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Recent evidence suggests that some brain areas act as hubs interconnecting distinct, functionally specialized systems. These nexuses are
intriguing because of their potential role in integration and also because they may augment metabolic cascades relevant to brain disease.
To identify regions of high connectivity in the human cerebral cortex, we applied a computationally efficient approach to map the degree
of intrinsic functional connectivity across the brain. Analysis of two separate functional magnetic resonance imaging datasets (each n �
24) demonstrated hubs throughout heteromodal areas of association cortex. Prominent hubs were located within posterior cingulate,
lateral temporal, lateral parietal, and medial/lateral prefrontal cortices. Network analysis revealed that many, but not all, hubs were
located within regions previously implicated as components of the default network. A third dataset (n � 12) demonstrated that the
locations of hubs were present across passive and active task states, suggesting that they reflect a stable property of cortical network
architecture. To obtain an accurate reference map, data were combined across 127 participants to yield a consensus estimate of cortical
hubs. Using this consensus estimate, we explored whether the topography of hubs could explain the pattern of vulnerability in Alzhei-
mer’s disease (AD) because some models suggest that regions of high activity and metabolism accelerate pathology. Positron emission
tomography amyloid imaging in AD (n � 10) compared with older controls (n � 29) showed high amyloid-� deposition in the locations
of cortical hubs consistent with the possibility that hubs, while acting as critical way stations for information processing, may also
augment the underlying pathological cascade in AD.

Key words: connectivity; cognition; Alzheimer’s disease; fMRI; cortex; cingulate

Introduction
The cerebral cortex is organized into parallel, segregated systems
of brain areas that are specialized for processing distinct forms of
information. Such a divide and conquer architecture is promi-
nent throughout cortical systems but is perhaps best illustrated
by the parallel pathways within the visual system (Ungerleider
and Mishkin, 1982; Felleman and Van Essen, 1991). Given the
presence of segregated processing streams, a challenge to infor-
mation processing is integration, particularly so for higher-order

cognitive processes that simultaneously draw on information
from multiple domain-specific systems.

Based on anatomic evidence, Mesulam (1998) proposed that
specific heteromodal areas of association cortex provide nodes of
convergence to bind unimodal and other transmodal inputs.
These nodes serve as critical gateways for information processing
and are lacking selective connections to single sensory modalities.
More recently, computational analysis of anatomic connectivity
has led to a formal proposal that the cortex may contain a small
number of nodes, referred to as hubs, that have disproportion-
ately numerous connections (Sporns et al., 2007). Evidence for
hubs comes from network analysis of connectivity from post-
mortem tracing techniques in nonhuman primates (Sporns et al.,
2004), and, recently, in vivo tract tracing (Hagmann et al., 2008;
Gong et al., 2008) and functional magnetic resonance imaging
(fMRI) in humans (Achard et al., 2006). Hubs serve to integrate
diverse informational sources and balance the opposing pressure
to evolve segregated, specialized pathways. Hubs may also help to
minimize wiring and metabolism costs by providing a limited
number of long-distance connections that integrate local net-
works (Bassett and Bullmore, 2006).
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The existence of cortical hubs is relevant to the study of brain
disease. Disorders of cognition are thought to reflect aberrant
(autism, schizophrenia) or disrupted (aging, closed head injury)
cortical connectivity. Maps of cortical hubs, and eventually the
detailed paths of fiber tracts supporting them, may provide a
means to understand why certain lesions and connectional ab-
normalities are particularly disruptive. Hubs may also provide
insight into Alzheimer’s disease (AD) pathology. AD is associated
with the pathological accumulation of misfolded proteins, in-
cluding amyloid-� (A�) (Mattson, 2004; Walsh and Selkoe,
2004). The identification of cortical hubs may explain why cer-
tain regions of cortex show disproportionately high levels of me-
tabolism (Minoshima et al., 1997) and, as a result, preferential
vulnerability to AD pathology (Buckner et al., 2005, 2008).

The present study used functional connectivity MRI (fcMRI)
to map hubs in the human cortex. fcMRI measures intrinsic ac-
tivity correlations between brain regions that reflect monosynap-
tic and polysynaptic connectivity (Biswal et al., 1995) (for review,
see Fox and Raichle, 2007). Here we used a computationally effi-
cient approach to perform high-resolution mapping of func-
tional connectivity across the brain in a large number of individ-
uals and identified those regions of cortex that show
disproportionately numerous connections. The approach is similar
to that applied by Achard et al. (2006) and Salvador et al. (2008) but
extends the method to high-resolution mapping. The results re-
vealed a map of hubs across heteromodal association areas that in-
cluded regions linked previously to default modes of cognition.

Moreover, we found a high correspondence between the locations of
hubs and A� deposition in AD, suggesting that cortical network
architecture may contribute to disease vulnerability.

Materials and Methods
Overview. The present studies sought to (1) identify hubs within the
human cerebral cortex, (2) determine the stability of hubs across subject
groups and task states, and (3) explore whether the locations of hubs
correlated with one component of AD pathology (A� deposition). The
basic analytic strategy was to compute an estimate of the functional con-
nectivity of each voxel within the brain. Regions showing a high degree of
connectivity across participants were considered candidate hubs. Our
primary measure of connectivity (degree centrality or degree) was de-
fined as the number of voxels across the brain that showed strong corre-
lation with the target voxel (Fig. 1). Using this procedure, a map of
candidate hubs was computed for an average of 24 participants (dataset
1) and replicated in a second group of 24 participants (dataset 2). Data-
sets 1 and 2 were acquired while participants fixated on a crosshair. As the
results will reveal, the locations of cortical hubs were highly similar be-
tween participant groups. To explore in more detail the connectivity
patterns of the identified hubs, we used seed-based and formal network
analyses on the combined dataset (n � 48). To explore whether the
identified hubs reflect a stable property of cortex or were task dependent,
maps of hubs were estimated in a third group of 12 participants (dataset
3) that varied the task performed during data collection (passive visual
fixation vs continuous task performance). Similar hubs were present
across task states. To provide a consensus estimate of the locations of
cortical hubs, the data across 127 participants were combined. The con-
sensus estimate was compared with a map of A� deposition in AD ob-

