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There is evidence that rule-based category learning is supported by a broad neural network that includes the prefrontal cortex, the
anterior cingulate cortex, the head of the caudate nucleus, and medial temporal lobe structures. Although thousands of studies have
examined rule-based category learning, only a few have studied the development of automaticity in rule-based tasks. Categorizing by a
newly learned rule makes heavy demands on declarative memory, but after thousands of repetitions rule-based categorizations are made
with no apparent effort. Thus, it seems likely that the neural systems that mediate automatic rule-based categorization are substantially
different from the systems that mediate initial learning. This research aims at identifying the neural systems responsible for early and late
rule-based categorization performances. Toward this end, this article reports the results of an experiment in which human participants
each practiced a rule-based categorization task for �10,000 trials distributed over 20 separate sessions. Sessions 1, 4, 10, and 20 were
performed inside a magnetic resonance imaging scanner. The main findings are as follows: (1) cortical activation remained approxi-
mately constant throughout training, (2) subcortical activation increased with practice (i.e., there were more activated voxels in the
striatum), and (3) only cortical activation was correlated with accuracy after extensive training. The results suggest an initial subcortical
neural system centered around the head of the caudate that is gradually replaced by a cortical system centered around the ventrolateral
prefrontal cortex. With extensive practice, the cortical system progressively becomes more caudal and dorsal, and is eventually centered
around the premotor cortex.

Introduction
The COVIS theory of category learning assumes separate rule-
based and procedural-learning categorization systems that com-
pete for access to response production (Ashby et al., 1998; Ashby
and Valentin, 2005). The rule-based system selects and tests sim-
ple verbalizable hypotheses about category membership, whereas
the procedural system gradually associates categorization re-
sponses with regions of perceptual space via reinforcement learn-
ing. COVIS assumes that rule-based categorization is mediated
by a broad neural network that includes the prefrontal cortex
[ventrolateral prefrontal cortex (VLPFC)], anterior cingulate
[middle anterior cingulate cortex (mACC)], head of the caudate
nucleus (HofC), and the hippocampus. The key structures in the
procedural learning system are the putamen and the premotor
cortex [supplementary motor area (SMA)].

The SPEED model (Ashby et al., 2007) extends the COVIS
procedural system to account for the development of automatic-
ity by adding corticocortical projections from sensory cortex di-
rectly to the relevant areas of premotor cortex. This model
assumes that a major role of the subcortical path through the
striatum is to train these corticocortical projections. Thus,
SPEED assumes that the development of automaticity is a gradual

transfer of control from the striatum to the cortex. This model
predicts an increasing role for premotor [posterior anterior cin-
gulate cortex (pACC), dorsal premotor cortex (PMd), ventral
premotor cortex (PMv)] and motor (M1) areas of cortex as au-
tomaticity develops. At least some evidence supports a similar
view for rule-based tasks. For example, Muhammad et al. (2006)
recorded from single neurons in the prefrontal cortex (PFC),
head of the caudate, and PMd while monkeys were applying
rules. As predicted by the category-learning literature, they found
many rule-selective cells in the PFC and caudate. However, after
training the monkeys for a year, they also found many PMd cells
that were rule selective. More importantly, these cells responded
on average �100 ms before the PFC and caudate rule-selective
cells.

This research aims at identifying the neural systems responsi-
ble for early and late rule-based categorization performance. Fol-
lowing the COVIS and SPEED theories of categorization, we
hypothesize that initial rule-based categorization should activate
mostly cortical brain areas overlapping with declarative memory
(e.g., VLPFC, hippocampus), whereas late performance should
produce activation mostly in motor areas (e.g., PMd, PMv). To
test these hypotheses, this article reports the results of an experi-
ment in which human participants each practiced an easy
(simple-1D) or difficult (disjunctive) rule-based categorization
task for �10,000 trials distributed over 20 separate sessions. Be-
cause category learning is thought to follow the power law of
practice (Newell and Rosenbloom, 1981), sessions 1, 4, 10, and 20
(which are approximately equally spaced on a log scale) were
performed inside a magnetic resonance imaging (MRI) scanner.
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Since both the easy and difficult conditions
were scanned on the same session numbers,
their neuroimaging results should reflect
different stages of learning (from a common
rule-based learning process). The results
suggest an initial subcortical neural system
that is progressively replaced by a cortical
system that gradually becomes more caudal
and dorsal with extensive practice.

Materials and Methods
Participants. Sixteen healthy undergraduate
students at the University of California, Santa
Barbara (10 males, 6 females; age range, 19 –23
years), were recruited to participate in 20 d of
training. One-half of the participants were ran-
domly assigned to the simple-1D condition,
whereas the remaining participants were assigned
to the disjunctive rule condition. All participants
gave their written informed consent to partici-
pate in the study, and their consent was reaf-
firmed at the beginning of each scanning session.
The institutional review board of the University
of California Santa Barbara approved all proce-
dures in this experiment. All the participants re-
ceived a monetary compensation or course credit
for participation.

Stimuli and apparatus. This subsection de-
tails the materials and procedures used in the
scanning sessions. Details concerning the
training sessions outside the scanner can be
found in the study by Helie et al. (2010).

The stimuli were circular sine-wave gratings
of constant contrast and size. Each stimulus
was defined by a set of points (x1, x2) sampled
from a 100 � 100 stimulus space and converted
to a disk using the following equations: fre-
quency � x1/30 � 0.25 cpd, and orientation � 9x2/10 � 20°. This yielded
stimuli that varied from 20 to 110° in orientation and from 0.25 to 3.58
cpd in frequency. The stimuli were generated with MATLAB using Brai-
nard’s (1997) Psychophysics Toolbox and occupied an approximate vi-
sual angle of 5°. An example stimulus is shown in Figure 1a.

