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Triphasic Dynamics of Stimulus-Dependent Information Flow
between Single Neurons in Macaque Inferior Temporal Cortex

Toshiyuki Hirabayashi, Daigo Takeuchi, Keita Tamura, and Yasushi Miyashita
Department of Physiology, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan

The functional connectivity between cortical neurons is not static and is known to exhibit contextual modulations in terms of the coupling
strength. Here we hypothesized that the information flow in a cortical local circuit exhibits complex forward-and-back dynamics, and
conducted Granger causality analysis between the neuronal spike trains that were simultaneously recorded from macaque inferior
temporal (IT) cortex while the animals performed a visual object discrimination task. Spikes from neuron pairs with a displaced peak on
the cross-correlogram (CCG) showed Granger causality in the gamma-frequency range (30 - 80 Hz) with the dominance in the direction
consistent with the CCG peak (forward direction). Although, in a classical view, the displaced CCG peak has been interpreted as an indicative
of a pauci-synaptic serial linkage, temporal dynamics of the gamma Granger causality after stimulus onset exhibited a more complex triphasic
pattern, with a transient forward component followed by a slowly developing backward component and subsequent reappearance of the forward
component. These triphasic dynamics of causality were not explained by the firing rate dynamics and were not observed for cell pairs that
exhibited a center peak on the CCG. Furthermore, temporal dynamics of Granger causality depended on the feature configuration within the
presented object. Together, these results demonstrate that the classical view of functional connectivity could be expanded to incorporate more
complex forward-and-back dynamics and also imply that multistage processing in the recognition of visual objects might be implemented by

multiphasic dynamics of directional information flow between single neurons in a local circuit in the IT cortex.

Introduction

Functional connectivity between single neurons has been widely in-
vestigated using cross-correlation analysis of spike trains. A center
peak on the cross-correlogram (CCG) suggests common inputs or
recurrent connections, whereas a displaced peak suggests pauci-
synaptic serial connections (Perkel et al., 1967; Moore et al., 1970).
These functional connectivities dynamically change depending on
the behavioral context or presented stimulus (Engel et al., 2001; Sali-
nas and Sejnowski, 2001; Hirabayashi and Miyashita, 2005; Kohn
and Smith, 2005; Fujisawa et al., 2008).

Neuronal interactions have also been examined in the fre-
quency domain using coherence measure (Averbeck and Lee,
2004; Fries, 2005). In particular, interactions in the gamma-
frequency range have been shown to involve various cognitive
processes, including attention, working memory, and object recog-
nition (Lee, 2003; Fries et al., 2007; Zhou et al., 2008). Although
coherence measure estimates the net strength of an interaction, it
does not directly provide the information on the strength of the flow
in each direction [but see Pesaran et al. (2008) for estimating directed
interactions via spike—local field potential (LFP) coherence].

Causality analysis, including partial directed coherence, di-
rected transfer function, and Granger causality, recently has been
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used to investigate the directionality of information flow for con-
tinuous neuronal signals such as LFP, EEG, or blood oxygenation
level-dependent signal acquired by functional magnetic reso-
nance imaging (Kaminski and Blinowska, 1991; Brovelli et al.,
2004; Roebroeck et al., 2005; Ding et al., 2006). Although these
analyses require the stationarity of the signal, which is often vio-
lated in the neuronal signals during execution of a cognitive task,
several methods have been devised to cope with this issue (Ding et
al., 2000; Salazar et al., 2004; Wang et al., 2008; Kayser and Logo-
thetis, 2009). By using these methods, the dynamics of neuronal
interactions between interconnected areas have been examined
in several studies, the results of which suggest that information
flow in each direction does not necessarily occur simultaneously
but, instead, relatively serial dynamics of interdependence can be
observed (Baccala and Sameshima, 1998; Kocsis and Kaminski,
2006). For example, Pesaran et al. (2008) and Gregoriou et al.
(2009) demonstrated that, during a cognitive task, a top-down
signal from the prefrontal cortex precedes a signal that flows in
the opposite direction. Although these forward-and-back dy-
namics of directional interdependence have been reported in
studies of macroscopic, across-areal interactions via LEP, the dy-
namics of directional interdependence between single neurons in
a microscopic, cortical local circuit remain unknown.

In a previous study, we demonstrated that the strength of spike-
timing correlation between single neurons in macaque inferior tem-
poral (IT) cortex was modulated depending on the presented
stimulus (Hirabayashi and Miyashita, 2005). Here we conducted
nonparametric Granger causality analysis (Dhamala et al., 2008a,b),
which is directly applicable to spike trains (Nedungadi et al., 2009),
to investigate dynamic changes in the directionality of information
flow between pairs of single I'T neurons (Miyashita, 2004). We found
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triphasic temporal dynamics of directional information flow, in
which the forward-and-back dynamics was followed by reappear-
ance of the forward component. These dynamics of information
flow appeared in a stimulus-dependent manner.

Materials and Methods

Behavioral tasks and recording procedures. The experimental procedures
have been described previously (Naya et al., 2003; Hirabayashi and Mi-
yashita, 2005). In brief, two monkeys (Macaca fuscata) were trained to
perform a visual object discrimination task [face-like object (FO)/
nonface-like object (NFO) judgment task]. While a monkey fixed its gaze
within 1.0-1.4° a visual object (see below) was presented for 1 s (cue
period). Eye position was monitored using a scleral search coil (Judge et
al., 1980; Tomita et al., 1999). After a delay period (500 ms), the go signal
appeared, which required the monkey to push the right or left button
within 1 s depending on whether the presented stimulus was FO or NFO.
All the analyzed neuronal signals in the present study were obtained
during this task. Monkeys performed this task with 99.7 = 0.4% (mean =
SEM) correct responses during recording sessions. Visual stimuli were
presented on the monitor (refresh rate, 60 Hz) by using a custom-made
software written in C. In a typical recording session, monkeys performed
over 1000 trials per day. The presented stimulus was a whole object that
was composed of four individual parts arranged in facial (FO) or random
(NFO) configurations within a radius of ~3° against a surrounding con-
tour (7.8° high and 6.1° wide). We prepared 120 facial-feature-like parts
(40 eye-like parts, 40 nose-like parts, and 40 mouth-like parts) to con-
struct 40° = 64,000 whole objects. Before the training of the above dis-
crimination task, monkeys were well familiarized with these 120 parts
using a delayed-matching-to-sample task.

Multiple single-unit activities (SUAs) were recorded from the IT cor-
tex in three hemispheres of the two monkeys using a tetrode (Thomas
Recording) (Aronov et al., 2003; Soteropoulos and Baker, 2006). Re-
corded signals were amplified (JH-440] and AB-651J; Nihon Kohden)
and bandpass filtered (500 Hz to 5 kHz) (Tamura et al., 2004; Fujisawa et
al., 2008). During a recording session, a pair of single units was sorted
using the window discrimination technique to determine the optimal
whole objects for the recorded cell pair, and neuronal signals were also
stored and digitized off-line at 25 kHz to sort into multiple single units by
waveform analysis (see below). Only these off-line-sorted single units
were further analyzed in the present study.

The parts comprising the optimal whole objects [optimal FO (pFO)
and optimal NFO (pNFO)] were determined by the minimax algorithm
(Baky et al., 1981; Hirabayashi and Miyashita, 2005) for each on-line-
sorted neuron pair so that they elicited as high a response as possible from
both neurons. For a given pair of neurons, the same set of parts was used for
its pFO and the corresponding pNFO. The spatial arrangement of the parts
in the pNFO was changed in a different recording session, and the same
arrangement was never used again. Optimal and nonoptimal FOs/NFOs
were presented to the animal in a pseudorandom order. Neuronal correla-
tion was not examined during recording sessions, ensuring that the recorded
cell pairs or their optimal stimuli could not be selected so that the cell pairs
revealed spike correlation in response to their optimal whole objects. All
animal experiments were performed in accordance with the National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals and the
regulations of the University of Tokyo School of Medicine.

