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Irregular ongoing activity in cortical networks is often modeled as arising from recurrent connectivity. Yet it remains unclear to what
extentits presence corrupts sensory signal transmission and network computational capabilities. In a recurrent cortical-like network, we
have determined the activity patterns that are better transmitted and self-sustained by the network. We show that reproducible spiking
and subthreshold dynamics can be triggered if the statistics of the imposed external drive are consistent with patterns previously seen in
the ongoing activity. A subset of neurons in the network, constrained to replay temporal pattern segments extracted from the recorded
ongoing activity of the same network, reliably drives the remaining, free-running neurons to call the rest of the pattern. Comparison with
surrogate Poisson patterns indicates that the efficiency of the recall and completion process depends on the similarity between the
statistical properties of the input with previous ongoing activity The reliability of evoked dynamics in recurrent networks is thus
dependent on the stimulus used, and we propose that the similarity between spontaneous and evoked activity in sensory cortical areas
could be a signature of efficient transmission and propagation across cortical networks.

Introduction

When injecting fluctuating current inputs into the soma of a
neuron recorded in vitro, the spiking response is highly reliable
(Mainen and Sejnowski, 1995). Such results, however, have been
difficult to reproduce in vivo (Holt et al., 1996). The reason for
this discrepancy is that much of the response variability observed
in vivo seems to originate from the background activity (Arieli et
al., 1996; DeWeese et al., 2005). Even in the absence of external
drive, this ongoing neuronal activity is highly irregular (Timofeev
et al., 2000), although the discharge statistics are still a matter of
debate (Kenet et al., 2003; Fiser et al., 2004; Goldberg et al., 2004).
Generic recurrent networks are a good model for understand-
ing the possible interactions between ongoing and evoked ac-
tivity in neocortical networks. Characterized by large, sparsely
connected, excitatory and inhibitory populations, they can
display a stable, self-generated regime called asynchronous
irregular (AI) (van Vreeswijk and Sompolinsky, 1996; Brunel,
2000; Vogels et al., 2005; El Boustani and Destexhe, 2009a), which
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resembles the spontaneous activity observed in vivo. The central
functional issue, as yet unsolved, is to characterize the sensitivity
of these networks to external inputs (Destexhe and Contreras,
2006; Banerjee et al., 2008).

These recurrent Al networks are highly sensitive to small per-
turbations. As a consequence, propagation of either an increase
in firing rate (Vogels et al., 2005) or a pulse of synchronized
activity (Aviel et al., 2003; Mehring et al., 2003) is severely im-
paired by the ongoing activity, and in general this high variability
and instability presents a severe challenge to information trans-
mission or processing in recurrent networks. To achieve reliable
signal propagation, these earlier studies introduced specific con-
straints in the network structure, either by selectively and sub-
stantially increasing synaptic weights (Vogels et al., 2005) or by
adding connections (Mehring et al., 2003; Kumar et al., 2008)
along a predetermined propagation path. Even in this latter case,
the synfire chain stimulation can induce “synfire explosions,”
which can subsequently silence the network activity.

While previous studies adapted the network connectivity to im-
prove the transmission of the chosen (a priori) input patterns, we
explored the converse approach: leave the network structure un-
changed and find the activity patterns that are better transmitted and
sustained by the network. Several experimental studies have shown a
similarity between spontaneous and evoked cortical activity
(Tsodyks et al., 1999; Kenet et al., 2003; Fiser et al., 2004). From the
theoretical point of view, the irregular and sustained patterns found
in ongoing activity are by definition highly compatible with the re-
current architecture of the neocortical network. We have designed a
new stimulation paradigm, in which we drive part of the network
with temporal pattern segments extracted from the recorded ongo-
ing activity of the exact same network. This gives inputs which mimic
the spontaneous activity of the network model. We refer to this as the
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“frozen paradigm.” In this article, we show using simulations that
our paradigm produces efficient transmission, which is preserved
over a broad range of parameters. To investigate the factors affecting
transmission efficiency in the network, we performed further simu-
lations with control, surrogate stimuli. Finally, we discuss the biolog-
ical relevance of this paradigm.

Materials and Methods

Spiking network model

Neuron model. Networks are composed of 10,000 leaky integrate-and-fire
neurons. Each neuron has membrane time constant 7,,, = 20 ms, and resting
membrane potential V., = —60 mV. When V, reaches the spiking thresh-
old Viy,..sn = —50 mV, a spike is generated and the membrane potential is
held at the resting potential for a refractory period of duration 7, = 5 ms.
Synaptic connections are modeled as conductance changes, resulting in a
model similar to the Conductance-Based, Integrate and Fire models case in
the study by Vogels et al. (2005):

dv(t) 3

7 - (Vrcsl - V(t)) + gcxc(t)(Eexc - V(t))

Tm

+ ginh(t)(Einh - V(t)) (1)

Reversal potentials are E,,. = 0 mV and E;;, = —80 mV, and synaptic
activation is modeled as a conductance step ¢ — ¢ + 8¢ followed by
exponential decay with time constants 7,,. = 5 ms and 7;,;, = 10 ms. The
integration time step of our simulations is 0.1 ms (reducing the time step
to 0.01 ms was found to produce no qualitative change in the network
behavior), and synaptic delays are set to 0.1 ms.