For the disjunctive rule condition, category A was uniformly distrib-
uted in two regions divided along the frequency dimension (x1). Cate-
gory A stimuli were defined as x1 � 25 or x1 � 75. Category B stimuli
were defined as 25 � x1 � 75 (in the 100 � 100 stimulus space shown in
Fig. 1b). These boundaries were chosen so that the areas of the two
categories were the same. For the simple-1D condition, the category A
stimuli were defined as x1 � 50, whereas the category B stimuli were
defined as x1 � 50 (Fig. 1c). In both conditions, stimuli that were less than
three units away from the category boundaries in the 100 � 100 stimulus
space were not used.

Stimulus presentation, feedback, response recording, and response
time (RT) measurement were controlled and acquired using MATLAB
run on a Macintosh computer. During the scanning sessions, the partic-
ipants selected category A or B responses using two button boxes (one in
each hand). The button box in the left hand indicated an A category
response, and the button box in the right hand indicated a B category
response. Each stimulus was presented for 2000 ms. Correct responses
were followed by a green check mark displayed for 2000 ms. Incorrect
responses were followed by a red “X” mark displayed for 2000 ms. If a
response was given too slowly (i.e., after the stimulus had disappeared), a
black dot was displayed for 2000 ms. A crosshair appeared for 1000 ms
before the stimulus on an average of 48% of the trials. Cognitively, the
presence/absence of the crosshair should only affect response times, as
the crosshair was not diagnostic of the stimulus category membership
and the participants had more than enough time to make a categorization
decision. Because response times are not explored in the present manu-

script, this effect is negligible. However, the irregular presentation of the
crosshair in the scanning sessions contributes to the decorrelation of the
regressors representing the crosshair and stimulus events (corresponding
to a partial trial design) (Serences, 2004). More details on the timing of a
trial (including the jittering parameters) are shown in Figure 2.

Study design. The experiment lasted 20 consecutive workdays. Sixteen
of the sessions were conducted in the laboratory, and four were con-
ducted in an MRI scanner. The laboratory sessions were made up of 12
blocks of 50 stimuli each for a total of 600 stimuli per session, and the
scanner sessions were made up of 6 blocks of 80 stimuli each for a total of
480 stimuli per session. The scanning sessions were the 1st (with no
previous practice), 4th (after 1680 trials of practice), 10th (after 5160
trials of practice), and 20th (after 11,040 trials of practice) days of the
study.

Participants were told that they were taking part in a categorization
experiment and that they were to assign each stimulus into either an A or
B category. In the laboratory, they were asked to respond A or B with their
index fingers (the same fingers used for the button boxes in the scanner)

Figure 1. Stimuli used in the experiment. a, An example stimulus. b, Category structures in the disjunctive rule condition. The
optimal decision bounds are x1 � 25 and x1 � 75. c, Category structures in the simple-1D condition. The optimal decision bound
is x1 � 50.

Figure 2. Timing of a trial scaled in TR (1 TR � 2000 ms). The number of blank TRs between
stimulus and feedback was jittered with a truncated geometric distribution with p � 0.5 (max-
imum 3 TRs), whereas the number of blank TRs between the feedback and the next stimulus was
jittered with a truncated geometric distribution with p � 0.5 (maximum 5 TRs). When more
than one blank TR was inserted between the feedback and the following stimulus (48% of the
trials), a crosshair was displayed in the second half of the TR immediately preceding stimulus
presentation.
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for consistency in motor responses across experimental environments.
The participants were allowed to take a break between blocks if they
wanted.

Neuroimaging. A rapid event-related design functional MRI (fMRI)
procedure was used to examine neural responses as automaticity devel-
oped in the respective categorization tasks. The scanning sessions were
conducted at the University of California, Santa Barbara, Brain Imaging
Center using a 3T Siemens TIM Trio MRI scanner with an eight-channel
phased array head coil. Cushions were placed around the head to mini-
mize head motion. Functional runs [echo-planar images (EPIs)] used a
T2*-weighted single-shot gradient echo (GRE), echo-planar sequence
sensitive to blood oxygen level-dependent contrast [repetition time
(TR), 2000 ms; echo time (TE), 30 ms; flip angle (FA), 90°; field of view,
192 mm] with GRAPPA (generalized autocalibrating partially parallel
acquisitions). Each volume consisted of 33 slices acquired parallel to the
anterior commissure–posterior commissure plane (interleaved acquisi-
tion; 3 mm thick with 0.5 mm gap; 3 � 3 mm in-plane resolution; 64 �
64 matrix). Stimuli were viewed through a mirror mounted on the head
coil and a back projection screen. Each block of 80 trials was associated
with a different (individually jittered) EPI scan sequence. A localizer, a
GRE field map, and a T1-flash (TR, 15 ms; TE, 4.2 ms; FA, 20°; 192
sagittal slices, three-dimensional acquisition; 0.89 mm thick; 1 � 1 mm
in-plane resolution; 256 � 256 matrix) were all run before the EPI scans,
and an additional GRE field-mapping scan was done at the end of each
scanning session. Each scanning session lasted �90 min.

The experimenter talked with the participants between each scan, and
the participants were allowed to take a break between each scan (but not
to exit from the scanner). These manipulations were designed to mini-
mize fatigue and monotony. The possibility of excessive head motion was
assessed by individually examining the results of motion correction pre-
processing and eliminating blocks with remaining excessive head motion
from data analysis (as described next).