Figure 1. Methods for identifying cortical hubs and networks. A, The basis of the present methods is the intrinsic BOLD signal fluctuations that correlate between brain regions reflecting
monosynaptic and polysynaptic connections. B, The functional connectivity matrix was computed to represent the strength of correlation between every pair of voxels across the brain; the pattern
of these connections is the functional connectivity network (example is of a binary matrix and network of 1000 nodes). C, To determine cortical hubs, the degree of connectivity of each voxel was
computed and projected onto the cortical surface of the brain. Candidate hubs are those regions with disproportionately high connectivity and are plotted in yellow and red. D, As a secondary
analysis, the networks associated with identified hubs were determined by seeding individual regions located at the peak of the hub and determining the subnetworks that showed correlation.
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tained using Pittsburgh Compound B (PiB) positron emission tomogra-
phy (PET) imaging to explore whether hub regions are preferentially
associated with the locations of A� accumulation. To aid visualization,
all image maps were projected on to the left and right cerebral hemi-
spheres of the inflated PALS (population-average, landmark- and
surface-based) surface using Caret software (Van Essen, 2005).

Participants. One hundred twenty-seven healthy young adults partic-
ipated in MRI for payment. Table 1 shows the MRI participant demo-
graphics. All participants had normal or corrected-to-normal vision and
were right-handed, native English speakers. Participants were screened
to exclude individuals with a history of neurologic or psychiatric condi-
tions as well as those using psychoactive medications. Although our lab-
oratory has previously published fcMRI analyses with comparable data
(Kahn et al., 2008; Vincent et al., 2008), the data presented here are newly
acquired and reported for the first time. Thirty-nine older adults partic-
ipated in PET for payment. Table 2 shows the PET participant demo-
graphics. Inclusion as a normal control required a normal neurological
examination, a clinical dementia rating (Hughes et al., 1982; Morris,
1993) scale score of 0, and normal cognition [Mini-Mental State Exam-
ination (MMSE) �27]. All participants with AD met National Institute
of Neurological and Communicative Disorders and Stroke/Alzheimer’s
Disease and Related Disorders Association criteria for AD (McKhann et
al., 1984) and had MMSE scores �23. Written informed consent was
obtained in accordance with guidelines set forth by the institutional re-
view board of Partners Healthcare.

MRI acquisition procedures. Scanning was performed on a 3 tesla
TimTrio system (Siemens) using the 12-channel phased-array head coil
supplied by the vendor. High-resolution three-dimensional T1-weighted
magnetization prepared rapid acquisition gradient echo images were ac-
quired for anatomic reference [repetition time (TR), 2530 ms; echo time
(TE), 3.44 ms; flip angle (FA), 7 o; 1.0 mm isotropic voxels]. Functional
data were acquired using a gradient-echo echo-planar pulse sequence
sensitive to blood oxygenation level-dependent (BOLD) contrast (TR,
2500 or 3000 ms; TE, 30 ms; FA, 90 o; 36 – 43 axial slices parallel to plane
of the anterior commissure–posterior commissure; 3.0 mm isotropic
voxels; 0.5 mm gap between slices). Head motion was restricted using a
pillow and foam, and earplugs were used to attenuate scanner noise.

During the functional runs, for datasets 1 and 2, the participants’
passively fixated on a visual crosshair centered on a screen for each of two
runs (each run, 7 min 24 s; 148 time points). No additional task was
instructed. Participants were asked to stay awake and remain as still as
possible. For dataset 3, the task was varied with two runs of visual fixation
and two runs of continuous task performance (each run, 5 min 12 s; 104
time points). For the task, participants decided whether centrally pre-
sented visual words represented abstract or concrete entities (Demb et
al., 1995). Participants were instructed to respond quickly and accurately
and indicate their response with a right-hand key press. The task was
self-paced with a new word appearing 100 ms after the response, thereby
minimizing downtime between trials and the potential for mind wander-
ing (Antrobus et al., 1966; Antrobus, 1968; D’Esposito et al., 1997). Order
of task was counterbalanced across participants. The visual stimuli were
generated on an Apple PowerBook G4 computer (Apple Computers)
using Matlab (MathWorks) and the Psychophysics Toolbox extensions
(Brainard, 1997). Stimuli were projected onto a screen positioned at the
head of the magnet bore.

MRI preprocessing. MRI analysis procedures were based on those ap-
plied by Biswal et al. (1995) and Lowe et al. (1998) and recently expanded
on in the studies by Fox et al. (2005) and Vincent et al. (2006). Prepro-
cessing included removal of the first four volumes to allow for T1-
equilibration effects, compensation of systematic, slice-dependent time
shifts, motion correction, and normalization to the atlas space of the
Montreal Neurological Institute (MNI) (SPM2; Wellcome Department
of Cognitive Neurology, London, UK) to yield a volumetric time series
resampled at 2 mm cubic voxels. Temporal filtering removed constant
offsets and linear trends over each run but retained frequencies below
0.08 Hz. Data were spatially smoothed using a 4 mm full-width half-
maximum Gaussian blur.

Several sources of spurious or regionally nonspecific variance then
were removed by regression of nuisance variables including the follow-

ing: six-parameter rigid body head motion (obtained from motion cor-
rection), the signal averaged over the whole brain, the signal averaged
over the lateral ventricles, and the signal averaged over a region centered
in the deep cerebral white matter. Temporally shifted versions of these
waveforms also were removed by inclusion of the first temporal deriva-
tives (computed by backward differences) in the linear model. This re-
gression procedure removes variance unlikely to represent regionally
specific correlations of neuronal origin. Of note, the global (whole-brain)
signal correlates with respiration-induced fMRI signal fluctuations
(Wise et al., 2004; Birn et al., 2006). By removing global signal, variance
contributed by physiological artifacts is minimized. Removal of signals
correlated with ventricles and white matter further reduces non-
neuronal contributions to BOLD correlations (Bartels and Zeki, 2005;
Fox et al., 2005).

Removal of global signal also causes a shift in the distribution of cor-
relation coefficients such that there are approximately equal numbers of
positive and negative correlations (Vincent et al., 2006), making inter-
pretation of the sign of the correlation ambiguous (Buckner et al., 2008;
Murphy et al., 2009). For this reason, we conservatively restrict our ex-
plorations to positive correlations, although analyses similar to those
reported here can also be conducted for negative correlations.