Network connectivity. The network is composed of 8000 excitatory and
2000 inhibitory neurons, sparsely and randomly connected, with a con-
nection probability of 2% (Vogels et al., 2005), independent of the iden-
tity of the target. While this connectivity ratio is at odds with anatomical
data on neocortical connectivity [which shows a connectivity ratio of
around 10%, and a dependence on the target cell type (Binzegger et al.,
2004)], it allows a realistic pattern of activity to be generated and sus-
tained, while higher connectivity ratios fail to do so (Vogels et al., 2005).
We also note that for models with dynamic synapses (Markram and
Tsodyks, 1996), due to the depression of synaptic strength of intracor-
tical excitatory synapses which is dominantly reported in vitro
(Thomson and West, 1993), there are fewer effective synapses than in
the anatomical data, making the effective connectivity closer to that
used in our simulations.

Synaptic parameters and network regime. Network global states are
defined as either synchronous or asynchronous (population view-
point) and as either regular or irregular (neuron viewpoint). For
Figures 1-4, the network is set to an asynchronous irregular state
(Brunel, 2000) at 13 Hz with a mean interspike interval (ISI) coefficient
of variation (CV) of 1.57. Synaptic parameters are as follows: 8g... = 6 nS
and 8g;,,,, = 61 nS. Weights are drawn from Gaussian distributions
N( gexor Zexc!3) and N( ginn»> Ginn/3)> With negative values discarded and
then redrawn. To initiate the self-sustained activity, 5% of the cells re-
ceive an initial 50 ms burst of activity at 100 Hz.

Measures. To quantify the similarity between the “free-running” and
“target” activity patterns, we calculated the recall index defined as the
normalized cross-correlation of the target and actual spike trains
(Aertsen et al., 1989) for a random sample of 500 cells, for zero phase
delay and a time bin of 5 ms. We consider two spike trains of N = 500
neurons, binned with a time bin ¢ equal to the refractory period of the
neuron (here, 6t = 5 ms), obtained during two different trials. S, and S,
are two matrices of size N X N,; ., with Ny, .. = T/8t, T being the length
of the spike trains. Note that S are binary matrices: for each (i, j) € N X
Npine Sij € 10, 1}. The recall index p,, is given by the following formula:

_ <51S2> - <Sl><S2>
\/<51>(1 - <S]>)<SZ>(1 - <Sz>)

where () denotes the average number of filled bins per matrix. Since Sis a
binary matrix, we are sure that (S) < 1.

(2)
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To estimate the reliability (reproducibility) of the neural responses for
different kinds of stimuli, we computed the mean of the paired normal-
ized cross-correlations between the trials (n = 10) (Schreiber et al.,
2003), with the same time bin. Error bars were computed by using dif-
ferent stimulation patterns (n = 10).

Signal-to-noise ratio for the binned spiking activity. We chose a measure
which can be directly related to the reliability and mean firing rates
previously estimated. The signal S was given by the mean firing rate m
multiplied by the time bin A#: S = mAt. The noise N was given by the
standard deviation of the responses to the same stimulation. These values
were estimated with the same time bin as the reliability to ensure a straight-
forward relationship between the two. If X! € {0; 1} represents the binned re-
sponse at time t, for the 7th trial, the noise N'is such that the following is true:

1 1 2
N2 = <n2(x - n}j‘,xj) > (3)

where 1 is the number of trials. Remarking that, since the bin size is small,
X; = X7, and that (X;), = S, we obtain the following;

1
N:(l—;>(S—C), (4)

where C = (X,X)),. According to Palm et al. (1988), C = rS(1 — §) + S?,
where r is the reliability estimated above as the normalized cross-
correlation between trials. The signal-to-noise ratio (SNR) is then the
mean over the standard deviation, such that the following is true:

S
2
SNR e EGER (5)
Note that we drop the (1 — 1/n) factor, which will affect all the estima-
tions in the same manner, and will reach one for an infinite number of
trials. This is not problematic for our comparative study.

Distance between spike trains. to test the noise resistance, we used the
Victor-Purpura distance (Victor and Purpura, 1996), which has the ad-
vantage of avoiding any binning artifact. Briefly, costs are assigned to
three elementary operations over spike trains: changing the timing of a
spike from t, to t, (cost = gl|t, — #,]), adding a spike (cost = 1), and
deleting a spike (cost = 1). The distance between two spike trains S, and
Sp is then defined as the least costly way of combining these three ele-
mentary operations to change spike train S, into spike train Sg. This
distance is dependent only on g, and this parameter is the cost for shifting
the spikes when matching two spike trains. If ¢ = 0, shifting spikes has no
effect on the measure, so only the number of spikes will influence the
distance between the two spike trains. Increasing q gives more impor-
tance to the precise spike times relative to their number. In our study, we
estimated the distance between the two spike trains emitted by a same cell
in response two different stimuli (the real pattern vs the jittered version
of it), and averaged this estimation over n = 500 cells.

Simulator. All simulations were performed using the NEST simulator
(Diesmann and Gewaltig, 2001) version 1.9 (http://www.nest-initiative.
uni-freiburg.de), using the PyNN interface (Davison et al., 2008)
(http://neuralensemble.org/PyNN). The code for the model is freely
available from ModelDB (http://senselab.med.yale.edu/ModelDB/) and
on the UNIC website (http://www.unic.cnrs-gif.fr).

Neural field model

The model consists of Nlocal “neural fields” defined by inputs #; and outputs
S; = tanh( gh;). Their dynamics are given by Equation 1, above. All results
given in this paper used N = 2000 neural fields. The frozen paradigm was
applied by imposing the values of the h; of a subset of neural fields.

