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Decision Processes in Human Performance Monitoring
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Department of Psychology, University of Konstanz, D-78457 Konstanz, Germany, and 2Department of Experimental Psychology, University of Oxford,
Oxford OX1 3UD, United Kingdom

The ability to detect and compensate for errors is crucial in producing effective, goal-directed behavior. Human error processing is
reflected in two event-related brain potential components, the error-related negativity (Ne/ERN) and error positivity (Pe), but the
functional significance of both components remains unclear. Our approach was to consider error detection as a decision process involv-
ing an evaluation of available evidence that an error has occurred against an internal criterion. This framework distinguishes two
fundamental stages of error detection—accumulating evidence (input), and reaching a decision (output)—that should be differentially
affected by changes in internal criterion. Predictions from this model were tested in a brightness discrimination task that required human
participants to signal their errors, with incentives varied to encourage participants to adopt a high or low criterion for signaling their
errors. Whereas the Ne/ERN was unaffected by this manipulation, the Pe varied consistently with criterion: A higher criterion was
associated with larger Pe amplitude for signaled errors, suggesting that the Pe reflects the strength of accumulated evidence. Across
participants, Pe amplitude was predictive of changes in behavioral criterion as estimated through signal detection theory analysis. Within
participants, Pe amplitude could be estimated robustly with multivariate machine learning techniques and used to predict error signaling
behavior both at the level of error signaling frequencies and at the level of individual signaling responses. These results suggest that the
Pe, rather than the Ne/ERN, is closely related to error detection, and specifically reflects the accumulated evidence that an error has been

committed.

Introduction
The detection of errors through continuous monitoring of action
outcomes is crucial for achieving optimal performance. Error mon-
itoring is associated with activity in a widespread network of brain
regions, including areas in the medial and lateral prefrontal and pa-
rietal cortices (Kiehl et al., 2000; Ullsperger and von Cramon, 2001;
Ridderinkhof et al., 2004). Scalp EEG methods provide important
evidence about this neural activity because errors in simple choice
tasks are known to elicit an early negative deflection called the error
negativity (Ne) (Falkenstein et al., 1990) or error-related negativity
(ERN) (Gehring et al., 1993) that is followed by a later positive de-
flection called the error positivity (Pe) (Falkenstein et al., 1990).
The Ne/ERN and Pe have received substantial scrutiny, yet
fundamental questions remain. In particular, while it is often
assumed that the two components reflect sequential stages of
error processing (Falkenstein et al., 1990; van Veen and Carter,
2002), there is little consensus about the precise nature of these
stages. Either or both components could reflect precursors to
explicit error detection (like conflict monitoring, Yeung et al.,
2004), the error detection process itself (Nieuwenhuis et al.,
2001), evaluation of the significance of a detected error (Hajcak et
al., 2005), or initiation of subsequent behavioral adjustments
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(Holroyd and Coles, 2002). The present research aimed to pro-
vide new insight into this issue, using a novel approach to address
a simple, but critical, unanswered question: Do the Ne/ERN and
Pe reflect neural signals indicating that an error has occurred, or
do they rather reflect earlier processes that might provide the
input to such an error detection system?

Our approach was to treat error monitoring as a decision
process in which participants make judgments (“Did I respond
correctly?”) on the basis of imperfect evidence. Signal detection
theory (Green and Swets, 1966) and evidence accumulation
models (Ratcliff and Rouder, 1998) provide well developed for-
malisms for understanding such decisions. We leveraged key
ideas from these approaches—in particular, the distinction be-
tween accumulated decision evidence and categorical decision
output—to investigate the informational content of error-related
EEG components. Experimental participants were asked to signal
the errors they made while performing a difficult perceptual dis-
crimination task. By varying the incentives associated with accu-
rate error signaling, we manipulated participants’ signaling
criterion. As detailed below, neural signals related to decision
evidence and decision output should vary in markedly different
ways as a function of the criterion applied.

Looking ahead, our results suggest that even the later Pe com-
ponent is better characterized as reflecting accumulated decision
evidence—the input to decisions about response accuracy—
rather than decision output. To evaluate this idea further, we
used multivariate machine learning techniques to establish ro-
bust measures of error-related activity on individual trials (Parra
et al., 2002; Philiastides and Sajda, 2006, 2007; Philiastides et al.,
2006). Using these techniques, we investigated the degree to
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fixation

which participants’ observed error deci-
sions could be predicted based on neural
error signals preceding these decisions.

Materials and Methods

Participants

Sixteen right-handed participants (14 female)
between 18 and 23 years of age (mean 19.4)
with normal or corrected-to-normal vision
participated in the study. Participants were re-
cruited from the Oxford University commu-
nity for course credit or payment, and were
paid an additional performance-dependent
bonus.

500 ms

Task and procedure

The present study aimed to manipulate partic-
ipants’ error signaling decisions (Rabbitt, 1968;
Steinhauser et al., 2008) through the use of per-
formance incentives, and to investigate the im-
pact of this manipulation on error-related EEG
components. Participants performed the same
“primary” task throughout the experiment—a
difficult perceptual discrimination task—but across conditions were dif-
ferentially rewarded according to the accuracy with which they signaled
their errors in this primary task. In one condition, participants were
punished most strongly (i.e., lost most money) when they failed to signal
errors they had made in the discrimination task; in the other, they were
punished most strongly when they signaled an error after having actually
made a correct response. These incentives were designed to modulate
participants’ internal criterion for signaling errors: In the first condition,
they should adopt a low criterion to avoid “misses;” in the second, they
should adopt a high criterion to avoid “false alarms.” Critically, varying
the criterion in this way should have different effects on decision evi-
dence and decision output: If participants adopt a low criterion, they
should frequently signal errors, but many of those errors will be signaled
on the basis of weak evidence that an error has occurred. In contrast,
adopting a high criterion should reduce the number of error signals, but
these signaled errors should be associated with stronger evidence. As
detailed below, this leads to very different predictions as to how the
criterion should influence error-related EEG components depending on
whether they reflect decision evidence or decision output.