Neuroimaging analysis. All the following neuroimaging analyses were
performed on correct responses. Preprocessing and data analysis were
conducted using FEAT (FMRI Expert Analysis Tool), version 5.98, part
of FSL (www.fmrib.ox.ac.uk/fsl). Preprocessing was done separately on
each EPI scan to reduce sources of noise and artifact, including motion
correction using MCFLIRT (Jenkinson et al., 2002), BET brain extrac-
tion, and spatial smoothing with a full width at half-maximum of 5 mm
and a high-pass temporal filter with a cutoff of 100 s. Scanning data in
which excessive head motion (i.e., �3 mm) remained after preprocessing
were excluded from the remaining analyses (�5% of the data).

First, low-level analyses were performed separately on each EPI scan-
ning block. Three explanatory variables (EVs) were defined as follows:
stimulus, feedback, and baseline (defined as the TRs during which the
fixation point crosshairs were shown). The events were convolved with a
gamma function with a SD of 3 s and a mean lag of 6 s. A temporal
derivative and temporal filtering were added to the design matrix. Con-
trasts were formed by subtracting the baseline EV from each of the other
EVs. Second, the results of the low-level analyses were input into midlevel
analyses to aggregate the block data into session data. The midlevel anal-
yses yielded a separate brain map for each participant in each session.
Midlevel analyses focused on the contrast “stimulus � baseline.” The
mean correlation between these two regressors was 0.07. Third, the re-
sults of midlevel analyses were input into a high-level analysis to generate
a separate group map for each session in each condition. To generate
clusters, a z threshold was set for each voxel at 4.265 ( p � 1 � 10 �5) with
a cluster size threshold of p � 0.05.

In addition to whole-brain analysis, anatomical regions of interest
(ROIs) were examined based on existing categorization theory. Although
many cognitive theories of categorization have been proposed (for re-
view, see Ashby and Maddox, 2005), only a few theories include enough
neurobiological details to make predictions in the present experiment.
Hence, ROIs representing activation predicted by COVIS (Ashby et al.,
1998) and SPEED (Ashby et al., 2007) were selected (Table 1). The ROIs
were created using the FSL Harvard–Oxford atlases. The mACC and
pACC were defined by taking the anterior cingulate gyrus as defined by
the Harvard–Oxford Cortical Structural Atlas and dividing based on
structural landmarks (Vogt, 2005). PMd and PMv were created using the

Harvard–Oxford Cortical Atlas and dividing the regions as defined by
Picard and Strick (2001). All other ROIs were directly taken from
Harvard–Oxford structural atlases, with the exception of the VLPFC,
which was defined by dividing the PFC along the sulcus dividing the
middle and inferior frontal gyri and removing the medial part and all the
motor and premotor areas.

ROI analyses were performed on the group maps resulting from the
high-level analyses, and the 90th percentile of percentage signal change
was retained as a measure of activation. In addition, ROI analyses were
performed on the participant maps resulting from the midlevel analyses.
Again, the 90th percentile of percentage signal change was retained as a
measure of activation. The activations in each session in each condition

Table 1. ROI activations from COVIS and SPEED for the disjunctive and simple-1D
rule conditions

Simple-1D Disjunctive

ROI S1 S4 S10 S20 S1 S4 S10 S20

COVIS rule-based
VLPFC 0.19 0.15 0.15 0.16 0.23 0.26 0.19 0.23
MDN 0.23 0.21 0.25 0.25 0.19 0.21 0.20 0.26
VA 0.30 0.23 0.29 0.26 0.21 0.25 0.23 0.30
HofC 0.16 0.13 0.13 0.16 0.12 0.13 0.14 0.22
mACC 0.26 0.22 0.23 0.27 0.20 0.30 0.24 0.31
Hippocampus 0.12 0.13 0.13 0.15 0.07 0.10 0.11 0.17

COVIS procedural
Putamen 0.14 0.15 0.12 0.17 0.13 0.19 0.15 0.24
VL 0.18 0.16 0.18 0.19 0.14 0.17 0.17 0.21
SMA 0.19 0.19 0.16 0.19 0.27 0.35 0.28 0.33

COVIS common
Gpi 0.12 0.12 0.12 0.14 0.09 0.09 0.12 0.15

SPEED
pACC 0.22 0.22 0.18 0.21 0.23 0.35 0.23 0.31
PMd 0.08 0.13 0.14 0.11 0.16 0.19 0.17 0.18
PMv 0.18 0.20 0.19 0.18 0.30 0.33 0.27 0.31
M1 0.09 0.11 0.08 0.07 0.09 0.17 0.13 0.15

Note: Activation is the 90th percentile of percentage signal change and is statistically significant in all cells ( p �
0.001). All the ROIs are bilateral. VLPFC, Ventrolateral prefrontal cortex; MDN, medial dorsal nucleus of the thalamus;
VA, ventral anterior nucleus of the thalamus; HofC, head of caudate; mACC, middle anterior cingulate cortex; VL,
ventrolateral nucleus of the thalamus; SMA, supplementary motor area; GPi, internal segment of the globus pallidus;
pACC, posterior anterior cingulate cortex; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; M1, primary
motor cortex.

