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Spontaneous neuronal activity is a ubiquitous feature of cortex. Its spatiotemporal organization reflects past input and modulates future
network output. Here we study whether a particular type of spontaneous activity is generated by a network that is optimized for input
processing. Neuronal avalanches are a type of spontaneous activity observed in superficial cortical layers in vitro and in vivo with
statistical properties expected from a network operating at “criticality.” Theory predicts that criticality and, therefore, neuronal ava-
lanches are optimal for input processing, but until now, this has not been tested in experiments. Here, we use cortex slice cultures grown
on planar microelectrode arrays to demonstrate that cortical networks that generate neuronal avalanches benefit from a maximized
dynamic range, i.e., the ability to respond to the greatest range of stimuli. By changing the ratio of excitation and inhibition in the cultures,
we derive a network tuning curve for stimulus processing as a function of distance from criticality in agreement with predictions from our
simulations. Our findings suggest that in the cortex, (1) balanced excitation and inhibition establishes criticality, which maximizes the
range of inputs that can be processed, and (2) spontaneous activity and input processing are unified in the context of critical phenomena.

Introduction
The cortex is spontaneously active even in the absence of any
obvious stimulus or motor output. Increasingly, evidence
shows that such ongoing activity is intricately linked to
stimulus-evoked activity. For example, orientation maps con-
structed from ongoing neuronal activity in the anesthetized
cat match those based on visual responses (Tsodyks et al.,
1999; Kenet et al., 2003). Spatiotemporal correlations of spikes
in the visual cortex are similar when the awake animal is sim-
ply sitting in darkness or observing natural scenes (Fiser et al.,
2004). Likewise, population responses to auditory and so-
matosensory stimuli fall within the repertoire of observed
spontaneous events (Luczak et al., 2009). Moment to moment,
ongoing activity contributes to the large variability observed
in stimulus responses (Arieli et al., 1996; Azouz and Gray,
1999; Kisley and Gerstein, 1999), while being only weakly
modulated by stimulus presentation (Fiser et al., 2004). On
longer timescales, the organization of spontaneous activity is
thought to reflect past inputs and influence future network
responses (Ohl et al., 2001; Yao et al., 2007). Such interplay
between spontaneous and stimulus-evoked activity raises the
question whether there is a particular type of ongoing activity
that maintains optimized stimulus processing in the network.

Here we focus on neuronal avalanches, a type of spontaneous
activity observed in superficial layers of cortex in vivo and in vitro
(Beggs and Plenz, 2003; Plenz and Thiagarajan, 2007; Gireesh and
Plenz, 2008; Petermann et al., 2009). Neuronal avalanches consist
of bursts of elevated population activity, correlated in space and
time, that are distinguished by a particular statistical character:
activity clusters of size s occur with probability P(s) � s �, i.e., a
power law with exponent � � �1.5. Neuronal avalanches have
several additional key properties: (1) they arise during develop-
ment when superficial layers form in vitro and in vivo (Gireesh
and Plenz, 2008), (2) they are homeostatically maintained for
weeks in isolated cortex without any input (Stewart and Plenz,
2008), (3) they constitute the dominant form of ongoing cortical
activity in the awake monkey (Petermann et al., 2009), and (4)
their pharmacological regulation is characterized by an inverted-U
profile of NMDA/dopamine D1 receptor interaction and intact fast
inhibitory transmission (Beggs and Plenz, 2003; Stewart and
Plenz, 2006; Gireesh and Plenz, 2008).

Neuronal avalanches are similar to the dynamics of other sys-
tems poised at the boundary of order and disorder; more pre-
cisely, we refer to systems operating at criticality (Stanley, 1971;
Bak and Paczuski, 1995; Jensen, 1998). Importantly, simulations
predict that at criticality, neuronal networks optimize several
aspects of information processing, including (1) the range of
stimulus intensities that can be processed, i.e., dynamic range
(Kinouchi and Copelli, 2006), and (2) the amount of information
that can be transferred (Beggs and Plenz, 2003; Tanaka et al.,
2009). Until now, experimental support of these predictions has
been lacking. Here, we demonstrate that in vitro cortical networks
have maximum dynamic range when spontaneous activity takes
the form of neuronal avalanches. By systematically changing ex-
citation and inhibition, we obtain a tuning curve for stimulus
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processing in cortical networks, with peak
performance found under balanced con-
ditions that generate neuronal avalanche
activity.