On each trial, participants first performed a difficult perceptual dis-
crimination and then were prompted to make a signaling response when
they thought they had made an error. The discrimination task required
participants to decide which of two boxes presented on a screen was
brighter. The boxes were noisy and the brightness difference rather small.
In this way, stimulus uncertainty was induced, which is known to impair
error processing (Pailing and Segalowitz, 2004) and to produce undetec-
ted errors (Scheffers and Coles, 2000). This design allowed us not only to
control the absolute number of errors but also the rate of undetected
errors, which is an important precondition to directly manipulate error
detection.

A sample trial is depicted in Figure 1. First, a white fixation cross was
centrally presented for 500 ms. A stimulus then appeared for 160 ms,
followed by a blank screen. The stimulus consisted of two boxes pre-
sented on a black background above and below a white fixation cross.
The boxes each consisted of a 64-by-64 array of randomly arranged white
and black pixels, with new arrays generated on each trial. Discrimination
difficulty depended on the relative proportions of white and black pixels
in the two boxes. The difficulty level was set individually for each participant
(for details see supplemental materials, available at www.jneurosci.org). Par-
ticipants responded by pressing one of two keys on a standard keyboard:
the “T” key with the left index finger when the upper box was brighter
and the “G” key with the right index finger when the lower box was
brighter. Five hundred milliseconds after the response, the word “error?”
was centrally presented for 1000 ms. During that time, participants were
instructed to press the space bar with their right thumb if they thought
that they had committed an error in the primary task. Another blank

Figure 1.

incorrect.
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Sequence of stimulus events in a typical trial. Participants were first required to indicate which of two boxes in the
stimulus was brighter. Following the error prompt, they pressed a signaling key if they judged that their primary task response was

screen then appeared for 500 ms, followed by a feedback screen presented
for 1000 ms.

The feedback screen indicated the accuracy of both their primary task
response and their error signaling response. If the primary task response
was correct, and was not followed by an error signaling response, the
feedback indicated “yes, correct” in green (correct rejection). If the pri-
mary task response was correct, but was followed by an erroneous error
signal, the feedback indicated “no, correct” in red (false alarm). If an
incorrect primary task response was followed by an error signaling re-
sponse, the feedback indicated “yes, error” in green (hit). Finally, if an
incorrect primary task response remained unsignaled, the feedback indi-
cated “no, error” in red (miss). In experimental blocks, the feedback
screen additionally indicated the amount of win or loss (e.g., “+2p” or
“—2p”), determined according to the incentive scheme described below.

The experiment consisted of two sessions on consecutive days. In the
practice session on the first day, the task was introduced and task diffi-
culty was calibrated using a staircase method to obtain a reasonable
number of signaled and unsignaled errors (see supplemental materials,
available at www.jneurosci.org, for details). The test session began with a
brief reminder practice, followed by experimental blocks in which we
introduced the critical manipulation of variable incentives for error sig-
naling. Specifically, before the first experimental block, participants were
told that they would receive a reward based on the accuracy of their error
signaling responses. Two reward schemes were chosen so as to manipulate
the participants’ decision criterion for error signaling. In the high criterion
condition, participants lost 2 points for each miss, but lost 10 points for each
false alarm, an incentive scheme designed to bias participants toward signal-
ing only if they were highly confident that they had made an error. In the low
criterion condition, in contrast, participants lost 10 points for each miss and
only 2 points for each false alarm, an incentive scheme that should encourage
participants to signal more errors. In both conditions, 2 points were earned
for correct rejections and hits. At the end of the experiment, points were
converted into a monetary reward (1 point = 1 pence).

When a new condition was introduced, the reward scheme was pre-
sented on the screen and participants were additionally instructed that, to
maximize their reward, they should “avoid pressing the signaling key in
case of a correct response” (high criterion) or “avoid not pressing the
signaling key in case of an error” (low criterion). In addition, participants
were reminded before each block that they should maintain their re-
sponse speed. This was done to maintain similar levels of primary task
performance across conditions. In particular, we anticipated that partici-
pants might respond more carefully in the condition in which errors (spe-
cifically, unsignaled errors) tended to be punished—the low criterion
condition. As described below, the instructions appear to have been success-
ful: Participants responded if anything a little more quickly in this condition.

Each condition comprised six consecutive blocks, two practice blocks
of 30 trials each followed by four experimental blocks of 60 trials. Thus,
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240 trials per condition were included in the data analysis. The order of
the two conditions was counterbalanced across participants.

EEG data acquisition

During the experiment, participants were seated in a dimly lit, electrically
shielded room. The electroencephalogram (EEG) was recorded during
the test session using Ag-AgCl electrodes from channels FP1, FPz, FP2,
F7,F3,Fz,F4,F8,FT7, FC3, FCz, FC4,FT8,T7, C3, Cz, C4, T8, TP7, CP3,
CPz, CP4, TPS, P7, P3, Pz, P4, P8, POz, O1, Oz, O, as well as the right
mastoid. In addition, the vertical and horizontal electrooculogram
(EOG) was recorded from electrodes above and below the right eye and
on the outer canthi of both eyes. All electrodes were referenced to the left
mastoid and off-line re-referenced to linked mastoids. Electrode imped-
ances were kept below 5 k(). EEG and EOG data were continuously
recorded using SynAmps2 amplifiers (Neuroscan) at a sampling rate of
1000 Hz, with a gain of 2816 and 29.8 nV resolution.