Table 2. Trend analysis for partial correlations

Simple-1D Disjunctive

ROI Trend F Significance Trend F Significance

COVIS rule-based
VLPFC 1 13.19 * 1 10.02 *
MDN 2 39.56 ** 2 383.72 ***
VA 2 2.71 NS 2 8.98 *
HofC 2 0.45 NS 2 36.42 **
mACC 1 2.30 NS 1 2.91 NS
Hippocampus 2 3.54 NS 2 6.64 �

COVIS procedural
Putamen � 0.00 NS 2 6.57 �
VL 2 9.48 * 2 38.63 ***
SMA 1 0.89 NS 1 0.99 NS

COVIS common
GPi 2 0.90 NS 2 5.68 �

SPEED
pACC 1 1.74 NS 1 7.34 �
PMd 1 3.09 NS 1 0.09 NS
PMv 1 13.56 * 1 9.87 *
M1 1 5.91 � 1 4.40 NS

Note: A power function was individually fit for each ROI in each condition: pcor � sessionc �1, where pcor is the
partial correlation, session is the session number, and c is a free parameter representing the trend (the �1 was
included to allow the model to fit negative values of pcor). Trend indicates whether c was positive (1), null (�), or
negative (2). The F value was computed by comparing the sum of square error (SSE) of the best-fitting model with
the SSE of a model where c � 0 (Ashby and Lee, 1991).
�p � 0.10; *p � 0.05; **p � 0.01; ***p � 0.001.
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resulting from the midlevel ROI analyses were
correlated with accuracies, with whole-brain ac-
tivations partialled out (using the 90th percentile
of percentage signal change in a whole-brain
mask). Because there is no statistical test that al-
lows the comparison of two (or more) dependent
correlation coefficients (e.g., to compare correla-
tion changes between the sessions, which is a
within-subject design), trend analyses were per-
formed to quantify correlation changes. Details
on the trend analysis are shown in Table 2.

Results
Neuroimaging data from the first scanning
session of one participant in the disjunctive
rule condition were excluded from all anal-
yses because of a computer error.

Behavioral performance
This subsection presents a brief summary
of the behavioral data collected in this ex-
periment. In-depth analysis of the behav-
ioral data is presented in the study by
Helie et al. (2010).

The mean accuracies per session for each
group are shown in Figure 3a. A condition
(2, between) by session (20, within)
ANOVA on accuracies shows a significant
effect of session (F(19,285) � 2.03; p � 0.01).
The mean accuracy on session 1 was 91.3%,
which increased to 94.0% in session 20.
However, the main effect of session needs to
be interpreted with care, because the condi-
tion by session interaction also reached sta-
tistical significance (F(19,285) � 2.66; p �
0.001). As can be seen in the figure, the
simple-1D condition was slightly easier than
the disjunctive rule condition in sessions 1
(F(1,15) � 3.28; p � 0.10) and 2 (F(1,15) �
3.03; p � 0.10). This ordering was reversed
in session 16 (F(1,15) � 3.33; p � 0.10),
which explains the statistically significant
interaction. Accuracy was similar in all the
other sessions (all values of F(1,15) � 2.69;
NS). The mean accuracies in session 1 were
92.8 and 89.6% for the simple-1D and con-
junctive rule conditions, respectively. The
main effect of condition did not reach statis-
tical significance (F(1,15) � 0.46; NS).

Note that additional (unscanned) par-
ticipants were run in the study by Helie et al.
(2010). The same statistical analysis was per-
formed, and the difference between the two
conditions was statistically significant in session 1 ( p � 0.01). How-
ever, the participants had statistically similar accuracies in all the
other sessions. These results suggest that the simple-1D condition
was easier than the disjunctive rule condition in session 1, but that
the marginally significant differences found in sessions 2 and 16 are
probably attributable to random variations. Also, additional behav-
ioral analyses provided in the study by Helie et al. (2010) suggest that
the performances of all the participants reported herein are best
described by an optimal categorization strategy in every session (Fig. 1).

The mean median correct RTs for each group in each ses-
sion are shown in Figure 3b. A condition (2, between) by

session (20, within) ANOVA on mean median correct RTs
shows a significant effect of session (F(19,285) � 38.12; p �
0.001). The mean median correct RT was 696 ms in session 1
and decreased to 584 ms in session 20. The main effect of
condition (F(1,15) � 2.18; NS) and its interaction with ses-
sion (F(19,285) � 0.97; NS) both failed to reach statistical
significance.

Group-maps whole-brain analyses
Tables listing all the statistically significant activation clusters are
presented in the supplemental material (supplemental Tables S1–

Figure 3. a, Proportion correct per training session. b, Mean median correct RT per training session. The scanning sessions are
circled. The error bars are SEMs.
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S8, available at www.jneurosci.org). This subsection summarizes
the key results.

Simple-1D rule condition
Figure 4 shows the activated clusters for the simple-1D group. As
can be seen, activation in session 1 was initially mostly cortical,
and reproduced a typical rule-guided behavior network (Ashby et
al., 1998; Bunge and Wallis, 2008). In particular, activation was
found in the VLPFC, the dorsolateral PFC, and the dorsal ACC.
The only subcortical region that was significantly activated in
session 1 was the thalamus. However, this changed with practice.
Although the cortical activation remained approximately con-
stant with practice, new subcortical clusters became activated
after training. In particular, the hippocampus became signifi-
cantly activated in session 4 and the putamen became signifi-
cantly activated in session 20. Note that these new clusters did not
replace the existing clusters from previous sessions; they supple-
mented activation that was already present. These results are con-
sistent with previous results in habit formation (Poldrack and
Packard, 2003). However, correlational analyses described below
(see Partial correlations between ROIs and accuracies) suggest
that this additional subcortical activation was not mediating the
categorization behavior.