Mapping hubs using functional connectivity. Candidate hubs were iden-
tified as those regions that show disproportionately greater connectivity
compared with other brain regions. In graph theory, these are the vertices
with high numbers of edges or connections. Several previous analyses
have demonstrated that connectivity among cortical regions is not ran-
dom or proportionate across regions but rather exhibits “small world”
properties, including hubs (Watts and Strogatz, 1998; Sporns et al., 2004;
Achard et al., 2006; Bassett and Bullmore, 2006). The present method
measured the connectivity between all regions of the cortex to map can-
didate hubs using data derived from low-frequency BOLD fluctuations.

Two assumptions were made in interpreting our analyses. First, we
assumed that functional connectivity based on BOLD reflects the under-
lying structure of the neural architecture constrained by anatomy. Task-
dependent coactivation of regions was assumed to make a modest con-
tribution. In dataset 3, we tested this assumption by varying task states.
As the results will reveal, although certain components of covariation
between regions can be modulated, the locations of hubs represent a
property of cortex that persists across task states. Nonetheless, it is im-
portant to be explicit that the link between underlying anatomic connec-
tivity and intrinsic functional correlations remains unresolved (Fox and
Raichle, 2007), and contributions of both anatomically constrained and
state-dependent activity fluctuations may contribute.

Second, we assumed that functional connectivity reflects both mono-
synaptic and polysynaptic anatomic projections. Consistent with
polysynaptic connectivity, activity correlations span multiple levels in
hierarchical systems, including the visual cortex (Vincent et al., 2007)
and the medial temporal lobe memory system (Kahn et al., 2008).
Polysynaptic connectivity is clearly illustrated by correlations between
the cerebellum and neocortex. Cerebrocerebellar circuits are based only
on indirect anatomic projections through the thalamus and pontine nu-
cleus (Kelly and Strick, 2003). fcMRI reveals contralateral cerebellar cor-

Table 1. fMRI participant demographics

Dataset 1 Dataset 2 Dataset 3 Composite set

n 24 (11 male) 24 (10 male) 12 (3 male) 127 (57 male)
Mean age (SD) 21.8 (2.5) years 22.6 (2.5) years 20.3 (1.9) years 22.1 (2.3) years

The composite dataset contains the fixation runs of datasets 1–3 as well as data from 67 additional participants that
each performed two runs of visual fixation.

Table 2. PiB–PET participant demographics

NC AD

n 29 (15 male) 10 (6 male)
Mean age (SD) 71.6 (7.7) years 71.5 (11.9) years
Mean MMSE (SD) 29.3 (0.8) 20.0 (6.3)

NC, Nondemented control. All NC participants had a clinical dementia rating of 0.
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relations with frontal cortex, consistent with polysynaptic connectivity
(Allen et al., 2005; Vincent et al., 2008; F. Krienen and R. L. Buckner,
unpublished observation). Thus, unlike analyses that use anatomy di-
rectly (Sporns et al., 2007; Hagmann et al., 2008), hubs defined here likely
reflect both direct and indirect anatomic projections.

To determine candidate hubs, we measured connectivity based on the
number of strongly correlated links to a given brain voxel. This metric is
sometimes referred to as “degree centrality” or “degree” in graph theory
(Wasserman and Faust, 1994). Specifically, the preprocessed functional
runs were subjected to voxel-based whole-brain correlation analysis (for
a conceptually similar approach using regional correlations, see Salvador
et al., 2008). The time course of each voxel from the participant’s brain
defined within a whole-brain mask was correlated to every other voxel
time course. As a result, an n � n matrix of Pearson’s correlation coeffi-

cients was obtained, where n is the dimension of
the whole-brain mask. For computational effi-
ciency, we down sampled the data to 4 mm iso-
tropic voxels. The Pearson’s R, or product-
moment correlation coefficient, computed in
the ith row and jth column of this matrix is
given by the following:

Rij �
�����t�i � x� i����t�j � x� j��

������t�i � x� i�
2���t�j � x� j�

2�

t � 0...T, i�1...N, j�1...N, (1)

where t is the frame count, and x[t]i and x[t]j are
the voxel intensities at the ith and jth voxel lo-
cation, respectively, defined by the whole-brain
mask at frame count t. The mean voxel intensity
across all of the frame counts at the ith and jth
voxel locations is given by x� i and x� j, respectively.

From the n � n Pearson’s correlation coeffi-
cient matrix, a map of the degree of the connec-
tivity was computed by counting for each voxel
the number of voxels it was correlated to above a
threshold of r � 0.25. A high threshold was cho-
sen to eliminate counting voxels that had low tem-
poral correlation attributable to signal noise. Dif-
ferent threshold selections did not qualitatively
change the results for cortex (see supplemental
data, available at www.jneurosci.org as supple-
mental material). A final undirected and un-
weighted adjacency matrix was used to calculate
the vertex degree as the number of adjacent links.
This measure of connectivity (degree, D) for each
voxel (i) with all other voxels ( j) is given by the
following:

Di � �dij where j � 1...N, i � j. (2)

The map of the connectivity was then standard-
ized by converting to Z scores so that maps
across participants could be averaged and com-
pared. The Z score transformation is given by
the following:

zi �
Di � D�

�D
i � 1...N, (3)

where D� is the mean degree across all the voxels
in the whole-brain map, and �D is the SD of the
map. The conversion to Z score does not affect the
topography of the individual-participant maps
but does cause the values in each participant’s
map to be comparably scaled. Reliable peak loca-
tions in the degree maps were considered candi-
date hubs. Note also that this metric weights
equally contributions of local and long-range
connections.

Network analysis. Two separate methods were used to further explore
the networks associated with the identified hubs: one method that con-
structed functional connectivity maps for each candidate hub and a sec-
ond method that formally quantified the betweenness centrality for all
regions linked to the hubs. To generate connectivity maps, regions were
constructed around the hubs from dataset 1 and maps of functional
connectivity constructed for dataset 2. Regions were defined as 5 mm
radius spheres centered on the peak coordinates of the hubs. These re-
gions were used as seed regions for standard fcMRI analysis (Vincent et
al., 2006, 2008; Kahn et al., 2008). Maps for different hub regions were
constructed separately and compared.