Data analysis

Behavioral data. We first analyzed the behavioral data to test whether the
manipulation of signaling criterion was successful. On the basis of the
accuracy of the initial response and the occurrence of a signaling
response, trials were categorized as correct rejections (correct initial re-
sponse, no signaling response), false alarms (correct initial response,
signaling response), misses (wrong initial response, no signaling re-
sponse), and hits (wrong initial response, signaling response). The abso-
lute frequencies were used to calculate the hit rate (H = proportion of
hits among all errors) and the false alarm rate (FA = proportion of false
alarms among all correct trials) for both conditions. We then estimated
two parameters from signal detection theory (Green and Swets, 1966;
Macmillan and Creelman, 1991): the detection criterion, ¢, and the sen-
sitivity, d', which provides a criterion-independent measure of detection
performance.

Event-related potential analyses. Predictions from a simple decision
making model were tested by analyzing event-related potential (ERP)
components, specifically focusing on the Ne/ERN and Pe occurring
time-locked to responses in the primary task (i.e., shortly before partic-
ipants made their overt error signaling response). EEG data preprocess-
ing began with the correction of ocular artifacts using a regression
approach (Semlitsch et al., 1986). Epochs were then extracted for a period
from 500 ms before until 1000 ms after each primary task response.
Baseline activity was removed by subtracting the average voltage in an
interval from 150 to 50 ms before the response. Trials with voltages of 50
1V below or above the mean were excluded. Pe amplitude was quantified
as the difference between error and correct trial waveforms in an interval
from 250 to 350 ms after the response. The Ne/ERN was quantified as the
difference between error and correct trial waveforms from —10 to 90 ms
relative to the response. These difference values were computed for each
channel. However, based on topographical information, statistical anal-
ysis was applied only to data from channel CPz for the Pe and from
channel FCz for the Ne/ERN.

Single-trial analysis. As described below, manipulation of error signal-
ing incentive primarily affected the Pe component and had little effect on
the Ne/ERN. Our follow-up analyses therefore focused on the Pe. In
particular, we attempted to estimate the amplitude of the Pe on individ-
ual trials and then correlate the amplitude of this component with par-
ticipants’ error signaling decisions. To achieve this, we used the linear
integration method introduced by Parra et al. (2002) to measure error-
related EEG activity with improved signal-to-noise ratio. The rationale of
this method is to extract a specific spatial component of the ERP by
constructing a classifier that maximally discriminates between two con-
ditions differing in this component. Specifically, with x(t) being the vec-
tor of electrode activity at time #, we used logistic regression to compute
a spatial weighting coefficient v such that the component,

y(O=v"x(),

is maximally discriminating between two different conditions, occurring
at different times ¢. Thus, the improvement in single-trial signal-to-noise
ratio is achieved by combining data across electrodes (rather than across
trials as in conventional ERP analyses). In the present case, we used this
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method to discriminate between error and correct-response trials to es-
timate error-related EEG activity on individual trials (independent of
criterion condition). As input, we used T samples from each of the N
baseline-corrected ERP epochs, resulting in a training set of size NT.
After finding the optimal v, we estimated the error signal, 7, on each trial
k by averaging across the T samples from each trial. This value ranges
between 0 and 1, with higher values indicating a higher probability that
the trial was an error.

To visualize the spatial distribution of weights of the discriminating
component, we computed the coupling coefficient vector,

Xy
a=—r,
Ty
with time ¢ being a dimension of the matrix X and the vector y. Coupling
coefficients represent the activity at each electrode site that correlates
with the discriminating component, and thus can be thought of as the
“sensor projection” of that component (Parra et al., 2002, 2005).

To ensure that the error signal extracted with this method is equivalent
to the Pe, we analyzed the time course and sensor projection of the
discriminating component. To this end, the analysis was applied in a
moving window (width = 100 ms) along a range from —400 to 600 ms
relative to the response. Classifier sensitivity was quantified in terms of
Az score, which corresponds to the area under the Receiver Operating
Characteristic curve, and for which 0.5 indicates chance-level classifica-
tion and 1 indicates perfect discrimination. Az scores were computed for
each window using split-half cross-validation, i.e., the classifier was
trained on half of the trials and was then used to predict the category
(correct or error) on the remaining trials. This procedure was repeated
for each half of 10 random splits, and the average of these 20 values was
taken as the overall sensitivity for a specific window and participant.
Variation in sensitivity across time points was used as an estimator of the
time course of the component (Parra et al., 2005). To test whether sen-
sitivity at each time point significantly exceeded chance level, a permu-
tation test was applied (Philiastides et al., 2010). For each time point and
participant, a test distribution under the null hypothesis was generated
by recomputing Az scores with random assignment of truth labels (i.e.,
random assignment of each trial to the correct/error categories). This
procedure was repeated 100 times for each of the 20 subsets of trials from
which each Az score was computed. The resulting 2000 values repre-
sented the test distribution, and were used to determine critical Az values
associated with significance levels of 0.05 and 0.01. Overall critical Az
values were computed by averaging across participants.

Results

Behavioral data

Error signaling performance

Behavioral data were analyzed using techniques from signal de-
tection theory (Green and Swets, 1966; Macmillan and Creelman,
1991) to test whether we were successful in manipulating partic-
ipants’ error detection criterion. The results are presented in Ta-
ble 1. We first calculated the hit rate and false alarm rate for the
two conditions. Higher rates of both hits and false alarms were
observed in the low criterion condition compared with the high
criterion condition, t,5, = 7.26 and 9.27, p < 0.001, indicating
that participants made more error signaling responses in the
former. To examine whether these differences indeed reflected a
shift in signaling criterion, we calculated estimates of sensitivity
(d") and detection criterion (c). As expected, criterion was larger
in the high criterion condition than in the low criterion condi-
tion, £;5) = 9.99, p < 0.001, indicating a bias toward more fre-
quent signaling in the latter. In addition, we found a
nonsignificant trend toward an increased sensitivity in the low
criterion condition compared with the high criterion condition,
tas) = 1.95, p < 0.10, indicating that participants were slightly
better at discriminating between errors and corrects in the low
criterion condition. However, because sensitivity is proportional
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Table 1. Behavioral performance: error signaling rates, estimated signal detection
parameters, and primary task error rates and response times for the two criterion
conditions