Off-line spike sorting. We used the same database as our previous study
(Hirabayashi and Miyashita, 2005). In the present study, the methods for
spike sorting were modified as follows. We conducted oft-line spike sort-
ing using Klustakwik (Harris et al., 2000), an open source for semiauto-
matic spike sorting, and by following manual adjustment of the clusters
(Bartho et al., 2004; Fujisawa et al., 2008). We also conducted the spike
sorting by means of ICSort, the automatic spike-sorting algorithm using
the independent component analysis, enabling us to sort the temporally
overlapped spike waveforms into multiple single units (Takahashi et al.,
2003; Sakurai et al., 2004; Sakurai and Takahashi, 2006). If the results
obtained by ICSort were qualitatively similar to those obtained by
Klustakwik, except for overlapping spikes, we adopted the results ob-
tained by ICSort. In case that single units were sorted by Klustakwik, we
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obtained CCGs with a center dip at the bins within a 1 ms lag because of
the inability to sort the temporally overlapped spike waveforms into their
constituting multiple single units (Barthé et al., 2004; Tamura et al.,
2004; Fujisawa et al., 2008). In such cases, we did not analyze the peak
structure of the CCG at *1 ms of the zero lag point (Barth¢ et al., 2004;
Tamura et al., 2004; Fujisawa et al., 2008). This might have resulted in
exclusion of the narrow center peak that extended within =1 ms of the zero
lag point. As for displaced peaks, however, the peaks should be detected, in
most cases, with the lag time larger than 1 ms because of conduction delay
between neurons, and thus we considered that displaced peaks were not
excluded using this method. Monosynaptic or polysynaptic serial connec-
tions have also been examined in previous studies by detection of displaced
CCG peak without bins within a 1 ms lag (Menz and Freeman, 2003, 2004;
Tamura et al., 2004; Maurer et al., 2006; Fujisawa et al., 2008).

Cross-correlation analysis. The neuronal data were analyzed only for
the correct trials. We defined a cell as responsive to a whole object if the
firing rate during the cue period (assessed in a 500 ms period from 80 ms after
cue onset) was significantly ( p < 0.05, paired ¢ test) different from that in the
corresponding period just before cue onset. We conducted cross-correlation
analysis for a cell pair only if both constituent cells showed significant re-
sponses to both their pFO and pNFO that were determined during the re-
cording session before the cross-correlation analysis.

We constructed CCGs for lag times within 100 ms with a 1 ms resolu-
tion using spikes recorded during a 1 s period beginning 80 ms after cue
onset. A CCG for the pFO or pNFO was constructed from spikes re-
corded in at least 55 trials for each stimulus and was accepted only if the
available spikes exceeded 1900 (mean * SEM; 5022 = 310 for all of the
analyzed cell pairs, atleast 700 per cell). A shift predictor, calculated using
one-trial-shifted spike trains (Constantinidis et al., 2001, 2002; Tamura
et al., 2004; Kohn and Smith, 2005), was smoothed (five-bin boxcar
averaging) (Nowak et al., 1995) and subtracted from the raw CCG to
remove the stimulus-locked component (Perkel et al., 1967; Nowak et al.,
1995; Kohn and Smith, 2005), yielding the shift predictor-subtracted
CCG (SSCC). The peak height of an SSCC was normalized by the SD of
the shift predictor to calculate a zscore (Constantinidis et al., 2001, 2002)
and was identified as significant when the z score exceeded the threshold
corresponding to p = 0.05 (one-sided, z > 2.81, detected within the lag
time of 10 ms, corrected for multiple comparisons) (Hirabayashi and
Miyashita, 2005). SSCCs were constructed from spikes recorded in 145 *
6 (mean = SEM) trials for each stimulus. Significant SSCC peaks were
categorized into center or displaced peaks as follows. First, we calculated
the asymmetry index (AI) of the peak structure of each SSCC (Alonso
and Martinez, 1998; Menz and Freeman, 2003, 2004) as follows:

Al= (R — L)/(R + L), (1)

where R and L indicate the summed bin counts on the right and left side
of the SSCC within 10 ms lags, respectively. Bins were included in the
calculation only if the z score exceeded 2. A given significant SSCC was
defined to possess a displaced peak if the absolute value of the Al was
=0.5, whereas it was defined to possess a center peak if the absolute value
of the Al was <0.5. A displaced peak on the SSCC suggests pauci-synaptic
serial connections, whereas a center peak suggests common inputs or
recurrent connections (Perkel et al., 1967; Moore et al., 1970). Although
the above definition is somewhat arbitrary as suggested in previous stud-
ies (Menz and Freeman, 2003, 2004), still it reflects the differences in the
underlying anatomy of the observed functional connectivity and thus is
effective for separately investigating their functional properties, as is the
case in the present study and in previous studies (Alonso and Martinez,
1998; Menz and Freeman, 2003, 2004) (see Discussion for details).
Spectral analysis of spike trains. Spectral estimates of spike trains (auto- or
cross-spectrum and coherence) were calculated using the multitaper
method (Jarvis and Mitra, 2001; Pesaran et al., 2002, 2008; Saalmann et al.,
2007; Fries et al., 2008; Gregoriou et al., 2009; Nedungadi et al., 2009) using
Chronux, an open-source MATLAB software package (http://www.chronux.
org) (DeCoteau et al., 2007; Zhou et al., 2008). In this method, spectral
estimates of spike trains were determined as the average of the results that
were computed after multiplying several different taper functions to the
original signal. These processes yield less-biased and noise-reduced spectral
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estimates compared with conventional methods (Mitra and Pesaran, 1999;
Jarvis and Mitra, 2001). For time-averaged analysis in which spectral esti-
mates were calculated for 1-s-long spike trains, we applied nine orthogonal
Slepian tapers to calculate the spectral estimates of spike trains that were
downsampled to 1 kHz, providing a resultant frequency resolution of 5 Hz
(Pesaran et al., 2002). In time-resolved analysis, spectral estimates of spike
trains were calculated by using five-taper functions for a =125 ms window
that was slid in 25 ms steps (frequency resolution, =12 Hz) (Zhou et al.,
2008).

Nonparametric Granger causality analysis. The Granger causality estimates
whether the value of a given time series is better predicted by incorporating
the past knowledge of another time series compared with the case that the
prediction was conducted by using only the past knowledge of the first time
series itself. Ordinary parametric Granger causality (Brovelli et al., 2004;
Ding et al., 2006; Gregoriou et al., 2009; Kayser and Logothetis, 2009) and
some other analyses for estimating directional interactions (Kaminski and
Blinowska, 1991; Baccala and Sameshima, 1998) require multivariate au-
toregressive (MVAR) modeling of the signal. To apply these methods to
spike trains, they have to be converted into continuous data, which might
disrupt the properties of spike trains as point processes (Truccolo et al., 2005;
Dhamala et al., 2008a,b; Nedungadi et al., 2009). In the present study,
Granger causality analysis was conducted using a nonparametric method,
which bypasses MVAR modeling of the data (Dhamala et al., 2008a,b), and is
thus directly applicable to spike trains (Nedungadi et al., 2009).

We conducted nonparametric Granger causality analysis according to
the method described in previous studies (Dhamala et al., 2008a,b; Ne-
dungadi et al., 2009). In brief, spectral estimates of spike trains were first
calculated by means of the multitaper method, as explained above. To
calculate the Granger causality, transfer function and noise covariance
matrix were estimated from the spectral estimate S(f) using spectral ma-
trix factorization (Wilson, 1972), which decomposes S(f) into a unique
corresponding transfer function H(f) and noise covariance matrix V
(Dhamala et al., 2008a,b; Nedungadi et al., 2009). According to Geweke’s
formulation (Geweke, 1982, 1984), the auto-spectrum of a given signal at
a given frequency can be decomposed into an intrinsic component and
the other component that is predicted from another signal. The ratio of
the auto-spectrum to the intrinsic component thus provides the ampli-
tude of the causal influence. Here, the Granger causality from spike train
Nij(t) to Ni(t) at frequency f can be represented as follows:

; L Si(f) ,
Nj%M(f) a nSii(f) - (ij_ ‘/ijz/‘/ii)|Hij(f)‘2- ( )

The Granger causality in the opposite direction can be estimated simi-
larly. Spectral factorization and estimation of the Granger causality were
conducted by the MATLAB scripts that were kindly provided by Prof. G.
Rangarajan (Department of Mathematics, Indian Institute of Science,
Bangalore, India) (Nedungadi et al., 2009). For a given cell pair, coher-
ence and Granger causality values in Figures 1-6 were calculated using
spike trains for the pFO when the SSCC exhibited a significant displaced
peak for both the pFO and pNFO. When only the pNFO elicited a signif-
icant displaced peak, spike trains for the pNFO were used for these
coherence and Granger causality analyses. First, we examined the time-
averaged Granger causality in the cue period by using spike trainsinals
period from 80 ms after cue onset. Next, we conducted time-resolved
analysis of the Granger causality (Ding et al., 2000; Zhang et al., 2008;
Gregoriou et al., 2009) with a £125 ms window that was slid in 25 ms
steps. Note that in this time-resolved analysis, stationarity of the signal is
expected to be improved because of segmentation of the signal into a
short window when compared with the time-averaged analysis described
above (Ding et al., 2000; Gregoriou et al., 2009) (see Discussion for
details).