Materials and Methods
Organotypic cultures on microelectrode arrays.
Coronal slices from rat somatosensory cortex
(350 �m thick, postnatal day 0 –2; Sprague
Dawley) and the midbrain (VTA; 500 �m
thick) were cut and cultured on a poly-D-
lysine-coated 8 � 8 microelectrode array
(MEA) (Multi Channel Systems; 30 �m elec-
trode diameter; 200 �m interelectrode dis-
tance). In this organotypic slice coculture, the
development of deep and superficial cortical
layers (Götz and Bolz, 1992; Plenz and Kitai,
1996) as well as neuronal avalanche activity
parallels that observed in vivo (Gireesh and
Plenz, 2008). In short, a sterile chamber at-
tached to the MEA allowed for repeated re-
cording from cultures for weeks. After plasma/
thrombin-based adhesion of the tissue to the
MEA, standard culture medium was added
(600 �l, 50% basal medium, 25% HBSS, 25%
horse serum; Sigma-Aldrich). MEAs were then
affixed to a slowly rocking tray inside a custom-
built incubator (�65° angle, 0.005 Hz fre-
quency, 35.5 � 0.5°C) (Stewart and Plenz,
2008).

Spontaneous activity. Using a recording head
stage inside the incubator (MEA1060 w/blank-
ing circuit; �1200 gain; bandwidth 1–3000 Hz;
12 bit A/D; range 0 – 4096 mV; Multi Channel
Systems), local field potential (LFP; 4 kHz sam-
pling rate; reference electrode in bath) was ob-
tained from 1 h of continuous recordings of
extracellular activity (low-pass, 100 Hz, phase-
neutral). To establish a correlation between
LFP and neuronal spiking activity, in n � 5
cultures, extracellular activity was recorded for
15 min at 25 kHz. In addition to extracting
LFP, the extracellular signal was filtered in the
frequency band 300 –3000 Hz and �78 single
units were identified per culture using thresh-
old detection and PCA-based spike sorting
(Offline Sorter; Plexon).

Stimulus-evoked activity. Immediately fol-
lowing each 1 h recording of spontaneous ac-
tivity, stimulus-evoked activity was measured.
Stimuli were applied at 5 s intervals at one elec-
trode located approximately at the center of the
culture, in superficial cortical layers. Stimuli were
current-controlled, single shocks with bipolar
square waveform: 50 �s with amplitude �S fol-
lowed by 100 �s with amplitude �S/2, where
6 � S � 200 �A. We tested one set of stimulus
amplitudes with fine resolution (S � 10 –200
�A in steps of 10 �A), and another with coarser
resolution (S � 6, 12, 24, 50, 65, 80, 100, 150,
200 �A). Results were similar for the two pro-
tocols. Each stimulus level was repeated 40
times in pseudorandomized order resulting
in a total recording duration of 2000 (coarse)
or 4000 (fine) s. Each stimulus-evoked re-
sponse was recorded using all electrodes ex-
cept for the stimulation electrode during 500
ms following stimulation. A blanking circuit