Results

Convergence of the network activity to a target

activity pattern

The frozen paradigm is implemented as follows: We divide our
recurrent network into two populations. The selection of which
neuron belongs to which population is made at random and the
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connectivity of two neurons is indepen-
dent of which populations they belong to.
We first record a spontaneous pattern
across the whole network (both popula-
tions) and then, while the spontaneous ac-
tivity is ongoing, we force the neurons of
one population to replay the sequence of
spontaneous activity previously recorded
(see Fig. 1a). We then measure the extent
to which these clamped, or frozen, cells
influences the free-running neurons to re-
play the spontaneous pattern previously
recorded (see Fig. 1a). Replay of the re-
corded pattern by the free-running neu-
rons is then equivalent to the recall of that
pattern in the network.

We applied our paradigm to a sparsely
connected, recurrent network of 8000 ex-

Free-running neurons

Clamped neurons
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mean ISI CV of 1.57. It has been shown
that, although the activity of this network
appears very irregular on small time
scales, where it cannot be distinguished

from stochastic behavior, it can exhibit
more coherent behavior at large time
scales, where the dimensionality of the at-
tractor can be reduced (El Boustani and
Destexhe, 2009b). Figure 2 shows an ex-
ample of the dependency on initial condi-
tions in this network model: two initially
identical trajectories quickly diverge after
a perturbation as small as a single spike
elicited in the same neuron. This diver-
gence is characteristic of a chaotic net-
work, and has already been observed and studied in several
recurrent network models [see also Sompolinsky et al. (1988) and
van Vreeswijk and Sompolinsky (1998, 2005)].

When 50% of the neurons are forced to replay a spontaneous
pattern recorded previously (Fig. 1a, blue), the spiking activity of
the free-running neurons (yellow) converges reliably to the target
activity (red): repetitions of the same stimulation elicit temporally
precise and reproducible spikes characterized by their temporal
alignment across repetitions (Fig. 1b). The subthreshold membrane
potentials V., (Fig. 1¢) of the free-running neurons closely follow the
target activity waveforms (red) as soon as the input-recipient popu-
lation is frozen. Note also the immediate reduction in the stimulus-
locked variance following the “freeze” onset.

We quantified these observations with two measures. The re-
call index is a measure of how closely the free-running neurons of
the network reproduce the target pattern (the previously re-
corded segment of spontaneous activity). It is defined as the
cross-correlation between the target activity pattern and the re-
sponse of the free-running neurons. The reliability is a measure
of the variability of responses during frozen stimulation: the
lower the variability the higher the reliability. It is defined as the

Figure 1.

Time [ms]

a, Conceptual schema of the “frozen paradigm.” A spontaneous pattern is recorded (top panel), and then a subset of
neurons (labeled “frozen”; blue neurons and blue spikes) is forced to replay part of the pattern. We then examined whether the
remaining, free-running neurons (yellow spikes) reliably reproduce the other part of the spontaneous pattern, which we label the
“target” pattern (red spikes) (see Results for details). b, Raster plot of responses of free-running neurons to the frozen stimulation.
Each white or gray band represents the activity of one free-running neuron. Short vertical lines represent spikes. The red spikes are
from the target pattern, and each row of black spikes represents a different trial with the same stimulation pattern but a different
initial state of the network. ¢, Superimposed V,, traces of responses to the same frozen stimulation, for one free-running neuron.
The red trace indicates the target activity.

mean cross-correlation between pairs of responses to the same
frozen stimulus (see Materials and Methods for full details). Fol-
lowing the onset of stimulation, the recall index increases, within
a time of ~50 ms that is independent of the proportion of frozen
neurons, to a steady-state value (Fig. 3), reflecting a rapid con-
vergence of the free-running activity to the target pattern. The
recall index decays equally rapidly following the end of the stim-
ulation. The firing rate averaged over the neuronal population
(Fig. 3a, bottom panel) remains constant over time. The frozen
stimulation thus preserves the statistics of the ongoing activity
while eliciting a reproducible and faithful replay, extended over
the full network, of the target pattern.

The steady-state value of the recall index measure is depen-
dent on the proportion of frozen neurons (see Fig. 3b). As ex-
pected, the recall index increases when the proportion of frozen
neurons increases, whether these are excitatory or inhibitory, ex-
cept in a region where the low proportion of inhibitory free-
running neurons evokes a transition to a “synchronous regular”
regime or a quasisilent state, which are insensitive to the stimulus.
The proportion of frozen inhibitory neurons affects the recall
index more than does that of frozen excitatory neurons, which is
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dynamic cooperation between the frozen
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conditions as a function of time.

probably related to the higher weights of inhibitory synapses in
this model (8¢, = 6 nS, 8¢;,,, = 61 nS; see Materials and Meth-
ods). The recall index is insensitive to the particular pattern cho-
sen for stimulation and to the initial conditions (ANOVA, p > 0.5
for both pattern and initial condition dependencies), with a stan-
dard deviation approximately constant over the whole bidimen-
sional plot shown in Figure 30 (0.006 on average). This absence of
sensitivity to the timing of the stimulation relative to the ongoing
activity is probably a consequence of the irregularity of the net-
work activity: there is no clear oscillatory behavior which could
induce a phase dependency, and our stimulation is not related to
a particular frequency to which the response would lock.