Disjunctive rule condition
Figure 5 shows the activated clusters for the disjunctive rule con-
dition. As can be seen, activation in the first scanning session was
clustered in locations similar to the simple-1D condition. Clus-
ters were found in the dorsal ACC, the VLPFC, and the dorsolat-
eral PFC. The main difference in cortical activation between the
two rule conditions was that activation clusters in motor areas
(e.g., M1, pACC) were much larger in session 1 in the disjunctive
rule condition than in the simple-1D condition. At the subcorti-

cal level, only the thalamus was activated in session 1, as in the
simple-1D condition.

The remaining scanning sessions were marked by the emer-
gence of additional subcortical activation clusters. In particular,
the putamen became activated in session 4, and the caudate be-
came activated in session 10. No new subcortical brain areas be-
came activated in session 20. As in the simple-1D condition, this
additional subcortical activation was not mediating the categori-
zation behavior (as detailed below in Partial correlations between
ROIs and accuracies). At the cortical level, the activation pattern
remained approximately the same throughout training. A note-
worthy absence in the disjunctive rule condition was any signifi-
cant activation in the hippocampus. This was present in sessions
4 and 20 in the simple-1D rule condition. Previous results (Seger
and Cincotta, 2006) suggest that activation in the caudate is neg-
atively correlated with activation in the hippocampus during cat-
egory learning, and that activation in these two brain regions may
correspond to different learning strategies (Poldrack and Pack-
ard, 2003). The simple-1D rule condition did not have caudate
activation (throughout), whereas the disjunctive rule condition
had caudate activation (starting with session 10). This suggests
that different strategies might have been used by the participants
in the two rule-based conditions during the scanning sessions.

ROI analyses
The whole-brain cluster analyses show that brain activation gen-
erally followed a trend in which new subcortical brain areas were
recruited with extensive training (in addition to the originally
activated cortical brain areas). The COVIS theory of category
learning (Ashby et al., 1998) makes predictions about which
brain areas should be activated during rule-based category learn-
ing (Ashby and Valentin, 2005). However, very little is known
about the brain areas involved during automatic rule-based cat-
egorization. Helie and Ashby (2009) proposed a model of auto-
maticity of abstract rule maintenance and application that
assumes a separate corticocortical pathway responsible for auto-

Figure 4. Whole-brain cluster analysis for the simple-1D group.

Figure 5. Whole-brain cluster analysis for the disjunctive group.
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matic performance [as in the theory of Ashby et al. (2007)]. An
ROI analysis was therefore conducted to test whether (1) the
brain areas involved in category learning were still active after
overtraining [those areas identified by Ashby et al. (1998) and
Ashby and Valentin (2005)] and (2) a separate corticocortical
pathway became activated with practice [as proposed by Ashby et
al. (2007) and Helie and Ashby (2009)].

The ROIs predicted by COVIS (Ashby et al., 1998) and SPEED
(Ashby et al., 2007) are listed in Table 1, along with their activa-
tions for the simple-1D and the disjunctive rule conditions in
each session. Activation in all the ROIs in each condition in every
session was statistically significant ( p � 0.001). As can be seen,
the activation was similar in both conditions and remained ap-
proximately constant throughout the scanning sessions in the
ROIs from COVIS (for both the rule-based and the procedural
systems) and SPEED. A separate condition (2, between) by ses-
sion (4, within) ANOVA was performed for each ROI, confirm-
ing the above observations (all values of F � 3.01; NS). The ROIs
that were most activated in both conditions are ventral anterior
nucleus (VA), medial dorsal nucleus (MDN), mACC, pACC, and
the PMv (the VLPFC and the SMA were also highly activated, but
only in the disjunctive rule condition).

COVIS and SPEED predict that these ROIs should be impor-
tant for categorization performance at different stages of training.
This prediction was not supported by the activation statistics.
Even so, COVIS and SPEED do not predict that the locus of
activation will necessarily change with training. Instead, they pre-
dict that categorization performance will depend on different
brain areas at different stages of training. It is possible that an ROI
that helps mediate early categorization performance is still active
after extensive training but that it no longer contributes to the
behavior. For example, this is exactly the result reported by Mu-
hammad et al. (2006). In addition, an ROI responsible for late
categorization performance might need to be activated during
early training to allow for Hebbian learning to take place (Ashby
et al., 2007). These more specific hypotheses can be tested using
correlation analyses.

Partial correlations between ROIs and accuracies
The results so far have shown that (1) the same cortical brain
areas remained activated throughout training, (2) subcortical
brain areas were recruited to supplement the cortical brain areas
after extensive training, and (3) activations in the ROIs from the
COVIS (Ashby et al., 1998) and the SPEED (Ashby et al., 2007)
networks tended to be high but approximately constant and sim-
ilar in the two conditions. However, it remains to be determined
whether all the activated brain areas were meaningful in produc-
ing the behavior. For instance, Muhammad et al. (2006) found
that abstract rules are redundantly encoded in the head of the
caudate, PFC, and PMd after extensive training. However, PMd
rule-selective cells fired earlier than rule-selective cells in other
brain areas, suggesting that the PMd was responsible for the overt
behavior and that other brain areas with rule-selective cells might
be by-products of earlier stages of learning. To address this issue,
we examined partial correlations between activation in a variety
of different ROIs (from Table 1) and response accuracy (with
whole-brain activation partialled out). The 2 (conditions) � 4
(sessions) � 14 (ROIs) � 112 scatterplots underlying the partial
correlation analyses presented herein were individually observed
for outliers. For each scatterplot, the partial correlation was re-
calculated after removing the data point that was the furthest
away from the best-fitting linear regression line. If the correlation
coefficient changed sign, the scatterplot was counted as being

driven by an outlier. This happened in 11 scatterplots (9.8% of
the cases). However, each one of these cases was associated with a
small, nonsignificant correlation that did not change the inter-
pretation of the data reported herein. For instance, the partial
correlation of MDN activation with accuracy in session 1 for the
disjunctive group is �0.004 in Figure 8a and changed to 0.001
when the largest outlier was removed. Thus, the correlation re-
sults reported herein are robust and no datum was eliminated.
The results are shown in Table 2.