Statistical test for significance of coherence and Granger causality. We
adopted a nonparametric permutation test to examine statistical signifi-
cance of coherence for each cell pair (Maris et al., 2007; Fries et al., 2008).
The null hypothesis was that the obtained value of coherence was not
significantly different from those calculated with trial-shuffled spike
trains. For a given pair of neurons, coherence was calculated for trial-
shuffled spike trains, and the maximum value of coherence across all the
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frequencies in the gamma range (30-100 Hz) was determined. These
procedures were repeated 1000 times to obtain a null distribution of the
maximum gamma coherence. The experimental value of gamma coher-
ence was considered to be significant if it exceeded the 50th value from
the maximum of the aforementioned null distribution, which was equiv-
alent toa p value of 0.05 for a one-sided test. The same procedure was also
applied for the Granger causality in each direction. To test the significance
of directionality, the threshold was set at the 25th value from the maximum
of the null distribution, which corresponded to a p value of 0.05 for a two-
sided test. This method provided a statistical evaluation corrected for multi-
ple comparisons across different frequencies in the gamma range, because all
the values constituting the null distribution were determined as the maxi-
mum across different frequencies (Maris et al., 2007).

The randomization procedure was also applied for the population
analysis of time-resolved data to correct for multiple comparisons across
different time points (Womelsdorf et al., 2007; Fries et al., 2008). In that
case, trial-shifted coherence or Granger causality was subtracted from the
original data for each cell pair before testing the statistical significance,
and thus the null hypothesis was that the population average of the
resultant value was not significantly larger than zero. To estimate the null
distribution, the veridical data set was first randomly divided into two
groups, and the mean time course was calculated for each group. After
subtraction of one time course from the other, the maximum value was
determined across all the time points. These processes were repeated
1000 times to yield the null distribution, to which the population average
time course obtained from the experiment was compared. The threshold
was set at the value corresponding to a p value of 0.05 for a one-sided test.
For testing the significance of directionality, the threshold was set at the
value corresponding to a p value of 0.05 for a two-sided test.

Parametric Granger causality analysis. To apply the MVAR modeling to
spike trains during the cue period (a 1 s period from 80 ms after cue onset),
we first converted spike trains into continuous data (Jarvis and Mitra, 2001;
Nedungadi et al., 2009). In brief, cumulative spike count of a given neuron,
N(#), at time ¢ was converted into a zero-mean continuous signal, l\_f(t), by
subtracting the expected spike count At:

N() = N — At, (3)

where A is the mean firing rate of the neuron. After this conversion of the
spike trains, signals in each trial were sampled at 200 Hz. From this point, we
conducted parametric Granger causality analysis by using the open-source
MATLAB package (BSMART) (Cui et al., 2008). In brief, the converted
neuronal signals were first normalized by subtracting the point-by-point
ensemble mean across trials and dividing by the point-by-point SD across
trials. These processes eliminated nonstationarity of the signal that stems
from the temporal dynamics of the mean and SD. The above data were then
fitted to the bivariate autoregressive model, in which a pair of above signals
X(t) as a function of time t was written as follows:

P
E() = D AX(t— m), (4)

m=0

where E(?) is the two-dimensional noise vector as a function of time £, A,
is the 2 X 2 coefficient matrix, and p represents the model order. To
determine the model order of MVAR modeling, Akaike’s information
criteria (AIC) was calculated for each pair of neurons. As a population,
the minimum AIC value for cell pairs with a displaced CCG peak was
6.7 £ 0.49 (mean = SEM; n = 21), and thus we adopted a model order of
7 to conduct the MVAR modeling of our data. The transfer function
H( f) was computed from the coefficient matrix A,, as follows:

-1

p
H(f) — EAmefimerf . (5)
m=0

The estimated spectral matrix was given by the following:

S(f) = X(HX*(f) = H()VHE*(), (6)
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where * denotes matrix transposition and
complex conjugation and V is the covariance
matrix of the noise vector. Once the spectral
estimate was computed, Granger causality in
the frequency domain was estimated by us-
ing Geweke’s decomposition (Geweke, 1982,
1984).

Analysis of MS-triggered neuronal responses.
Horizontal and vertical eye traces were sam-
pled at 10 kHz using Recorder (Plexon) and
were downsampled to 1 kHz. The velocity of
eye movement was calculated as a square root
of the sum of squares of deviations in vertical
and horizontal directions compared with those
at the previous time point. Detection of micro-
saccades (MSs) was conducted basically in ac-
cord with the method described in a previous
study (Martinez-Conde et al., 2000). MSs were
detected in the cue period during which the
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All of the statistical tests in the present study were two-sided unless
stated otherwise.
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Gamma Granger causality between spike trains of single

IT neurons

Simultaneous recordings were conducted from multiple single
units in macaque IT cortex, while the animals performed a visual
discrimination task. We recorded the activity of 92 responsive
cells with a sufficient number of spikes in the cue period for
cross-correlation analysis (see Materials and Methods; 28 and 64
cells from monkeys 1 and 2, respectively). These cells constituted
61 cell pairs in total (20 and 41 cell pairs for monkeys 1 and 2,
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unit 2. Bin width, 1 ms. Right, SSCC of the cell pair. Horizontal gray lines, Confidence limit ( p = 0.05, corrected for multiple
comparisons). €, Coherence between raw spike trains (orange) and between trial-shifted spike trains (kahki). Horizontal orange
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1to unit 2 minus unit 2 to unit 1) for raw (black) and trial-shifted (gray) spike trains. Horizontal black line, Confidence limit.

respectively). Of these, 21 cell pairs (12 and 9 cell pairs for mon-
keys 1 and 2, respectively) revealed a significant displaced peak on
the CCG in response to their optimal stimulus [see Materials and
Methods; peak zscore, 5.0 = 0.88 (mean = SEM); peak lag, 3.6 =
0.47 ms; AL 0.90 = 0.04; half-width at half-maximum, 1.8 = 0.33
ms]. In the present study, we analyzed the spectral properties of
spike correlation for these cell pairs exhibiting a displaced CCG
peak.

The representative data of the spectral analysis for a pair of IT
neurons is depicted in Figure 1. Both neurons of this pair exhib-
ited significant spiking responses to their optimal stimulus (Fig.
1 A). For this cell pair, we calculated the CCG between the spike
trains during the cue period and found that this cell pair exhibited
a significant displaced peak on the left side of the CCG (peak z
score, 3.9; Al, —1.0; peak lag, —1.5 ms; half-width at half-
maximum, 3.5 ms) (Fig. 1 B), suggesting pauci-synaptic connec-
tions from unit 1 to unit 2. Next, we applied multitaper spectral
analysis to this cell pair for investigating the spectral characteris-
tics of the functional connectivity (Jarvis and Mitra, 2001; Pesa-
ran et al., 2002, 2008; Saalmann et al., 2007; Fries et al., 2008;
Zhou et al., 2008; Gregoriou et al., 2009). Spike trains of this cell
pair revealed prominent gamma coherence during the cue period
(Fig. 1C, orange trace). Trial shifting (Saalmann et al., 2007; Zhou
et al,, 2008; Gregoriou et al., 2009) essentially diminished this
gamma coherence (Fig. 1C, khaki trace), suggesting that the ob-
served coherence was not attributable to the stimulus-locked dy-
namics of spike firings. Statistical significance of the coherence
was evaluated using a null distribution of the data calculated from
trial-shuffled spike trains (Maris et al., 2007), and the peak value
of the gamma coherence of this cell pair was found to be signifi-
cant (peak, 41 Hz; p < 0.001, permutation test, corrected for
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Figure 2.

ANOVA followed by LSD.

multiple comparisons across frequencies). The results of non-
parametric Granger causality analysis for the above cell pair are
depicted in Figure 1D. In both directions, Granger causality in
the gamma range revealed prominent peaks at the frequency sim-
ilar to that of coherence, but the peak value in the direction from
unit 1 to unit 2 was greater than that in the opposite direction
(Fig. 1 D, red and blue traces), consistent with the results of cross-
correlation analysis. Trial shifting (Brovelli et al., 2004; Grego-
riou et al., 2009; Nedungadi et al., 2009) almost completely
attenuated the causality in both directions (Fig. 1 D, magenta and
cyan traces). Statistical significance of the gamma Granger cau-
sality was evaluated using trial-shuffled spike trains as in the case
of coherence (Maris et al., 2007), and the peak value of the
Granger causality was significant (unit 1 to unit 2: peak, 38 Hz;
p < 0.001, permutation test; unit 2 to unit 1: peak, 42 Hz; p <
0.002). Directionality of the Granger causality was defined as the
difference in the causality value between the two directions (unit
1 to unit 2’ minus unit 2 to unit 1), and the directionality for this
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Population data of coherence and Granger causality for cell pairs with a displaced (CG peak. A-C, Coherence and
Granger causality in the cue period. A, Coherence for raw (orange) and trial-shifted (kahki) spike trains (n = 21). Thick and thin
traces depict the mean and mean = SEM, respectively. B, Granger causality for raw (red and blue) and trial-shifted (magenta and
cyan) spike trains. The direction of causality was defined as forward and backward according to the CCG peak (see Results). €,
Directionality of Granger causality for raw (black) and trial-shifted (gray) spike trains. The directionality was defined as the signed
difference between the forward and backward components of Granger causality. D—F, Same analyses as in A-C, but for spike trains
during the baseline period (1000 — 0 ms before cue onset). G, H, Average gamma (30— 80 Hz) components of coherence (G) and
Granger causality (H) for the population. Error bars represent SEM. Asterisks indicate statistical significance assessed by two-way
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cell pair was found to be significant (black
trace; peak, 38 Hz; p < 0.001, permutation
test) (Fig. 1 E).