To check whether the frozen stimulation always makes the
network converge to the target pattern, we compared the values
of the recall index and of the reliability for the same stimulation
repeated several times. Convergence to a different pattern would
lead to a reliability significantly higher than recall index, but we
did not find any significant difference ( p > 0.4, t test, n = 10),
proving that the activity converges in all cases to the target pat-
tern. Our results thus demonstrate that the frozen stimulation
induces robust convergence for a large enough frozen population.

The importance of the recurrent architecture in this behavior
was confirmed by a control experiment in which the connections
between free-running neurons were cut and a stochastic current
of equivalent mean amplitude injected into the neurons (Fig. 3¢).
The injected current is independent over all neurons. The mean
firing rate received by each neuron is thus preserved, while the
interactions between stimulation and recurrent architecture are
suppressed. For a frozen proportion of 50%, the reliability drops
from 0.47 % 0.007 (SD) to 0.09 = 0.005, indicating that the
free-running activity in the intact network during frozen stimu-
lation is not dominated by the frozen drive, but results from a

a, Raster plot of five neurons during two runs of activity (red and black) in the same network, starting with the same
initial condition. The black run is perturbed by the addition of one extra spike in one neuron at 500 ms (dotted line, blue inset in the
bottom row). b, Time course of the normalized cross-correlation between the two runs of activity. Correlation is computed with a
time bin equal to the refractory period of the neurons, and measured on asliding window. Note that this induces asmoothing of the
estimated correlation. The vertical dotted lines indicate the time at which a perturbation (one extra spike) was artificially added to
one of the neurons in one of the runs, inducing a fast drop of the correlation. The inset shows the mean firing rate for the two

900 1000 ron during the reference, frozen pattern
(equivalent to an infinite jitter). In “syn-
chronous Poisson” (SP) stimulation, all
neurons have the same firing rate, equal to
the mean rate of the spontaneous activity,
but the spike trains are correlated (Kuhn
etal., 2003), to match the synchrony level
of spontaneous activity. Finally, “global
Poisson” (GP) stimulation matches only
the mean firing rate of the spontaneous
activity, but not the synchrony. Note that
all these controls have approximately the same number of spikes
as the reference spontaneous pattern. These different surrogate
patterns represent a progressively increasing deviation from
spontaneous activity statistics, while keeping first-order statistics
unchanged.

For this comparison we chose a level of frozen neurons (50%)
at which each free neuron receives equal numbers of connections
from frozen and free neurons. As shown in Figure 4a, the more
the stimulation statistics deviate from those of spontaneous ac-
tivity the lower is the reliability. This difference is significant for
jitter of 15 ms and greater ( p < 0.001) and for LP and GP (p <
0.0001), being largest for the global Poisson process. For the
global Poisson, the reliability drops by 17%. However, the level of
reliability is the same for synchronous Poisson as for the frozen
stimulation. The reliability modulation is accompanied by a modu-
lation of the mean evoked firing rate in the free running network,
as can be seen in Figure 4b: the mean firing rate drops signifi-
cantly (p < 0.0001) for local (18%), synchronous (43%), and
global (34%) Poisson surrogate patterns.

To synthesize these results, we measured the SNR of the spik-
ing responses, defined as the mean firing rate divided by the
standard deviation of the firing rate responses over trials (see
Materials and Methods). This takes into account both the re-
liability and the mean firing rate of the output. This SNR is sig-
nificantly higher for the spontaneous stimulation than for the
surrogate Poisson stimulations (see Fig. 4c) [decrease of 27%
(SP), 14% (LP), and 26% (GP)]. In the case of the local and global
Poisson stimulations, the difference in SNR is produced by both
the reliability and the mean firing rate drops. But in the case of the
synchronous Poisson stimulation, the reliability is comparable to
that of the spontaneous pattern, and the lower, but still signifi-
cant, difference originates in the lower firing rate. Together, these
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Figure 3.

a, Kinetics of the recall index (the normalized cross-correlation between the target activity and the response) as a function of time, before, during, and after the frozen stimulation.

b, Steady-state recall index color coded, as a function of the proportion of excitatory and inhibitory neurons that are frozen. The white dotted line delineates a zone of instability of the network in
which the Al regime is not sustained. ¢, Raster plot of responses, as in Figure 1b, when recurrent connections between free-running neurons are cut and replaced by independent Poisson spike trains

producing an equivalent mean level of input to the cells.

measures imply a larger degradation in signal transmission, the
more the input statistics deviate from the spontaneous statistics.
Thus, for the same number of spikes, the forced replay of spon-
taneous ongoing patterns seems to induce a better signal trans-
mission and recall.

