day, the order of blocks was chosen randomly. Mean
reaction times were 161, 195, and 204 ms for monkey 1, and 234, 236, and
237 ms for monkey 2, for the one-, two-, and three-target conditions,
respectively. Mean movement duration was 199, 202, and 209 ms for
monkey 1, and 181, 177, and 184 ms for monkey 2 (for additional details
on the relationship of reaction time and prior information, see Bastian et
al., 2003). To simplify terminology, the 1 s period between PS and RS was
termed “preparatory period” and a 300 ms period from RS to �100 ms
before movement end was termed “execution period.”

Electrophysiological recordings. After the monkey had successfully
learned the task (�85% correct performance), a cylindrical recording
chamber (inner diameter, 15 mm) was implanted over the contralateral
M1 and the PMd between central sulcus (CS), the posterior bank of the
arcuate sulcus, and the precentral dimple, under aseptic conditions and
general halothane anesthesia (�2.5% in air). In monkey 1, the recording
chamber was positioned close to the CS (see Fig. 1 B) and electrodes were
positioned in M1; in monkey 2, the chamber position was more frontal
(see Fig. 1C) mainly over PMd. A stainless-steel T-bar was cemented to
the skull to fixate the animal’s head during recording sessions. A multi-
electrode microdrive (Reitböck system; Thomas Recording) was used to
transdurally insert up to seven quartz insulated platinum–tungsten elec-
trodes (outer diameter, 80 �m; impedance, 2–5 M� at 1 kHz). Electrodes
were spaced �300 �m apart from each other. The use of a window
discriminator yielded the spike times of up to two neurons per electrode.
The neuronal signals along with behavioral events (trial start and end,
target information, reaction and movement times, reward, errors) were
stored for off-line analysis at a time resolution of 1 ms. Here, we used only
correct trials for analysis.

Estimation of neuronal firing rates. In most cases (see Figs. 2–7A), spike
trains were aligned to the occurrence of PS (for an example, see Fig. 2 A).
Neuronal firing rate profiles were estimated from single-trial spike trains
(Nawrot et al., 1999) by convolution with a fixed Gaussian kernel of a
standard width of 65 ms and area normalized to 1 (see example in Fig.
2 B). The exact width of the kernel was not critical to our results. Kernels
of widths in the range of 20 –100 ms lead to the same general conclusions.

Measures for directional tuning. We considered movements into six
different movement directions d that were executed after RS. They were
specified by the six uniformly arranged unit vectors e�d. For a sextet of
neuronal firing rate profiles rd(t), one for each direction d, a fundamental
quantity is given by the weighted vectorial sum as follows:

a��t� � �
d

rd�t� e�d. (1)

At each point in time, the resulting vector a��t� represents the instanta-
neous directional tuning. Its length a(t) describes the tuning amplitude,
or directional modulation. Its direction is specified by the unit vector
a��t�/a�t� or, alternatively, by the angle �(t) with respect to the upward
direction. Let 	 � 
 denote trial averages. The trial-averaged tuning vector
A� �t� is the vector mean computed from the direction-specific trial-
averaged firing rates Rd�t� � 	rd�t�
 as follows:

A� �t� � 	r�t�
 � �
d

Rd�t� e�d. (2)

Let A(t) denote the length of the trial-averaged tuning vector A� �t�. The
variance of tuning can be predicted from the variances of the rates rd(t),
provided that the latter are uncorrelated across directions. Two biologi-
cally relevant aspects of tuning variance are used to assess the reliability of
directional tuning:

(1) Let

�A
2 �t� � 	�a��t� � A� �t��2
 (3)

denote the scalar variance of the tuning vector (i.e., the expected squared
deviation of the tuning vector from its mean). The z score relating the
length of the tuning vector to its scalar variance

zA�t� � A�t�/�A�t� (4)

is used as a measure for the reliability of the directional tuning.
(2) Circular statistics (Batschelet, 1981) allowed us to evaluate the

preferred direction without regard of the tuning amplitude. Let

A� J�t� � 	�a�t�/a�t�
 (5)

denote the mean preferred direction; AJ�t�, its length; and �(t), its angle
with respect to the upward direction. The fact that

AJ�t� � 	cos(�(t)��(t))
 (6)

justifies the use of

sA
2 �t� � 2
1 � AJ�t�� (7)

as a measure for the angular variance. Its square root is called angular
deviation, measured in radians. A uniform distribution of angles yields
AJ�t� � 0 and an angular deviation of �2 radians, corresponding to
�81°. All quantities discussed so far are estimated in a straightforward
manner on the basis of repeated measurements of neuronal firing rate
profiles. The scalar variance and the angular deviation of the tuning
vector were compiled from 50 randomly drawn sextets of firing rate
profiles.

For the preparatory period, these analyses were repeated with regard to
the tuning strength of the preparatory stimulus instead of the movement
executed after RS. Because we did not consider any error trials, this
analysis made no difference for the one-target condition. In the two- and
three-target conditions, the number of unit vectors reduced from six to
three and two likewise. The results of these analyses were qualitatively the
same as the above analyses with regard to the tuning strength of the
executed movement. They are included in the supplemental material
(available at www.jneurosci.org).
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Bayesian inference of movement direction. We
wanted to know how accurately the movement
direction executed after RS is represented in
single-trial firing rates throughout the trial. To
measure this, we used Bayesian inference from
nonparametric density estimations. This
method of Bayesian decoding assumes the per-
spective of an “ideal observer” (for review, see
Pouget et al., 2000; Ma et al., 2006). It yields an
estimate of the information content of neuro-
nal activity without specifying the encoding
strategy that is used by the brain. Our approach
makes two constraining assumptions: (1) Fir-
ing rate is a sufficient descriptor of neuronal
activity (i.e., the precise timing of action poten-
tials is not considered to represent informa-
tion), and (2) firing rates are assumed to be
uncorrelated across neurons. The latter as-
sumption enabled us to analyze pseudopopu-
lations of neurons, most of them recorded in
different sessions, but during trials in the same
experimental condition.

In detail, this method constitutes the follow-
ing steps: Trial-averaged tuning curves were re-
placed by probabilistic tuning profiles in terms
of the following conditional probability:

P �r � d� : directional tuning of rate.