Low Criterion High Criterion
Mean SEM Mean SEM
Error signaling performance
Hit rate (%) 82.1 0.03 433 0.04
False alarm rate (%) 21.0 0.02 4.6 0.00
Criterion ¢ —0.07 0.07 1.02 0.07
Sensitivity d’ 1.82 0.11 1.66 0.13
Primary task performance
Error rate (%) 35.0 0.02 319 0.01
RT false alarms (ms) 435 27 436 29
RT Corr. Rej. (ms) 428 23 425 20
RT hits (ms) 381 31 372 21
RT misses (ms) 440 36 432 27

RT, Response time; Corr. Rej., correct rejections. Hit rate is the relative frequency of hits relative to all errors. False
alarm rate is the relative frequency of false alarms relative to all correct trials.

to the difference between hit rate and false alarm rate, this trend
might simply reflect a floor effect in false alarm rates for the high
criterion condition. Together, these results clearly show that our
manipulation of the detection criterion was successful.

Primary task performance

We additionally analyzed error rates and response times (RTs) in
the primary brightness discrimination task. Error rates were
somewhat greater in the low criterion condition than in the high
criterion condition, although this difference failed to reach sig-
nificance, t,5) = 1.94, p < 0.10. This effect is somewhat surpris-
ing because, on average, errors were associated with a higher
monetary loss in the low criterion condition than in the high
criterion condition (because in the latter it was false alarms that
were primarily punished). However, the result demonstrates that
our efforts were successful in counteracting any bias toward par-
ticipants producing fewer errors in the low criterion condition.
Mean RTs for each trial type were entered into a three-way
repeated-measures ANOVA with factors of condition (high cri-
terion, low criterion), accuracy (correct, error) and signaling
(signaled, unsignaled). This analysis revealed no reliable effects of
incentive condition (all Fs < 1), indicating that primary task
performance was little affected by our manipulation of error sig-
naling incentives. A significant interaction between accuracy and
signaling, F(, ;5, = 17.2,p < 0.001, indicated that whereas similar
RTs occurred for misses (436 ms), false alarms (435 ms) and
correctrejections (426 ms), primary task responses were faster for
hits (i.e., signaled errors, 376 ms). This finding supports the as-
sumption that detected errors mostly occur when participants
respond prematurely before they have fully processed the stimu-
lus (Scheffers and Coles, 2000).

ERP analysis: Ne/ERN and Pe

The central aim of the present study was to identify the stages of
error processing reflected in the Ne/ERN and Pe. We specifically
focused on the question of whether these error-related EEG com-
ponents emerge before or after decisions about response accuracy
are reached: That is, do either or both components reflect the
accumulation of available evidence that an error has occurred, or
do they reflect the output of this decision process? Although this
theoretical distinction appears straightforward, in practice the
component stages are difficult to dissociate empirically because
decision outputs are strongly dependent on the strength of deci-
sion evidence. For example, both evidence strength and the fre-
quency of error decisions should be reduced if the difficulty of the
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primary task is increased (e.g., by increasing stimulus uncer-
tainty) (Pailing and Segalowitz, 2004) because this manipulation
should impair participants’ ability to derive a representation of
the correct response. Similarly, neural correlates of both evidence
strength and decision output should be increased on trials on
which errors are detected than on trials with undetected errors.

In previous research, only the Pe has consistently been found
to increase for detected errors (Nieuwenhuis et al., 2001; Endrass
etal., 2005, 2007; O’Connell et al., 2007; Shalgi et al., 2009; for an
overview, see Ullsperger et al., 2010). For the Ne/ERN, this rela-
tionship seems to depend on how undetected errors are induced
and whether detected and undetected errors differ with respect to
certain task-related features (such as post-error response conflict
resulting from corrective response activation) (Yeung et al.,
2004). A decreased Ne/ERN for undetected errors has been ob-
served in tasks in which undetected errors are caused by data
limitations induced by stimulus degradation (Scheffers and
Coles, 2000) or masking (Maier et al., 2008). In contrast, no such
decrease has been found in antisaccade tasks, in which even un-
detected errors may be associated with strong corrective response
activation, as indicated by high rates of overt correction following
these errors (Nieuwenhuis et al., 2001; Endrass et al., 2007). Since
the present task is more similar to the former cases, it is perhaps
not surprising that we obtained an increase in both the Ne/ERN,
tas) = 2.18, p < 0.05, and Pe, t(;5, = 21.2, p < 0.001, for hits
compared with misses in the high criterion condition (in which a
sufficient number of misses occurred to allow a robust compari-
son). However, although this result suggests a clear relationship
between the Ne/ERN, Pe, and error detection in this task, it does
not identify the precise stage of error detection reflected in these
components. Thus, the present study aimed to manipulate the
error detection process more directly to determine whether the
components reflect early or later stages of error processing.