We have explored how the input structure influences the out-
put reliability and mean firing rate. To compare this influence to
that of the mean input firing rate, we explored the effects on mean
activity (Fig. 5a) and reliability (Fig. 5b) of independently varying
the mean excitatory and inhibitory firing rates of the global Pois-
son stimulation. The combination of high excitatory and low
inhibitory stimulation rates produces a high mean firing rate in
the free-running units, but a low trial-to-trial reliability. In con-
trast, low excitatory but high inhibitory stimulation rates induce
a highly reliable response, but with a very low mean firing rate.
We empirically fitted this inverse relationship between reliability
and mean activity of the free running units by the following
power law:

Rate® - Reliability? = K - (Spike count) (6)

(r* = 0.95), where the spike count is the total number of spikes in
the imposed stimulation pattern, summed over all the frozen
neurons, and K is a constant (« = 0.46, B = 1.48, K = 11.59).
Figure 5¢ represents the “iso-spike count” curves obtained
when plotting reliability against mean firing rate. When com-
pared with the Poisson surrogate stimulations, the particular
structure of the imposed spontaneous pattern seems to be better
adapted to the network connectivity: to reach similar levels of

both reliability and response strength as observed for spontane-
ous statistics (Fig. 5¢, black cross), the use of global Poisson stim-
ulation would require a large increase in the spike frequency
imposed on the frozen neurons (175% of the spontaneous rate,
given in Fig. 5¢ by the iso-spike count curve intercepting the
reference cross).

Together, these results indicate that, although the first determi-
nant of the response reliability is the mean input firing rate, the
structure of ongoing activity enables a more efficient signal transmis-
sion than uncorrelated stimulation. The input firing rate and syn-
chrony levels explain a major part of this increase, but are not
sufficient to reach similar levels of SNR.

Noise resistance

Our simulations allow us to replay precisely each time the same
pattern in the frozen population. In more realistic situations,
however, the frozen units, even if deterministic, could be cor-
rupted by independent noise sources, which could interfere with
signal transmission to the free-running units. To test the noise
resistance of the pattern recall, we generated a set of degraded
patterns from an original spontaneous pattern by randomly jit-
tering each spike by a time drawn from a Gaussian distribution.
The standard deviation of the distribution was varied from 1 to 50
ms. Each resulting pattern was then used to clamp the frozen
units, and we compared the distance [measured as by Victor and
Purpura (1996)] (see also Materials and Methods) between the
spontaneous input and each jittered input against the distance
between their corresponding outputs. We found that the modu-
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frozen stimulation with real patterns. These
results confirm the robustness to noise of
the paradigm.

Poisson

ko ok ok Effect of network parameters

To further test the generality of our obser-
vations, we varied the excitatory synaptic
weights 8¢, between 1 and 10 nS and the
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Figure 4.

Materials and Methods) across all the surrogates.

lus of the output distance increases linearly with input distance
(Fig. 6a), showing that the response to our stimulation is robust
to noise. The slope of the input—output relationship is 0.57. This
sensitivity to noise well below 1 shows that our stimulation par-
adigm is compatible with a transmission of more “biological”
(i.e., noisy) inputs.

Noise could also be added in the model as external inputs that
will perturb the
recurrent activity of the free-running neurons. To check how
robust is the preference for the ongoing statistics, while the net-
work was asked to replay a particular pattern, all the free cells
received, in addition to the pattern played by the frozen popula-
tion, noisy inputs composed of uncorrelated excitatory and in-
hibitory Poisson spike trains at a certain frequency. This
frequency is expressed relatively to vy,,.qn, the input rate needed
to reach the threshold in our particular neuron model with
conductance-based synapses, in the absence of recurrent inputs:

gleak Vrest

Texc g exc ‘/thresh

(7)

Vihresh —

As can be seen in Figure 6, b and ¢, the reliability and the recall
index both decrease to a steady-state value when noise is in-
creased. However, the important point is that the relative differ-
ences between stimulation types, observed in the purely
deterministic case (see Fig. 4), are unchanged in the presence of
noise (Fig. 6b). This result cannot be explained by a change in the
firing rates, which remain approximately constant despite the exter-
nal noise applied (Fig. 6¢): since this external noise is balanced (ex-
citatory and inhibitory), it has only a small impact on the resulting
firing rates. Figure 6e shows the differences in the SNR according to
the noise levels and for several surrogates. A linear decrease can be
observed, but even for high noise levels (v up to 3vy,,.q,), the SNR
remains significantly (p < 0.001 for LP and GP) higher for the

Real 5ms 15ms25ms SP LP GP

a, b, Comparison of the reliability (@) and mean firing rate (b) values obtained in response to different stimulation
patterns, for 50% of excitatory and inhibitory frozen neurons. Stimulation patterns are, from left to right: a “real” pattern (Real)
taken from the spontaneous activity, jittered versions of this pattern (5, 15, and 25 ms of jitter; see Materials and Methods), a
Poisson stimulation (SP) reproducing the rate and the synchrony level observed in the real pattern, a Poisson stimulation in which
each neuron has the same mean firing rate as in the spontaneous pattern (LP), and a Poisson stimulation in which all the neurons
have the same firing rate, which is the global mean firing rate of the spontaneous activity (GP). ¢, Same comparison for the SNR (see

nS, and used three different connection
probabilities e: 0.5%, 1%, and 2%. Over
all the regions in which the network can
generate an asynchronous irregular re-
gime, the frozen paradigm with 50% fro-
zen neurons produces qualitatively
similar recall performance (Fig. 7a—c) (see
also Vogels and Abbott, 2005). Surpris-
ingly, the recall index is not directly re-
lated to the strength of the synaptic
weights: an increase in synaptic weight
does not necessarily increase the recall in-
dex. Over all conditions of connectivity
and synaptic weights, the recall index in-
creases with both the mean firing rate
(Fig. 7d) and the ISI CV of the correspond-
ing spontaneous activity. The structure of
spontaneous activity, as characterized by
the mean rate and ISI CV values, appears
to be a better predictor of the convergence
performance than is the connectivity
structure of the network. This illustrates that our paradigm
avoids focusing on the nonlinear relationship between the net-
work structure and the way activity is transmitted inside this
network by directly using those activity statistics that are proven
to be sustained by the network. We also examined the level of
reliability obtained with the GP stimulation over the same range
of parameters. Figure 8 shows the normalized difference between
the levels of reliability obtained for the spontaneous and GP stim-
ulations. This difference could reach up to 25%. We did not find
any clear correlation between the amount of synchrony in the
spontaneous activity and this normalized difference (data not
shown).