Such probabilities are conveniently represented by appropriately nor-
malized probability density functions. Estimates of these were obtained
by kernel convolution with reflection to account for the nonnegativity of
rates (Silverman, 1986). To assess the suitability of such a tuning model
for the decoding of neuronal activity, we again used conditional proba-
bilities, but now with the roles of r and d reversed:

P �d � r� : inference of direction from rate

measures the “plausibility” of a movement in direction d, given a specific
observation of neuronal firing rate r. The Bayes rule was used to compute
plausibilities from tuning profiles (Johannesma, 1981; Gelman et al.,
1995; Pouget et al., 2000) as follows:

P�d � r� �
P�d�

P�r�
P�r � d�. (8)

For any particular single-trial rate profile rd(t) recorded before and dur-
ing a movement to direction d, the corresponding plausibility profile can
be read out. This leads to six distinct probability profiles as follows:

P�d� � rd�t��

measuring the plausibility of direction d� if the rate profile rd(t) was
observed. The expectation over 20 randomly chosen trials (in very few
cases with �20 trials, some were used twice) for each movement direc-
tion with d� � d gives the average probability

Pc�t� � 	P�d � rd�t��
. (9)

for the correct decoding at time t of the direction d of the actual move-
ment that was performed. Note that the direction of the actual movement
was in all cases identical with the direction indicated by the target cue
presented at RS since we considered only correct trials. The training
trials used to estimate these probabilities from experimental data did
not include the respective test trial for which the plausibility profiles
were compiled (cross-validation, leave-one-out) (Efron and Tibshirani,
1993). This provided us with an efficient means to assess the expected
single-trial readout performance for a particular neuron; we refer to this
measure as the decoding probability.

To compute whether the decoding probability of a neuron lies signif-
icantly above chance level, we compared the decoding probability to a
chance distribution of decoding probabilities computed from a flat tun-

ing curve. The chance distribution was obtained numerically by comput-
ing 100 times the decoding probability from single-trial rates of the same
neuron but the rates were randomly sorted into six groups. To limit
computing time, decoding probabilities at any time during the prepara-
tory period were compared with one chance distribution computed from
the mean firing rates of the neurons during the preparatory period. Like-
wise, decoding probabilities any time during the execution period were
compared with one chance distribution from the mean rates during the
execution period.

Next, we considered a neuronal population comprising n neurons.
The joint decoding of its activity given by the rates r1, r2, . . . , rn should
be based on the joint tuning curves as follows:

P�r1,r2, . . . ,rn � d� : joint directional tuning of rates.

The assumption of independent encoding allows us to write the following:

P�r1,r2, . . . ,rn � d� � P�r1 � d� � P�r2 � d� � P�rn � d�. (10)

Based on these joint probabilities, we can deal with neuronal populations
in very much the same way as we did with single neurons.

Furthermore, we computed decoding probabilities based on differ-
ent combinations of behavioral conditions (one, two, and three tar-
gets) used for training and test trials: (1) “context known”: same
condition used for training and test trials; (2) “context unknown”: all
three available conditions used for training trials; (3) “generaliza-
tion”: training trials taken from a single condition different from the
test trials condition.

In formal terms, using the Bayes probability for multiple variables,
Equation 8 in our computation has to be replaced by the following:

P�d � r, condA� �
P�d� � P�condA � d� � P�r � d, condA�

P�condA� � P�r � condA�
. (11)

In our case, all conditions could be considered equally likely, such that
the equation simplifies to the following:

P�d � r, condA� �
P�d� � P�r � d, condA�

P�r � condA�
. (12)

This reflects the context known case and is exactly what was used to
compute the decoding probabilities in Figures 3–7A. The other two cases
are reflected by the following two equations:

Figure 1. A, Experimental paradigm. Monkeys performed arm movements to one of six targets arranged on a circle around the
central resting position. The trial started (TS) after the monkey had placed its hand on the central button. The PS was given one-half
of a second later, by randomly choosing one peripheral button to be lit in green (top). Alternatively, two or three adjacent targets
were illuminated in green (middle, bottom). The PS was followed by a 1 s preparatory period during which the monkey was not
allowed to move its hand. The RS was given by turning one randomly selected green button into red. Correct and fast touching of
the target was then rewarded after a short delay. MO and movement end (ME) are indicated by horizontal bars (mean� SD) below
the time axis. B, Location of recording chamber (red hatched circle) in monkey 1. PS, Principal sulcus; AS, arcuate sulcus; PrS,
precentral sulcus; CS, central sulcus. C, As in B for monkey 2.
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P(d � r, condunknown) �
P�d� � P�r � d, condall)

P�r � condall)
, (13)

where all available training data are used to approximate the probability
of a direction when the context is unknown, for the context unknown
case, and

P�d � r, condA� �
P�d� � P�r � d, condB�

P�r � condB�
, (14)

where training data from another conditionB are used to approximate the
probability of a direction with a different context (A), for the generaliza-
tion case.

In the procedure described above, throughout the trial we inferred the
movement direction that was instructed with RS and executed shortly
after (only correct trials). For the two- and three-target conditions, target
information was incomplete during the 1 s preparatory period. In the
three-target (two-target) condition, the monkey could not know which
of the three (two) possible targets would light up with the RS. Thus,
before RS we expect that the maximally possible decoding probability for
the final target is Pc � 1/3 (Pc � 1/2), given that there was no bias for any
specific target in our experimental design.

Inference of the preparatory stimulus. Alternatively, we computed the
neuronal representation of the stimulus (rather than that of the final
movement direction). Here, the probability of observing stimulus s�
given the firing rates rs was calculated using the same formal approach
that led to Equations 9 and 12. In the two- and three-target conditions,
we have three or two preparatory stimuli (PSs), and thus the decoding is
reduced to a three- or two-class problem, respectively. The maximally
possible decoding probability for the stimulus now is Pc � 1 for all
stimuli, regardless of the condition. These results were qualitatively sim-
ilar to those for the decoding of the final movement. They are included in
the supplemental material (available at www.jneurosci.org).