As described above, our critical manipulation was of partici-
pants’ error detection criterion. Figure 2 presents a schematic
illustration of our experimental logic. Following standard models
of decision making (Green and Swets, 1966; Ratcliff and Rouder,
1998), we assume that on each trial the monitoring system accu-
mulates evidence for an error which, due to uncertainty, varies
across trials (Fig. 2 A, left). An error is detected if the evidence on
a given trial exceeds a decision criterion, resulting in categorical
decision output (Fig. 2 A, right). This framework leads to specific
predictions about the impact of variations in detection criterion
on neural correlates of decision evidence and decision output. In
particular, varying the decision criterion should have no overall
effect on the strength of evidence across trials (Fig. 2B), but
should affect the evidence strength specifically for detected errors
(i.e., hits): Ifalow ( L) criterion is adopted, errors may be detected
on the basis of relatively weaker evidence than when a high (H)
criterion is used. Thus, to the extent that the Ne/ERN and Pe
reflect evidence strength, they should show little overall differ-
ence across conditions (i.e., when all errors, both hits and misses,
are compared with all correct trials), but should show increased
amplitude specifically for hits in the high criterion compared
with the low criterion condition. In contrast, neural activity cor-
responding to decision output should be increased overall in the
low criterion condition, because here a higher proportion of er-
rors is detected and signaled, but the activity should be similar
when comparing detected errors in the two conditions because of
the categorical nature of the decision process (Fig. 2C). In this
way, our manipulation of participants’ signaling criterion allows
us to dissociate the neural correlates of decision evidence and
decision output. Note that although we focus here on predictions
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Decision Evidence Decision Output

T

Predictions for Decision Evidence

Predictions for Decision Output

average signal of hits ======
average signal of all errors

Figure 2. A simple decision model of error detection. A, Hypothetical error signals in a
sequence of trials. The error detector takes decision evidence as input and determines the
decision output by applying a decision criterion. B, Effects of criterion shift on decision evidence.
Trials are now sorted left to right according to size of error signal, with hypothetical low (L) and
high (H) criterion values shown in the left and right panels, respectively. The overall strength of
error evidence (solid line) is unchanged, but stronger evidence is required for signaled errors
(dashed line) in the high criterion condition. €, Effects of criterion shift on decision output. More
errors are signaled in the low criterion case, so that overall decision output (solid line) is greater
here than in the high criterion condition.

for detected errors because our design was optimized for obtaining
sufficient numbers of these trials in each condition, corresponding
predictions can be derived for undetected errors, which are discussed
in the supplemental materials (available at www.jneurosci.org).

To evaluate these predictions, response-locked waveforms for
error and correct response trials were computed, first, using all
trials (error and correct trials) and, second, using only correctly
signaled trials (hits and correct rejections). Figures 3 and 4 show
the resulting waveforms at electrodes FCz and CPz. Figure 5
shows the topographies for relevant time intervals. The Ne/ERN
is evident as an enhanced negativity following errors compared
with correct responses, peaking ~30 ms after the response (Fig.
3) with a frontocentral topography (Fig. 5). The Pe is clearly
evident as a subsequent positive deflection that is enhanced on
error trials, peaking ~300 ms after the response (Fig. 4) over
posterior scalp sites (Fig. 5). As noted above, both components
were enhanced on trials in which errors were detected (compare
left and right panels of Figs. 3 and 4). However, of central interest
are the effects of error signaling criterion on the two components.

As described above, if the Ne/ERN and Pe reflect the output of
the error detection process, they should be enhanced overall in
the low criterion condition in which error signaling is more fre-
quent. However, contrary to these predictions, Ne/ERN ampli-
tude varied very little across conditions in this comparison (¢ < 1;
Fig. 3, left), while Pe amplitude was even somewhat reduced in
the low criterion condition (0.97 wV) compared with the high
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Figure3. Mean ERP waveforms at electrode FCz for errors and correct responses (upper row)
and difference waves for errors minus correct responses (lower row), separately for the low
criterion and high criterion conditions. Left column presents waveforms averaged across all
trials. Right column presents averaged waveforms including data only from correctly signaled
trials (hits and correct rejections). Shaded area indicates the time interval associated with the
error negativity (Ne/ERN). Black arrows indicate the latency of the primary task response.
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Figure4. Mean ERP waveforms at electrode CPz for errors and correct responses (top row)

and difference waves for errors minus correct responses (bottom row), separately for the low
criterion and high criterion conditions. Left column presents waveforms averaged across all
trials. Right column presents averaged waveforms including data only from correctly signaled
trials (hits and correct rejections). Shaded area indicates the time interval associated with the
error positivity (Pe). Black arrows indicate the latency of the primary task response.

criterion condition (2.46 uV), t;5) = 3.31, p < 0.01 (Fig. 4, left).
These results suggest strongly that the Ne/ERN and Pe do not
reflect the output of an error detection system: Neither compo-
nent showed an increase in amplitude in conditions in which
more errors were detected and signaled.

We next considered whether the components might reflect the
strength of evidence feeding into decisions about response accu-
racy: If so, their amplitude should be increased for signaled errors
(hits) in the high criterion condition relative to the low criterion
condition, because a higher criterion implies that stronger evi-
dence is needed for an error to be detected. As shown in Figure 3
(right), no such effect was apparent for the Ne/ERN (¢ < 1), but
the Pe (Fig. 4, right) showed precisely the predicted effect: Its
amplitude was markedly increased for hits in the high criterion
condition (4.64 wV) compared with the low criterion condition
(1.43 uV), t5, = 7.40, p < 0.001.
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Two further analyses ruled out possible artifactual explana-
tions of this Pe difference. First, we tested whether the criterion
effect for correctly signaled trials exceeded the same effect for all
trials, to exclude the possibility that the high criterion condition
produced generally increased Pe amplitudes. This was indeed the
case, t(y5) = 4.29, p < 0.001. Second, we tested whether the ob-
served effects might be confounded with differences in trial num-
bers across comparisons (e.g., when comparing hits versus all
errors). To this end, we reanalyzed the data after matching trial
numbers of each condition. Because matching implies that a ran-
domly chosen subset of trials is analyzed, we repeated the proce-
dure for 1000 different random subsets. The results were always
consistent with those of the basic analysis reported above, dem-
onstrating that the reported effects do not reflect confounding
effects of differing trial numbers or differing signal-to-noise ratio
across conditions. The increased Pe in the high criterion condi-
tion is also unlikely to be a direct correlate of the criterion shift,
given converging evidence that increasing a decision criterion is
achieved by reducing baseline activity in decision-related brain
structures (Forstmann et al., 2008; Ivanoff et al., 2008; van Veen
et al., 2008; Bogacz et al., 2010). Thus, the results suggest clearly
that the Pe reflects the evidence strength that an error has oc-
curred, being greater for hits in conditions in which stronger
evidence is required for errors to be detected and signaled.