In the population of cell pairs with the
displaced CCG peak (n = 21), gamma co-
herence in the cue period was greater than
the control that was calculated using trial-
shifted spike trains (peak, 51 Hz) (Fig. 2 A,
orange). In the precue baseline period
(1000—0 ms before cue onset), coherence
was much weaker than that in the cue period
(Fig. 2D, orange). Two-way ANOVA for
gamma coherence (30— 80 Hz) showed that
gamma coherence in the cue period was sig-
nificantly greater than the trial-shifted con-
trol or than the gamma coherence in the
baseline period [p < 0.001, two-way
ANOVA followed by least significant differ-
ence (LSD); n = 21] (Fig. 2G). Significant
gamma coherence in the cue period was
consistently observed in both monkeys
(monkey 1: p < 0.001, paired t test, n = 12;
monkey 2: p < 0.004, n =9).

Population coherence spectra revealed
a broader peak compared with the repre-
sentative data in Figure 1. Even in the case
that the coherence of each cell pair had a
clear frequency structure stemming from
an oscillatory process, the population data
of the coherence spectrum might become

Frequency (Hz)

Frequency (Hz)

Baseline

broader than that from a single-cell pair, if
the peak frequency of each coherence var-
ied pair by pair. To assess this possibility,
we examined the peak frequency and fre-
quency width (FWHM) of each coherence
(supplemental Fig. 1, available at www.
jneurosci.org as supplemental material).
The median value of the FWHM was 23.7
Hz, and more than half (57%) of the cell
pairs revealed coherence with the FWHM
that was smaller than 30 Hz (supplemen-
tal Fig. 1 A, available at www.jneurosci.org
as supplemental material). The peak fre-
quency of coherence varied cell pair by cell
pair, and the median value was 54.2 Hz
(supplemental Fig. 1B, available at www.jneurosci.org as supple-
mental material). These results indicate that, as described above,
individual spike—spike coherences in the present study revealed
distinct peaks with various peak frequencies in the gamma range,
suggesting the involvement of underlying oscillatory processes.

Next, we examined the phase spectrum of coherence for the
frequency range in which significant coherence was observed
with the permutation test. Figure 3, A and B, shows the super-
posed phase spectra of coherence for individual cell pairs that
were calculated using raw and trial-shifted spike trains, respec-
tively. In population, the phase of coherence for raw spike trains was
significantly more stable (i.e., with smaller variance) across frequen-
cies than that which was calculated using trial-shifted spike trains
(p<<0.001, paired t test). These results indicate that pairs of single IT
neurons with a displaced CCG peak exhibited reliable gamma coher-
ence with phase stability across different frequencies.

For the population analysis of the Granger causality, direc-
tions of the influence for each cell pair were assigned according to

Forward

Backward

Raw Shifted

P>0.07
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the results of cross-correlation analysis:
when a given CCG revealed a significant
displaced peak indicating the functional
connectivity from unit 1 to unit 2, the di-
rection from unit 1 to unit 2 was defined
as “forward,” whereas the opposite was
defined as “backward.” As a population,
the gamma Granger causality in the for-
ward direction during the cue period was
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ward direction (p < 0.02) (Fig. 2H,
left). Forward-dominant causality in the
gamma range was consistently observed
in both monkeys [monkey 1: forward/
backward, 3.01 = 0.87 (mean * SEM; p <
0.03, one-sided paired t test; n = 12);
monkey 2:2.94 = 0.89 ( p < 0.04;n =9)].
In the baseline period, however, the
gamma Granger causality in either direc-
tion was not significantly different from
the trial-shifted control, and the values in
each direction were not significantly different from each other
(p > 0.07) (Fig. 2E,F,H right). Together, these results indicate
that pairs of single neurons in the IT cortex with the displaced
CCG peak exhibit Granger causality in the gamma range in re-
sponse to the presented stimulus, with a directionality in accor-
dance with the CCG peak.

In the present study, Granger causality was calculated using a
nonparametric method, which bypasses MVAR modeling of the
data (Dhamala etal., 2008a,b), and it enables direct application to
spike trains (Nedungadi et al., 2009). To confirm that the present
results do not depend on the adopted method for estimating the
Granger causality, we also conducted parametric Granger causal-
ity analysis (see Materials and Methods). For the spike trains that
exhibited a displaced CCG peak, the parametric Granger causal-
ity analysis in the cue period showed qualitatively similar results
to those obtained using the nonparametric method: forward cau-
sality showed a prominent peak in the gamma range (49 Hz), and
the gamma component of forward causality (30-80 Hz) was
significantly greater than that in the backward direction (p <
0.05, two-way ANOVA followed by LSD; n = 21) or that calcu-
lated with the trial-shifted spike trains ( p < 0.007). These data
confirm that our results were not attributable to a specific
method for estimating the Granger causality.

Next, we examined whether the strength of directionality of
the Granger causality corresponded with that of the CCG. The
directionality index of the Granger causality was defined as the
normalized difference between the forward and backward com-
ponents. The directionality index of the gamma Granger causal-
ity (30—80 Hz) was significantly correlated with the Al of the
corresponding CCG (r = 0.652; p < 0.001) (supplemental Fig.

Figure3.

r=0.577, P <0.002

r=-0.215,P>0.2

Phase of coherence and its relationship with the directionality of Granger causality. A, B, Superposed phase spectra of
coherence for individual cell pairs with a displaced CCG peak. Phase spectra of coherence were calculated using raw (A) and
trial-shifted (B) spike trains. Different colors correspond to different cell pairs. Phase of coherence was calculated for frequenciesin
which the amplitude of coherence was significant for raw spike trains and the mean phase within the calculated frequencies was
subtracted. Note that 0 Hz depicts the lowest frequency at which coherence of a given cell pair was significant. €, D, Relationship
between the phase of coherence and the directionality index of Granger causality. Granger causality was calculated using raw (C)
and trial-shifted (D) spike trains. E, Relationship between the phase of coherence and the directionality index of Granger causality
calculated for individual frequencies. Horizontal line, Confidence limit ( p = 0.05, corrected for multiple comparisons).

2A, available at www.jneurosci.org as supplemental material).
This relationship was not observed when the trials were shifted
for calculating the Granger causality (r = —0.201; p > 0.3) (sup-
plemental Fig. 2 B, available at www.jneurosci.org as supplemen-
tal material). We also examined whether the directionality of the
Granger causality is correlated with the phase of coherence,
which reflects the systematic lag time between the correlated sig-
nals (Kocsis and Vertes, 1997; Schack et al., 1999; Bressler and
Kelso, 2001; Weiss and Mueller, 2003; DeCoteau et al., 2007;
Saalmann et al., 2007; Gregoriou et al., 2009). The directionality
index of the Granger causality was also found to be significantly
correlated with the phase of coherence (r = 0.577; p < 0.002)
(Fig. 3C). Trial shifting for calculating the Granger causality,
again, essentially eliminated this correlation (r = —0.215; p >
0.2) (Fig. 3D). These results suggest that for a given cell pair, the
directionality of the gamma Granger causality is closely related to
both the asymmetry of the CCG peak and the phase of coherence.