Inference of task time. We estimated the task time (in the range from
300 ms before PS to 300 ms after RS) from single-trial firing rates com-
puted as described above. From a test data vector of single-trial firing
rates (r1, . . . , rn) of a population of n neurons, we computed for each
neuron i and at each point t in time the squared error SE between the
firing rate of the neuron averaged across all trials and across all directions
R(t) and the single trial test firing rate ri as follows:

SEi�t� � �R�t� � ri�
2. (15)

The point in time for which the integrated squared error was minimal
was used as the estimated task time T

T � argmin�SEi�t�. (16)

The inaccuracy TA of time inference was quantified as the absolute dif-
ference between estimated task time T and the true time ttrue from which
test data rn were taken. Average accuracy in task time inference at each
ttrue was computed across all single trials by leave-one-out cross-
validation and then taking the mean across all test trials. Chance level was
computed from the average inaccuracy achieved with random values
assigned to T (chosen randomly from the 1600 ms time span from 300 ms
before PS until 300 ms after RS).

Results
Neuronal tuning is a function of time
In each of two monkeys, we analyzed the activity of 112 and 110
neurons, respectively, recorded under three different experimen-
tal conditions (Fig. 1). Typically, single neurons exhibited a
marked temporal modulation of their spiking activity after the
PS, which provided more or less prior information about the final
movement target presented with the RS. Figure 2 shows a typical
example of single-neuron activity under these conditions. As for
most neurons, the trial-averaged rate profile (Fig. 2B, black
curves) showed a clear dependence on movement direction, both
during movement execution (interval from RS to RS plus 300 ms)
and during the preparatory period (1 s from PS to RS) preceding
the movement. Note, however, that the single trial spike re-
sponses (Fig. 2A) and rate profiles (Fig. 2B, gray curves) were
highly variable across trials.

The time-dependent directional tuning of the mean firing rate
of a neuron was visualized with the tuning vector (i.e., the vecto-
rial sum of the trial-averaged firing rates from each movement
direction executed after RS) (see Materials and Methods). During
the time course of the trial, the resulting vector plot expresses the
temporal evolution of both, the amplitude of tuning (vector
length), and the preferred direction (vector direction) (for exam-
ples, see Fig. 3A, top; B,C, top panels). Before PS, the monkey had
no information about the movement target, and thus, neuronal
activity could not have been tuned to target direction. This re-
sulted in very small residual amplitudes and random directions of
the tuning vector, reflecting the estimation bias attributable to
limited sample size (Fig. 3A–C, top panels). After PS, the vector
amplitude increased and the vector direction stabilized as the
tuning of the neuron evolved with time.

As a consequence of trial averaging, the vector plot is much
less susceptible to the high trial-by-trial variability of the neuro-
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Figure 2. Single-trial responses of one neuron in the complete information condition. A, Raster plots of spiking activity during individual trials. Each panel corresponds to the direction indicated
at the center. Each dot represents an action potential (spike), and each row represents a trial. B, Single-trial firing rates (gray) estimated from the spike trains in A. Trial-averaged rate profiles are
shown in black.
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nal activity. To account for the variability across trials in a statis-
tical analysis of tuning based on single trials, we compared three
different measures (see Materials and Methods), each of which
provides us with a time-dependent estimate of the tuning
strength of the neuron, which we refer to as the tuning profile of
the neuron.

The first measure assesses the reliability of the tuning vec-
tor by computing at each point in time its z score zA(t) as the
quotient of the mean amplitude and its SD �A(t) across 50
random sextets (one for each of six directions) (see Materials
and Methods) of single trial rate profiles. Values �1 indicate

strong and reliable tuning (mean amplitude larger than trial-
by-trial SD). The example neuron in Figure 3A shows values
clearly larger than 1 during most of the preparatory period
(zA,max � 3.0) and again during movement execution (zA,max �
1.6). The average z scores for all neurons in all three conditions
are given in Table 1.

Note that our results for all tuning measures during the pre-
paratory period remained qualitatively the same when com-
puted with respect to the stimulus presented with PS instead of
the movement executed after RS (see supplemental material,
available at www.jneurosci.org).

Figure 3. Dynamic tuning properties of single neurons in motor cortex. A, Same neuron as in Figure 2 in the complete information condition. Top to bottom: (1) Time-resolved tuning vector A,
sampled in 40 ms windows, pointing toward the instantaneously preferred direction; the vector length (circular mean) measures the average amplitude of tuning; (2) the SD of the vector length, �A,
measures amplitude variability across 50 random single-trial sextets; (3) Z-score measures tuning strength as the ratio of the vector length, �A�, and �A; (4) angular deviation sA measures uncertainty
in preferred direction across 50 single-trial sextets in degrees; the dotted line represents the chance level (sA � 81°); (5) decoding probability Pc for an arbitrary single-trial (solid line) and
trial-averaged firing rate profile (dash-dotted line); the dotted line again represents the chance level (Pc � 1/6). B, Tuning vectors (top), decoding probability Pc, and mean firing rate (bottom) for
three different neurons in the complete information condition. C, As in B, but for one single neuron in all three prior information conditions, as indicated. The line styles in B and C are as in A. The
calibration of vector length �A� indicated in A (top) is fixed for the entire figure.

Table 1. Different tuning measures averaged across all neurons during the preparatory period from PS � 150 ms to RS � 150 ms, and during the execution period from RS
to RS � 300 ms

PS � 150 ms to RS � 150 ms RS to RS � 300 ms

Tuning measure One target Two targets Three targets One target Two targets Three targets

zA 1.13; 0.92 0.88; 0.76 0.68; 0.69 1.33; 1.56 1.49; 1.65 1.47; 1.55
sA 53; 57 58; 61 63; 62 49; 45 46; 44 47; 46
Pc 0.199; 0.188 0.188; 0.182 0.178; 0.177 0.206; 0.220 0.219; 0.225 0.212; 0.216

Results are given separately for each behavioral condition. The first number in each entry is for monkey 1, and the second number is for monkey 2.
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The second measure assesses the angular deviation sA(t) of the
tuning vector computed across the preferred directions of 50
sample vectors, constructed once more from randomly chosen
single-trial sextets. This measure translates the trial-by-trial vari-
ability of the firing rate into an angular uncertainty of the direc-
tional tuning. The neuron selected for Figure 3A, analyzed in the
complete information condition, exhibited an angular deviation
�30° during most of the preparatory period. This deviation was
relatively small compared with the 60° angle between two adjacent
movement targets, signaling strong tuning. The average angular de-
viations are provided in Table 1.