If our interpretation is correct, then it should be possible to
predict the size of participants’ behavioral criterion shift based on
the criterion effect for the Pe, because the latter effect should
provide a neural index of the change in evidence strength across
conditions. Consistent with this hypothesis, participants with a
larger criterion effect on the Pe showed a larger behavioral crite-
rion shift, as estimated through their signal detection theory pa-
rameter, ¢ (Fig. 6). Specifically, to obtain a pure measure of the
crucial Pe effect, unconfounded with any overall amplitude dif-
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Figure6.  Correlations between the Pe contrast representing the criterion effect for correctly
signaled trials minus the criterion effect for all trials, and behavioral estimates of criterion shift
(left) and sensitivity shift (right). Scatter plots illustrate correlations at channel Pz.

ference across conditions, we used the Pe contrast representing
the criterion effect for correctly signaled errors minus the crite-
rion effect for all errors. The observed correlation between the Pe
effect and behavioral criterion shift was robustly observed for
posterior scalp locations around channel Pz (r = 0.64, p < 0.01,
Fig. 6), mirroring the posterior topography of the component
apparent in the ERP waveform (Fig. 5). In contrast, no significant
correlation was apparent between Pe amplitude and detection
sensitivity (d') differences between conditions (Fig. 6, right),
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Figure 7.  Time course of the extracted component of error-related brain activity, showing

sensitivity (Az) of the classifier for discriminating errors and correct responses. Each time point
represents the application of the analysis to a moving window of 100 ms width. Time windows
close to the baseline interval (— 150 to 50 ms) produced implausible values and were omitted.
Orange and red points indicate Az classification values significantly above chance (orange: p <
0.05, red: p < 0.01). The topographies represent the distribution of component activity pre-
dicted by the classifier for the marked time periods representing the Ne/ERN (left) and Pe
(right).

demonstrating that the Pe effect is specifically related to the cri-
terion shift.

Together, these findings demonstrate that Pe amplitude var-
ied robustly as a function of participants’ error signaling criteri-
on—in particular, reflecting the strength of evidence that an
error has occurred—whereas the Ne/ERN was relatively insensi-
tive to this manipulation. In the discussion below, we return to
the somewhat counterintuitive finding that the Ne/ERN varied so
little with error signaling behavior even though its amplitude was
significantly greater for signaled than for unsignaled errors.
However, we first turn to further exploration of the relationship
between the Pe and decision evidence, using multivariate pattern
classifier analyses to derive robust estimates of component am-
plitude on individual trials.

Single-trial analysis: Pe and decision evidence

The preceding analyses suggest that the Pe does not reflect the
output of an error detection process, but rather reflects an inter-
nal decision variable that conveys information about the evi-
dence on which error detection is based. This hypothesis implies
that it should be possible to use the Pe to track the internal pro-
cesses leading to error detection, and to predict participants’ er-
ror signaling based on this brain activity that occurred several
hundred milliseconds earlier. To evaluate this possibility, we es-
timated single-trial Pe amplitude using the linear integration
classifier method introduced by Parra et al. (2002).

We trained the classifier to differentiate between errors and
correct trials, then used its prediction value as a single-trial mea-
sure of the error signal (Parra etal., 2002). As an illustration of the
ability of the classifier analysis to capture key spatial and temporal
features of error-related neural activity, Figure 7 depicts a mea-
sure of discrimination performance, Az, for each time point, with
orange and red points marking values significantly exceeding
chance level. Some Az scores are already significantly above chance
in the time period of the Ne/ERN but reach their maximum in the
time period of the Pe. The spatial distribution of the discriminating
component reveals a frontocentral distribution of weights for the
Ne/ERN time period but a more posterior distribution for the Pe
time period, demonstrating that the classifier effectively isolates ac-
tivity corresponding to the components of interest.

Using the derived single-trial measures of the Ne/ERN and Pe
time periods, we first investigated whether the amplitude of the
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two components correlated across trials, separately for each par-
ticipant. When all trials were entered into the analysis, the result-
ing correlation coefficients ranged from 0.12 to 0.53 across
participants, with a mean of 0.39, which was significantly above
zero, t(,5 = 14.3, p < 0.001, and which implies that the Ne/ERN
and Pe error signals shared about 15% of their amplitude vari-
ance. The correlation decreased when the analysis focused solely
on error trials (mean = 0.30, range = 0.16-0.46, £;5, = 12.3,p <
0.001, shared variance: 9%) or hits (mean = 0.27, range = 0.10—
0.45, t(,5) = 9.03, p < 0.001, shared variance: 7%), reflecting the
reduction of overall amplitude variance in these trial subsets.
Together, these results confirm our earlier conclusion that, al-
though the Ne/ERN and Pe are not completely unrelated, they
share relatively little variance and thus seem to convey different
types of error information.

We next used the derived error signal estimated from the Pe
time period to recover the distribution of activity on error and
correct trials, specifically to evaluate whether these distributions
can be used to predict behaviorally observed frequencies of error
signaling hits and false alarms. To this end, the Pe distributions
were used to estimate a hypothetical criterion that best predicted
the empirically observed pattern of hit and false alarm rates across
the two incentive conditions. More specifically, we applied a cri-
terion K to the distributions and then calculated the expected
proportion of false alarms FA (among all correct trials) together
with the proportion of hits H (among all errors). By means of
exhaustive parameter search, we identified the value for K that
minimized the difference between the predicted and the observed
values for H/FA, separately for each condition and each partici-
pant. Finally, we tested whether the estimated criterion, K, dif-
fered significantly across conditions. The results are presented in
Figure 8.