Figure 1. Measuring spontaneous and stimulus-evoked activity from cortical networks. A, Light-microscopic image of a
somatosensory cortex and dopaminergic midbrain region (VTA) coronal slice cultured on a 60-channel microelectrode
array. Yellow dot, Stimulation site. Black dots, Recording sites. B, Number of extracellular spikes correlates with the size of
simultaneously recorded nLFP burst (R � 0.84 � 0.13; n � 1). Each point represents total number of spikes versus the
corresponding spontaneous nLFP burst size. C, Example recordings of spontaneous LFP fluctuations (left) and nLFP rasters
(right) for three drug conditions (top, AP5/DNQX; middle, no drug; bottom, PTX). D, Examples of LFP evoked by 70 �A
stimulus (left) and rasters recorded during the application of four stimuli of amplitudes 50, 40, 90, 150 �A (yellow line,
stimulus time) (right) for three drug conditions. For both spontaneous (C) and stimulus-evoked (D) activity AP5/DNQX
(PTX) typically results in reduced (increased) amplitude LFP events with lesser (greater) spatial extent. In C and D, black
dots on the LFP traces indicate nLFP events, raster point color indicates nLFP amplitude, and all calibration bars (left)
represent 50 �V, 100 ms.

15596 • J. Neurosci., December 9, 2009 • 29(49):15595–15600 Shew et al. • Dynamic Range Maximized during Neuronal Avalanches



disconnected the recording amplifiers during stimulation, signifi-
cantly reducing stimulus artifacts (Multi Channel Systems). Sample
rate and filtering was identical to that used for spontaneous activity
recordings.

Pharmacology. Bath application of antagonists of fast glutamatergic or
GABAergic synaptic transmission was used to change ratios of excita-
tion to inhibition (E/I ). The normal (no-drug) followed by a drug
condition was studied within 3 h to minimize nonstationarities dur-
ing development. Stock solutions were prepared for the GABAA re-
ceptor antagonist picrotoxin (PTX), the NMDA receptor antagonist
(2 R)-amino-5-phosphonovaleric acid (AP5), and the AMPA receptor
antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX). Six microli-
ters of these stock solutions were added to 600 �l of culture medium
to reach the following working concentrations (in �M): 5 PTX, 20
AP5, 10 AP5 � 0.5 DNQX, and 20 AP5 � 1 DNQX. After recording,
the drug medium was replaced with 300 �l of drug-free conditioned
medium (collected from the same culture the previous day) mixed
with 300 �l of fresh, unconditioned medium. Most cultures recovered
to criticality within �24 h.

Spontaneous cluster size and response to stimulus. For each electrode, we
identified negative peaks in the LFP (nLFPs) that were more negative
than �4 SDs of the electrode noise. We then identified a cluster of nLFPs
on the array as a group of consecutive nLFPs each separated by less than
a time � (Beggs and Plenz, 2003). The threshold � was chosen to be greater
than the short timescale of interpeak intervals within a cluster, but less
than the longer timescale of intercluster quiescent periods (� � 86 � 71
ms for all cultures; see also supplemental material, available at www.
jneurosci.org). Results were robust for a large range in the choice of �
(data not shown). The size s of a cluster was quantified as the absolute
sum of all nLFP amplitudes within a cluster. Similarly, the size R of an
evoked response was quantified as the absolute sum of nLFPs within 500
ms following a stimulus.

Definition of �. For neuronal avalanches, the probability density func-
tion (PDF) of cluster size s follows a power law with slope � � �3/2
(Beggs and Plenz, 2003) (see Fig. 2 A). Thus, the corresponding cumula-
tive density function (CDF) for cluster sizes, FNA(�), which specifies the
fraction of measured cluster sizes s � �, is a �1/2 power-law function,
FNA(�) � (1 � �l/L) �1(1 � �l/�) for l � s � L. Here we define a novel
nonparametric measure, �, to quantify the difference between an exper-
imental cluster size CDF, F(�), and the theoretical reference CDF,
FNA(�),

� � 1 �
1

m �
k�1

m

	FNA(�k) � F(�k)
, (1)

where �k are m � 10 burst sizes logarithmically spaced between the
minimum and maximum observed burst size. Using CDFs rather than
PDFs to calculate � avoids the sensitivity to binning in constructing a
PDF. Compared to other nonparametric comparisons of CDFs, e.g.,
Kolmogorov–Smirnov and Kuiper’s test, as well as other methods, �
more accurately measures deviation from neuronal avalanches (see
supplemental material, available at www.jneurosci.org).