As a third measure, we computed the decoding probability
(i.e., the Bayesian probability to correctly decode the direction of
the movement executed after RS from the single-trial firing
rates) (see Materials and Methods). Our decoding model was
repetitively trained with all trials from one out of the three behav-
ioral conditions, except for one test trial (cross-validation) (see
Materials and Methods). In Figure 3A, the decoding probabil-
ity averaged across all test trials Pc(t) rose shortly after PS from
chance level (1/6, one in six directions) to a higher level at around
0.3, which persisted during most of the preparatory period. It
dropped to values �0.2 around RS, after which it rose again to
peak (Pc of 0.26) during the actual movement. The average Pc

scores are given in Table 1.
Comparing panels 3–5 in Figure 3A, one observes that all three

measures of tuning, z score zA, angular deviation sA, and decoding
probability Pc, measured the tuning profile of this neuron in a

consistent manner: during the control period before PS, the
absence of information about the forthcoming movement tar-
get was correctly reflected by a z score close to zero and by an
angular deviation and decoding probability at chance level. Dur-
ing both preparatory period and execution period, the three
measures were strongly correlated, as indicated in Table 2. In
the following analyses, we focused on Pc to study in detail how
tuning strength and single trial decoding of movement direc-

tion depended on time and prior
information.

Analysis of the decoding probability
Pc(t) in all single neurons recorded from
two monkeys showed that the profile of
each neuron was unique and highly dy-
namic in time (for five examples, see Fig.
3A,B,C, top panel). The broad range of
different tuning profiles found in our data
is exemplified in the three examples
shown in Figure 3B: a neuron that exhib-
ited tuning only during the preparatory
period (top), a neuron that exhibited tun-
ing only during the execution period
(middle), and a neuron that exhibited
tuning during both phases (bottom).

Neuronal tuning depends on
prior information
Thus far, we considered only one behav-
ioral condition in which the final target
was already presented by the PS. In this
case, complete information on target di-
rection was available to the monkey
throughout the preparatory period. In the
alternative cases, either two or three adja-
cent targets were presented at PS, of which
only one was chosen randomly to be pre-

sented as RS (Fig. 1). In these cases, therefore, during the prepa-
ratory period prior information about final target direction was
incomplete.

We found that the tuning profiles of neurons were not only
highly dynamic with respect to time, but also depended strongly
on the amount of prior information: For example, the neuron
depicted in Figure 3C exhibited clear tuning during the prepara-
tory period, but no tuning during movement execution in the
one-target condition (top panel). In both conditions of incom-
plete previous target information (bottom two panels), however,
the neuron exhibited tuning after RS: there, the decoding proba-
bility Pc rose to 0.23 around movement onset (MO) in the two-
target condition and to 0.27 in the three-target condition. During
the preparatory period, however, this relationship was reversed:
Pc decreased from a broad maximum of 0.33 in the middle of the
preparatory period in the one-target condition to somewhat
lower maxima of 0.29 and 0.23 early in the preparatory period
in the two- and three-target conditions, respectively. This be-
havior suggests that this neuron dynamically allocated its pro-
cessing power according to the availability of directional
information.

Such dynamic behavior was also reflected in the population
average of Pc across all 112 (monkey 1) and 110 (monkey 2) single
neurons. Figure 4A shows that, starting 150 ms after PS and
throughout the remaining preparatory period, the average de-
coding probability reflected the amount of prior information: Pc

was highest in the complete information condition (black curve)

Figure 4. Dynamic representation of movement direction depends on prior information about the movement target. A, Time-
resolved decoding probability Pc(t), averaged across 112 neurons in monkey 1 (M1; left) and 110 neurons in monkey 2 (PMd; right).
The gray level indicates the amount of prior information available to the monkey after the preparatory signal PS: one target (black),
two targets (dark gray), and three targets (light gray). B, Population average of the single neuron rate profiles for monkey 1 (left)
and monkey 2 (right) in all three conditions of prior information (gray scaled as in A). RS indicates the appearance of the reaction
signal.

Table 2. Correlation between the three tuning measures during the time from PS
to RS � 300 ms

Correlation One target Two targets Three targets

zA versus sA �0.86; �0.82 �0.86; �0.82 �0.86; �0.84
zA versus Pc 0.81; 0.78 0.84; 0.80 0.82; 0.82
sA versus Pc �0.75; �0.66 �0.76; �0.68 �0.75; �0.70

Data are averaged across all neurons of each monkey and given separately for each behavioral condition. The first
number in each entry is for monkey 1, and the second number is for monkey 2.

Rickert et al. • Dynamic Movement Encoding in MC J. Neurosci., November 4, 2009 • 29(44):13870 –13882 • 13875



and lowest in the three-target condition (light gray). After RS, the
condition of complete prior information differed from the con-
ditions of incomplete prior information. For complete prior in-
formation, the maximum in Pc was shallower for both monkeys
and was reached earlier in monkey 1. For incomplete prior infor-
mation, the rise in Pc was steep and reached a higher maximum
value in both monkeys ( p � 0.001, Wilcoxon’s rank sum test).
Again, the alternative measures of tuning strength, z score, and
angular deviation, confirmed this behavior in both monkeys
(Table 1).

Previous findings suggested a net flow of movement relevant
information from premotor areas to M1 (Shen and Alexander,
1997b; Kakei et al., 2001, 2003; Cisek, 2006). Consistent with this
hypothesis, we found that the single-trial decoding probability Pc

in Figure 4A reached its initial plateau earlier (150, 160, 180 ms
after PS for one, two, and three targets) in PMd (monkey 2) than
in M1 (250 ms, all conditions, monkey 1). This is also reflected in
an earlier increase of the average firing rates in monkey 2.

Relationship between neuronal tuning and firing rate
We found that the neuronal tuning and the average firing rates
across directions followed quite different behaviors in time. First,
the time-resolved decoding probability Pc(t) (Fig. 4A) and the
time-resolved average firing rates (Fig. 4B) exhibited different
temporal profiles: the rate peaked earlier, �125–160 ms after PS,
and then dropped to the same level in all three information con-
ditions. In contrast, Pc peaked �150 –250 ms after PS and then
stayed at a different level for each of the three prior information
conditions. Also, in monkey 1, in the complete information con-
dition, Pc rose to a second peak around RS, whereas the rate
remained constant.