Frozen paradigm in a chaotic neural field model

Although it generates an irregular activity pattern and exhibits
rapidly diverging responses to small perturbations, the recurrent
model has not been proven mathematically to be chaotic. To have
a better understanding of the effect of stimulation statistics in a
well defined chaotic system, we apply the frozen paradigm to a
neural field model (Sompolinsky et al., 1988) (see Material and
Methods), defined by the following:

dt

= —h; + >, J,tanh (gh). (8)
]

The network is composed of N units, each characterized by its
activity h;. The synaptic weights J; are drawn from a Gaussian
distribution with mean 0 and variance J*/N. It has been shown for
large N that when gJ < 1, the only stable state is the silent state.
When gJ > 1, the network enters a chaotic regime (Sompolinsky
et al., 1988).

Using the same strategy as for the spiking network, we froze
the chaotic system by clamping part of the network to a previ-
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ously recorded trajectory. During this fro-
zen stimulation, we measured the
convergence by the normalized cross-
correlation between the free-running ac-
tivity (values of h;) and the target activity,
equivalent to the previously defined recall
index. As for the spiking network simula-
tions, the cross-correlation (CC) rapidly
increases to a plateau (Fig. 9a), whose
value depends on the proportion of frozen
units and on the network parameter g/
(Fig. 9b). Full convergence (CC > 0.99)
occurs if the proportion of frozen units is
greater than a threshold value (Fig. 90,
dotted black line), which increases with gJ.

To test the resistance to noise of this
convergence, we also injected random
noise in addition to the frozen pattern.
The convergence performance decreased
linearly when the amplitude of this noise
increased, the slope depending on the per-
centage of frozen units (see Fig. 9¢). The
noise resistance is thus similar to what we
found for the spiking network.

To test the origin of this reliability, we
again used a surrogate stimulation. We
stimulated the subnetwork with random
noise, of mean 0 and standard deviation o
equal to the spontaneous activity standard deviation og,. The
level of reliability was similar to that obtained with the real pat-
tern. We then varied this standard deviation o relative to o, (see
Fig. 9d). When o decreased below og,, the reliability decreased
almost linearly. This confirms that the standard deviation of the
activity is the main factor in explaining the reliability. Interest-
ingly, when we increased o above 0y,, the reliability barely in-
creased, whatever the absolute value of og,. This result holds
when the network parameters gand J and the ratio of frozen units
do not give rise to full convergence (i.e., below the black line in
Fig. 9). For a higher frozen fraction, stimulation with lower stan-
dard deviation can also lead to a saturated full convergence (data
not shown). Thus, over a broad region of the network parameter
space, 0y, appears as a reference point in the relationship be-
tween o and the output reliability.
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Discussion

In this paper, we analyzed the response of recurrent network
models to a stimulation which mimics episodes of spontaneous
activity. Our main findings are as follows: (1) Stimulating with
spontaneous patterns of activity induces a predictable and noise-
resistant recall of the full ongoing pattern, despite the highly ir-
regular background activity and the context sensitivity of the
network. (2) Despite the fact that the network is deterministic,
the response reliability is modulated by the stimulus type, and
is higher (up to 25%) for the spontaneous stimulation than for
uncorrelated Poisson stimulation. (3) This reliability increase
is mainly explained by the higher synchrony of the input.
However, mimicking the input firing rate and synchrony is not
sufficient to fully reproduce the signal-to-noise ratio obtained with
the spontaneous stimulation.

On the basis of these findings, we make two main experimental
predictions: first, the reliability of the cortical responses should be
modulated by the stimulus statistics in vivo; second, evoked sen-
sory responses with a structure similar to the spontaneous activ-
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a,b,Meanfiring rate () and reliability (b), color coded, in response to global Poisson stimulation, for different excitatory and
inhibitory firing rates. ¢, Reliability versus mean firing rate for different total spike counts. Each “iso-spike count” curve corresponds to the
stimulations of a and b with the same total number of spikes as in the Poisson stimulation, but differently partitioned between excitatory
and inhibitory populations. The black cross indicates the reliability and mean firing rate for the spontaneous pattern.

ity could be the signature of an efficient transmission of
information.

Reliable response/completion despite irregular

background activity

Our model demonstrates the feasibility of a reliable encoding of
stimuli within irregular background activity. Several studies
have shown that a chaotic dynamical system can be reliably
driven by appropriate stimulation, a phenomenon termed
“chaos control” (Garfinkel et al., 1992). Our frozen paradigm
could be seen as a high-dimensional application of “chaos syn-
chronization” (Pecora and Carroll, 1990). While these previous stud-
ies did not explore the effect of the input statistics, we are able to
demonstrate that choosing a driving stimulation that respects the
statistics of spontaneous activity has the advantage of allowing a
prediction of the responses of the free-running neurons. Our
investigation extends these earlier studies by applying these con-
cepts to large-scale neuronal networks. It is important to note
that we do not focus on any global fixed point reached by the
system under the stimulation, but rather on the evoked “suc-
cession of transients,” which are reliable and noise resistant.
This concept has already been the subject of several studies
(Rabinovich et al., 2008), and our results are a possible exam-
ple of this concept in large-scale network models.