Dynamic range. After measuring responses to a range of stimulus
amplitudes, we used the response curve, R( S), to compute dynamic
range,

� � 10 log10	Smax/Smin
, (2)

where Smax and Smin are the stimulation values leading to 90% and 10%
of the range of R, respectively.

Model. The model consisted of N all-to-all coupled, binary-state neu-
rons (N � 250, 500, 1000) and the following dynamical rules: If neuron j
spiked at time t (i.e., sj(t) � 1), then postsynaptic neuron i will spike at
time t � 1 with probability pij. As such, the pij are N 2 numbers represent-
ing the synaptic coupling strengths between each pair of neurons. The pij

are asymmetric pij � pji, positive, time-independent, uniformly distrib-
uted random numbers with mean and SD of order N �1. If a set of
neurons J(t) spikes at time t, then the probability that neuron i fires at
time t � 1 is exactly piJ(t) � 1 � 
j�J(t)(1 � pij). To implement the
probabilistic nature and variability of unitary synaptic efficacy, neuron i

actually fires at time t � 1 only if piJ(t) � 	(t), where 	(t) is a random
number from a uniform distribution on [0,1],

si	t � 1
 � ��piJ	t
 � 		t
�

� ��1 � �
j�J	t


	1 � pij
 � 		t
� , (3)

where �[x] is the unit step function. Like our experiments, we explore a
range of network excitability by tuning the mean value of pij from 0.75/N
to 1.25/N in steps of 0.05/N by scaling all pij by a constant. For such small
mean pij, the model reduces to probabilistic integrate-and-fire, i.e., piJ �
�j�J(t)pij to order N �2 accuracy. If the mean pij is exactly N �1, then n
spikes at time t will, on average, excite n postsynaptic spikes at time t � 1,
which constitutes criticality in our model (Beggs and Plenz, 2003; Kinouchi
and Copelli, 2006). When mean pij is larger than or less than N �1, the
system is supercritical or subcritical, respectively. We define the control
parameter of the model 
' N �1�i�ipij. In the context of dynamics, 

reflects the average ratio of spiking descendants to spiking ancestors in
consecutive time steps. At criticality, 
 � 1; the coupling strengths are
balanced such that, on average, the number of active sites neither grows
nor decays with time (note that the instantaneous activity level fluctuates

Figure 2. Change in the ratio of excitation/inhibition moves cortical networks away from
criticality. A, Left, PDFs of spontaneous cluster sizes for normal (no-drug, black), disinhibited
(PTX, red), and hypoexcitable (AP5/DNQX, blue) cultures. Broken line, �3/2 power law. Cluster
size s is the sum of nLFP peak amplitudes within the cluster; P(s) is the probability of observing
a cluster of size s. Right, Corresponding CDFs and quantification of the network state using �,
which measures deviation from a �1/2 power law CDF (broken line). Vertical gray lines, The 10
distances summed to compute �, shown for one example PTX condition (red). B, Simulated
cluster size PDFs (left) and corresponding CDFs (right) for different values of the model control
parameter 
. C, Summary statistics of average � values for normal, hypoexcitable, and disin-
hibited conditions (*p � 0.05 from normal). D, In simulations, � accurately estimates 
.
Broken line, � � 
. Colored dots, Examples shown in B.
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greatly). To obtain response as a function of
stimulus in the model, we simulated increasing
stimulus amplitude S by increasing the number
of initially activated neurons (S � 1, 2, 4, 16,
32, 64, 128 initially active neurons). Finally, we
note that our model is very similar to (N �
1)-dimensional directed percolation (Buice
and Cowan, 2007). Therefore, at high dimen-
sion (N � 5) and weak coupling, it is expected
that the model behaves as a branching process,
where 
 is the branching parameter and the
�3/2 power law is predicted at criticality.

To test for statistical differences between
groups, a one-way ANOVA followed by a
Tukey post hoc test was used.