Second, the temporal dynamics of rate profiles and decoding
probabilities showed remarkable variations across individual
neurons and across prior information conditions (see examples
in Fig. 3). The neuron in the bottom panel of Figure 3B, for
example, strongly increased its tuning during movement prepa-
ration, whereas its firing rate averaged across directions remained
relatively constant. The neuron depicted in Figure 3C behaved
differently: During the preparatory period of the complete infor-
mation condition, firing rate and decoding probability increased
and decreased in parallel, whereas in the two- and three-target
conditions tuning became weaker or even dropped to chance
level, whereas the rate remained as in the complete information
condition. During the movement period of the two- and three-
target conditions, the relationship of rate and tuning differed
again: now, tuning rose and peaked, whereas the rate decreased or
remained at a low level.

Third, the occurrence of high decoding probability was only
weakly correlated with high firing rates. In supplemental Figure 1
(available at www.jneurosci.org as supplemental material), we
show scatter diagrams of the relationship between firing rate and
Pc at two points in time (150 ms after PS and 150 ms after RS).
High values for Pc occurred for a broad range of firing rates. Vice
versa, high average firing rates resulted in a wide range of decod-
ing probabilities. Across all recorded neurons, firing rates and Pc

were weakly, but significantly, correlated with values between
0.15 and 0.45, depending on time, condition, and monkey (sup-
plemental Fig. 1, available at www.jneurosci.org as supplemental
material).

There are several possible explanations for these observations.
For example, an increase in decoding probability could result
from an increase of the firing rate for the preferred direction and
a decreased rate for the antipreferred direction, leading to no

change in the average firing rate. Or a more dispersed distribution
of firing rates across trials (i.e., a larger trial-by-trial variability)
would lead to more uncertainty of the previous probabilities and
thus to a reduced decoding probability even for a fixed average
firing rate. Likewise, less variability along with reduced firing
rates could lead to increased decoding probabilities with decreas-
ing average rates (see Discussion).

Distribution of tuning strength and tuning duration
To quantify the contribution of individual neurons to the tuning
properties of the neuronal population, we examined the distribu-
tion of tuning strengths and tuning durations in the recorded
neural populations. The time-resolved distribution of decoding
probabilities Pc shown in Figure 5 reveals that at any point in time
after PS only a fraction of neurons exhibited values of Pc above
chance level. The percentage of neurons exhibiting a significant
Pc ( p � 0.001) (see Materials and Methods) at any given point in
time is indicated by the black curves in Figure 5. During the
preparatory period, this fraction increased monotonically with
the amount of prior information: one-target condition, 50% (top
panel); two-target condition, 40% (middle panel); three-target
condition, 20% (bottom panel). For monkey 2, this fraction rose
from �25, 20, and 15% (one-, two- and three-target conditions,
respectively) at the start of the preparatory period to approximate
levels of 50, 40, and 30% at its end. After RS (i.e., during move-

Figure 5. Time-resolved distribution and proportion of significant single-trial decoding
probabilities for the population of 112 neurons in monkey 1. The color code indicates for each
point in time t (abscissa) the probability distribution of decoding probabilities Pc(t) (left ordi-
nate) as computed for all 112 neurons. The hot colors indicate a peak in the distribution, and the
cool colors indicate a low probability to observe a given value of Pc; white color reflects proba-
bilities �0.01. The black curve indicates the percentage of significantly ( p � 0.001) tuned
neurons (right ordinate) as a function of time. Before PS the number of significantly tuned
neurons is zero, and the distribution of Pc values is centered at the chance level (1/6). During the
preparatory period, the fraction of significantly tuned neurons reaches the highest level for the
one-target condition (top) and the lowest for the three-target condition (bottom). The distri-
bution of Pc is skewed, and most neurons exhibit only small decoding probabilities. During
movement execution (after PS), the fraction of significantly tuned neurons rises and peaks at
�60% in the complete information condition and 70% in the two- and three-target conditions.
At the same time, more neurons show stronger tuning in the conditions in which directional
information was incomplete before RS than in the one-target condition.
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ment execution), we found for both monkeys that the fraction of
neurons with a significant decoding probability was higher in the
two- and three-target conditions than in the condition of com-
plete prior information. At the same time, also the absolute values
of Pc were higher for two or three presented targets than for one
target only.

We saw that individual neurons exhibited a characteristic
temporal modulation of their tuning strength (see temporal pro-
files in Fig. 3). Therefore, the contribution of each individual
neuron to the population average (Figs. 4, 5) changed over time.
To quantify the single neuron contribution statistically, we
counted for each cell the uninterrupted episodes of significant
tuning ( p � 0.001, see Materials and Methods) and measured
their durations. For this analysis, we pooled all neurons from
both monkeys. We found that, in any of the three information
conditions, �10% of all neurons never reached significance
throughout the task. Generally, the numbers of significant epi-
sodes per neuron (Fig. 6A) were similar for the three behavioral
conditions: the majority of the neurons exhibited one or two
episodes of significant tuning (55, 56, and 53% of all neurons in
the one-, two-, and three-target condition, respectively). Their
duration of uninterrupted episodes varied with the behavioral
condition (Fig. 6B): most often it was quite short (mean duration
�300 ms in 63, 73, or 86% of all neurons in the one-, two-, or
three-target condition, respectively). For complete target infor-
mation, a considerable fraction of 12% of all cells exhibited long
tuning episodes, lasting for at least 900 ms. This means that these
neurons stayed tuned during a long fraction of the preparatory
period, and also during most of the movement execution phase.
One such example is shown in Figure 3B (bottom panel). In the
two- and three-target conditions, in contrast, in which move-
ment preparation could only be completed after RS, the fraction
of neurons exhibiting long tuning episodes (�900 ms) dropped
to 7 and 2%, respectively. Together, the distribution of tuning
strength and tuning duration in the recorded neurons shows that
(1) at any time only a few neurons are significantly tuned, and (2)
individual neurons are tuned at different instances in time. Thus,
directional information is distributed across a subset of neurons
and the composition of this neuronal ensemble varies over time.

Effect of prior information on population coding
How accurately can we infer the direction of movement dur-
ing movement preparation and execution from single-trial

activity of a population of neurons? To
measure this, we constructed a pseu-
dopopulation by randomly selecting N
neurons from all recorded single neu-
rons in one monkey. For a given degree
of prior information, we then randomly
selected one trial per neuron, each cor-
responding to the same movement
direction. From this N-tuple of single-
trial rate profiles, we estimated the aver-
age time-resolved decoding probability
Pc(t). This procedure was then repeated
with different nonoverlapping subsets
of N neurons to obtain the average de-
coding probability for a given popula-
tion size N (see Materials and Methods).
By varying the number N, we measured
the dependence of decoding probability
on population size; results are shown in
Figure 7.