To formally quantify the extent to which candidate hubs acted as
connectors within the larger network, network-analytic tools were ap-

Figure 2. Cortical hubs are present and reliable. Heteromodal association regions of cortex reliably showed disproportionately
high degree of connectivity in both datasets. Prominent hubs were located within posterior cingulate, lateral temporal, lateral
parietal, and medial/lateral prefrontal cortices. Primary sensory and motor areas were essentially absent hubs. Data from each of
the two separate dataset are shown above (dataset 1, n � 24; dataset 2, n � 24). The graph on the bottom shows the
voxel-by-voxel correlation between datasets 1 and 2. The two are highly correlated (r � 0.93). The images represent the left
hemisphere surface projection on the PALS atlas (Van Essen, 2005).
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plied to (1) graph the network and (2) determine the betweenness cen-
trality of each region in the network (Freeman, 1977, 1978). The graph
was built using Pajek software (De Nooy et al., 2005) and represented the
relationships among regions using the Kamada–Kawai graphing algo-
rithm (Kamada and Kawai, 1989). The Kamada–Kawai algorithm is a
force layout method based on the energy minimization of the network
that places connected nodes closer to one another, whereas disconnected
nodes are placed farther apart. This algorithm, taking into account the
geodesics between nodes, iteratively adjusts the positions and forces of
nodes to reduce the total energy of the system to a minimum.

Next we computed a measure of betweenness centrality. Betweenness
centrality of a vertex (brain region in this instance) is defined as the
proportion of all geodesics between pairs of other vertices that include
the vertex under study, in which geodesics are defined as the shortest path
between a pair of vertices, formally expressed as
follows:

�
i

�
j

giaj

gij
where i � j � a,

where gij is the number of geodesic paths be-
tween i and j, and giaj is the number of these
geodesics that pass through a. Thus, between-
ness centrality measures how often nodes occur
on the shortest paths between other nodes. We
visually represented betweenness centrality by
plotting regions with higher values as larger
circles.

Comparison of locations of hubs to A� deposi-
tion in early-stage Alzheimer’s disease. Regions
of high rest-state activity and metabolism have
been associated with A� deposition as mea-
sured via radiolabeled ligands. To compare the
anatomic locations of identified hubs with the
distribution of A� accumulation, we con-
structed a map from participants enrolled as
part of ongoing A� imaging studies at Massa-
chusetts General Hospital (Bacskai et al., 2007;
Johnson et al., 2007; Gomperts et al., 2008).
Participant demographics are shown in Table 2
and include the final set of individuals analyzed
in the present report. The map was generated to
be in alignment with the fcMRI data, thus al-
lowing formal, quantitative comparison be-
tween the two data types.

We used PET imaging procedures using PiB,
a ligand that selectively binds A� deposits. Pro-
cedures for PiB–PET imaging have been de-
scribed previously (Mathis et al., 2003; Klunk et
al., 2004; Bacskai et al., 2007; Johnson et al.,
2007). Briefly, participants were imaged on a
Siemens/CTI ECAT HR	 scanner (three-
dimensional mode, 63 image planes; 15.2 cm
axial field of view; 5.6 mm transaxial resolution
and 2.4 mm slice interval). Movement was min-
imized with a thermoplastic facemask. After the
acquisition of a transmission scan, 9 –14 mCi of
11C-PiB was injected as a bolus and 60 min of
dynamic scans acquired. PET data were recon-
structed using a 10 mm Gaussian smoothing
kernel with ordered set expectation maximiza-
tion and corrected for attenuation. PiB reten-
tion was calculated using the Logan graphical
analysis method (Logan et al., 1990, 1996) using
cerebellar cortex as the reference tissue. PiB retention was expressed as
the distribution volume ratio (DVR) over the 40 – 60 min interval as in
previous PET studies yielding a parametric image of DVR (Lopresti et al.,
2005; Mintun et al., 2006a; Johnson et al., 2007).

To yield group-level maps, each participant’s PiB–PET dataset was

spatially normalized to the MNI atlas space (SPM2; Wellcome Depart-
ment of Cognitive Neurology, London, UK) to yield a volume with 2 mm
cubic voxels, matching that of the fcMRI analysis. The atlas-transformed
maps were then averaged within each of the AD and nondemented con-
trol groups. As a final step, a quantitative map proportionate to A�

Figure 3. Cortical hubs are associated with multiple distinct networks. Examples of networks associated with specific cortical hubs are
shown for four hubs from Table 1. Each image shows the functional connectivity map based on a single seed located at the position of the
blue circle. The threshold for each map is set at r � 0.25. A, Posterior cingulate location 6 from Table 1. B, Dorsolateral prefrontal cortex
location 5 from Table 1. C, Supramarginal gyrus location 7 from Table 1. D, Medial prefrontal cortex location 3 from Table 1. Note that
certain hubs (A, D) are linked to a common core network, whereas other hubs (C) are associated with a distinct network.

Table 3. Cortical hubs estimated from dataset 1

Location Atlas coordinates Normalized intensity

1, Left inferior/superior parietal lobule 
42, 
65, 52 1.39
2, Med superior frontal 
2, 50, 32 1.37
3, Med prefrontal 
2, 58, 
8 1.33
4, Right inferior/superior parietal lobule 46, 
62, 52 1.27
5, Left middle frontal 
42, 26, 48 1.22
6, Posterior cingulate/precuneus 
2, 
50, 36 1.21
7, Right supramarginal 58, 
34, 28 1.18
8, Left middle temporal 
62, 
38, 
12 1.12
9, Right middle temporal 62, 
42, 
4 1.08
10, Right middle frontal 38, 22, 52 1.06