In addition to the partial correlation analyses, trend analyses
were performed to detect changes in the correlation coefficient
calculated in each session. These results are also shown in Table 2.

Rule-based system
Figure 6a shows the correlations between VLPFC activation and
accuracy. As can be seen, the correlations in both conditions were
generally increasing (both values of F(1,3) � 10.02; p � 0.05),
peaking in session 10, and decreasing slightly in session 20. The
correlations in the simple-1D condition were statistically signifi-
cant in all scanning sessions starting with session 4 (all r � 0.76;
p � 0.01). The disjunctive rule condition showed a similar pat-
tern, with correlations being slightly smaller. The correlation for

Figure 6. Partial correlations between activations in the COVIS rule-based system and accu-
racy (with whole-brain activation partialled out). a, Ventrolateral prefrontal cortex (VLPFC). b,
Hippocampus. Error bars are SEs.
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the disjunctive condition was marginally significant in session 4
(r � 0.60; p � 0.10) and statistically significant in session 10 (r �
0.66; p � 0.05). The correlation was not significant in session 20
for the disjunctive rule condition (r � 0.42; NS). The high corre-
lation between VLPFC and accuracy is not surprising and was
observed in previous studies (Muhammad et al., 2006). However,
the results of Muhammad et al. suggest that the correlation be-
tween VLPFC activation and accuracy should decrease after ex-
tensive practice (when relevant rule representations are found in
the PMd). It is possible that the VLPFC is not only used for rule
representation but also for visual representation. This possibility
is further explored below (see Discussion, Outstanding results).
Correlations for the mACC were similarly high but stable in both
conditions (supplemental Fig. S1, available at www.jneurosci.org
as supplemental material).

Figure 6b shows the correlations between hippocampus acti-
vation and accuracy. For the simple-1D condition, the correla-
tion was positive (but not statistically significant) until session 4
and became negative in sessions 10 (r � �0.79; p � 0.01) and 20
(r � �0.54; NS). Correlations in the disjunctive rule condition
followed a similar pattern, with correlations being generally
lower than in the simple-1D condition. The correlation was pos-
itive and statistically significant in session 1 (r � 0.71; p � 0.05),
not statistically significant in session 4, and negative and statisti-
cally significant starting with session 10 (both r � �0.78; p �
0.01). This decreasing trend of correlation was marginally signif-
icant in the disjunctive condition (F(1,3) � 6.64; p � 0.10), but not
in the simple-1D condition (because of the non-monotonicity in
session 20). Seger and Cincotta (2006) found a similar pattern of
hippocampus activation for “fast learners” in a rule-based task.

Subcortical ROIs
Muhammad et al. (2006) found rule-selective cells in the head of
the caudate that fired after cortical rule-selective cells (suggesting
that they were not responsible for the behavior). The correlations
between head of the caudate activation and accuracy are shown in
Figure 7a. For the simple-1D condition, the correlation was ini-
tially positive (r � 0.51; NS) and quickly became smaller with
practice, tending toward zero. In the disjunctive rule condition,
the correlation was also initially positive (r � 0.30; NS) but
quickly became highly negative and statistically significant start-
ing with session 10 (both r � �0.83; p � 0.001). This decreasing
trend was highly significant in the disjunctive condition (F(1,3) �
36.42; p � 0.01), but not in the simple-1D condition (because of
the non-monotonicity in session 20). These results suggest that,
as in the study by Muhammad et al. (2006), performance after
extensive training was not driven by the head of the caudate.

It is noteworthy that this general decreasing pattern of corre-
lations was found in all basal ganglia ROIs that were investigated.
For instance, the correlations for the internal segment of the glo-
bus pallidus are shown in Figure 7b. The correlations were gen-
erally decreasing in both conditions, a trend that was marginally
statistically significant in the disjunctive condition (F(1,3) � 5.68;
p � 0.10), but not in the simple-1D condition (because of the
non-monotonicity in session 1). The correlations were highly
significant (and negative) for the disjunctive rule condition in
sessions 10 and 20 (both r � �0.76; p � 0.01). The putamen also
showed a similar negative pattern of correlations (supplemental Fig.
S2, available at www.jneurosci.org as supplemental material).

The decreasing (and mostly negative) correlations between
basal ganglia activation and accuracy suggest that categorization
behavior was mediated mostly by cortical areas after automaticity
had developed. If this interpretation is correct, then activation in

thalamic nuclei that receive basal ganglia input should not be
positively correlated with accuracy after extensive practice. Fig-
ure 8 shows the correlations between activation in three thalamic
nuclei [MDN, VA, ventrolateral nucleus (VL)] and accuracy. As
can be seen, all three nuclei showed a similar decreasing pattern of
correlations in both conditions (all values of F(1,3) � 9.48, p �
0.05; except VA in the simple-1D condition, F(1,3) � 2.71, NS).
None of these correlations were significant in sessions 1 and 4.
However, accuracy in the simple-1D condition was negatively
correlated with VL (r � �0.84; p � 0.001) and MDN (r � �0.84;
p � 0.001) activations in session 10, and with MDN activation in
session 20 (r � �0.65; p � 0.05). Similarly, accuracy in the dis-
junctive rule condition was negatively correlated with VA activa-
tion in session 10 (r � �0.96; p � 0.001), and with both VA (r �
�0.66; p � 0.05) and MDN (r � �0.95; p � 0.001) activations in
session 20. These results support the interpretation that auto-
matic categorization is mostly cortical and are in line with the
study by Muhammad et al. (2006).