As shown in the upper left panel of Figure 8, the Pe distribu-
tions for correct and error trials were strongly overlapping. How-
ever, when we estimated the hypothetical detection criterion to fit
the empirical frequencies of hits and false alarms, we achieved
rather good fits (Fig. 8, upper right panel). There were still some
deviations—in particular, the neural data (“model”) tended to
underestimate the observed frequencies (“data”) of accurate er-
ror signals—but the predicted frequencies successfully captured
key trends in the empirical data across the two conditions. More-
over, the estimated criterion, K, was reliably different in the two
conditions, t5, = 6.99, p < 0.001. These results demonstrate
that the recovered error signal in the Pe time period is predictive
of subsequent signaling responses and, thus, that the signal pro-
vides a valid estimate of decision evidence underlying error de-
tection. Given that our behavioral data can be explained by
strongly overlapping distributions of decision evidence on cor-
rect and error trials, the overlap seen in Figure 8 appears to reflect
the limited sensitivity of error detection in our experiment rather
than simply reflecting noise in the EEG error signal. In short, the
distribution of neural error signals shown in Figure 8 provides a
reasonable approximation of the internal evidence signal on
which participants based their error signaling responses.

Figure 8 also illustrates the utility of the logistic regression
classifier. The bottom presents the results of analyses in which
single-trial Pe amplitudes were estimated simply using the ERP
waveform at CPz (the electrode at which the Pe is maximal) from
250 to 350 ms post-response. Using this measure, the distribu-
tions for errors and correct trials are nearly completely overlap-
ping: Variability of the signal in each distribution (mean SD =
9.60 wV and 9.70 wV, for correct and error trials, respectively) is
much larger than the difference in distribution means (1.99 V).
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Moreover, using these distributions, the
best-fitting signaling criterion did not dif-
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tation test (1000 permutations; critical
values: 0.582 for p < 0.05, 0.615 for p <
0.01). Classifier Pe values discriminated
false alarms from correct rejections at a
similar level (Az = 0.61), and again ro-
bustly above chance, p < 0.05 (1000 per-
mutations; critical values: 0.586 for p <
0.05,0.619 for p < 0.01). Thus, classifier
Pe values can be used to predict individual signaling re-
sponses, albeit imperfectly.

Figure 9 presents the data from individual error trials across
all participants to illustrate the effectiveness of single-trial classi-
fication and the level of signal variability. For each participant,
the error data are sorted according to the classifier-derived Pe
value, shaded according to whether they were accurately signaled
(light gray) or missed (dark gray), and plotted against the esti-
mated criterion values from the preceding analysis. For most
participants, misses were clearly more frequent on trials with
smaller error signals (i.e., the dark gray bars cluster to the left of the
plots), demonstrating that recovered Pe values provide a valid pre-
dictor of the subsequent signaling response on individual trials as
well as on an aggregate level across trials.

Figure 8.

condition.

Discussion

The present study provides new insight into the functional sig-
nificance of error-related EEG activity by treating performance
monitoring as a decision-making process. Within this frame-
work, we asked whether the Ne/ERN and Pe reflect the strength of
evidence that an error has occurred, or the output of the error
detection process. If the latter were true, then the Ne/ERN and Pe
should be large in conditions in which participants frequently de-
tected and signaled their errors. However, no such effect was appar-
ent for the Ne/ERN, and Pe amplitude was even somewhat reduced
when participants were encouraged (via performance incentives) to
signal their errors frequently. Instead, Pe amplitude varied with the
strength of evidence that an error had occurred, being larger for

Recovered distribution of error signals estimated by the prediction value of the classifier (top row) and raw ERP
voltage at channel CPz (bottom row) for each trial. Left column, Separate distributions for correct trials and errors were constructed.
Vertical lines indicate the estimated criterion values for the low criterion (L) and high criterion (H) conditions. Right column,
Empirical (“data”) and predicted (“model”) frequencies of false alarms (FA), correct rejections (CRj), hits, and misses, for each

detected errors when participants adopted a strict signaling criterion
(i.e., when strong evidence was required for error detection, and
relatively few errors were signaled). No such effect was observed for
the Ne/ERN. Extending these analyses, we found that participants’
error detection criterion— estimated using signal detection theory
analysis— could be predicted from variations in Pe amplitude, sug-
gesting further that this component reflects the internal evidence
that an error has been committed.

The observed dissociation between the Ne/ERN and Pe is con-
sistent with the proposal that these two components reflect at
least partially dissociable aspects of performance monitoring
(Overbeek et al., 2005). In the present data, Ne/ERN and Pe am-
plitude correlated across trials and both were larger for detected
than undetected errors (cf. Scheffers and Coles, 2000; Maier et al.,
2008), but only Pe amplitude varied across conditions in a man-
ner predictive of changes in participants’ signaling behavior.
Thus, consistent with previous work (Nieuwenhuis et al., 2001;
Endrass et al., 2005, 2007; O’Connell et al., 2007; Shalgi et al.,
2009), our findings suggest that the Pe correlates more closely
with subjective judgments of response accuracy than does the
Ne/ERN.