Atlas coordinates represent the MNI coordinate system (Evans et al., 1993) based on the MNI152/ACBM-152 target.
Med, Medial.
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Figure 4. Network analysis of cortical hubs. All regions functionally linked to the 10 hubs identified in Table 1 were entered into a formal graph-analytic network analysis. A, The 94 5-mm-radius
spherical regions used for analysis are displayed on transverse sections of the MNI152 atlas. Spherical regions are shown in red. B, A graphical representation of the network of regions is displayed
using the Kamada–Kawai algorithm such that strongly connected regions appear close to one another and weakly connected regions farther away (see Results). The size of the node reflects the
estimate of the betweenness centrality of each region. The five regions with the greatest betweenness centrality are colored in blue and labeled a through e. Note that the majority of hubs link to
a single integrated network (I ), whereas a subset reflect a distinct network (II ). The regions in II reflect the network displayed in Figure 3C. C, The locations of the regions with the five highest
estimates of betweenness centrality are illustrated. PCC, Posterior cingulate; MPFC, medial prefrontal cortex.
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deposition was produced by subtracting the
mean map of the PiB-negative nondemented
control group from the mean map of the AD
group. We eliminated PiB-positive nonde-
mented control participants to allow for better
visualization of the distribution of A� deposi-
tion in the AD group (Buckner et al., 2005;
Mintun et al., 2006a; Gomperts et al., 2008).
The 29 nondemented control participants were
all PiB negative.

Results
The cerebral cortex contains hubs of
high functional connectivity
fMRI datasets 1 and 2 yielded a highly con-
sistent pattern of cortical hubs in normal,
young adults (Fig. 2, Table 3). The corre-
lation between the two datasets was ex-
tremely high (r � 0.93). Figure 3 shows the
map of cortical hubs using all 48 partici-
pants combined from datasets 1 and 2. For
comparison, the supplemental data (avail-
able at www.jneurosci.org as supplemental
material) display the map at several levels
of threshold to illustrate that the topogra-
phy of cortical hubs is qualitatively consis-
tent across thresholds.

Hubs included mainly heteromodal ar-
eas of association cortex and generally
spared areas within primary sensory and
motor systems, consistent with Achard et
al. (2006). The pattern of hubs is reminis-
cent of the anatomy of the default network
as defined by task-induced deactivation
(Shulman et al., 1997; Mazoyer et al.,
2001) and functional connectivity (Gre-
icius et al., 2003, 2004; Fox et al., 2005;
Fransson, 2005) (for review, see Raichle et
al., 2001; Buckner et al., 2008). The supple-
mental data (available at www.jneurosci.
org as supplemental material) illustrate
the overlap between the hub map of degree

4

Figure 5. The locations of cortical hubs persist across task
states. Despite clear differences in degree connectivity, data
acquired during rest fixation and continuous task perfor-
mance show similar locations of the core hubs. A, Cortical
hubs are shown for the fixation task from dataset 3. B, A sim-
ilar plot is shown for the continuous performance task from
dataset 3. The core hubs located in posterior cingulate (a),
inferior parietal cortex (b), and medial prefrontal cortex (c)
are present across task states. There are also differences in the
task state, including increased functional connectivity in dor-
solateral prefrontal cortex (d). C, The direct contrast of the
degree connectivity maps is displayed to illustrate differences
between the task states. Yellow shows regions of higher con-
nectivity in the task data, and blue shows regions higher in
the fixation data. Note that the difference in functional con-
nectivity parallels differences observed in traditional task-
based analyses, including increased functional connectivity in
prefrontal, temporal, and midline structure that are com-
monly observed in semantic classification tasks. These differ-
ences are in addition to shared hubs that persist across task
states (e.g., b and, to a lesser extent, a).
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connectivity and the default network. The peak locations of the
largest 10 hubs from dataset 1 are listed in Table 3. The peaks were
used to define a priori seed regions to further interrogate whether
the hubs were components of the same, overlapping, or distinct
networks.

Cortical hubs are mostly (but not always) components of the
same core network
Radius spherical regions (5 mm) were defined around each of the
10 most prominent hubs in dataset 1 (Table 3). Maps of func-
tional connectivity for each of the regions were then constructed
for dataset 2, allowing for an unbiased estimate of the functional
connectivity of the hubs. Maps in Figure 3 illustrate the two main
results of this analysis.

First, prominent hubs sometimes involved nonoverlapping
brain systems. For example, the network correlated with the hub
in the posterior cingulate/precuneus (Table 3, location 6; Fig. 3A)
minimally overlapped the network associated with the hub lo-
cated in supramarginal gyrus (Table 3, location 7; Fig. 3C). As
another example, the network associated with middle frontal gy-
rus (Table 3, location 5; Fig. 3B) resembles closely a system that
has been provisionally labeled the frontoparietal control system
(Vincent et al., 2008). This network spares the posterior cingulate
and precuneus. The observation that prominent hubs can show
nonoverlapping functional connectivity is consistent with the
possibility that the cortex contains multiple hubs that interact
with distinct brain systems. In terms of network analysis, these
distinct groupings may reflect separate “communities” (Girvan
and Newman, 2002) or “modules” (Guimerà et al., 2007). What is
clear from this analysis is that the hubs do not belong to a homo-
geneous network.

Second, despite several clear examples of nonoverlap, there
was a high degree of convergence across the networks associated
with the hubs. Most hubs showed partial overlap with a core
network that included the posterior cingulate/precuneus, as
would be predicted based on recent analyses of anatomic (Hag-
mann et al., 2008; Gong et al., 2008; Greicius et al., 2009) and
functional (Buckner et al., 2008; Fransson and Marrelec, 2008)
connectivity. The overlap was substantial in some cases. For ex-
ample, the network associated with medial prefrontal cortex (Ta-
ble 3, location 3; Fig. 3D) was nearly identical to that associated

with posterior cingulate/precuneus (Fig. 3D). Thus, many of the
hubs are likely components of the same functionally integrated
core system (for a similar discussion, see Buckner et al., 2008;
Hagmann et al., 2008).