Premotor and motor areas
Muhammad et al. (2006) found rule-selective cells in the PMd
that fired stronger and earlier than any other rule-selective cells.

Figure 7. Partial correlations between subcortical brain area activations and accuracy (with
whole-brain activation partialled out). a, Head of caudate (HofC). b, Internal segment of the
globus pallidus (GPi). Error bars are SEs.
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They suggested that the PMd was responsi-
ble for rule-guided behavior after overtrain-
ing. The correlations between accuracy and
premotor areas activations are shown in
Figure 9. As can be seen, accuracy in both
conditions was increasingly correlated with
PMv activation (Fig. 9a) (both values of
F(1,3) � 9.87; p � 0.05). The correlation is
statistically positive in session 10 for the dis-
junctive rule condition (r � 0.88; p � 0.001)
and in session 20 for both conditions
(simple-1D, r � 0.69, p � 0.05; disjunctive
rule, r � 0.80, p � 0.01). The correlation
pattern between accuracy and PMd acti-
vation was not as clear. For the simple-1D
condition, this correlation was generally
increasing (but not statistically significant in
the trend analysis because of the non-
monotonicity in session 1) and statistically
significant in session 20 (r � 0.88; p �
0.001). This is the expected result following
Muhammad et al. In contrast, the disjunc-
tive rule condition had a correlation pattern
that followed an inverted U-shape function
starting at 0.06 (in session 1), peaking in ses-
sion 4 (r � 0.72; p � 0.05), and ending up
negative in session 20 (r � �0.55; NS).
These results suggest that, in session 20,
rules were processed in the PMd in the
simple-1D condition and in the PMv in
the disjunctive rule condition. The SMA,
the pACC, and M1 had correlation patterns similar to that of the
PMd (supplemental Figs. S3–S5, available at www.jneurosci.org
as supplemental material).

Discussion
This research explored the effects of overtraining on brain acti-
vation. The main findings are as follows: (1) cortical activation
remained approximately constant throughout training, (2) sub-
cortical activation increased with practice (i.e., more voxels were
activated in the striatum), and (3) only cortical activation was
positively correlated with response accuracy after extensive train-
ing. These findings have important implications for the interpre-
tation of future research on automaticity.

What is the role of the striatum in the development
of automaticity?
The correlation analyses suggest that the striatum did not play a
significant role in mediating the behavior after extensive training.
This was supported by nonpositive correlations between striatal
activation and accuracy and is consistent with the study by Mu-
hammad et al. (2006), who found that rule-selective cells in the
striatum did not mediate rule-guided behavior after extensive
practice. So, what is the role of the striatum? Ashby et al. (2007)
hypothesized that one of the roles of the striatum in the develop-
ment of automaticity is to train corticocortical connections be-
tween higher-level sensory areas and relevant premotor areas.
Although Ashby et al. did not address the issue of rule-based
categorization, Helie and Ashby (2009) proposed a computa-
tional model that assumed a similar corticocortical pathway be-
tween high-level sensory areas and the premotor cortex for
automatic application of abstract rules (thus bypassing the PFC).
Although Helie and Ashby did not address the issue of initial rule

learning, the data presented here suggest that the striatum might
play a similar role with rule-guided behaviors.

What are the critical brain areas for rule-guided behavior
after the development of automaticity?
The correlation analyses show that activations in the head of the
caudate and the hippocampus were most highly correlated with
successful rule application in session 1. These results are consis-
tent with Seger and Cincotta (2006), who found activation in
both of these areas during initial rule learning. However, the
correlations between accuracy and activations in the head of the
caudate and hippocampus quickly decreased after session 1 (Ta-
ble 2) and became negative (Figs. 6b, 7a). This same pattern was
observed in the thalamus (Table 2), thus making the main com-
munication pathway between the striatum and cortex irrelevant
for behavior after session 1 (Fig. 8).

The correlation analyses after session 1 suggest an increasingly
important role of the VLPFC (Fig. 6a) and the premotor cortex
(Fig. 9) in rule application. However, the changes in the location
of these critical areas happened at different rates in the two con-
ditions. In the simple-1D condition, only activation in the
VLPFC was correlated with accuracy during session 4. PMv and
PMd activation became essential for rule application only in later
scanning sessions. In the disjunctive rule condition, the VLPFC
and the PMd were both important in producing rule-guided be-
havior in session 4. After session 4, the involvement of the PMd
decreased and became negative, whereas the involvement of the
PMv kept increasing and became highly significant (and posi-
tive). These results are consistent with the study by Muhammad
et al. (2006), who found rule-selective cells in the prefrontal and
premotor cortices.

Figure 8. Partial correlations between thalamus activation and accuracy (with whole-brain activation partialled out). a, Medial
dorsal nucleus (MDN). b, Ventral anterior nucleus (VA). c, Ventrolateral nucleus (VL). Error bars are SEs.
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Putting it all together: a new theory of automaticity in
rule-based categorization
One speculative but intriguing interpretation of these data is that
rule application appears to be initially mediated by a network that
depends heavily on the head of the caudate, followed by the
VLPFC after moderate training, and the premotor cortex after
extensive training. The shift from the head of the caudate to the
VLPFC is consistent with the study by Pasupathy and Miller
(2005), who found that both the caudate and the PFC were in-
volved in learning, but that the caudate learned faster and sooner
than the PFC. According to Pasupathy and Miller, the main role
of the caudate is to train a stable representation in the PFC. Be-
cause the PFC is thought to be involved in abstract rule represen-
tation (Wallis et al., 2001), this stage may correspond to the
abstraction of a more general rule (Sun et al., 2001, 2005; Miller
and Buschman, 2008).