The neural field study illustrates the dual role of the stimula-
tion. In this case, it has to be noted that the free subnetwork alone,
without any stimulation, is chaotic (below the white line of Fig.
9b). Nevertheless, the stimulation due to the frozen population
makes a reliable and noise-resistant propagation possible. The
stimulation has two roles. First, it transmits the pattern, and sec-
ond, it changes the context (background activity), so that the
transmission is possible, and resistant to noise. These two com-
plementary roles of the stimulation are due to the nature of re-
current networks, where the stimulation and the background
activity interact with each other.



Marre et al. » Reliable Recall in Recurrent Networks

J. Neurosci., November 18, 2009 - 29(46):14596 —14606 * 14603

a b oso; C 141
. — Real Pattern
J‘ 0.45p — Local Poisson 13%
° — i —_
35¢ 4 0.40} Qlobal Poisson ¥ 19
of 2 —  Jitter 15ms =
;’.’ 2 o3t —— Jitter 30ms 2l
* & 2
O 0.30F = 10}
E 300 o
13 see” 0.25F of
o> o
~—~ e, L L L L L L L L L L
i;, o 0.20 8
| Cad d osof @ 020
S| > [RP—LP,
» L
> 043 |[RP-GH
o 0.15¢
X x 0.40F
N [}
K E z
00 & = 035 z
) = 2
o g
5 < 0.30f
‘. L L L L L L
0 5 10 15 20 25 30 0.25
Input
[z—(z)|vp 0,20 ‘ ‘ ‘ ‘
00 10 20 30 40 0.0 1.0 20 30 40
Vthresh Vipresh

Figure 6.

Noise resistance of the paradigm. a, The coordinates of each point are the Victor—Purpura (VP) distance [|x — ~(x)||,» between an input pattern x and the jittered version of it y(x)

(horizontal axis), and the VP distance between the corresponding output patterns (vertical axis). b, ¢, Evolution of the reliability (b) and the firing rate (c) in the free-running neurons for several level
of external noise (relatively to vy, es,)- Errors bars are obtained on 10 run per surrogate. d, e, Linear decrease of the reproducibility for one particular pattern (d), and difference between the SNRs

obtained with a real pattern and those obtained for surrogates (e), as a function of the external noise.
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a- ¢, Recall index for 50% of neurons frozen as a function of the excitatory and inhibitory synaptic weights, and for different connection probabilities €: 0.5% (a), 1% (b), and 2% (c).

The dark blue zones indicates regions in which the network either cannot sustain spontaneous activity or enters a synchronous regular state. d, e, Recall index values obtained in a— ¢ plotted against

the mean firing rate (d) and ISI CV (e) of the spontaneous activity of the same network.

Origin and stimulus dependence of the reliability

Our reliability study uncovers two findings. First, even if the net-
work model used in this study is entirely deterministic, we ob-
served a large trial to trial variability in response to the repetitions
of the same stimulus. All the observed variability must originate
in the surrounding network activity. As a consequence, experi-
mentally, a large part of the trial to trial variability may come
from the context sensitivity of a cortical network, and could thus
be predicted by the preceding ongoing activity. This is in line with

previous experimental reports where the preceding ongoing ac-
tivity was a major source of variability (Arieli et al., 1996; Azouz
and Gray, 1999; Deweese and Zador, 2004).

Second, our study also demonstrates that the response reli-
ability can be modulated by the stimulus statistics in a nontrivial
manner. Although the first determinant of the reliability level
is the mean firing of the input, the higher-order structure of
the stimulation has also a non-negligible effect (up to 25%),
and this over the whole range of model parameters explored.
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a, Kinetics of the normalized cross-correlation between the target activity and the response of neural fields as a function of time, before, during, and after the frozen

stimulation, for three different ratios of frozen neural fields. In this example, g/ = 2.1. b, Steady-state values of the cross-correlation between target and free-running activities
measured as a function of the ratio of frozen neural fields (vertical axis) and the network parameter g/ (horizontal axis). The black dotted line is the full convergence limit (CC > 0.99)
and the white dotted line the limit under which the free subnetwork, without any stimulation, is still chaotic. ¢, Normalized cross-correlation for several percentages of frozen units and
for several amounts of noise added (in percentage of o%,) to an ongoing pattern. d, Normalized cross-correlation when a surrogate Gaussian noise with a standard deviation expressed
in percentage of o, is used as a stimulation instead of a real pattern. In both cases, the network parameter was g/ = 2.1.

Previous theoretical results could be reinterpreted in light of
this result. Vogels et al. (2005) noted that their modified net-
work, which enhanced firing rate but not synfire chain propa-
gation, occasionally transmitted “ghost signals.” We interpret this
reminiscence of the reliably evoked activity in spontaneous dynam-
ics as another example of a network model that better transmits
signals whose statistics match those of the spontaneous activity.