To quantify the above analyses in an unbiased manner, we
constructed a graphical depiction of the functional connectivity
strengths between all regions associated with the top 10 hubs in
the cerebral cortex. To do this, we first identified all locations of
correlated peaks in each of the 10 maps corresponding to the
hubs in dataset 1. Peaks were included if they showed strong
correlation with the hub region (r � 0.25) (regarding choice of
threshold, see supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). A total of 94 peaks were identified. Spherical
regions (5 mm radius) were constructed centered on each of these
peaks (Fig. 4A). The correlation strength was then determined be-
tween each pair of regions in the n � n matrix in the independent
dataset 2. This matrix was used to (1) construct a graphical represen-
tation of the regions and (2) compute a formal estimate of between-
ness centrality for each of the 94 regions. Of the possible 8742 con-
nections (edges), 2533 (29%) reached the r � 0.25 threshold,
suggesting a relatively dense network. Results of the analysis are dis-
played in Figure 4B.

Consistent with the seed-based correlation maps, there was a
tendency to converge on a set of core hubs (Fig. 4B, network I).
The five hubs with the largest circles, reflecting high betweenness
centrality, are displayed in blue. Figure 4C shows that these five
core hubs are located within regions described previously as be-
ing components of the “default network” (Gusnard and Raichle,
2001; Buckner et al., 2008) (see also the supplemental data, avail-
able at www.jneurosci.org as supplemental material). Also con-
sistent with the seed-based analyses, a cluster of nodes were iso-
lated from the principal network, although the originating
candidate hub was derived from a region showing high connec-
tivity (Fig. 4B, network II). Thus, hubs of high connectivity
across the cortex are not always associated within the same inter-
connected network. Rather, there is clear evidence for some de-
gree of modularity. These isolated hubs represent the exception
rather than the rule. The majority of hubs were linked to a single
highly interconnected core network.

Cortical hubs are present across passive fixation and active
task states
Given that the map of cortical hubs is quite similar to the default
network, which has traditionally been defined as regions most
active during passive resting states (Shulman et al., 1997; Ma-
zoyer et al., 2001) (see supplemental data, available at www.
jneurosci.org as supplemental material), it is important to ask
whether the observed map is dependent on the task performed
during data acquisition. To this point, all of the analyzed data
were collected while individuals fixated on a crosshair: a passive
task that freely allows mind wandering and other forms of spon-
taneous cognition (Andreasen et al., 1995; Binder et al., 1999).
One possibility is that the map of hubs captures transiently func-
tionally coupled regions, as might occur if the functional corre-
lations are predominantly driven by spontaneous cognitive pro-
cesses linked to the passive task state. Within this possibility,
during an active task, a distinct network of hubs might emerge
(the task positive network of Fox et al., 2005) (see also Fransson,
2005). An alternative possibility is that the hubs reflect a stable
property of cortical architecture that arises because of monosyn-
aptic and polysynaptic connectivity. Within this alternative pos-
sibility, the same hubs would be expected to be present all of the

Figure 6. Direct comparison of cortical hubs across task states. The voxel-by-voxel correla-
tion between the fixation and continuous task performance data from Figure 5, A and B, are
plotted. They are highly correlated (r � 0.78). Thus, despite a measurable effect of task (Fig.
5C), a major portion of the anatomic variation in degree connectivity is preserved across task
states, including the continuous heightened activity fluctuations in the core hubs identified in
Figure 4.
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time, independent of task state, even when
an active task is being performed.

To explore whether cortical hubs rep-
resent a stable property of cortex, we con-
ducted the same analyses as applied previ-
ously but this time to data collected during
the continuous performance of a demand-
ing semantic classification task (abstract/
concrete visual word classification). We
choose abstract/concrete classification be-
cause it represents a prototypical exter-
nally driven visual task that shows strong
task-induced deactivation of the default
network in traditional task-based analyses.
The task was self-paced to further mini-
mize cognitive downtime (D’Esposito et
al., 1997). The participants performed
well, classifying 91.4% of words correctly
with a mean response time of 967 ms. As
expected from previous studies (Fransson,
2006; Shannon et al., 2006), task perfor-
mance showed an overall effect on func-
tional connectivity with a significant re-
duction in the number of strongly
correlated voxels, particularly within the
default network ( p � 0.001). The open
question is whether task performance
changes the topography of hubs. Figures 5
and 6 reveal the results.

Two results emerged. First, the overall
topography of hubs was similar between
fixation and continuous task performance.
The hubs remained in regions of the de-
fault network even during task perfor-
mance. Second, in additional to the pres-
ervation of much of the topography, there
were clear differences in the task data. Of
note, regions of prefrontal and temporal
cortex that have been identified previously
as important contributors to the task
(Demb et al., 1995; Wagner et al., 1998)
showed increased degree connectivity.
Nonetheless, the heightened activity in the
hub regions is constant. Thus, task modu-
lation, as observed here and previous task-based analyses,
appears to emerge in addition to a stable topography of hubs that
persists across passive and active task states. Figure 6 shows the
correlation of the two maps of degree (passive visual fixation vs
continuous task performance). They were highly correlated (r �
0.78).

Consensus estimate of the locations of cortical hubs
The analyses above demonstrated a reliable topography of hubs
within the cerebral cortex that is present across passive visual
fixation and active task performance. To provide our best esti-
mate of the locations of hubs, we generated a consensus image
that included all available participants with fixation data and the
same acquisition voxel format (n � 127). These included datasets
1–3 as well as 67 additional participants in which two fixation
runs were available. Figure 7 shows this final consensus image of
cortical hubs. Atlas coordinates of hub peaks are listed in Table 4.
The image volume can be obtained from us on request.

A� deposition in Alzheimer’s disease occurs preferentially in
the locations of cortical hubs
Activity and/or metabolic properties in certain cortical re-
gions may be conducive to A� accumulation (Buckner et al.,
2005; Cirrito et al., 2005). Given this possibility, it is reason-
able to consider that the architecture of cortical hubs may
participate in this process. Cortical hubs are potential way
stations of information processing and heightened activity
and/or metabolism. As can be appreciated visually, the con-
sensus estimate of cortical hubs in Figure 7 resembles the
pattern of A� deposition in AD as measured in vivo using PET
(Klunk et al., 2004).