As expected, Pc increased monotoni-
cally with neuron population size (Fig. 7A). During the prepara-
tory period, Pc is naturally bounded by the amount of prior
information available to the monkey. Thus, in the three-target
case, the final direction was predetermined with a probability of
1/3 (and 1/2 in the two-target case, respectively) as indicated by
the dash-dotted lines in Figure 7. In all three prior information
conditions, a population size of �50 –100 randomly selected
neurons was sufficient to reach this upper bound already shortly
(�200 ms) after PS, the directional information remained at this
level throughout the preparatory period. The average Pc during
the preparatory period (beginning 150 ms after PS) for 100 neu-
rons in the complete information condition was 0.90 (0.79) for
monkey 1 (monkey 2). In the two- and three-target conditions,
decoding probabilities of 0.49 (0.42) and 0.30 (0.29) were
achieved. Shortly after the RS, when complete target information
was available in all conditions, the decoding probabilities as-
sumed values �0.98 for both monkeys in all conditions. Note the
increased variations in the decoding probability for larger popu-
lation sizes. This is because these curves were necessarily based
on averages over fewer pseudopopulations, resulting in noisier
curves. Note also that, in our analysis without error trials, Pc

values near the upper bound in all three conditions (Fig. 7A)
also indicate that the motor cortex accurately represented the
instruction stimuli of all three conditions. Pc values for stim-
ulus decoding here reached values close to unity also for the
two- and three-target conditions (supplemental Fig. 3, avail-
able at www.jneurosci.org as supplemental material).

Taking account of the distribution of tuning strength and
tuning duration (Figs. 5, 6), the decoding probability of the neu-
ronal population is based on neurons of which only a fraction of
�20 –50% is significantly tuned at any point in time. Of these
neurons, only a few showed a high level of tuning strength,
whereas most neurons were weak encoders of movement di-
rection [consistent with previous results (Wessberg et al.,
2000; Mehring et al., 2003; Hatsopoulos et al., 2004)]. To
illustrate the potential gain by selecting a small neural ensem-
ble, we picked the 10 neurons that exhibited the highest time-
averaged Pc during the preparatory period and found that their
decoding probability was comparable with that of 50 randomly
chosen neurons (supplemental Fig. 4, available at www.jneurosci.
org as supplemental material).

Figure 6. Distribution of number and duration of episodes with significant tuning across all neurons from both monkeys (N �
222 for each prior information condition). A, Histogram of the number of episodes per neuron in which the decoding probability Pc

was above chance ( p � 0.001) (see text for additional explanation). B, Histogram of the mean duration of the episodes in A. Bar
gray levels represent the amount of prior information as indicated.
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For all decoding probabilities computed thus far, the trials
comprising the training data were taken from the same prior
information condition as the test trials (i.e., the context was as-
sumed to be known). With regard to a more general approach,
such decoding strategy requires that the condition of the test trial
is known and training data for this condition are available. In
practical applications (e.g., for brain–machine interfacing), this
requirement may not always be satisfied. We therefore examined
the decoding probability also for two alternative scenarios.

First, we investigated generalization. For this, we computed
the decoding probability when the training trials were exclusively
taken from a different experimental condition than the test trials.
This reflects the case in which a decoding algorithm is forced
to generalize from one particular experimental condition
(training data) to a different condition (test data). Figure 7B
shows that generalization (red curves) led to a considerably de-
creased decoding probability compared with the case of a known
context (black curves), both during preparation and execution of
movement.

Second, we computed the decoding probability when the
training trials were pooled from all three prior information con-
ditions (context unknown). This reflects the case in which the
decoding algorithm was trained with data from multiple condi-
tions, but the specific context of the test trial is unknown. We
found that the decoding probability (Fig. 7C, green curve) was
again lower (but less so than compared with the generalization
scenario) (Fig. 7B) than in the case of a known context (black) in

which training and test trials were taken from the same condition
only. Thus, the threefold increase in the number of training trials
obtained by pooling over conditions could not fully compensate
for the increased variability in the training set. With a population
size of 50 neurons, however, decoding probabilities were nearly as
good as in the control case. Only for test trials belonging to the
complete information condition, the decoding probability was
still considerably reduced during the preparatory phase.

Note that, for the analyses in Figure 7, B and C, trials were
aligned to MO rather than to the PS, because we wanted to com-
pare Pc(t) during the movement period, and to better eliminate
the latency variability across trials and information conditions
(see Materials and Methods). For the case of a known context
(black curves), the alignment to either MO (Fig. 7B,C) or PS (Fig.
7A) yielded approximately equal decoding probabilities.

The difference in performance of our decoding procedure for
different training scenarios is summarized in Figure 8. It shows
that both scenarios, generalization and, to a lesser degree, context
unknown, consistently lead to decreased decoding probabilities
compared with the standard context known scenario. However,
for higher numbers of neurons, the performance for context un-
known was almost as good as for context known, and much better
than for generalization.

Decoding task time and movement direction
Our data show that both single neuron activity and tuning
strength typically change in time during a trial (see sample neu-