To further examine the above relationship in more detail, we
calculated the relationships between the phase of coherence and
the directionality of Granger causality for individual frequencies.
We conducted the calculation with steps of 10 Hz to obtain the
results practically for individual frequencies considering the an-
alytical resolution (see Materials and Methods). The obtained
results are displayed in supplemental Figure 3 (available at www.
jneurosci.org as supplemental material), and are summarized as a
function of the frequency in Figure 3E. Statistically significant
correlations between the phase of coherence and the directional-
ity index of Granger causality were found for the frequency
ranges of 40—50 and 50—60 Hz ( p < 0.05 and p < 0.02, respec-
tively, corrected for multiple comparisons). These results indi-
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Figure 4. Temporal dynamics of coherence and Granger causality. A—E, Data from a pair of neurons. A, Temporal dynamics of

coherence calculated by sliding a =125 ms window in 25 ms steps. Time 0 depicts the window in which spikes from —125t0 125
ms from cue onset were included. Data obtained using trial-shifted spike trains were subtracted. B, ¢, Temporal dynamics of
Granger causality in the forward (B) and backward (C) directions. D, Temporal dynamics of directionality. E, Firing rates of the two
neurons. Note that the peak firing rates were different between the units (see the left and right of the color bar for units 1and 2,
respectively). F—J, Same analyses as in A—E, but for the population of cell pairs with a displaced CCG peak (n = 21). Pre-units and

post-units in J were defined from the CCG peak (see Results).

cate that a significant positive correlation between the phase of
coherence and the directionality of Granger causality was ob-
served even when the relationships were examined for individual
frequencies in the gamma range. Note that coherence and
Granger causality were most prominent in these frequency ranges
(Fig. 2A,B).

Triphasic rapid dynamics of directional interdependence
between single neurons

The above Granger causality analysis evaluated a temporal aver-
age value of directional influences in the cue period. We next
examined the dynamics of the interdependence using the sliding
window technique (Ding et al., 2000; Zhang et al., 2008; Grego-
riou et al., 2009). We calculated the Granger causality in a =125
ms window with 25 ms steps and subtracted those calculations
with trial-shifted spike trains. The results of a representative cell
pair are depicted in Figure 4 A—E. This cell pair exhibited gamma
coherence throughout the cue period (peak frequency, 46 Hz;
peak latency, 225 ms from cue onset) (Fig. 4 A). Granger causality
of this cell pair also revealed a transient increase with the domi-
nance in the forward direction (peak frequency, 50 Hz; peak la-
tency, 250 ms) (Fig. 4B). In a later epoch, a transient forward
causality reappeared (peak frequency, 58 Hz; peak latency, 550

in a relatively low-frequency range (Fig.
4 H). Directionality analysis showed two
separate peaks of forward dominance
[i.e., a strong early peak (peak frequency,
78 Hz; peak latency, 125 ms) and a rela-
tively weak late peak (peak frequency, 58
Hz; peak latency, 600 ms)] (Fig. 41). The
population firing rate was examined by
defining the pre-units and post-units from the direction of func-
tional connectivity inferred from the CCG. Firing rate dynamics
were very similar between the pre-units and post-units (Fig. 4]),
and their peak latencies (250 ms for both pre-units and post-
units) were longer than that of the early peak of the forward
causality. In contrast to the dynamics of forward Granger causal-
ity, firing rates of single neurons did not reveal a substantial re-
bound after the first peak. These results indicate that neuronal
interactions exhibit dynamic changes not only in terms of the
strength (coherence) but also in terms of the directionality
(Granger causality) and that the rapid dynamics of directed in-
fluences is not merely a reflection of firing rate dynamics of indi-
vidual neurons.

To quantify these rapid changes in the neuronal interaction,
we calculated the dynamics of the gamma component for the
coherence and Granger causality. Gamma coherence (30—80 Hz)
revealed a significant sustained increase throughout the cue pe-
riod (peak, 275 ms from cue onset; p < 0.001, permutation test,
corrected for multiple comparisons across time bins) (Womels-
dorf et al., 2007; Fries et al., 2008) (Fig. 5A). Granger causality
exhibited more dynamic changes: gamma Granger causality in
the forward direction (30—80 Hz) revealed two significant de-
tached peaks (150 and 550 ms; p < 0.001 and p < 0.03, respec-
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Figure 5.  Statistical analysis of coherence and Granger causality dynamics in the gamma
range. A, Time course of gamma coherence (n = 21). Thick and thin traces are mean and
mean == SEM, respectively. Horizontal orange line, Confidence limit ( p = 0.05, corrected for
multiple comparisons). B, Time course of gamma Granger causality. Horizontal red and blue
lines, Confidence limit for the forward and backward directions, respectively. €, Time course of
directionality. Horizontal black line, Confidence limit. D, Time course of firing rates for the
pre-units and post-units.

tively, permutation test as in the case of coherence) (Fig. 5B, red
trace). To compare the dynamics of coherence and forward cau-
sality, we calculated the FWHM of these time courses. FWHM of
the forward causality dynamics was significantly shorter than that
of the coherence dynamics (193 = 24 vs 402 = 54 ms, mean =+
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Figure6. Peak frequency of Granger causality. Three significant components (early forward,
middle backward, and late forward) were derived from the time course of gamma Granger
causality. Each histogram represents the population average (n = 21) of the peak frequency for
each component of Granger causality. Error bars represent SEM. The asterisk indicates statistical
significance assessed by the paired ¢ test, corrected for multiple comparisons.

SEM; p < 0.001, paired ¢ test). Gamma Granger causality in the
backward direction (30—65 Hz) showed a single, slowly develop-
ing significant peak when the early component of the forward
causality was attenuated (peak: 400 ms, p < 0.004) (Fig. 5B, blue
trace). We confirmed that even if the same analysis was con-
ducted by only using cell pairs that revealed the highest Al in their
CCG (Al 1.0; n = 15), the slowly developing backward causality
was still significant (peak: 400 ms, p < 0.009), suggesting that this
slowly developing backward causality is not attributable to cell
pairs whose CCG peak structure is relatively close to that of the
center peak. The directionality dynamics of gamma Granger cau-
sality (30—80 Hz) revealed two separate peaks that corresponded
with the dynamics of the forward component, although only the
first peak was significant (150 ms; p < 0.02) (Fig. 5C). Next, we
compared the latency of forward and backward causality. Half-
maximum latency of the backward causality was significantly
longer than that of the forward causality (360 £ 50 vs 239 = 45
ms, mean * SEM; p < 0.04, paired t test). This result suggests that
the spiking activity in a local circuit was transferred in the for-
ward direction first and then retransferred in the backward direc-
tion with a substantial delay. There were no systematic
differences either in the firing rates between the pre-units and
post-units throughout the cue period or in the response latencies
between these groups of single neurons (Fig. 5D). Furthermore,
both the pre-units and post-units showed only a single peak in
their firing rate dynamics. These results suggest that the observed
causality dynamics and its forward dominance was not a simple
reflection of firing rate dynamics of either pre-units or post-units.

We derived three significant components of the Granger cau-
sality (i.e., early forward, middle backward, and late forward
components) and examined the peak frequency of each compo-
nent. The peak frequency of the early forward component was
significantly higher than that of the middle backward component
(58.5 = 3.8 vs 47.8 £ 3.2 Hz, mean = SEM; p < 0.006, paired ¢
test, corrected for multiple comparisons) (Fig. 6). The peak fre-
quency of the late forward causality (52.2 = 3.5 Hz) was not
significantly different from either of the other two components
(p>0.2).

In the above analyses of Granger causality dynamics for dis-
placed CCG peak pairs, we defined the pre-unit and post-unit for
each cell pair on the basis of the direction of functional connec-
tivity inferred from the CCG. This raises the concern that the
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existence of backward causality might be a reflection of erroneous
assignment of the direction. When we evaluate the causality of a
single pair of neurons, exchanging the order of the spike trains
(unit 1 or 2) leads to just reversing the triphasic pattern. How-
ever, when we conducted a population analysis of the Granger
causality, it was necessary to define the order of the spike trains on
the basis of a common rule to compile the data on individual cell
pairs into population data. In the first analysis, we used the CCG
peak to define the order of the spike trains for individual cell
pairs. We could also define the order on the basis of the Granger
causality itself. This other method of defining could potentially
result in a different order of spike trains for the same cell pair.
Especially, the backward causality, which is generally weaker than
the forward causality, might be more sensitive to this definition
than the forward causality. To assess whether the triphasic pat-
tern is robust against the definition of the spike train order, we
conducted a second analysis in which we redefined the spike train
order using the Granger causality itself and evaluated the tempo-
ral pattern of the population causality. For a given cell pair, time-
averaged Granger causality values (cue period) in the two directions
were compared, and the larger value was defined as that in the for-
ward direction. This procedure did not essentially change the results:
the forward causality showed two separate significant peaks (supple-
mental Fig. 4B, E, available at www.jneurosci.org as supplemental
material), and the backward causality revealed slow but significant
development in the lower-frequency range (supplemental Fig. 4C,E,
available at www.jneurosci.org as supplemental material). There-
fore, the observed causality dynamics in both the forward and back-
ward directions were not likely the result of an erroneous assignment
of the directions.