To formally explore the relationship between cortical hubs
and A� accumulation in AD, the consensus estimate was directly
compared with the estimate of A� deposition. Two separate anal-
yses were performed to make the comparison. First, the maps
were directly compared with visualize overlap. As Figures 7 and 8
reveal, the overlap is striking. Next, to quantify the overlap, the
values of all voxels within the brain (without use of any thresh-

Figure 7. A consensusestimateofcorticalhubsfrom127participants.Toprovideourbestestimateofthelocationsofcorticalhubs,the
data for all available participants were pooled and a map of hubs based on degree connectivity computed. The format is an expanded
version of the format used in Figure 2 that shows both the right and left hemispheres as well as the ventral and dorsal surfaces.
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old) were correlated for each of the two measures (the cortical
hub map and the PiB binding map). Figure 9 shows the results.
The correlation was strong (r � 0.68).

Of note, the relationship was not carried only by extreme
values because a relationship is clearly present when the values in
the lower or upper quartile of each measure are not considered.
This suggests a parametric relationship: the greater the level of
functional connectivity across the brain, the greater the level of
A� deposition in AD. As a final analysis, the map of hubs from the
continuous task data from dataset 3 was correlated with the PiB
binding map. The correlation was again strong (r � 0.58). Al-
though this result is expected based on the findings presented in
Figures 5 and 6, it establishes that the regions of high functional
connectivity associate with A� deposition independent of task
state, suggesting a mechanism for why these particular regions
are vulnerable in AD without reference to task-dependent pro-
cesses (Buckner et al., 2008). We will return to this important
point in Discussion.

Discussion
An emerging feature of connectional ar-
chitecture is that certain areas act as way
stations for information processing con-
necting otherwise segregated brain sys-
tems (Sporns et al., 2000, 2004, 2007;
Achard et al., 2006; Gong et al., 2008; Hag-
mann et al., 2008; Salvador et al., 2008).
These areas are called hubs. Here we used a
computationally efficient approach to
map the topography of hubs across the en-
tire cortex in a large number of partici-
pants. Results revealed a set of cortical
hubs that persisted across distinct partici-
pant groups and task states. Moreover, the
locations of most, but not all, hubs were
within regions of heteromodal association
cortex that are components of the default
network. Below we discuss the implica-
tions of these intriguing results as well as
the observation that cortical hubs corre-
late with regions of vulnerability in AD.

Hubs are present throughout
heteromodal regions of cortex
Building on the work of previous anato-
mists (Pandya and Kuypers, 1969; Jones
and Powell, 1970), Mesulam (1998) drew
attention to the importance of hetero-
modal regions of cortex that connect di-
verse brain systems. Our results, along
with recent work (Achard et al., 2006;
Hagmann et al., 2008; Salvador et al.,
2008), provide an increasingly detailed
map of the topography of cortical hubs.
Figure 7 presents the reference map of cor-
tical hubs generated from high-resolution
(3 mm) fMRI data in 127 young adults.
The map includes regions linked to multi-
ple distinct systems, including cortical
components of the medial temporal lobe
memory system (Vincent et al., 2006;
Kahn et al., 2008) and the frontoparietal
control system (Dosenbach et al., 2007;
Vincent et al., 2008).

The posterior midline, in particular the posterior cingulate, is
a nexus of cortical connectivity and has among the highest levels
of both degree and betweenness centrality (Achard et al., 2006;
Buckner et al., 2008; Fransson and Marrelec, 2008; Hagmann et
al., 2008; Greicius et al., 2009). Medial prefrontal cortex was also
identified as a hub. Unlike the posterior midline, medial prefron-
tal cortex did not manifest hub properties in the recent analysis of
a structural core based on in vivo tract tracing (Hagmann et al.,
2008). Hagmann et al. proposed that posterior cortex may serve
as the anatomic hub that links anterior and posterior midline
structures, an idea echoed by Greicius et al. (2009). This is an
intriguing possibility that may clarify differences between struc-
tural and functional connectivity. The more extensive topogra-
phy of hubs revealed by functional connectivity may comprise
systems interconnected by polysynaptic circuitry.

Much of the analyses in the present study and across the field
that has tended recently to analyze functional connectivity during

Figure 8. The pattern of A� deposition in Alzheimer’s disease. A� deposition was measured using PiB–PET imaging and is
plotted on the cortical surface using the same format as Figure 7. As can be appreciated visually, those regions showing high
functional connectivity primarily overlap those regions showing A� deposition.
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passive states could lead one to suspect that the specific cortical
topography of hubs was dependent on a passive state. However,
this was not found to be the case. Although there were notable
effects of task on functional connectivity, the topography of hubs
persisted across passive and active task states (Fig. 5). The present
results suggest that the baseline of non-uniform activity that de-
fines the hubs is likely derived from stable properties of the con-
nectional architecture, a feature that is particularly relevant to
metabolic properties that affect AD pathology as discussed later.

The relation between cortical hubs and the default network
Considerable recent attention has been given to the network of
regions, referred to as the default network, that are active during
passive task states relative to active states in which externally
oriented tasks were being performed (Shulman et al., 1997;
Mazoyer et al., 2001) (for review, see Raichle et al., 2001; Buckner
et al., 2008). The consensus map of cortical hubs identified here
included multiple regions that are components of the default
network, although overlap is not complete (see supplemental
data, available at www.jneurosci.org as supplemental material).

One possibility is that the recurrence of the pattern we have
come to know as the default network across all of these ap-
proaches reflects as overarching tendency of the human brain to
augment integrative processing that depends on the cortical hubs
identified here. Perhaps when focused attention is directed at a
stimulus in the service of a constrained behavior, cortical hubs
reduce their role in information processing. Such a situation is
typical of cognitive neuroscience paradigms because tasks are
commonly designed to evoke simple perception–action se-
quences. It is thus of interest that, although most tasks studied
during the first two decades of human imaging research caused
activity reductions in cortical hubs, recent studies that have be-
come less constrained (focusing on social cognition, remember-
ing, and navigation through virtual environments) often elicit
relative activity increases in the default network (for review, see
Svoboda et al., 2006; Buckner and Carroll, 2007; Hassabis and
Maguire, 2007; Schacter et al., 2007; Buckner et al., 2008; Spreng
et al., 2008).