Results
Cortex–VTA cocultures from rat (n � 16),
which closely parallel in vivo differentia-
tion and maturation of cortical superficial
layers (Gireesh and Plenz, 2008), were
grown on 8 � 8 integrated planar micro-
electrode arrays (Fig. 1A). LFPs were
recorded after superficial layer differenti-
ation (�10 d in vitro, DIV) and analyzed
to extract spatiotemporal clusters of
nLFPs (n � 47 experiments). Extracellu-
lar unit activity recorded simultaneously
with the LFP revealed that sizes of nLFP
clusters correlated with the level of su-
prathreshold neuronal activity in the net-
work (Fig. 1B) (R � 0.84 � 0.13, mean �
SD; n � 5 cultures). For each experimen-
tal condition, we first measured sponta-
neous activity (Fig. 1C) and quantified
the deviation of the observed spontaneous
network dynamics from neuronal ava-
lanche dynamics by calculating � (Fig.
2A) (see Materials and Methods). In a sec-
ond step, we measured the input/output
dynamic range � of the cultured network
based on its response to a range of stimu-
lus amplitudes (Figs. 1D, 3A). These mea-
surements were performed under normal
conditions and repeated after changing the ratio of excitation and
inhibition through bath application of the antagonists PTX or
AP5/DNQX.

Quantifiying the cortical network state based on �
Figure 2A (left) shows experimental cluster size PDFs obtained
from three cultures under normal, unperturbed conditions and
in the presence of PTX or AP5/DNQX, respectively. Under nor-
mal conditions, cultures revealed a PDF close to �3/2 power law
as predicted for neuronal avalanches (Fig. 2A, black). In the pres-
ence of PTX, however, the PDF is bimodal, revealing a high like-
lihood for small and large activity clusters, but a decreased
probability of medium-sized clusters (Fig. 2A, red). In contrast,
bath application of AP5/DNQX reduces large clusters resulting in
mostly small clusters (Fig. 2A, blue). These differences in PDFs
are robustly assessed using the corresponding CDFs (Fig. 2A,
right). Reducing excitation results in a steep early rise of the CDF,
while reducing inhibition results in a delayed rise of the CDF. �
robustly quantifies these observations using the difference be-
tween a measured CDF of cluster sizes and the theoretically ex-

pected reference CDF for neuronal avalanches (Fig. 2A, right,
gray lines). As summarized in Figure 2C, � � 1 under normal
conditions (� � 1.14 � 0.01, mean � SE; n � 28), � � 1 when
excitation is reduced (� � 0.81 � 0.01; n � 10) and � � 1 when
inhibition is reduced (� � 1.51 � 0.01; n � 9; F(2,44) � 82.7; p �
0.05 for PTX and AP5/DNQX from normal).

This experimental strategy was paralleled using a network-
level computational model of binary, integrate-and-fire neurons,
in which changes in the excitation/inhibition ratio (E/I) were
mimicked by tuning the parameter 
 (see Materials and Meth-
ods). For 
 � 1, a neuron triggers activity in less than one neuron,
on average, resulting in a hypoexcitable state. Conversely, for 
 �
1, one neuron excites on average more than one neuron in the
near future, resulting in a hyperexcitable condition. Accordingly,
for 
 � 1, propagation of activity is balanced, as was found ex-
perimentally for neuronal avalanches (Beggs and Plenz, 2003;
Stewart and Plenz, 2008). We simulated “spontaneous” activity
clusters by activating a single randomly chosen neuron and mon-
itoring the ensuing until activity ceased or 500 time steps were
executed. The total number of spikes in a cluster was taken as the

Figure 3. Stimulus–response curves and dynamic range �. A, Experimental response R evoked by current stimulation of
amplitude S for three example cultures with different � values. Orange arrows, Range from Smin to Smax; length is proportional to
�. Note that � is largest for � � 1. B, Model response evoked by different numbers of initially activated sites; � is largest for

 � 1. Like the experiment, each point is calculated from 40 stimuli. Error bars, 1 SE. C, Experimental summary statistics for �
under different pharmacological conditions (*p � 0.05 from normal). D, Simulation summary statistics for � comparing different
ranges of 
 (*p � 0.05 from 
 � 1).
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cluster size. One thousand clusters were simulated at each of 11
levels of 
. In agreement with established theory, model cluster
size PDFs near criticality (i.e., 
 � 1) fit a �3/2 power law very
closely (Fig. 2B, right, black) (Harris, 1989; Zapperi et al., 1995).
Just as in the experiment, we computed � based on CDFs of
simulated spontaneous activity for different values of 
 (Fig. 2B).
We found that � and 
 were almost linearly related (Fig. 2D),
which supports the following interpretation: In the experiments,
� � 1 is close to criticality, � � 1 identifies the subcritical regime,
and � � 1 is analog to the supercritical regime of the model.