To test whether the observed dynamics of Granger causality is
specific to the cell pairs with the displaced CCG peak, we exam-
ined the dynamics of Granger causality for cell pairs that showed
a center peak on the CCG (n = 14). As in the above analysis,
directions of the causality for individual cell pairs were assigned
on the basis of the time-averaged causality value. In contrast to
the displaced peak pairs, Granger causality dynamics of the center
peak pairs was quite similar between the forward and backward
directions: they only showed an early component, and did not
show a slowly developing component (supplemental Fig. 5B, C,
available at www.jneurosci.org as supplemental material). The
forward causality was slightly stronger than the backward causal-
ity, likely attributed simply to the assignment of each direction on
the basis of the strength of time-averaged causality itself. The
gamma Granger causality in both directions (30—65 Hz) reached
significance immediately after cue onset (forward: peak, 150 ms;
p < 0.003, permutation test; n = 14; backward: peak, 150 ms; p <
0.02) (supplemental Fig. 5E, available at www.jneurosci.org as
supplemental material), and the directionality of the gamma
Granger causality was not significant at any time point ( p > 0.08)
(supplemental Fig. 5F, available at www.jneurosci.org as supple-
mental material). Half-maximum latencies of the forward and
backward causalities were not significantly different from each
other ( p > 0.7, paired ¢ test). Peak frequencies of the forward and
backward causality were also not significantly different from each
other ( p > 0.1). These results suggest that the triphasic dynamics
of directional influences was specific to the cell pairs with the
displaced CCG peak. Furthermore, from the above analysis, it
seems unlikely that the slowly developing backward causality ob-
served for displaced CCG peak pairs was attributable to a contri-
bution of contaminated center peak pairs.

Recently, it has been shown that MS affects the firing rate
(Leopold and Logothetis, 1998; Martinez-Conde et al., 2000; Bos-
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man et al., 2009) and spike—LFP coherence (Bosman et al., 2009)
in areas V1 and V4. This raises the possibility that the complex
dynamics of Granger causality we observed might be attributable
to its modulation by MSs. To assess this possibility, we detected
the MSs within the fixation window during the cue period and
examined whether the MSs affected the observed neuronal re-
sponses including the firing rate, coherence, and Granger causal-
ity. We conducted this analysis for all the recording sessions from
one monkey whose eye-trace data were stored for the analysis (12
of 21 cell pairs with a displaced CCG peak were included).

We first calculated the MS-triggered average of the firing rate
as a function of time around the MSs. To control for the effect of
the stimulus-locked response, we conducted the same calculation
after trial shifting of spike trains against MS events. This trial-
shifted control was then subtracted to compute the shift-
subtracted, MS-triggered average of the firing rate for evaluating
the changes in the firing rate by MSs. We found significant
changes in the firing rate that were triggered by MSs (maximum
modulation: 2.8 Hz, 185 ms after MS onset; p < 0.008, permuta-
tion test) (supplemental Fig. 6 A, available at www.jneurosci.org
as supplemental material). This result is in line with previous
observations reported in areas V1 and V4 (Leopold and Logoth-
etis, 1998; Martinez-Conde et al., 2000; Bosman et al., 2009). To
evaluate the practical impact of this effect on the actual neuronal
responses during the task, we compiled the time course of MS-
induced modulation of the firing rates by convolving the timing
of MS onset with the shift-subtracted, MS-triggered average of
the firing rate. Again, we found significant MS-induced modula-
tion of the firing rates in the cue period (maximum modulation:
—0.33 Hz, 575 ms after cue onset; p < 0.002, permutation test)
(supplemental Fig. 6 B, available at www.jneurosci.org as supple-
mental material). It should be noted, however, that these modu-
lations were far smaller than the visual response to the presented
stimulus itself (20-30 Hz) (see Fig. 5D), as expected in the IT
cortex (Leopold and Logothetis, 1998).

We then examined the effects of MSs on the coherence and/or
Granger causality by conducting the same analyses as those for
the firing rate. Shift-subtracted, MS-triggered averages of coher-
ence and Granger causality were found to be smaller than those
signals elicited by visual stimuli (supplemental Fig. 7A-C, avail-
able at www.jneurosci.org as supplemental material). MS-
induced modulation of coherence and Granger causality in the
cue period (supplemental Fig. 7D—F, available at www.jneurosci.
org as supplemental material) did not reveal prominent compo-
nents at any time point after cue onset, in contrast to those that
were elicited by visual stimuli (compare supplemental Fig. 7D-F,
available at www.jneurosci.org as supplemental material, with
Fig. 4F-H). We next calculated the gamma components of the
shift-subtracted, MS-triggered averages and the MS-induced
modulations for both coherence and Granger causality (supple-
mental Fig. 8, available at www.jneurosci.org as supplemental
material). The gamma components of the shift-subtracted, MS-
triggered average of coherence and Granger causality were not
significant at any time point from MS onset (coherence, p > 0.2;
forward Granger causality, p > 0.9; backward Granger causal-
ity, p > 0.06, permutation test) (supplemental Fig. 8 A, B, avail-
able at www.jneurosci.org as supplemental material), and their
maximum amplitudes were significantly smaller than those that
were elicited by visual stimuli (coherence, p < 0.001; forward
Granger causality, p < 0.004; backward Granger causality, p <
0.001, two sample t test) (compare supplemental Fig. 8 A, B, avail-
able at www.jneurosci.org as supplemental material, with Fig.
5A,B). In the cue period, the gamma components of the
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MS-induced modulation of coherence

and Granger causality were not significant 100
at any time point after cue onset (coher- ~N
ence, p > 0.1; forward Granger causality, \I;
p > 0.5; backward Granger causality, p > Forward =
0.06, permutation test) (supplemental %
Fig. 8C,D, available at www.jneurosci.org 19}
as supplemental material), and their max- L3"0
imum amplitudes were, again, signifi- 0
cantly smaller than those that were elicited 100
by visual stimuli ( p < 0.001 for coherence Pl

. N
and forward/backward Granger causality, T |
two-sample ¢ test) (compare supplemen- 3
tal Fig. 8C,D, available at www.jneuro- Backward §
sci.org as supplemental material, with Fig. T
5A,B). Note that neither the MS-induced i
modulation of coherence or Granger cau- 30 0
sality in the gamma range revealed even a
small temporal pattern such as we ob-  Figyre7,

served for those that were elicited by vi-
sual stimuli. Therefore, we conclude that
MSs cannot explain the stimulus-elicited
temporal pattern of gamma coherence or
Granger causality between SUAs in the IT
cortex.

Stimulus-dependence of the Granger
causality dynamics

The above data showed a temporally dy-
namic feature of the Granger causality be-
tween spikes from single neurons. The
next question is whether these dynamics
of the directional influences occur in a
stimulus-dependent manner. In a previ-
ous study, we prepared 64,000 FOs and
their corresponding NFOs and demon-
strated that spike-timing correlation be-
tween pairs of neurons was significantly
stronger for their pFOs compared with
the corresponding pNFOs composed of
the same set of parts. The firing rates were
not significantly different between pFOs
and pNFOs (Hirabayashi and Miyashita,
2005). We thus examined whether the dy-
namics of Granger causality also depends
on the feature configuration within a
whole object. As a population, pFOs elic-
ited strong forward causality in the early
and late epochs of the cue period and
slowly developing backward causality
(Fig. 7, left). In contrast, Granger causality
elicited by the corresponding pNFOs was
much weaker for the same cell pairs and
only transiently appeared in the early ep-
och, in the forward direction (Fig. 7,
right).
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Quantitative analysis of gamma Granger causality dynamics

showed that pFOs elicited temporally separated two significant
components of forward causality (30—80 Hz; peak: 150 ms and
525 ms; p < 0.002 and p < 0.02, respectively, permutation test)
(Fig. 8A, left, red trace) and elicited a single, slowly developing
significant component of backward causality (30— 65 Hz; peak:
475 ms; p < 0.005) (Fig. 84, left, blue trace). On the contrary,