Figure 7. Decoding movement direction from a neuronal population (monkey 1). A, Increase in decoding probability with population size (computed every 50 ms). Decoding probabilities are
shown for a prediction using 1, 5, 10, 20, 50, and 100 neurons, respectively. Each panel shows the results for one prior information condition (from top to bottom: complete, two targets, three
targets). Neurons were chosen randomly from the pool of neurons characterized by the distributions in Figure 5. Each neuron contributed only once to a population of a given size. In each panel, the
dotted line depicts the chance level of decoding, and the dash-dotted line reflects the amount of prior information given to the monkey. B, Decrease in decoding probability when the training trials
came from a disjoint information condition (red curves). The black curves show the decoding probabilities obtained, when test and training trials were obtained from the same condition. Populations
of 10 and 50 neurons size were compared. From top to bottom, test trials belonging to one-target, two-target, and three-target conditions. Data were aligned to MO. The dotted and dash-dotted
lines are as in A. C, Comparison of decoding probabilities when the training trials were comprised of all three experimental conditions (green curves). Otherwise, as in B. See text for additional
explanation. Note that the decoding probabilities obtained for larger population sizes were based on averages over fewer pseudopopulations, which resulted in noisier curves.
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rons in Figs. 2, 3). We therefore examined how well task time
itself can be inferred from single-trial firing rates. Figure 9A
shows that task time (i.e., the point in time within a given trial as
defined by the time frame of the experiment) can be decoded
from the firing rates of neuronal populations. The time accura-
cies reached levels of �20 –100 ms for a population size of 100
neurons. Specifically, by finding the minimal squared difference
between the population firing rates at the test trial and the mean
time-resolved firing rates of each neuron (see Materials and
Methods), theaverageaccuracies reached a minimum of 55, 58, and
56 ms during the preparatory phase (for one-, two-, and three-
target conditions), and 42, 25, and 28 ms on average during
movement execution (one-, two-, and three-target conditions) in
monkey 1 (Fig. 9A). Monkey 2 displays a notably weaker time
encoding during the preparatory phase (112, 113, and 128 ms for
one-, two-, and three-target conditions) and stronger time en-
coding in the execution phase (29, 23, and 17 ms for one-, two-,
and three-target conditions). This characteristic matches the
weaker direction encoding during movement preparation and
stronger direction encoding during execution in monkey 2.
Studying the time course of the accuracy of time coding, it turns
out to be higher around behaviorally relevant time points (i.e., PS
and RS) than before PS or in-between PS and RS.

Our previous approach of decoding movement direction, as
computed in Figures 3–7, considered firing rates of the training
data and of the test trial that were sampled at the same point in
task time (i.e., the precise task time was assumed to be known and
available to the decoding algorithm). In a second approach, we
therefore examined whether one can in a first step decode task
time and in a second step decode movement direction by select-
ing the training set on the basis of the decoded task time. Figure
9B shows the resulting decoding probabilities for populations of
10 and 50 neurons in all three prior information conditions (blue
curves) compared with the standard approach in which time is
known (black curves). As can be seen, movement direction can
indeed be decoded without explicit knowledge of the task time
from which the single-trial test data were taken, but at the price of
a decreased accuracy. The notable decrease in Pc(t) when time
was chosen with rather small imprecision (�100 ms) emphasizes

the strong time-dependent characteristics
of neuronal tuning properties.

Discussion
Dynamic encoding of
movement direction
In both monkeys, single neuron tuning
profiles could not easily be sorted into
clear-cut categories with respect to num-
ber, starting time, and duration of signif-
icantly tuned episodes but rather
described a continuum. Such heterogene-
ity of tuning properties has been previ-
ously described in the premotor and
primary motor cortex (Shen and Alex-
ander, 1997a,b; Cisek and Kalaska, 2005;
Churchland and Shenoy, 2007). Here, we
showed that this heterogeneity extends
into the time domain. Statistically, most
neurons exhibited one or two rather short
(�250 ms) uninterrupted episodes dur-
ing which the preferred direction typically
remained stable. In both monkeys, a frac-
tion of �10% of all neurons showed an
early increase in tuning strength shortly

after PS, and then stayed tuned above chance level throughout the
trial. This behavior is reminiscent of neurons involved in working
memory, as described, for example, in prefrontal cortex (for re-
view, see Romo and Salinas, 2003). In our experiments, however,
the monkeys did not have to actively memorize the visual target
cue, as it was present throughout the preparatory period. The
tuning profiles of individual neurons were strongly modulated by
the prior information about the upcoming movement. This was
true also during movement execution (Fig. 3C), even though the
RS and the executed movement were the same in all three condi-
tions. This suggests that movement representation in the motor cor-
tex is not organized according to “one movement– one code” and
extends prior results on the influence of contextual information
on movement parameter encoding (Georgopoulos et al., 1989;
Riehle et al., 1997; Bastian et al., 1998, 2003; Hepp-Reymond et
al., 1999; Roux et al., 2003; Cisek and Kalaska, 2005).

Combining both aspects of directional tuning, its modulation
in time, and its dependence on prior information, leads us to the
following interpretation of our data: During a delayed reach-
ing task, computational demands vary with time. When the
initial information is made available with PS, movement prepa-
ration starts and, in the case of complete target information, may
be completed before RS. The initial peak of the average firing rate
observed 150 –200 ms after PS (Fig. 4) may, thus, reflect a high
computational load on cells involved in movement preparation
(“preprocessing” neurons) (Riehle and Requin, 1989; Riehle,
2005). With incomplete prior information, movement prepara-
tion could not be completed before the RS resolved the ambi-
guity in target location. In our interpretation, this additional
information again created an increased computational demand,
requiring additional neuronal resources for movement planning.
This view is directly supported by the observation that the peak
values of average firing rate and tuning strength after RS were
higher for incomplete prior information conditions compared
with the one-target case (Fig. 4) even though the same RS was
presented in all three conditions.

The decoding probability increased monotonically with neu-
ronal population size (Fig. 7; supplemental Fig. 3, available at

Figure 8. Relationship of decoding probability with population size and prior information conditions used to train the decoder.
Black bars, Training data taken from the same condition as test data only (context known); green bars, training data combined from
all three conditions (context unknown); red bars, training data taken from a condition different from the test data (generalization).
Computation performed for the firing rates at movement onset.
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www.jneurosci.org as supplemental ma-
terial) and reached average probabilities
Pc � 0.98 for the correct decoding of
movement direction around movement
onset for 100 neurons. Throughout the
preparatory period, the neuronal popula-
tion accurately reflected the stimulus
(supplemental Fig. 3, available at www.
jneurosci.org as supplemental material)
and, likewise, the degree of prior infor-
mation about the final movement target
(Fig. 7).

From a computational perspective,
our results suggest that, after PS, the mo-
tor cortex prepares a movement as early
and accurately as possible, based on the
available information.

Cisek and Kalaska (2005) raised the
question whether, in case of ambiguous
target information, the motor cortex pre-
pares alternative movements simulta-
neously, or whether it adopts a “guess and
switch” rule, in which only one movement
is prepared (guess), which after final tar-
get specification is possibly switched. In
their experiment, the monkey was con-
fronted with two opposite (i.e., conflict-
ing) movement targets, and their analysis
supports the former model of simulta-
neous encoding. In our experiment, two
or three adjacent targets increased the an-
gle of possible movement direction. Thus,
target information was not causing a con-
flict, but rather an inaccuracy. This opens
the possibility for an alternative strategy,
in which the motor cortex prepares the
movement less precisely in the case of in-
complete information.