Beyond rate and synchrony

Our surrogate stimulation mimicking both the level of input
firing rate and synchrony reached the same output reliability
as the spontaneous stimulation. Nevertheless, since the output

firing rate is lower, the resulting SNR is still lower than for the
spontaneous stimulation. Previous studies have focused on
the impact of rate (Vogels and Abbott, 2005) and synchrony
(Mehring et al., 2003; Kumar et al., 2008) on the propagation
of activity in recurrent networks. Our study showed that
these two factors, though important, are not entirely sufficient
to explain the SNR of the response to the spontaneous stimu-
lation. Further studies will aim at identifying additional con-
tributions to this SNR modulation. Among others, using a
stimulation with heterogeneous firing rates could be one of
these factors (see the difference between local and global
Poisson stimulation).



Marre et al. » Reliable Recall in Recurrent Networks

Relation to experimental data

In light of our results, we can propose an explanation for the
discrepancy mentioned in the Introduction between the reli-
able spiking activity observed in vitro (Mainen and Sejnowski,
1995) and the variability often observed in vivo. Our study
indeed predicts that the reliability should be modulated by the
stimulus statistics, and this has been observed experimentally:
intracellular studies demonstrate that the reliability of sub-
threshold activity is increased during natural scene viewing
(Baudot et al., 2004; Frégnac et al., 2005) or when the stimulus
evokes strong shunting inhibition (Monier et al., 2008).

Some reports point out that the reliability of responses could
depend on the interaction between internally generated and
sensory-evoked activities (see above). In particular, the precision
of the spiking responses may depend on the global reverberation
rhythm generated by the recurrent network connectivity, which
could preserve or destroy the sensory information, depending on
the relative phase and the amplitude of the fast oscillations (for
review, see Tiesinga et al., 2008). We propose to extend this pre-
diction for nonoscillatory, irregular stimuli and background ac-
tivity. Reliability should be increased when a cooperative mode
(Heidmann et al., 1984) between the structure of the input and
the recurrent connectivity of the network is uncovered. The fro-
zen stimulation might be an example of such a mode.

If our stimulation, mimicking the spontaneous statistics, is
indeed relevant in an experimental context, a similarity between
the structure of spontaneous and evoked activities should be ob-
served, and would correspond to an increased reliability of cor-
tical responses. Similar levels of activity during spontaneous and
sensory evoked regimes have been reported in primary auditory
cortex, area Al (deCharms and Merzenich, 1996), but the rela-
tionship between the structures of spontaneous and sensory-
evoked activities is still a matter of debate in primary sensory
areas. In the visual cortex, voltage-sensitive dye imaging in the
anesthetized cat has shown similar cortical activity maps for
spontaneous and grating-evoked responses (Tsodyks et al., 1999;
Kenet et al., 2003). Additionally, in awake ferrets, multiunit re-
cordings have shown that the temporal correlations of the activity
remain unchanged when switching from ongoing activity to nat-
ural stimulation (Fiser et al., 2004). Finally, Han et al. (2008) have
shown that a repeated stimulation modifies the structure of the
spontaneous activity over several minutes, such this latter be-
comes more similar to the previously imposed evoked activity. In
Al, it seems that the sets of responses to different types of stimuli
are all included in the phase space delimited by the spontaneous
activity (Luczak et al., 2009). It would be interesting to compare
the reliability of these responses to other types of stimuli. Our
results make us hypothesize that the reliability will be higher
when the spontaneous and evoked activities are similar.

Conclusion

We have shown that, even in a deterministic network, the reli-
ability of the responses can be modulated by the type of stimuli.
As a consequence, to a given recurrent network would corre-
spond a set of stimuli which are more efficiently transmitted than
others. According to our results, the spontaneous activity could
be a reference point in this set. This supports the hypothesis that
similarity between evoked and spontaneous activities is the sig-
nature of an efficient mode of transmission across recurrent
networks. However, further research will need to delimit this
set by searching for other types of stimuli that are as efficiently
transmitted.
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Having stated that a match between spontaneous activity and
input statistics evokes a better recall, we can hypothesize that the
connectivity could have been shaped by a learning process so that
the spontaneous activity matches the natural input statistics. In
the case of a Boltzmann machine with binary neurons, where the
inputs are also transmitted by “freezing” some neurons, the
learning of the input statistics does induce such a match (Ackley
et al., 1985). However, an equivalent learning process for a net-
work of integrate and fire neurons is currently unknown. Never-
theless, the connectivity in our network model can be viewed as
the result of an unseen learning process, where the network has
learned to transmit more efficiently a particular set of inputs. We
can hypothesize that at least part of these inputs are replayed by
spontaneous activity. Experimentally, a possible consequence
could be that the spontaneous ongoing activity replays the
learned “neuronal songs” (Han et al., 2008). A complete imple-
mentation of this hypothesis would require a better knowledge of
unsupervised plasticity mechanisms during the learning phase.
According to our interpretation, the cortical network would effi-
ciently transmit learned, i.e., predicted, patterns, without depart-
ing from ongoing activity. This would allow a robust mapping for
some features selected by the spontaneous activity.

A more speculative extrapolation is to view the spontaneous
activity as what the cortical network “expects” to transmit effi-
ciently. The dynamic changes in the temporal structure of the
spontaneous activity could be interpreted as transient switches
between different sets of “expectations” or hypotheses made on
the basis of the continuously updated incoming sensory flow.
More extensive experimental research on the conditions under
which ongoing activity in recurrent networks recapitulates frag-
ments of previously learned memories (or “songs”) (Louie and
Wilson, 2001; Tkegaya et al., 2004) (but see Mokeichev et al,,
2007) is needed to consolidate this view.
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