pPNEFOs elicited only an early transient forward causality (peak: 75
ms; p < 0.03) (Fig. 84, right, red trace). No systematic difference
was observed between the population firing rates for pFOs and
pNFOs at any time point (Fig. 8 B), suggesting that the observed
dependence of Granger causality dynamics on the presented
stimulus was not attributable to the firing rate difference. We
conducted two-way ANOVA to quantitatively investigate the dif-
ference in the Granger causality between pFOs and pNFOs (Fig.
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8C). The pFO-evoked forward causality was maximum at 150 ms
(from cue onset) in the early epoch when the pFO-evoked for-
ward causality reached significance. At that time point, pFO-
evoked forward causality was significantly greater than that for
pNFOs or than the backward component of the pFO-evoked
causality ( p < 0.04, two-way ANOVA followed by LSD) (Fig. 8C,
left). The pFO-evoked backward causality was the maximum at
475 ms in the middle epoch when the backward component of
the pFO-evoked causality reached significance. At that time
point, the forward component of pFO-evoked causality was sig-
nificantly larger than that for pNFOs (p < 0.01), whereas the
backward component was not significantly different between
pFOs and pNFOs ( p > 0.2) (Fig. 8C, middle). The pFO-evoked
forward causality was maximum at 525 ms in the late epoch when
the pFO-evoked forward causality again reached significance. At
that time point, pFO-derived forward causality was significantly
larger than that for pNFOs or than the backward component of
the pFO-evoked causality (p < 0.01) (Fig. 8C, right), as was
observed in the early epoch. In contrast to the stimulus depen-
dence of the Granger causality, there was no significant difference
between the firing rates in response to pFOs and pNFOs at the
above time points (pFO vs pNFO: early, 18.3 = 1.4 vs 16.5 * 1.9
Hz, mean * SEM; p > 0.06, paired ¢ test; middle, 19.5 = 1.7 vs
18.4 = 1.8 Hz; p > 0.4;late, 18.8 = 1.7 vs 17.7 £ 1.8 Hz; p > 0.4).
Together, these results indicate that the triphasic dynamics of direc-
tional coupling occurs only for pFOs. Thus, it is tempting to suggest
that stimulus-dependent unidirectional causality in the early and
late epochs might reflect the signal processing regarding different
aspects of the object recognition, such as structural and semantic
analyses.

Discussion

In the present study, we examined the Granger causality between
spike trains of single neurons in macaque IT cortex that exhibited
a significant displaced peak on the CCG, suggesting pauci-
synaptic serial connections in a classical view. In response to the
stimulus, these pairs of neurons showed Granger causality in the
gamma range, whose directionality was consistent with that of
the CCG peak. Temporal dynamics of the Granger causality ex-
hibited a triphasic pattern: a transient forward component was
followed by a slowly developing backward component and sub-
sequent reappearance of the forward component. These tempo-
ral dynamics of Granger causality depended on the feature
configuration within a presented object and were not observed
for cell pairs that exhibited a center peak on the CCG. This mul-
tiphasic flow of information is likely to be a reflection of the
multistage network processing in the recognition of visual objects
in the IT cortex (Miyashita, 2004).

Granger causality analysis for spike trains of single neurons

To apply the parametric Granger causality analysis (Ding et al.,
2006) to point processes such as spike trains, they have to be
converted into continuous data for conducting MVAR modeling
of the signal. This conversion might lead to loss of information as
a point process inherent in the original spike trains (Truccolo et
al., 2005; Dhamala et al., 2008a,b; Nedungadi et al., 2009). Non-
parametric Granger causality analysis bypasses the MVAR mod-
eling of the signal (Dhamala et al., 2008a,b) and thus can be
applied directly to spike trains (Nedungadi et al., 2009). In pre-
vious studies, it has been confirmed that nonparametric Granger
causality analysis for LFP and simulated data yielded qualitatively
similar results as those obtained by parametric Granger causality
analysis (Dhamala et al., 2008a,b). With respect to spike trains, it
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has been confirmed that nonparametric Granger causality anal-
ysis correctly estimated the anatomically identified unidirec-
tional connectivity (Nedungadi et al., 2009). In the present study,
for both the parametric and nonparametric methods, cell pairs
with a displaced CCG peak showed a significantly forward-
dominant Granger causality in the cue period, and trial shifting
significantly eliminated this causality. Thus, with the aforemen-
tioned previous studies, we suggest that our results do not depend
on the used method for estimating the Granger causality.

In the analysis of neuronal interactions including cross-
correlation, coherence, and Granger causality, stationarity of the
signal is a prerequisite for their correct estimation (Ding et al.,
2000; Jarvis and Mitra, 2001; Brown et al., 2004; Young and Egg-
ermont, 2009). Analyzing the interactions in a sliding short time
window, in which the signal could be treated as locally stationary,
is an effective and practical strategy to cope with this issue (Ding
et al., 20005 Jarvis and Mitra, 2001; Brown et al., 2004). In the
present study, we also calculated the Granger causality using a
sliding short time window, with the length of =125 ms, which
falls within the range used in previous studies of spectral analysis
for spikes or LFPs (Fries et al., 2008; Zhou et al., 2008). We also
calculated the Granger causality using trial-shifted data to determine
whether the calculated Granger causality simply resulted from the
firing dynamics of each neuron. Trial shifting almost completely
diminished the observed Granger causality and its directionality
(Figs. 1, 2). All the calculations of the Granger causality analysis in
the present study were evaluated as a comparison between the results
using raw and trial-shifted data, or were evaluated after subtraction
of the trial-shifted results. These procedures eliminated the possibil-
ity that the observed Granger causality was attributable to the non-
stationarity of the signal, including a sequential increase and/or
decrease in the firing rates without connectivity.

What can be observable as the effect of the Granger causality
on the spike trains? Kayser and Logothetis (2009) demonstrated
that the strength of LFP-LFP Granger causality from the superior
temporal sulcus to the auditory cortex was positively correlated
with the amplitude of multiunit activity (MUA) modulation in
the auditory cortex during a combined auditory and visual stim-
ulation. Pesaran et al. (2008) examined the spike—LFP coherence
between the dorsal premortor area (PMd) and the parietal reach
region (PRR) during a cue-triggered decision-making task. The
results demonstrated that the firing rates at a pair of recording
sites that revealed significant coherence indicated the animal’s
decision earlier than the firing rates at another pair of recording
sites that did not exhibit significant coherence. These results sug-
gest that one of the observable effects of the Granger causality is
firing rate modulation of the neuron that is the target of the
causality. In the present study, however, we did not observe such
modulation of the firing rate that was time locked to the transient
Granger causality (data not shown). This may have occurred, at
least in part, because the firing rate of a single neuron reflects
inputs from a large number of other neurons, which could cause
difficulties in extracting only the effect of the inputs from a spe-
cific single neuron. This might be different from a case in which the
Granger causality and its effect are examined between MUAs or
LFPs. It has been reported that the strength of coherence tends to be
weaker when the analyzed signals are SUAs compared with LFPs or
MUAS (Zeitler et al., 2006; Gregoriou et al., 2009). Considering that
individual neurons act as components in a network in which they are
embedded, even a weak impact of each interaction between single
neurons can affect the network behavior as a population.
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Coherence and Granger causality

Coherence is a widely used measure to assess the interrelation-
ships between neuronal signals. Individual spike—spike coher-
ences in the present study revealed distinct peaks with various
peak frequencies in the gamma range. Several studies have re-
ported variance of the peak frequency for individual gamma co-
herence. Jutras et al. (2009) reported that the frequency of
hippocampal SUA-LFP coherence is separated into low and high
gamma ranges. Sirota et al. (2008) also reported that the peak
frequencies of neocortical SUA-SUA and SUA-LFP coherence
are distributed over a wide range within the gamma band.

The frequency of gamma oscillation depends on the sur-
rounding circuitry and its behavior (Atallah and Scanziani, 2009;
Mann and Mody, 2010). Therefore, pair-by-pair variability of the
peak frequencies might be expected to be larger in SUA-SUA
coherence than those between MUAs or between MUA and LFP,
since the variability of the surrounding circuit would be larger in
the case of single-unit pairs compared with other configurations.

The phase of coherence represents the time lag between the
signals and thus has been used as an index of directionality of the
interaction (Kocsis and Vertes, 1997; Bressler and Kelso, 2001;
Saalmann et al., 2007). In the present study, the directionality
index of Granger causality was significantly correlated with the Al
of the CCG or with the phase of coherence (Fig. 3C-E and sup-
plemental Figs. 2, 3, available at www.jneurosci.org as supple-
mental material). These data suggest that the obtained results of
nonparametric Granger causality analysis were consistent with
the results of both cross-correlation and coherence analyses in
terms of the directionality, further supporting the reliability of
the present analysis of Granger causality.

In the present study, the dynamics of Granger causality was
more rapid and complex than that of the coherence: whereas the
gamma coherence remained to be significant throughout the cue
period, the gamma Granger causality and its directionality re-
vealed more dynamic changes (Figs. 4, 5). The amplitude of co-
herence provides the strength of interrelationship regardless of its
directionality. Thus, the dynamics of neuronal interactions ob-
tained by coherence analysis might, in some cases, be further
decomposed into more rapid and complex, directed interactions
as shown in the present study. It should be noted, however, that
spike—LFP coherence can be used as another method to examine
the directed interactions between distant locations, considering
that spike and LFP correspond to the signals related to neuronal
output and input, respectively. Pesaran et al. (2008) examined the
interactions between the areas PMd and PRR using this tech-
nique. They found that the PMd spike—PRR LFP coherence ap-
peared first after cue onset and the opposite PMd LFP-PRR spike
coherence appeared later, suggesting that information trans-
ferred first from PMd to PRR and then back from PRR to PMd.

