Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Current Issue
    • Issue Archive
    • Video Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • Subscriptions
    • Advertise
    • For the Media
    • Permissions
    • Contact Us
    • Feedback
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Current Issue
    • Issue Archive
    • Video Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
  • ABOUT
    • Overview
    • Editorial Board
    • Subscriptions
    • Advertise
    • For the Media
    • Permissions
    • Contact Us
    • Feedback
PreviousNext
Articles, Behavioral/Systems/Cognitive

Reliable Recall of Spontaneous Activity Patterns in Cortical Networks

Olivier Marre, Pierre Yger, Andrew P. Davison and Yves Frégnac
Journal of Neuroscience 18 November 2009, 29 (46) 14596-14606; DOI: https://doi.org/10.1523/JNEUROSCI.0753-09.2009
Olivier Marre
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Yger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew P. Davison
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yves Frégnac
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Irregular ongoing activity in cortical networks is often modeled as arising from recurrent connectivity. Yet it remains unclear to what extent its presence corrupts sensory signal transmission and network computational capabilities. In a recurrent cortical-like network, we have determined the activity patterns that are better transmitted and self-sustained by the network. We show that reproducible spiking and subthreshold dynamics can be triggered if the statistics of the imposed external drive are consistent with patterns previously seen in the ongoing activity. A subset of neurons in the network, constrained to replay temporal pattern segments extracted from the recorded ongoing activity of the same network, reliably drives the remaining, free-running neurons to call the rest of the pattern. Comparison with surrogate Poisson patterns indicates that the efficiency of the recall and completion process depends on the similarity between the statistical properties of the input with previous ongoing activity The reliability of evoked dynamics in recurrent networks is thus dependent on the stimulus used, and we propose that the similarity between spontaneous and evoked activity in sensory cortical areas could be a signature of efficient transmission and propagation across cortical networks.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 29 (46)
Journal of Neuroscience
Vol. 29, Issue 46
18 Nov 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reliable Recall of Spontaneous Activity Patterns in Cortical Networks
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Reliable Recall of Spontaneous Activity Patterns in Cortical Networks
Olivier Marre, Pierre Yger, Andrew P. Davison, Yves Frégnac
Journal of Neuroscience 18 November 2009, 29 (46) 14596-14606; DOI: 10.1523/JNEUROSCI.0753-09.2009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article

Share
Reliable Recall of Spontaneous Activity Patterns in Cortical Networks
Olivier Marre, Pierre Yger, Andrew P. Davison, Yves Frégnac
Journal of Neuroscience 18 November 2009, 29 (46) 14596-14606; DOI: 10.1523/JNEUROSCI.0753-09.2009
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more 3

Behavioral/Systems/Cognitive

  • An Abrupt Shift in the Day/Night Cycle Causes Desynchrony in the Mammalian Circadian Center
  • Caspase Inhibitors Promote Vestibular Hair Cell Survival and Function after Aminoglycoside Treatment In Vivo
  • Differential Pattern of cAMP Response Element-Binding Protein Activation in the Rat Brain after Conditioned Aversion as a Function of the Associative Process Engaged: Taste versus Context Association
Show more 3
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Video Archive
  • Collections

For Authors

  • Information for Authors

About

  • Overview
  • Editorial Board
  • Subscriptions
  • For the Media
  • Permissions
  • Contact Us
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2018 by the Society for Neuroscience.

JNeurosci   Print ISSN: 0270-6474   Online ISSN: 1529-2401