Stimulus-evoked activity and dynamic range
After obtaining � for a given experimental condition, we re-
corded the response R as a function of stimulus amplitude S (for
peristimulus time histograms of response for different S, see sup-
plemental material, available at www.jneurosci.org) Typical re-
sponse curves from experiments and simulations are shown in
Figure 3, A and B, respectively. We found that the shape of the
response curves in the model closely matched the experimental
findings. When excitatory synaptic transmission was reduced
(� � 1), the system was relatively insensitive (required a larger
stimulus to evoke a given response). When inhibitory synaptic
transmission was reduced (� � 1), the system was hyperexcitable,
with responses that saturate for relatively small stimuli. In the
balanced E/I condition with � � 1, the range of stimuli resulting
in nonzero and nonsaturated response was largest.

Maximal dynamic range at criticality, � � 1
For each response curve, we quantified the range of stimuli the
network can process, i.e., the dynamic range � (see Materials and
Methods). We found experimentally that � � 5.0 � 0.1 (mean �
SE) under normal conditions, � � 2.4 � 0.1 in the presence of
PTX, and � � 3.4 � 0.3 for AP5/DNQX (Fig. 3C) (F(2,44) � 11.3;
p � 0.05 PTX and AP5/DNQX from normal). Importantly, the
dynamic range was largest in unperturbed networks, in which
neuronal avalanches are most likely to occur. These results were
robust for different network sizes and different maximal stimulus
amplitudes, whether or not the response curves reached satura-
tion for all conditions (see supplemental material, available at
www.jneurosci.org). Similar overall changes in � were also found
in our simulations (Fig. 3D) (F(2,195) � 820; p � 0.05).

We then derived a tuning curve of � versus � by combining all
experimental conditions into one scatter plot (Fig. 4A). These
data demonstrate that � is maximized and its variability is largest
near � � 1. These findings agree well with our model including
changes in � as the system is pushed away from � � 1, �10 dB
drop (10-fold reduction in Smax/Smin) for a 30% change in � (Fig.
4B). The tuning curve demonstrates that the change in the dy-
namic range of a network due to a shift in E/I depends on both the
original, unperturbed state and the resulting change in �.

Discussion
We experimentally derived a tuning curve that linked the state of
a cortical network with its ability to process stimuli. When the
network was closest to criticality, as indicated by neuronal ava-
lanches, � was close to 1 and dynamic range was maximized. This
is the first experimental demonstration to confirm theoretical
predictions on the computational advantage of operating at crit-
icality. Dynamic range has been predicted in simulations to peak
at criticality (Kinouchi and Copelli, 2006). Our simulations ad-
vance previous studies by linking the dynamic range of a network
with the spontaneous activity it generates. Because the dynamic
range increases with the ability of a network to map input differ-

ences into distinguishable network outputs, our result is also
closely related to network-mediated separation, which has been
predicted to peak at criticality, at the transition from ordered to
chaotic dynamics (Bertschinger and Natschlager, 2004; Legenstein
and Maass, 2007). In contrast, our results show that variability of
response to a given stimulus is highest at criticality. Further in-
vestigation of reliability versus variability in cortical networks is
warranted.