Once the rule-related activation has become cortical, it ap-
pears to move gradually in a caudal direction toward the premo-
tor cortex. This is suggested by the magnitude of the correlations
between accuracy and VLPFC and PMv activations, as well as by
the first session where the correlations become statistically signif-

icant (activation of the VLPFC was first significantly correlated
with accuracies in session 4, whereas PMv activation was first
significantly correlated with accuracies in session 10). This grad-
ual shift from the prefrontal to the premotor cortex is consistent
with the study by Helie and Ashby (2009), who proposed a neu-
rocomputational model in which the PFC is used to train the
premotor cortex for automatic rule application. In the model by
Helie and Ashby, the automatic corticocortical rule application
pathway is a direct link between a high-level sensory area (repre-
senting the stimulus) and the premotor cortex (representing the
rule/response) [as observed by Pollmann and Maertens (2005)].
The Helie and Ashby model has been used to simulate data from
the studies by Muhammad et al. (2006) and Wallis and Miller
(2003).

This result is also consistent with a rostrocaudal organization
of the PFC (Christoff and Gabrieli, 2000; Bunge and Zelazo,
2006). According to this hypothesis, most subregions of the PFC
can be used for rule representation, but more rostral subregions
represent more abstract rules, whereas more caudal subregions
represent more concrete rules. Because automaticity research
suggests that rules become more concrete (or “procedural”) with
practice (Moors and De Houwer, 2006), having more caudal re-
gions involved in rule application after the development of auto-
maticity is also consistent with many behavioral results (for
review, see Moors and De Houwer, 2006). Some of these behav-
ioral results were also observed after overtraining in the present
study, including an interference that appeared when the response
keys were switched and a dual-task interference that disappeared
(Helie et al., 2010).

Outstanding results
In the preceding subsection, it was argued that the VLPFC is
essential for rule application in session 4 and that the rule-related
activation moved in a caudal direction toward the premotor cor-
tex (which was responsible for rule application in sessions 10 and
20). If this is the case, then why are the correlations between
accuracy and VLPFC activation not decreasing in sessions 10 and
20 (as was the case for the head of the caudate)? We hypothesize
that the VLPFC has a dual role in perceptual categorization: (1)
rule representation (as argued above) and (2) visual representa-
tion. Many studies have found visual representations of categor-
ically relevant information in the VLPFC (Everling et al., 2006;
Muhammad et al., 2006; Freedman, 2008). This interpretation is
supported by the absence of activation in the inferotemporal cor-
tex in either condition in any scanning session (the 90th percen-
tiles of all percentage signal changes were �0.03; NS). Although
the role of the VLPFC in rule representation might decrease in
sessions 10 and 20 (because of a caudal shift), the role of
the VLPFC in visual representation might remain important
throughout the experiment. This hypothesized double role of the
VLPFC may account for the high correlations between accuracy
and activation after session 4. Even so, this experiment does not
provide a strong test of this dual-role hypothesis, so more re-
search is needed.

A second outstanding issue concerns the correlations between
accuracy and premotor activation in session 20. Figure 9 suggests
that the PMv is important for rule application in both conditions
but that the PMd is only important for the simple-1D condition.
An extensive review of the literature by Hoshi and Tanji (2007)
suggests that the PMv is more involved in the spatial planning of
movements, whereas the PMd is more involved in the motor
representation of movements. Hence, in keeping with the notion
that rule application becomes more concrete with the develop-

Figure 9. Partial correlations between premotor cortex activation and accuracy (with
whole-brain activation partialled out). a, Ventral premotor cortex (PMv). b, Dorsal premotor
cortex (PMd). Error bars are SEs.
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ment of automaticity (Moors and De Houwer, 2006; Helie et al.,
2010), we hypothesize a ventrodorsal organization of rule repre-
sentations in the premotor cortex (Yin and Knowlton, 2006).
Accordingly, more automatized rules would be represented in the
PMd, whereas less automatized rules would be represented in the
PMv. This is consistent with the study by Muhammad et al.
(2006), who found rule-selective cells in the PMd after more than
a year of practice. In the present experiment, the simple-1D con-
dition was initially easier, had a higher button switch cost (sug-
gesting more automaticity) (Helie et al., 2010), and had a high
correlation between accuracy and PMd activation. In contrast,
the disjunctive rule condition was initially more difficult, had a
smaller button switch cost, and only had a high correlation be-
tween accuracy and PMv activation. Additional research is
needed to test whether accuracy in the disjunctive rule condition
would become correlated with PMd activation after more exten-
sive practice.

Concluding remarks
This article presents fMRI results of extensive practice in a rule-
based perceptual categorization task. The results suggest that,
although subcortical activation increased with practice (i.e., there
were more activated voxels), automatic rule-based performance
was mainly mediated by cortical areas. In addition, concrete cat-
egorization rules seem to be learned initially in a network that
depends heavily on the head of the caudate, but are then reen-
coded more abstractly in the VLPFC (rostral), and later reen-
coded more concretely in the premotor cortex (caudal). The
results also suggest that, whereas the PFC follows a rostrocaudal
organization (from abstract to concrete rule representations), the
premotor cortex may follow a ventrodorsal organization (from
less to more automatized rule representations). Additional re-
search is needed to substantiate these findings.
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