Cross-correlation and Granger causality

In a classical view of functional connectivity, a displaced CCG
peak suggests pauci-synaptic serial connections, whereas a center
peak on the CCG suggests common inputs or recurrent connec-
tions (Perkel et al., 1967; Moore et al., 1970). However, cortical
neurons are embedded in a complex network, and thus the im-
pacts of surrounding local circuit also have to be considered to
explain the interactions between the recorded pair of neurons
(Zhou et al., 2008; Ostojic et al., 2009). Indeed, the present
triphasic causality dynamics observed for cell pairs with a dis-
placed CCG peak suggests a nonclassical view of the functional
connectivity within a cortical local circuit.

Hirabayashi et al. # Dynamic Information Flow between Single IT Neurons

From a technical point of view, however, it is difficult to dis-
tinguish even the two classical types of functional connectivities
using a CCG. For example, a given pair of neurons in a local
cortical circuit often involves both types of interactions
(Yoshimura et al., 2005). Additionally, even common inputs
or recurrent connections might yield a displaced CCG peak if
the conduction time or the connection strength was different
between the recorded pair of cells. These possibilities raise the
concern that the observed time-frequency pattern of Granger
causality estimated for displaced peak pairs might result from
non-negligible direct contributions of common inputs or re-
current connections. However, when we analyzed only the
neuron pairs whose CCG peaks were classified as the center
peak, the time-frequency pattern of Granger causality was
largely different from that observed for cell pairs with a dis-
placed CCG peak (supplemental Fig. 5, available at www.
jneurosci.org as supplemental material) (i.e., forward and back-
ward components with similar frequency range appeared after
cue onset with a short latency, and both the components simply
decayed monotonically without a noticeable rebound). These
patterns do not explain the late reappearance of forward causality
nor the delayed development of backward causality observed for
displaced CCG peak pairs. In addition, for the displaced CCG
peak pairs, the time lag between the early component of the for-
ward causality and the slowly developing backward causality was
over 100 ms (Figs. 4, 5), which should be far beyond the differ-
ence in the conduction delay of common inputs to the recorded
pair of cells. Furthermore, we also confirmed that the slowly de-
veloping backward causality remained significant even if we only
analyzed the cell pairs whose CCG showed the Al of 1.0, the upper
limit of the index (i.e., most displaced). We thus conclude that it
is unlikely that the observed dynamics of directional interdepen-
dence for displaced CCG peak pairs were merely the result of
direct contributions of simple common inputs or recurrent
connections.

Is the backward causality detectable in the CCG? In supple-
mental Fig. 9 (available at www.jneurosci.org as supplemental
material), we demonstrate an example of the backward causality
reflected on the CCG peak for a cell pair shown in Figure 1. This
cell pair exhibited unidirectional forward causality at 225 ms after
cue onset and showed a slowly developing backward causality at
475 ms, as typically observed (supplemental Fig. 9, insets, avail-
able at www.jneurosci.org as supplemental material). For this cell
pair, we compiled corresponding CCGs using the spike trains in
the same time windows. At 225 ms after cue onset, a primary
displaced peak was observed, with the directionality expected
from the Granger causality (supplemental Fig. 9A, available at
www.jneurosci.org as supplemental material). At 475 ms, an ad-
ditional secondary peak appeared on the opposite side of the
CCG, which appears to correspond to the development of back-
ward causality (supplemental Fig. 9B, available at www.jneurosci.
org as supplemental material). These results indicate that
backward causality can be also observed on the CCG, in some
cases.

In most cases, however, a sliding-window CCG leads to a
shortage of spikes because of the shortening of the time window,
which reduces the reliability and detectability of the CCG analy-
sis. Furthermore, the detectability of neuronal interactions is, in
general, improved in the spectral analysis compared with the
conventional cross-correlation analysis (Jarvis and Mitra, 2001;
Fries et al., 2008). Therefore, the present Granger causality anal-
ysis will provide a new and powerful approach to uncover the
rapid dynamics of directed interactions beyond a classical view of
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functional connectivity inferred from a CCG. Especially, the dy-
namics of directed information flow between single neurons
whose spiking activities are characterized in a cognitive task
would be an intriguing issue for future study.

Possible mechanisms underlying the directed interactions
Differential dynamics of the forward and backward causality in
the present results (Figs. 4, 5) implies that different neuronal
circuits are involved in these interactions. In the present study, we
analyzed the directed interactions between neurons that exhib-
ited a significant displaced peak on the CCG. A straightforward
interpretation regarding the mechanisms underlying the observed
forward causality is therefore pauci-synaptic unidirectional interac-
tions between the neurons. It has been shown previously that non-
parametric Granger causality analysis faithfully represented
anatomically identified thalamo-cortical monosynaptic connec-
tions (Nedungadi et al., 2009). This interpretation is also sup-
ported by the observation that the forward causality appeared in
the early phase of the response, even earlier than the timing of the
peak firing rate (Figs. 4, 5).

The mechanism underlying the observed backward causality,
however, is likely to be substantially different. The latency of the
backward causality was significantly longer than that of the for-
ward causality, suggesting that the path length underlying this
backward causality is significantly longer than that underlying
the forward causality. Zhou et al. (2008) showed that stimulus-
evoked gamma coherence between SUAs in V1 developed slowly
over 500 ms after cue onset, and discussed that this slow devel-
opment of the coherence is likely attributable to the network
activity of surrounding neurons. Samonds et al. (2009) demon-
strated that spike-timing correlation in V1 showed temporally
discrete early and late increase in response to the visual stimulus,
and discussed that the circuits underlying these early and late
increase in the neuronal interactions might be local and distant,
respectively. Therefore, the observed backward causality might
be the result of the interactions between the recorded neurons
and their surrounding network of neurons responding to the
same stimulus. The delayed backward causality suggests that the
local cortical circuit includes a closed-loop structure, an interme-
diate between simple feedforward and recurrent configurations,
that might enable various computations (Ahissar and Kleinfeld,
2003). We do not, however, exclude the possibility that more
distant circuitry is involved in the observed backward causality,
such as top-down signaling from other cortical areas (Tomita et
al., 1999; Naya et al., 2001; Miyashita, 2004; Takeda et al., 2005).
Feedback activity, which can be reflected in the backward causal-
ity, might play a critical role in enhancing the transmission of
information as shown in the thalamocortical pathway (Briggs
and Usrey, 2008).

Functional implications of the temporal pattern of
information flow

Temporally discrete patterns of activity and their functional im-
plications have been reported for other neuronal signals. In hu-
man event-related potential (ERP) studies, it has long been
considered that ERP signals with different latencies in the visual
cortex code different information about the presented visual
stimulus. In visual word recognition, for example, temporally
distinct components have been associated with different process-
ing stages including orthographic and lexical processing (Hol-
comb and Grainger, 2006; Patterson et al., 2006). In face
recognition, it has been hypothesized that structural information
is processed first, followed by the processing of semantic infor-
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mation (e.g., familiarity or identification) (Bruce and Young,
1986; Tovee and Cohen-Tovee, 1993). Indeed, several lines of
evidence have been shown regarding differences in the informa-
tion content between early and late components of the ERP sig-
nal: an early component at ~170 ms is thought to reflect
structural processing, whereas a late component at ~400—600
ms reflects semantic processing (Bentin and Deouell, 2000; Ei-
mer, 2000). In the present study, we found three major compo-
nents of Granger causality: an early forward (peak, 150 ms)
component, a middle backward (400 ms) component, and a late
forward (550 ms) component (Fig. 5). The early and late forward
components were predominantly observed in response to FOs
(Fig. 8), implying that they might be associated with the struc-
tural and semantic processing (and/or with the perceptual
decision-making regarding these information) of the presented
FO, respectively. Note, however, the observed triphasic dynamics
might be one of possible patterns of more general multiphasic
dynamics of directed interactions, which might depend on the
behavioral conditions including the cognitive task or the pre-
sented stimulus.

The strength of coupling between single neurons in the visual
cortex has been shown to be modulated depending on the pre-
sented stimulus or behavioral context (Engel et al., 2001; Salinas
and Sejnowski, 2001; Hirabayashi and Miyashita, 2005; Kohn and
Smith, 2005). It has not been examined, however, whether the
directionality of information flow between single neuron changes
in a stimulus-dependent manner. The present results provide the
first example of the Granger causality dynamics between the spike
trains of single neurons in behaving monkeys. Further elucida-
tion of the mechanisms and functions of this rapid and complex
dynamics of directional interdependence will be an intriguing
issue for future study.
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