Considering the simplicity of our model with all-to-all con-
nectivity, absence of refractory period, and approximating inhi-
bition by reducing 
, the overall agreement in the �–�
relationship between experiment and simulation is remarkable.
The increase of variability in � as well as the drop in � due to
deviation from � � 1 was well matched between experiment and
simulations. Such similarity supports the notion that universal
principles, independent of system details, are found at criticality
(Stanley, 1971; Bak and Paczuski, 1995; Jensen, 1998). The main
quantitative difference was the lower � values for experiments
compared to the model. Experimental noise, which is absent in
the model, effectively adds a constant value to Smin and Smax,
which systematically reduces �.

Further neurophysiological insight into our results can be
gained from Figure 3. There it is shown that networks poorly
discriminate small inputs in the hypoexcitable state, whereas they
tend to saturate, failing to discriminate larger inputs in the hy-
perexcitable state. Both these reductions in performance result in
reduced dynamic range compared to balanced networks. In line
with these findings, dissociated cultures respond to inputs with a
“network spike” if 
 � 1 (Eytan and Marom, 2006) and display a

Figure 4. Network tuning curve for dynamic range � near criticality. A, In experiments, �
peaks close to � � 1 and drops rapidly with distance from criticality. Paired measurements
share the same symbol shape; normal (no-drug) condition was measured just before the drug
condition. Circles, Unpaired measurement. B, In simulations, � is also maximum for � � 1.
Symbol indicates network size (circles, N � 250; squares, N � 500; triangles, N � 1000). Lines
represent binned averages.

Shew et al. • Dynamic Range Maximized during Neuronal Avalanches J. Neurosci., December 9, 2009 • 29(49):15595–15600 • 15599



“giant component” in a hyperexcitable regime, which reduces the
ability to discriminate inputs (Breskin et al., 2006). The balance
of excitation and inhibition has been shown to be crucial for
developing cortical circuits to accurately process sensory inputs
(Hensch, 2005). Our results suggest that, functionally, the bal-
ance of excitation and inhibition is achieved when the dynamic
range is maximized and cortical networks operate at criticality.
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Luczak A, Barthó P, Harris KD (2009) Spontaneous events outline the realm
of possible sensory responses in neocortical populations. Neuron
62:413– 425.

Ohl FW, Scheich H, Freeman WJ (2001) Change in pattern of ongoing cor-
tical activity with auditory category learning. Nature 412:733–736.

Petermann T, Thiagarajan TC, Lebedev MA, Nicolelis MA, Chialvo DR, Plenz
D (2009) Spontaneous cortical activity in awake monkeys composed of
neuronal avalanches. Proc Natl Acad Sci U S A 106:15921–15926.

Plenz D, Kitai ST (1996) Generation of high-frequency oscillations in local
circuits of rat somatosensory cortex cultures. J Neurophysiol 76:4180 –
4184.

Plenz D, Thiagarajan TC (2007) The organizing principles of neuronal ava-
lanches: cell assemblies in the cortex? Trends Neurosci 30:101–110.

Stanley HE (1971) Introduction to phase transitions and critical phenom-
ena. New York: Oxford UP.

Stewart CV, Plenz D (2006) Inverted-U profile of dopamine-NMDA-
mediated spontaneous avalanche recurrence in superficial layers of rat
prefrontal cortex. J Neurosci 26:8148 – 8159.

Stewart CV, Plenz D (2008) Homeostasis of neuronal avalanches during
postnatal cortex development in vitro. J Neurosci Methods 169:405– 416.

Tanaka T, Kaneko T, Aoyagi T (2009) Recurrent infomax generates cell
assemblies, neuronal avalanches, and simple cell-like selectivity. Neural
Comput 21:1038 –1067.

Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous ac-
tivity of single cortical neurons and the underlying functional architec-
ture. Science 286:1943–1946.

Yao H, Shi L, Han F, Gao H, Dan Y (2007) Rapid learning in cortical coding
of visual scenes. Nat Neurosci 10:772–778.

Zapperi S, Bægaard LK, Stanley HE (1995) Self-organized branching pro-
cesses: mean-field theory for avalanches. Phys Rev Lett 75:4071– 4074.

15600 • J. Neurosci., December 9, 2009 • 29(49):15595–15600 Shew et al. • Dynamic Range Maximized during Neuronal Avalanches