It initially seems puzzling that Ne/ERN amplitude varied with
some aspects of overt error detection (being larger for detected
errors) but not others (being insensitive to changes in detection
criterion). However, both results are consistent with the hypoth-
esis that the Ne/ERN reflects intrinsic features of task perfor-
mance—such as the occurrence of response conflict (Yeung et al.,
2004) or the probability of errors (Holroyd and Coles, 2002)—
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P3 as a neural response to a salient event
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dashed lines indicate mean of error signal.

rather than providing a direct index of error processing. Accord-
ing to this hypothesis, Ne/ERN amplitude should be determined
primarily by variations in primary task performance rather than
variations in error signaling. Critically for this interpretation,
task performance differed significantly for detected and undetec-
ted errors, being consistently faster for the former. Thus, the
Ne/ERN increase for detected errors may not reflect its direct role
in error processing, but might instead be a by-product of the fact
that detected errors tend to occur when fast guess responses are
subsequently corrected (cf. Scheffers and Coles, 2000), resulting
in high levels of conflict. This interpretation is consistent with
evidence from the antisaccade task that Ne/ERN amplitude is
similar for detected and undetected errors that are always cor-
rected (Nieuwenhuis et al., 2001), although in some studies this
relationship is less clear (Endrass et al., 2007). In contrast, pri-
mary task performance was very little affected by variations in
error signaling criterion. Ne/ERN amplitude correspondingly
varied little across conditions, despite marked differences in error
detection performance. Together, these findings provide further
evidence that the Ne/ERN does not directly index error monitor-
ing processes, contrary to early theoretical accounts of this com-
ponent (Falkenstein et al., 1990; Gehring et al., 1993).

The Pe appears much more directly related to explicit error
detection than the Ne/ERN. While this conclusion converges
with other recent evidence (Nieuwenhuis et al., 2001; Endrass et
al., 2005, 2007; O’Connell et al., 2007; Shalgi et al., 2009), and is
broadly consistent with the suggestion that the Pe resembles the

(lassifier-based estimates of Pe amplitude for error trials sorted by value (signal strength), separately for each
participant. Light gray indicates hits, dark gray indicates misses. The number in the upper left corner refers to the discrimination
sensitivity between hits and misses (Az). Vertical lines are behaviorally estimated low (L) and high (H) criterion values. Horizontal

ioral criterion shifts as estimated using
signal detection theory analysis.

To explore further the relation be-
tween the Pe and decisions underlying er-
ror detection, we examined whether its
amplitude is predictive of subsequent be-
havioral error signaling responses both at
an aggregate level (in terms of hit and false alarm rates) and at a
single-trial level (in terms of individual signaling responses). To
this end, the distribution of error-related EEG activity across tri-
als was computed using logistic regression classification. Classi-
fication performance was maximal in the latency range of the Pe.
Critically, EEG activity at this latency predicted the pattern of hit
rates and false alarm rates in the two conditions as well as the
criterion shift. In this way, our analyses suggest that the Pe pro-
vides a robust index of the internal weight of evidence that an
error has occurred: The distribution of Pe amplitude across trials
(Figs. 8, 9) may therefore be the neural basis of the hypothesized
variable-strength error signal (Fig. 2). Consistent with this interpre-
tation, our classifier-based Pe measure predicted participants’ sig-
naling responses on single-trials at a level robustly above chance.
Together, these results suggest strongly that the Pe conveys probabi-
listic information about the occurrence of an error, information that
may subsequently lead to overt judgments about response accuracy
and necessary remedial actions.

A critical feature of the present approach is the application of
established principles from decision making research (Green and
Swets, 1966; Ratcliff and Rouder, 1998). We thus characterized
error detection as involving the accumulation of evidence for an
error that is compared against a decision criterion. This interpre-
tation raises the intriguing possibility that performance monitor-
ing decisions might rely on similar neural mechanisms to other,
well characterized decision processes such as those involved in
perceptual categorization (Gold and Shadlen, 2007; Heekeren et
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al., 2008) that have been analyzed using similar methods to those
adopted here (Philiastides and Sajda, 2006, 2007; Philiastides et
al., 2006). This hypothesis converges with recent suggestions that
the Pe may share neural generators with the stimulus-related P3
component, and that both reflect the conscious processing of
motivationally salient events (Ridderinkhof et al., 2009). More-
over, neurons in the ventral premotor cortex of monkeys have
been identified that support both perceptual decisions and error
monitoring (Pardo-Vazquez et al., 2008). On this view, the ben-
efits of treating performance monitoring as a decision process
may be more than simply methodological: To the degree that
there are shared neural mechanisms for accumulating and eval-
uating evidence about external (sensory) events and internal
(monitoring) processes, understanding of performance moni-
toring will be deepened by further investigation of these shared
processes.

Future research might therefore build on the present ap-
proach by further specifying the neural correlates of decision
evidence and identifying correlates of decision output in perfor-
mance monitoring. For example, the present approach might be
extended using functional magnetic resonance imaging to iden-
tify stages of error processing implemented in specific networks
previously shown to be differentially active for detected and un-
detected errors (Klein et al., 2007; Ullsperger et al., 2010), or
using formal models to guide single-trial analysis (Cavanagh et
al., 2010; Philiastides et al., 2010). Such issues might fruitfully be
addressed using extensions of the present methods, in which
experimental manipulations were targeted directly at the error
detection process—through varying incentives for error sig-
naling—rather than influencing error detection indirectly via
modulations of primary task performance (cf. Yeungetal., 2007).
This approach allowed us to dissociate neural activity that varied
with participants’ error signaling judgments (and therefore var-
ied across conditions) from activity more closely tied to the pri-
mary behavioral task (which therefore varied relatively little).
Our primary task was in turn designed to allow precise control
over the absolute number of errors as well as the rate of undetec-
ted errors. Using these methods, the present study demonstrates
that principles and methods from decision making research may
shed new light on the mechanisms underlying performance mon-
itoring. In particular, our findings suggest that the Pe reflects an
internal evidence signal that an error has occurred, and as such
represents an early stage of error detection and compensation in
the service of optimizing task performance.
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