Trial-by-trial variability and “optimal
subspace hypothesis”
Trial-by-trial variability of single-neuron
activity in the motor cortex changes with time and in relation to
behavior (Oram et al., 2001; Nawrot et al., 2003, 2008; Church-
land et al., 2006; Nawrot, 2009; Ponce-Alvarez et al., 2009). Pre-
vious analyses of our data showed that, in both monkeys, the
initially high single-neuron variability dropped sharply shortly af-
ter PS, and again shortly after RS (Nawrot et al., 2000, 2001;
Rotter et al., 2005). Therefore, the increase in Pc observed after PS
and again after RS (Figs. 4, 5, 7) results from a combination of
decreased variability and increased directional modulation of fir-
ing rates.

Churchland et al. (2006) formulated the optimal subspace hy-
pothesis for movement preparation in the premotor and primary
motor cortex. According to this hypothesis, each movement plan
is represented by the activity of an adequate neuronal ensemble
that occupies a subspace in the high-dimensional space of all
possible activity patterns. After a target comes up, movement
preparation leads to a gradually refined representation of the
planned movement until the pattern of neuronal ensemble activ-
ity occupies the relevant subspace, resulting in the desired accu-
racy for a correct movement execution. The authors based their
hypothesis on observations of neuronal variability matching with

ours: variability decreased with the occurrence of a preparatory
cue, and again with the GO cue. Additionally, we found in both
monkeys an increase in variability during movement preparation
from one target to two and three targets (supplemental Fig. 5,
available at www.jneurosci.org as supplemental material) (Nawrot
et al., 2009). Thus, our results support the optimal subspace
hypothesis: in the two- and three-target condition, movement
preparation could only be refined to a certain stage and, thus,
occupied a subspace that is more extended than the optimal sub-
space associated with a unique movement direction.

Interpretational issues
There is strong evidence that processes associated with sensory-
motor transformations are reflected in the activity of motor cor-
tical neurons (Murata et al., 1997; Shen and Alexander, 1997a,b;
Zhang et al., 1997; Kakei et al., 2003; Paz et al., 2003; Schwartz et
al., 2004; Cisek and Kalaska, 2005). For example, it has been
shown that, early in the preparatory period, neurons in PMd and
M1 are preferentially tuned to the location of a visual target, and
then gradually shift their tuning to movement direction (Shen
and Alexander, 1997a,b; Zhang et al., 1997). Thus, the observed
time-dependent involvement of neurons as discussed above may

Figure 9. Inference of task time (A) and decoding of movement direction based on inferred task time (B) in monkey 1. A, The
accuracy of the inferred task time T increased with neuronal population size. Mean accuracy, computed in steps of 50 ms, is shown
for population sizes of 5, 10, 20, 50, and 100 neurons. The dotted curve depicts the chance level, which is time dependent because
larger errors can occur at the beginning and at the end of a trial. Before PS and after RS, chance level is �500 ms. Neurons were
chosen randomly as described in Figure 7A. B, Probabilities Pc(t) for decoding movement direction when the training data are
chosen from a time point previously inferred from the test data (blue curves) are compared with the standard decoding approach
when the correct time of the test data is assumed to be known (black curves) (compare Fig. 7A). Results for populations of 10 and
50 neurons are as indicated. The dotted and dash-dotted lines are as in Figure 7. Increased variation in the decoding probability
across different points in time for larger population sizes is attributable to the reduced number of random populations that could
be used. From top to bottom in A and B, One-, two-, and three-target conditions.
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to some extent reflect a transformation from a stimulus represen-
tation in form of a visual target to a representation of motor
output. It cannot be completely ruled out, however, that the re-
corded activities were, at least partially, influenced by additional
factors, in particular the visual stimulus itself, eye movements, or
attentional effects. However, we are convinced that our findings
cannot be explained by these effects alone. The encoding of a
visual stimulus could not explain why firing rates and tuning
strengths are elevated at the end of the preparatory period, and
why this late preparatory activity is correlated with reaction time
(Riehle and Requin, 1993). Eye movements were reported to af-
fect motor cortical activity (Boussaoud, 1995; Baker et al., 1999),
but are unlikely to exert a major effect in our data since eye
movements after PS were phasic and nonsystematic during the
preparatory period (A. Riehle, unpublished observations). Simi-
larly, attention is known to affect activity in premotor cortex
(Boussaoud, 2001), but a dominant role of attention is contra-
dicted by our finding of higher activities and less variability
during the preparatory period in the complete information con-
dition compared with both incomplete information conditions,
in which attention would be expected to be higher.

Relevance for brain–machine interfaces
Our results suggest that, during movement preparation and exe-
cution, single-trial firing rates of 50 –100 randomly chosen, or of
�10 selected (supplemental Fig. 4, available at www.jneurosci.
org as supplemental material) motor cortical neurons could al-
low an essentially error-free decoding of a two-dimensional
movement direction. These numbers lie within the previously
reported range of �10 –20 neurons (Serruya et al., 2002; Taylor et
al., 2002), and several tens to hundreds of neurons (Wessberg et
al., 2000; Carmena et al., 2003; Musallam et al., 2004). In addi-
tion, we could show that it is feasible to jointly decode direction
and task time albeit at a significant cost in performance for direc-
tion decoding [complementing the results of Achtman et al.
(2007)]. Both results could be of practical relevance for future
BMI applications in patients (Hochberg et al., 2006). Under re-
alistic conditions, the time until the execution of an intended
movement could be an important additional parameter to be
estimated. Also, it will likely be advantageous for subjects that
operate a brain-controlled prosthesis to make full use of contex-
tual information, because it may help planning and executing a
desired (prosthetic) limb movement. A first step to improve de-
coder performance could be its training in different context set-
tings. In our off-line analyses, training with the pooled data from
all three information conditions (context unknown) (Fig. 7B)
allowed to partly compensate for the lack of knowledge about the
actual condition. Models for decoding complex movements
therefore might have to take into account various contextual
parameters to successfully operate a BMI. Here, neuronal ac-
tivity recorded from other brain areas may contribute to suc-
cessfully decode context-related information (Shenoy et al.,
2003; Musallam et al., 2004).
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