The relation between cortical hubs and Alzheimer’s disease
A growing number of findings support a link between hetero-
modal association areas and cortical dysfunction in AD. These
regions are preferentially vulnerable to A� deposition (Klunk et
al., 2004; Buckner et al., 2005), atrophy (Scahill et al., 2002;
Thompson et al., 2003; Buckner et al., 2005), and disruption of
activity (Lustig et al., 2003; Greicius et al., 2004) and metabolism
(Herholz, 1995; Minoshima et al., 1997). The present results, by
showing that the cortical regions implicated in AD are connec-
tional hubs that maintain their properties across task states, sug-
gest a specific explanation for why these particular heteromodal
association areas are vulnerable in AD.

Cortical hubs may be preferentially affected in AD because of
their continuous high baseline activity and/or associated metab-
olism. Although task states modify activity and metabolism pro-
files transiently, our findings reveal that the cortical hubs main-
tain their properties on a continuous basis. This differs from the
notion that these regions are vulnerable only because of the ten-
dency to use them in passive states (Buckner et al., 2008). Rather,
the present data suggest that a stable property of the underlying
network architecture and resulting activity fluctuations may con-
vey vulnerability.

Amyloid precursor protein (APP) processing is activity de-
pendent (Nitsch et al., 1993; Kamenetz et al., 2003; Cirrito et al.,

2005, 2008; Selkoe, 2006). Using a transgenic mouse model,
Holtzman, Cirrito, and colleagues demonstrated that neuronal
stimulation increases the abundance of A� in the extracellular
space (Cirrito et al., 2005) and further that synaptic transmission
increases APP endocytosis, providing a candidate mechanism for
the observed increase (Cirrito et al., 2008) (see also Brody et al.,
2008). It is therefore intriguing to speculate that the augmented
functional activity, or activity fluctuations, associated with the
connectional hubs may cause preferential accumulation of A� as
a result of an activity-dependent mechanism.

Another link between activity and A� deposition comes from
genetic and imaging studies of metabolism in humans. Genetic
variation in glyceraldehydes-3-phosphate dehydrogenase
(GAPDH) has been proposed as a risk factor for AD (Li et al.,
2004). GAPDH, among its several biological roles, is a key en-
zyme in glycolytic metabolism. Coupled with the recent observa-
tion that glycolysis is preferentially high in regions associated

Figure 9. Direct comparison of cortical hubs and A� deposition. The voxel-by-voxel corre-
lation between the cortical hubs from Figure 7 are directly compared with the estimate of A�
deposition from Figure 8. The two are highly correlated (r � 0.68) with no clear region of
discrepancy between the two, consistent with visual inspection of the data.

Table 4. Cortical hubs estimated from the composite dataset including 127
participants

Location Atlas coordinates Normalized intensity

1, Left inferior/superior parietal lobule 
42, 
62, 56 1.39
2, Med superior frontal 2, 66, 12 1.35
3, Right inferior/superior parietal lobule 46, 
58, 56 1.25
4, Med superior prefrontal 
2, 42, 36 1.25
5, Left middle frontal 
42, 22, 52 1.23
6, Right superior/middle frontal 28, 29, 56 1.22
7, Med prefrontal 
2, 62 
4 1.17
8, Posterior cingulate/precuneus 
2, 
45, 34 1.17
9, Right supramarginal 62, 
34, 40 1.09
10, Left orbitofrontal 
42, 54, 
4 1.07
11, Left superior frontal 
18, 62, 32 1.07
12, Frontal midline/superior frontal 14, 26, 64 1.06
13, Right superior frontal 30, 62, 20 1.05
14, Left orbitofrontal 
50, 38, 
12 1.01
15, Right inferior parietal 58, 
34, 52 1.00
16, Cingulate/frontal midline 2, 
2, 52 1.00
17, Right superior parietal 30, 
66, 64 0.91
18, Right superior temporal/temporal pole 58, 10, 
4 0.88
19, Left superior temporal/temporal pole 
58, 6, 
4 0.87
20, Left middle/inferior temporal 
62, 
14, 
24 0.87

Atlas coordinates represent the MNI coordinate system (Evans et al., 1993) based on the MNI152/ACBM-152 target.
Med, Medial.
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with the default network (Mintun et al., 2006b), it is also possible
that connectional hubs may mediate their influence on A� dep-
osition through glycolytic metabolism, although a mechanism
linking metabolism to A� increase has not been reported.

Caveats and unresolved issues
There are several caveats that should be considered when inter-
preting the results, and many questions remain unresolved. A
major open question surrounds how to interpret functional con-
nectivity contrasted with structural connectivity. In many as-
pects, the network of hubs reported here is consistent with similar
analyses based on structural data (Hagmann et al., 2008). Differ-
ences were also noted that may reflect the sensitivity of functional
connectivity to polysynaptic projections or other unknown fac-
tors that influence functional coupling. It is also unclear to what
degree the present hubs reflect activity fluctuations driven by
local compared with distant projections. Animal models may
help resolve these open questions (Vincent et al., 2007; Zhao et
al., 2008).

A second limitation of the present approach is that it is de-
scriptive and will require convergence with alternative methods
to carry the research forward. Of particular importance will be to
mechanistically explore the possibility that cortical hubs are con-
ducive to A� accumulation. The present results suggest a testable
set of hypotheses that can be summarized as follows: (1) the
cortex contains regions of high activity and metabolism because
they sit as nexuses of connectivity, (2) these regions maintain
disproportionately high activity fluctuations most, if not all, of
the time, and (3) the resulting heightened synaptic activity or
associated cellular events are conducive to AD pathology.

These hypotheses revise previous notions (Buckner et al.,
2005, 2008) to propose that the regions of high activity and me-
tabolism gain that property because of a stable feature of func-
tional anatomy. A model system that can measure activity and
metabolic influences on AD pathology will be necessary to test
these hypotheses fully (Cirrito et al., 2005, 2008). It should also be
noted that we only explored A� deposition. The mechanism of
toxicity in AD is not fully understood with pathology associated
with tau likely making an important contribution to the disease
(Lee et al., 2001). A� may be a tangential correlate to the disease
process (for a discussion, see St George-Hyslop and Morris,
2008). To the degree that A� deposition marks where the patho-
logical process is occurring, the present results suggest that activ-
ity and/or metabolism associated with cortical hubs may acceler-
ate the disease process.
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